Harada, M. Osaka J. Math. 27 (1990), 655-665

ON ALMOST RELATIVE PROJECTIVES OVER PERFECT RINGS

MANABU HARADA

(Received October 20, 1989)

We have defined a new concept of almost relative projectivity [7]. If a module M_o is M_i -projective for a finite set of modules M_i , then M_o is $\Sigma_i \oplus M_i$ -projective [2]. However this fact is not true for almost relative projectives [7]. We have filled this gap in [6], when a ring R is a semiperfect ring with radical nil and M_o is a local R-module and the M_i are LE R-modules. As we investigate further several properties of almost relative projectives. Thus we shall fill completely that gap in this paper, when R is a perfect ring (Main theorem). M_o was cyclic in [6] and hence the proof was rather simple. Modifying its proof, we shall give a generalization of [6], Theorem 2.

We shall give several applications of the main theorem in forthcoming paper [8], and give the properties dual to this paper in [9].

1. Preliminaries

In this paper we always assume that R is a ring with identity and that every module is a unitary right R-module and e, e' are primitive idempotents unless otherwise stated. We recall here the definition of almost relative projectivity [7]. Let M and N be R-modules. For any diagram with K a submodule of M:

if either there exists $\tilde{h}: N \to M$ with $\nu \tilde{h} = h$ or there exist a nonzero direct summand M_1 of M and $\tilde{h}: M_1 \to N$ with $h\tilde{h} = \nu | M_1$, then N is called *almost* M-projective [7] (if we obtain only the first case, we say that N is M-projective [2]). We note the following fact.

(#) When N is almost M-projective and M is indecomposable, if the h in the diagram (1) is not an epimorphism, then there exists always an $\tilde{h}: N \rightarrow M$ with $\nu \tilde{h} = h$.

M. HARADA

We frequently use this fact without any references.

Lemma 1. Let R be a right perfect ring with Jacobson radical J and let M_o and M_1 be R-modules and $M_o \cong P/Q$ for R-modules $P \supset Q$ with $Q \subset PJ$. Let g be an element in Hom_R(P, M_1). We assume one of the following:

a) M_o is M_1 -projective, and

b) M_o is almost M_1 -projective, M_1 is indecomopsable and g is not an epimorphism.

Then g(Q) = 0 (cf. [3], Lemma 6).

Proof. Consider the derived diagram from g

$$M_o = P/Q .$$

$$\downarrow \overline{g}$$

$$M_1 \xrightarrow{\nu} M_1/g(Q) \rightarrow 0$$

From assumption and (#) there exists $\tilde{h}: P/Q \to M_1$ with $\nu \tilde{h} = \bar{g}$. Let ρ be the natural epimorphism: $P \to P/Q$ and put $h = \tilde{h}\rho: P \to M_1$. Since $\nu \tilde{h} = \bar{g}$, for any $p \in P$

$$g(p)+g(Q)=\bar{g}(p+Q)=\nu\tilde{h}(p+Q)=\nu\tilde{h}\rho(p)=h(p)+g(Q)$$

Hence

(2)
$$g(p)-h(p) = g(q(p)); q(p)$$
 is an element in Q .

Let $\{p_i\}$ be a set of generators of P, i.e., $P = \sum p_i R$ and put

(3)
$$g(p_i)-h(p_i) = g(q_i)$$
 for each *i* from (2),

where q_i is some element in Q.

Now $Q \subset PJ = \sum p_i J$ by assumption, and $q = \sum p_i x_i$; $x_i \in J$ for any q in Q. Then

$$0 = h(q+Q) = h(q) = \Sigma h(p_i) x_i$$

= $\Sigma(g(p_i) x_i - g(q_i) x_i)$ from (3)
= $g(\Sigma p_i x_i) - \Sigma g(q_i) x_i = g(q) - \Sigma g(q_i) x_i$

Accordingly $g(Q) \subset g(Q) J = g(QJ) \subset g(Q)$. Therefore g(Q) J = g(Q) implies g(Q)=0.

In Lemma 1 we take a projective cover P of M_o , i.e., there exists an epimorphism $\nu: P \rightarrow M_o$ where P is projective and ker $\nu = K$ is small in P. Then the following is clear from Lemma 1.

Corollary 1 ([1], p. 22, Exercise 4). Let P and M_o be as above and M_1 an R-module. Then M_o is M_1 -projective if and only if h(K)=0 for any h in $\operatorname{Hom}_R(P, M_1)$.

If $\operatorname{End}_R(M)$ is a local ring for an *R*-module *M*, then we call *M* an LE module. It is clear that an LE module is indecomposable. By J(M) we denote the *Jacobson radical* of *M*. Let eR/A and eR/B be local modules, i.e., *e* is primitive. We say that $eR/A \oplus eR/B$ has the lifting property of simple modules modulo radical (briefly LPSM) if and only if for any isomorphism *f* of eR/eJ onto itself, there exists a *g* in $\operatorname{Hom}_R(eR/A, eR/B)$ (or in $\operatorname{Hom}_R(eR/B, eR/A)$) such that *g* induces *f* (or f^{-1}). If eR/A and eR/B are LE, then the concept of LPSM coincides with one in [5], §9. See [10] for the definition of the lifting module.

Proposition 1. Let R be a perfect ring and let M_1 , M_2 be indecomposable R-modules and M_0 an R-module. Assume that M_0 is almost M_1 -projective, but not M_1 -projective. Then 1): if M_0 is M_2 -projective, M_1 is M_2 -projective. 2): If M_0 is almost M_2 -projective, but not M_2 -projective, then M_1 is $J(M_2)$ -projective and further we obtain the following two cases; i) if $M_1/J(M_1) \approx M_2/J(M_2)$, M_1 is M_2 -projective and M_2 is M_1 -projective, ii) if $M_1/J(M_1) \approx M_2/(J(M_2))$, we have the following equivalent conditions:

- a) M_1 is almost M_2 -projective.
- a') M_2 is almost M_1 -projective.
- b) $M_1 \oplus M_2$ has LPSM.

Proof. 1) Assume that M_o is M_2 -projective. Since M_o is not M_1 -projective, $M_1 \approx eR/A$ by [6], Corollary 1, where e is a primitive idempotent and $A \subset eR$. Further from [6], Corollary 2 there exists a homomorphism $f: M_1 = eR/A \rightarrow M_o$ such that $f(\tilde{e}) = m_o = m_o e \notin J(M_o)$, where $\tilde{e} = e + A$ in eR/A. Since $m_o \notin J(M_o)$, there exists a projective cover $P = eR \oplus e_2 R \oplus \cdots$ of M_o and the natural epimorphism $\nu: P \rightarrow M_o$ such that $\nu(e) = m_o$. Put $K = \ker \nu$ and $B = K \cap eR$ $(eR \subset P)$. Since $f(eR/A) = m_o R \approx eR/B$, there exists a unit x in eRe with $xA \subset B$. Since $eR/A \approx eR/xA$, we may assume $A = xA \subset B$. Let h be any element in $\operatorname{Hom}_R(eR, M_2)$. Then we can naturally extend h to an element h' in $\operatorname{Hom}_R(P, M_2)$, