ON ALMOST RELATIVE PROJECTIVES OVER PERFECT RINGS

Manabu HARADA

(Received October 20, 1989)

We have defined a new concept of almost relative projectivity [7]. If a module M_{o} is M_{i}-projective for a finite set of modules M_{i}, then M_{o} is $\Sigma_{i} \oplus$ M_{i}-projective [2]. However this fact is not true for almost relative projectives [7]. We have filled this gap in [6], when a ring R is a semiperfect ring with radical nil and M_{o} is a local R-module and the M_{i} are LE R-modules. As we investigate further several properties of almost relative projectives, it seems for us that the gap is one of essential structures of almost relative projectives. Thus we shall fill completely that gap in this paper, when R is a perfect ring (Main theorem). $\quad M_{o}$ was cyclic in [6] and hence the proof was rather simple. Modifying its proof, we shall give a generalization of [6], Theorem 2.

We shall give several applications of the main theorem in forthcoming paper [8], and give the properties dual to this paper in [9].

1. Preliminaries

In this paper we always assume that R is a ring with identity and that every module is a unitary right R-module and e, e^{\prime} are primitive idempotents unless otherwise stated. We recall here the definition of almost relative projectivity [7]. Let M and N be R-modules. For any diagram with K a submodule of M :

if either there exists $\widetilde{h}: N \rightarrow M$ with $\nu \tilde{h}=h$ or there exist a nonzero direct summand M_{1} of M and $\tilde{h}: M_{1} \rightarrow N$ with $h \tilde{h}=\nu \mid M_{1}$, then N is called almost M projective [7] (if we obtain only the first case, we say that N is M-projective [2]).

We note the following fact.
(\#) When N is almost M-projective and M is indecomposable, if the h in the diagram (1) is not an epimorphism, then there exists always an $\tilde{h}: N \rightarrow M$ with $\nu \widetilde{h}=h$.

We frequently use this fact without any references.
Lemma 1. Let R be a right perfect ring with Jacobson radical J and let M_{0} and M_{1} be R-modules and $M_{o} \cong P / Q$ for R-modules $P \supset Q$ with $Q \subset P J$. Let g be an element in $\operatorname{Hom}_{R}\left(P, M_{1}\right)$. We assume one of the following:
a) M_{0} is M_{1}-projective, and
b) M_{\circ} is almost M_{1}-projective, M_{1} is indecomopsable and g is not an epimorphism.
Then $g(Q)=0$ (cf. [3], Lemma 6).
Proof. Consider the derived diagram from g

$$
\begin{gathered}
M_{o}=P / Q . \\
\downarrow \bar{g} \\
M_{1} \xrightarrow[\rightarrow]{\nu} M_{1} / g(Q) \rightarrow 0
\end{gathered}
$$

From assumption and (\#) there exists $\tilde{h}: P / Q \rightarrow M_{1}$ with $\nu \tilde{h}=\bar{g}$. Let ρ be the natural epimorphism: $P \rightarrow P / Q$ and put $h=\widetilde{h} \rho: P \rightarrow M_{1}$. Since $\nu \tilde{h}=\bar{g}$, for any $p \in P$

$$
g(p)+g(Q)=\tilde{g}(p+Q)=\nu \tilde{h}(p+Q)=\nu \tilde{h} \rho(p)=h(p)+g(Q) .
$$

Hence

$$
\begin{equation*}
g(p)-h(p)=g(q(p)) ; q(p) \quad \text { is an element in } Q \tag{2}
\end{equation*}
$$

Let $\left\{p_{i}\right\}$ be a set of generators of P, i.e., $P=\Sigma p_{i} R$ and put

$$
\begin{equation*}
g\left(p_{i}\right)-h\left(p_{i}\right)=g\left(q_{i}\right) \text { for each } i \text { from (2) } \tag{3}
\end{equation*}
$$

where q_{i} is some element in Q.
Now $Q \subset P J=\Sigma p_{i} J$ by assumption, and $q=\Sigma p_{i} x_{i} ; x_{i} \in J$ for any q in Q. Then

$$
\begin{aligned}
0 & =\tilde{h}(q+Q)=h(q)=\Sigma h\left(p_{i}\right) x_{i} \\
& =\Sigma\left(g\left(p_{i}\right) x_{i}-g\left(q_{i}\right) x_{i}\right) \quad \text { from (3) } \\
& =g\left(\Sigma p_{i} x_{i}\right)-\Sigma g\left(q_{i}\right) x_{i}=g(q)-\Sigma g\left(q_{i}\right) x_{i} .
\end{aligned}
$$

Accordingly $g(Q) \subset g(Q) J=g(Q J) \subset g(Q)$. Therefore $g(Q) J=g(Q)$ implies $g(Q)=0$.

In Lemma 1 we take a projective cover P of M_{o}, i.e., there exists an epimorphism $\nu: P \rightarrow M_{o}$ where P is projective and ker $\nu=K$ is small in P. Then the following is clear from Lemma 1.

Corollary 1 ([1], p. 22, Exercise 4). Let P and M_{0} be as above and M_{1} an R-module. Then M_{0} is M_{1}-projective if and only if $h(K)=0$ for any h in $\operatorname{Hom}_{R}\left(P, M_{1}\right)$.

If $\operatorname{End}_{R}(M)$ is a local ring for an R-module M, then we call M an LE module. It is clear that an LE module is indecomposable. By $\mathrm{J}(M)$ we denote the Jacobson radical of M. Let $e R / A$ and $e R / B$ be local modules, i.e., e is primitive. We say that $e R / A \oplus e R / B$ has the lifting property of simple modules modulo radical (briefly LPSM) if and only if for any isomorphism f of $e R / e J$ onto itself, there exists a g in $\operatorname{Hom}_{R}(e R / A, e R / B)\left(\right.$ or in $\left.\operatorname{Hom}_{R}(e R / B, e R / A)\right)$ such that g induces f (or f^{-1}). If $e R / A$ and $e R / B$ are LE, then the concept of LPSM coincides with one in [5], §9. See [10] for the definition of the lifting module.

Proposition 1. Let R be a perfect ring and let M_{1}, M_{2} be indecomposable R-modules and M_{o} an R-module. Assume that M_{0} is almost M_{1}-projective, but not M_{1}-projective. Then 1): if M_{o} is M_{2}-projective, M_{1} is M_{2}-projective. 2): If M_{0} is almost M_{2}-projective, but not M_{2}-projective, then M_{1} is $\mathrm{J}\left(M_{2}\right)$-projective and further we obtain the following two cases; i) if $M_{1} / \mathrm{J}\left(M_{1}\right) \approx M_{2} / \mathrm{J}\left(M_{2}\right), M_{1}$ is M_{2}-projective and M_{2} is M_{1}-projective, ii) if $M_{1} / \mathrm{J}\left(M_{1}\right) \approx M_{2} /\left(\mathrm{J}\left(M_{2}\right)\right.$, we have the following equivalent conditions:
a) M_{1} is almost M_{2}-projective.
a') M_{2} is almost M_{1}-projective.
b) $M_{1} \oplus M_{2}$ has LPSM.

Proof. 1) Assume that M_{0} is M_{2}-projective. Since M_{0} is not M_{1}-projective, $M_{1} \approx e R / A$ by [6], Corollary 1 , where e is a primitive idempotent and $A \subset e R$. Further from [6], Corollary 2 there exists a homomorphism $f: M_{1}=$ $e R / A \rightarrow M_{o}$ such that $f(\tilde{e})=m_{o}=m_{o} e \notin J\left(M_{o}\right)$, where $\tilde{e}=e+A$ in $e R / A$. Since $m_{o} \notin J\left(M_{o}\right)$, there exists a projective cover $P=e R \oplus e_{2} R \oplus \cdots$ of M_{o} and the natural epimorphism $\nu: P \rightarrow M_{o}$ such that $\nu(e)=m_{0}$. Put $K=\operatorname{ker} \nu$ and $B=K \cap e R$ $(e R \subset P)$. Since $f(e R / A)=m_{o} R \approx e R / B$, there exists a unit x in $e R e$ with $x A \subset B$. Since $e R / A \approx e R / x A$, we may assume $A=x A \subset B$. Let h be any element in $\operatorname{Hom}_{R}\left(e R, M_{2}\right)$. Then we can naturally extend h to an element h^{\prime} in Hom_{R} (P, M_{2}), since $e R$ is a direct summand of $P . M_{o}$ being M_{2}-projective and P being a projective cover of $M_{o}, h^{\prime}(K)=0$ by Corollary 1. Hence

$$
h(A) \subset h(B) \subset h^{\prime}(K)=0,
$$

and so $e R / A$ is M_{2}-projective again by Corollary 1 .
2) Assume that M_{0} is not M_{2}-projective. Then $M_{2} \approx e^{\prime} R / C$ for some primitive idempotent e^{\prime} by [6], Corollary 1. First assume i): $e \approx e^{\prime}$. Then the above h is not an epimorphism. Hence we can find a non-epic homomorphism h^{\prime} in $\operatorname{Hom}_{R}\left(P, M_{2}\right)$, which is an extension of h. Then since $h^{\prime}(K)=0$ by Lemma $1, M_{1}$ is M_{2}-projective (and so $J\left(M_{2}\right)$-projective) as the last sentence of the proof of 1). Similarly M_{2} is M_{1}-projective by symmetric assumption. Finally assume ii): $e \approx e^{\prime}$. We may assume $e=e^{\prime}$. Take a diagram with row exact:

$$
\begin{gathered}
e R / A \\
\downarrow J / C \xrightarrow{\nu} e J / D \rightarrow 0
\end{gathered}
$$

Since $e R$ is projective, there exists $h^{\prime}: e R \rightarrow e J / C \subset e R / C=M_{2}$ with $\nu h^{\prime}=h \rho$, where $\rho: e R \rightarrow e R / A$ is the natural epimorphism. Then since h^{\prime} is not an epimorphism onto $M_{2}, h^{\prime}(A)=0$ by Lemma 1 as before, and so h^{\prime} induces $\tilde{h}: e R / A \rightarrow e J / C$ with $\nu \tilde{h}=h$. Hence $e R / A$ is $e J / C$-projective (similarly $e R / C$ is $e J / A$-projective). Now suppose that $M_{1} \oplus M_{2}$ has LPSM. Let u be any unit in $e R e$. Then $(u+j) A \subset C$ or $(u+j) C \subset A$ for some j in $e J e$ by definition. j_{l}, the multipliaction of j from the left side, gives an element in $\operatorname{Hom}_{R}(e R, e R / C)$ and j_{l} is not an epimorphism. Further j_{l} induces an element in $\operatorname{Hom}_{R}\left(P, M_{2}\right)$ as in the proof of 1$)$. Since M_{0} is almost M_{2}-projective, $j A \subset C$ by Lemma 1 and the last fact of the proof of 1). Similarly we obtain $j C \subset A$. Therefore $u A \subset C$ or $u C \subset A$. Hence M_{1} and M_{2} are mutually almost relative projective by [3], Proposition 2. a) implies b) by definition.

2. Main theorem

Let M_{o} be an R-module and $\left\{M_{i}\right\}_{i=1}^{s}$ a set of indecomposable R-modules. If M_{0} is almost $\sum_{i=1}^{s} \oplus M_{i}$-projective, clearly M_{0} is almost M_{i}-projective for all i. We assume conversely that M_{0} is almost M_{i}-projective for all i. In [6] we have given a condition under which M_{o} is almost $\sum_{i=1}^{s_{i}} \oplus M_{i}$-projective, when R is semiperfect and $M_{o}=e R / A$ for a primitive idempotent e and a submodule A in $e R$. In this section we shall generalize this condition, when R is a perfect ring and M_{o} is an R-module.

Now we assume that R is a semiperfect ring with radical J. Let M_{o} be an R-module such that $M_{o} \neq M_{o} J$. Then $M_{o} / M_{o} J$ is semisimple. Put $M_{o} / M_{o} J$ $=\Sigma \oplus S_{i}$, where the S_{i} are simple modules isomorphic to $e_{i} R / e_{i} J$ for some primitive idempotent e_{i}. We take m_{j} in M_{o} such that ($\left.m_{j} R+M_{0} J\right) / M_{o} J=S_{j}$; $m_{j} e_{j}=m_{j}$, and fix one simple component S_{1} among S_{j}.

Lemma 2. Let $R, M_{o},\left\{m_{i}\right\}$ and e_{1} be as above and M an R-module. Let x be an element in M with $x e_{1}=x$. If
i) M_{0} is M-projective, or
ii) M_{0} is almost M-projective, M is indecomposable and $x R \subsetneq M$, then there exists a homomorphism $\tilde{h}: M_{0} \rightarrow M$ such that

1) $\tilde{h}\left(m_{1}\right)=x+x j ; j \in e J e$ and
2) $\tilde{h}\left(m_{i}\right) \in x J$ for $i \neq 1$, and hence $\tilde{h}\left(M_{o}\right)=x R$.

Proof. Since $x e_{1}=x, x R / x J \approx e_{1} R / e_{1} J$. Further $M_{o} / M_{o} J=\Sigma \oplus \overline{m_{i} R} ; \overline{m_{i} R}$ $=\left(m_{i} R+M_{o} J\right) / M_{o} J$. Hence we can take a submodule B in M_{o} such that $B \supset$ $M_{o} J, M_{o} / B \approx m_{1} R$ and $m_{j} \in B$ for $j \neq 1$. Take a diagram:

where $g\left(\bar{m}_{1}\right)=x+x J$. Then from the assumption i) or ii) together with (\#) there exists $\widetilde{h}: M_{0} \rightarrow M$ such that $\nu^{\prime} \tilde{h}=g \nu_{0}$. Hence $\widetilde{h}\left(m_{1}\right)=x+x j ; j \in J$ and $\widetilde{h}\left(m_{i}\right) \in x J$ for $i \neq 1$. Clearly $\tilde{h}\left(M_{0}\right)=x R$.

Corollary 2. We assume in Lemma 2 that J is left T-nilpotent. Then we can find $\widetilde{h}: M_{0} \rightarrow M$ with $\widetilde{h}\left(m_{1}\right)=x$ and $\widetilde{h}\left(m_{i}\right) \in x J$ for $i \neq 1$.

Proof. We obtain $\tilde{h}_{1}: M_{0} \rightarrow x R \subset M$ such that $\tilde{h}_{1}\left(m_{1}\right)=x-x j_{1} ; j_{1} \in J$. Being $x j_{1} e_{1}=x j_{1}$ and $x j_{1} R \subset x R \neq M$ (in case ii)), we have $\widetilde{h}_{2}: M_{0} \rightarrow x j_{1} R \subset x R \subset M$ such that $\tilde{h}_{2}\left(m_{1}\right)=x j_{1}-x j_{1} j_{2} ; j_{2} \in J$ and $\widetilde{h}_{2}\left(m_{i}\right) \in x J$ for $i \neq 1$. Hence $\left(\widetilde{h}_{1}+\widetilde{h}_{2}\right)\left(m_{1}\right)=$ $x-x j_{1} j_{2}$ and $\left(\widetilde{h}_{1}+\widetilde{h}_{2}\right)\left(m_{i}\right) \in x J$ for $i \neq 1$. Since J is left T-nilpotent, we can find $\left\{\tilde{h}_{i}\right\}$ such that $\left(\widetilde{h}_{1}+\tilde{h}_{2}+\cdots+\widetilde{h}_{n}\right)\left(m_{2}\right)=x$ for some n and $\left(\widetilde{h}_{1}+h_{2} \cdots+\tilde{h}_{n}\right)\left(m_{i}\right) \in x J$ for $i \neq 1$.

Similarly to Lemma 2 we obtain
Lemma 2'. Let R be a semiperfect rnig with J left T-nilpotent. Let $M_{1}=$ $e R / A_{1}, M_{2}=e R / A_{2}$ be mutually almost relative projective. Then for any element x_{i} in $M_{i}-J\left(M_{i}\right)$ with $x_{i}=x_{i} e(i=1,2)$ there exists either $h_{1}: M_{1} \rightarrow M_{2}\left(\right.$ or $h_{2}: M_{2} \rightarrow$ $\left.M_{1}\right)$ with $h_{1}\left(x_{1}\right)=x_{2}\left(\right.$ or $\left.h_{2}\left(x_{2}\right)=x_{1}\right)$, where e is a primitive idempotent.

Proof. Take a diagram

$$
\begin{gathered}
M_{2} \\
\downarrow \nu_{2} \\
M_{2} / J\left(M_{2}\right) \\
\ell f \\
M_{1} \xrightarrow{\nu_{1}} M_{1} \mid J\left(M_{1}\right) \rightarrow 0
\end{gathered}
$$

where $f\left(x_{2}+J\left(M_{2}\right)\right)=\nu_{1}\left(x_{1}\right)$. Then there exists $\tilde{h}_{2}: M_{2} \rightarrow M_{1}\left(\right.$ or $\left.\tilde{h}_{1}: M_{1} \rightarrow M_{2}\right)$ with $\widetilde{h}_{2}\left(x_{2}\right)=x_{1}-x_{1} j ; j \in e J e\left(\right.$ or $\tilde{h}_{1}\left(x_{1}\right)=x_{2}-x_{2} j$). Further from Corollary 2 there exist $\widetilde{h}_{2}^{\prime}: M_{2} \rightarrow M_{1}$ and $\widetilde{h}_{1}^{\prime}: M_{1} \rightarrow M_{2}$ with $\widetilde{h}_{2}^{\prime}\left(x_{2}\right)=x_{1} j$ and $\widetilde{h}_{1}^{\prime}\left(x_{1}\right)=x_{2} j$, respectively. Therefore $\left(\widetilde{h}_{2}+\widetilde{h}_{2}^{\prime}\right)\left(x_{2}\right)=x_{1}$ or $\left(\widetilde{h}_{1}+\widetilde{h}_{1}^{\prime}\right)\left(x_{1}\right)=x_{2}$.

The following simple lemma is useful in this paper.
Lemma 3. Let R be a perfect ring and let M_{0} be an R-module and $M_{1}=$ $e R / A$ for a primitive idempotent e. Let $x=x e$ be an element in $M_{1}-J\left(M_{1}\right)$ and
$h: M_{1} \rightarrow M_{o}$ any homomorphism such that $h(x)\left(=m_{o}=m_{o} e\right) \notin J\left(M_{o}\right)$. Under those assumptions if M_{0} is almost M_{1}-projective, then for each element j in eJe, there exists an endomorphism f of M_{o} such that $f\left(m_{o}\right)=m_{o}+m_{c} j$.

Proof. Since $x j \in J\left(M_{1}\right) e$, there exists $g: M_{0} \rightarrow M_{1}$ such that $g\left(m_{o}\right)=x j$ by Corollary 2. Hence $f=1_{M_{0}}+h g$ is the desired endomorphism.

Before stating Main Theorem, we give here a simple remark, which is helpful for us to understand the argument in [3], $\S 1$.

Let $D=D_{1} \oplus D_{2} \oplus D_{3}$ be a direct sum of modules D_{i}, and $\pi_{i}: D \rightarrow D_{i}$ the projection. Take any submodule K of D and put $K^{i}=\pi_{i}(K)$. Then we have the following commutative diagram:

Now we assume that R is a perfect ring. Let M_{0} be an R-module and $\left\{M_{i}, N_{k}\right\}_{i=1, k=1}^{t}$ a set of LE R-modules. Further assume that M_{o} is almost $\sum_{i=1}^{t}$ $\oplus M_{i} \oplus \sum_{k=1}^{n} \oplus N_{k}$-projective. Therefore we may suppose that
(*) $\quad M_{c}$ is N_{k}-projective for all k and
M_{o} is almost M_{i}-projective, but not M_{i}-projective for all i.
Then from [6], Corollary $1,\left\{M_{i}\right\}$ is divided into the following subsets

$$
\begin{equation*}
\left\{M_{i}\right\}_{i=1}^{t}=\left\{M_{i j}=e_{1} R / A_{i j}\right\}_{j=1}^{a(1)} \cup\left\{M_{2 j}=e_{2} R / A_{2 j}\right\}_{j=1}^{a(2)} \cup \cdots \tag{5}
\end{equation*}
$$

where the e_{i} are primitive idempotents.
We give some remarks related with [6], Proposition 5. We assumed there that M_{o} was finitely generated. However we assume here that R is perfect and so we can find a maximal submodule B given in its proof. Hence [6], Proposition 5 is true for any module M_{o}, provided R is perfect. Therefore $M_{i} \oplus M_{j}$ has LPSM for any $i \neq j$. Moreover since M_{o} is almost M_{i}-projective, $M_{k s}$ is almost $M_{k s^{\prime}}$-projective for all k and $s \neq s^{\prime}$ by Proposition 1-2).

We are ready to obtain a generalization of [6], Theorem 2, when R is a perfect ring.

Theorem. Let R be a perfect ring and M_{0} an R-module and let $\left\{M_{i j}\right.$, $\left.N_{k}\right\}_{\substack{m \\ i=1, j=1, k=1}}^{\substack{a(i) \\ n}}$ be the above set of LE modules with (*) and (5). Then the following conditions are equivalent:

1) M_{o} is almost $\left(\Sigma_{i j} \oplus M_{i j} \oplus \Sigma_{k} \oplus N_{k}\right)$-projective.
2) $M_{i j}$ is almost $M_{i^{\prime} j^{\prime}}$-projective for all $\left(i^{\prime} j^{\prime}\right) \neq(i j)$ and hence $\Sigma_{i j} \oplus M_{i j}$ is a lifting module.
3) For each i and any pair $j, j^{\prime}\left(j \neq j^{\prime}\right)$ either $M_{i j}$ is almost $M_{i j^{\prime}-\text {-projective }}$ or $M_{i j^{\prime}}$ is almost $M_{i j}$-projective.
4) $M_{i j} \oplus M_{i^{\prime} j^{\prime}}$ has LPSM for each $(i j) \neq\left(i^{\prime} j^{\prime}\right)$, and hence $\Sigma_{i j} \oplus M_{i j}$ has LPSM.

Proof. 1) $\rightarrow 2$), 2) $\leftrightarrow 3) \leftrightarrow 4$). These are clear from Proposition 1, [6], Corollary 1, Proposition 5 together with above remark and [3], Theorem 1.
$2) \rightarrow 1$). Take any diagram with row exact:

$$
0 \rightarrow K \rightarrow M=\Sigma_{i j} \oplus M_{i j} \oplus \Sigma_{k} \oplus N_{k} \xrightarrow{M_{o}} \stackrel{\nu}{\downarrow} \begin{align*}
& M / K \rightarrow 0
\end{align*}
$$

We shall show that
(7) there exists $\tilde{h}: M_{o} \rightarrow M$ with $\nu \tilde{h}=h$ or there exist a non-zero direct summand M^{*} of M and $\tilde{h}: M^{*} \rightarrow M_{o}$ with $h \tilde{h}=\nu \mid M^{*}$.

Now we shall prove (7) by induction on the number $\Sigma a(\mathrm{i})$ of direct summands $M_{i j}$. Since the argument is very long, we shall divide it into several steps.
Step $1 \Sigma a(i)=0$. We are done from Azumaya's theorem [2].
Hence we assume $\Sigma a(i) \neq 0$. Let $\pi_{i j}: M \rightarrow M_{i j}$ be the projection and put $\pi_{i j}(K)=K^{i j}$.
Step $2 K^{i j}=M_{i j}$ for some ($i j$). We can reduce, by the proof of [3], Lemma 1 , a new diagram from (6), which is essentially same as (6) and in which $M_{i j}$ disappears, i.e.

$$
\begin{array}{cc}
& M_{o} \\
& \downarrow h \\
& \\
M \rightarrow M / K \rightarrow 0 \\
\cup & \\
& \\
M^{\prime} \rightarrow & \\
M^{\prime} / K^{\prime} & \\
&
\end{array}
$$

where $M^{\prime}=\Sigma_{\left(i^{\prime} j^{\prime}\right) \neq(i j)} \oplus M_{i^{\prime} j^{\prime}} \oplus \Sigma_{k} \oplus N_{k}$ and $K^{\prime}=K \cap M^{\prime}$. Hence we obtain (7) by induction hypothesis (cf. the proof of [3], Lemma 1). Thus we may assume always

$$
\begin{equation*}
K^{i j}=\pi_{i j}(M) \neq M_{i j} \quad \text { for all } i \text { and } j \tag{8}
\end{equation*}
$$

Following the argument in [3], §1, we can derive the new diagram from (6):

$$
\begin{gather*}
M_{o} \\
M_{i j} \xrightarrow{\nu_{i j}^{\prime} \nu \mid M_{i j}} \begin{array}{c}
\downarrow \nu_{i j}^{\prime} h \\
M_{i j} / K^{i j} \rightarrow 0
\end{array} \tag{9}
\end{gather*}
$$

where $\nu_{i j}^{\prime}: M / K \rightarrow M_{i j} / K^{i j} \oplus\left(1_{M}-\pi_{i j}\right)(M) /\left(1_{M}-\pi_{i j}\right)(K) \xrightarrow{\pi_{i j}} M_{i j} / K^{i j}$ (cf. (4)).

Step 3 Existence $\tilde{h}_{i j}: M_{0} \rightarrow M_{i j}$ for all i and j. We shall show under the assumption (8)
(10) if there exists $\tilde{h}_{i j}: M_{o} \rightarrow M_{i j}$ with $\nu_{i j}^{\prime} \nu \tilde{h}_{i j}=\nu_{i j}^{\prime} h$ in (9) for all i and j, then we can find $\widetilde{h}: M_{0} \rightarrow M$ such that $\nu \widetilde{h}=h$, i.e. (7).
We shall prove (10) again by induction on the mumber $\Sigma a(i)$ of direct summands $M_{i j}$. If $\Sigma a(i)=0$, we obtain (10) from Azumaya's theorem [2]. Put $\Sigma_{(i j) \neq(1)} \oplus$ $M_{i j} \oplus \Sigma_{k} \oplus N_{k}=M-M_{11}$. Then since $M=M_{11} \oplus\left(M-M_{11}\right)$, we obtain from (3) and (3') in [3] (see (9))

$$
\begin{gather*}
M_{o} \\
M_{11} \xrightarrow{\nu_{11}^{\prime} \nu \mid M_{11}} \begin{array}{c}
\downarrow \nu_{11}^{\prime} h \\
M_{11} / K^{11} \rightarrow 0
\end{array} \tag{11}
\end{gather*}
$$

and

$$
\underset{\left(M-M_{11}\right) \xrightarrow{\nu_{11}^{*} \nu \mid\left(M-M_{11}\right)}\left(M-M_{11}\right) /\left(1_{M}-\pi_{11}\right)(K) \rightarrow 0}{\downarrow \nu_{o}^{*} h} \begin{gather*}
M_{1} \tag{12}\\
(M)
\end{gather*}
$$

where $\nu_{11}^{*}: M / K \rightarrow\left(M-M_{11}\right) /\left(1_{M}-\pi_{11}\right)(K)$.
We want to apply the induction hypothesis on (12). Now for each (ij) $\neq(11)$ we derive a diagram (9^{\prime}) similar to (9) from (12)

$$
\begin{align*}
& M_{0}
\end{align*}
$$

We remark that the diagram (9^{\prime}) satisfies the assumption in (10). It is clear that the assumption (8) holds true in the diagram (12). Recalling the diagram (4), we know that $\nu_{i j}^{\prime}: M / K \rightarrow M_{i j} / K^{i j}$ in the diagram (9) is essentially determined by $\pi_{i j}$. Hence the assumption of existence of $\tilde{h}_{i j}$ in (10) guarantees an existence of $\tilde{h}_{i j}$ in the diagrams (9^{\prime}). Accordingly we can apply the induction hypothesis on (12), and hence there exists $\widetilde{h}^{\prime}: M_{0} \rightarrow\left(M-M_{11}\right)$ such that $\nu_{11}^{*} \nu \widetilde{h}^{\prime}=$ $\nu_{11}^{*} h$. Further from the assumption (10) we obtain also $\tilde{h}^{\prime \prime}: M_{0} \rightarrow M_{11}$ which makes (11) commutative. Therefore from (\#), (8) and the argument in [3], §1, we obtain $\tilde{h}: M_{o} \rightarrow M$ such that $\nu \tilde{h}=h$. Thus we have shown (10). As a consequence
Step 4 Existence $\tilde{h}_{i j}: M_{i j} \rightarrow M_{o}$ for some ($i j$). We can assume that for some (ij) there exists $\tilde{h}_{i j}: M_{i j} \rightarrow M_{o}$ which makes the following diagram commutative:

$$
\xrightarrow[{M_{i j} \xrightarrow[\nu_{i j}^{\prime} \nu \mid M_{i j}]{\tilde{h}_{i j}}{\underset{M i j}{ } / K^{i j} \rightarrow 0}_{M_{0}}^{M_{i j}^{\prime} h}}]{ }
$$

We note that the above diagram is actually given from the following one:

$$
\begin{aligned}
& \rightarrow M_{i j} / K^{i j} \rightarrow 0
\end{aligned}
$$

Hence ker $\nu_{i j}^{\prime}=\nu\left(K^{i j} \oplus\left(M-M_{i j}\right)\right)$. Put $M_{i j}=e_{i} R / A_{i j}, \tilde{e}_{i}=e_{i}+A_{i j}((5))$ and

$$
\tilde{h}_{i j}\left(\tilde{e}_{i}\right)=m_{0} \quad\left(=m_{0} e_{i}\right),
$$

It is clear from (8) and the above diagram that $m_{o} \notin J\left(M_{o}\right)$. Since $h\left(m_{o}\right)-\nu\left(\tilde{e}_{i}\right) \in$ ker $\nu_{i j^{\prime}}^{\prime}, h\left(m_{o}\right)-\nu\left(\tilde{e}_{i}\right)=\nu\left(k_{i j}+\sum_{\left(i^{\prime} j^{\prime} \neq(i j)\right.} x_{i^{\prime} j^{\prime}}+\Sigma_{k} y_{k}\right)$, where $k_{i j}=k_{i j} e_{i} \in K^{i j}, x_{i^{\prime} j^{\prime}}=$ $x_{i^{\prime} j^{\prime}} e_{i} \in M_{i^{\prime} j^{\prime}}$ and $y_{k}=y_{k} e_{i} \in N_{k}$. Further $K^{i j} \subset J\left(M_{i j}\right)=\tilde{e}_{i} J$ by (8) and hence $k_{i j}=\tilde{e}_{i} b ; b \in e_{i} J e_{i}$. Therefore

$$
h\left(m_{o}\right)=\nu\left(x_{i j}+\Sigma_{\left(i^{\prime} j^{\prime}\right) \neq(i j)} x_{i^{\prime} j^{\prime}}+\Sigma_{k} y_{k}\right) \quad(=\nu(x)),
$$

where

$$
x_{i j}=\tilde{e}_{i}\left(e_{i}+b\right) \text { is a generator of } M_{i j}
$$

and

$$
x=x_{i j}+\Sigma_{\left(i^{\prime} j^{\prime}\right) \neq(i j)} x_{i^{\prime} j^{\prime}}+\Sigma y_{k} .
$$

Here we consider $\left\{x_{i 1}, x_{i 2}, \cdots, x_{i j}, \cdots, x_{i a(i)}\right\}$. Among those elements we put $X=$ $\left\{x_{i t} \notin J\left(M_{i t}\right)\right\} \ni x_{i j}$. Since $M_{i t}$ is almost $M_{i t^{\prime}}$-projective for $t \neq t^{\prime}$, we can find an $x_{i s}$ in X and

$$
g_{i^{\prime} j^{\prime}}: M_{i s} \rightarrow M_{i^{\prime} j^{\prime}} \text { with } g_{i^{\prime} j^{\prime}}\left(x_{i s}\right)=x_{i^{\prime} j^{\prime}} \text { for any } \quad\left(i^{\prime} j^{\prime}\right) \neq(i s)
$$

by Lemma 2' (use induction) and Corollary 2, and we obtain

$$
g_{k}: M_{i s} \rightarrow N_{k} \quad \text { with } \quad g_{k}\left(x_{i s}\right)=y_{k} \quad \text { for all } k .
$$

by Proposition 1 and Corollary 2.
Step 5-1 $\quad s \neq j$. Putting $g=\Sigma_{\left(i^{\prime} j^{\prime} \neq(i s)\right.} g_{i^{\prime} j^{\prime}}+\Sigma_{k} g_{k}: M_{i s} \rightarrow M-M_{i s}$,

$$
x=x_{i j}+\Sigma_{\left(i^{\prime} j^{\prime}\right) \neq\{(i j),(i s)\}} x_{i^{\prime} j^{\prime}}+\Sigma_{k} y_{k}+x_{i s}=(1+g)\left(x_{i s}\right)
$$

is a generator of $M_{i s}(g)=\left\{z+g(z) \mid z \in M_{i s}\right\}$. Hence we obtain $M=M_{i s}(g) \oplus$ ($M-M_{i s}$) and $x \in M_{i s}(g)$. On the other hand

$$
\tilde{h}_{i j}\left(x_{i j}\right)=\tilde{h}_{i j}\left(\tilde{e}_{i}\left(e_{i}+b\right)\right)=m_{o}+m_{o} b\left(=m_{o}^{\prime}=m_{o}^{\prime} e_{i}\right) .
$$

Since $e_{i}+b$ is a unit in $e_{i} R e_{i}$, we can put $\left(e_{i}+b\right)^{-1}=e_{i}+b^{\prime} ; b^{\prime} \in e_{i} J e_{i}$. Then $m_{o}=m_{0}^{\prime}\left(e_{i}+b^{\prime}\right)=m_{0}^{\prime}+m_{0}^{\prime} b^{\prime}$. By Lemma 3 there exists an endomorphism f of M_{o}
such that

$$
f\left(m_{o}^{\prime}\right)=m_{o} \quad\left(\text { note } m_{o}^{\prime} \notin J\left(M_{o}\right)\right) .
$$

Further we have an isomorphism $p: M_{i s}(g) \rightarrow M_{i s}$ with $p(x)=x_{i s}$. Put

$$
\tilde{h}=f \tilde{h}_{i j} g_{i j} p: M_{i s}(g) \rightarrow M_{o},
$$

and $\tilde{h}(x)=f \tilde{h}_{i j} g_{i j}\left(x_{i s}\right)=f \widetilde{h}_{i j}\left(x_{i j}\right)=f\left(m_{o}^{\prime}\right)=m_{o} . \quad$ Hence $h \tilde{h}(x)=h\left(m_{o}\right)=\nu(x)$, i.e.

$$
h \tilde{h}=\nu \mid M_{i s}(g)((7))
$$

Step 5-2 $s=j$. Then again by the assumption 2) and Corollary 2, there exist

$$
g_{i^{\prime} j^{\prime}}^{\prime}: M_{i j} \rightarrow M_{i^{\prime} j^{\prime}} \quad \text { with } \quad g_{i^{\prime} j^{\prime}}^{\prime}\left(x_{i j}\right)=x_{i^{\prime} j^{\prime}} \text { for all } \quad\left(i^{\prime} j^{\prime}\right) \neq(i j)
$$

and

$$
g_{k}^{\prime}: M_{i j} \rightarrow N_{k} \quad \text { with } \quad g_{k}^{\prime}\left(x_{i j}\right)=y_{k} \quad \text { for all } k .
$$

Putting $g^{\prime}=\Sigma_{\left(i^{\prime} j^{\prime}\right) \neq(i j)} g_{i^{\prime} j^{\prime}}^{\prime}+\Sigma_{k} g_{k}^{\prime}$ as above,

$$
x=x_{i j}+\Sigma_{\left(i^{\prime} j^{\prime}\right) \neq(i j)} x_{i^{\prime} j^{\prime}}+\Sigma_{k} y_{k}=\left(1+g^{\prime}\right)\left(x_{i j}\right)
$$

Hence we obtain $M=M_{i j}\left(g^{\prime}\right) \oplus\left(M-M_{i j}\right)$ and $x \in M_{i j}\left(g^{\prime}\right)$. Now there exists an isomorphism $p^{\prime}: M_{i j}\left(g^{\prime}\right) \rightarrow M_{i j}$ with $p^{\prime}(x)=x_{i j}$. Put

$$
\tilde{h}=f \tilde{h}_{i j} p^{\prime}: M_{i j}\left(g^{\prime}\right) \rightarrow M_{o}
$$

and $\tilde{h}(x)=m_{0}$. Therefore

$$
h \tilde{h}=\nu \mid M_{i j}\left(g^{\prime}\right) .
$$

Thus we have proved (7), i.e. M_{0} is almost M-projective.
Corollary 3. Let R be perfect. Let M_{0} be an R-module and let M_{1} and M_{2} be finite direct sums of LE R-modules. Assume that M_{0} is M_{1}-projective and almost M_{2}-projective. Then M_{0} is almost $M_{1} \oplus M_{2}$-projective.

Proof. We take a direct decomposition $M_{2}=\Sigma_{j} \oplus T_{j} \oplus \Sigma_{k} \oplus N_{k}$ into LE modules T_{j}, N_{k} such that M_{o} is N_{k}-projective and M_{o} is almost T_{j}-projective, but not T_{j}-projective. Then $\Sigma_{j} \oplus T_{j}$ is a lifting module by Theorem. Hence M_{o} is almost $M_{1} \oplus M_{2}$-projective by Theorem.

Remark. We know from the proof of Theorem that 2) implies 1) without assumption "LE modules".

References

[1] T. Albu and C. Nastasescu: Relative finiteness in module theory, Monographs

Textbooks Pure Appl. Math. 84, Marcel Dekker, Inc., New York and Basel.
[2] G. Azumaya, F. Mbuntum and K. Varadarajan: On M-projective and M-injective modules, Pacific J. Math 59 (1975), 9-16.
[3] Y. Baba and M. Harada: On almost M-projectives and almost M-injectives, Tsukuba J. Math., 14 (1990), in press.
[4] M. Harada: Uniserial rings and lifting properties, Osaka J. Math. 19 (1982), 217229.
[5] -: Factor categories with applications to direct decomposition of modules, Lecture Note on Pure and Appl. Math. 88 (1983), Marcel Dekker, Inc., New York and Basel.
[6] M. Harada and T. Mabuchi: On almost M-projectives, Osaka J. Math. 26 (1989), 837-848.
[7] M. Harada and A. Tozaki: Almost M-projectives and Nakayama rings, J. Algebra 122 (1989), 447-474.
[8] M. Harada: Characterizations of right Nakayama rings, to appear.
[9] -: On almost relative injectives on artinian modules, to appear.
[10] K. Oshiro: Semiperfect modules and quasi-semiperfect modules, Osaka J. Math. 20 (1983), 337-373.

Department of Mathematics
Osaka City University
Sugimoto-3, Sumiyosi-ku
Osaka 558, Japan

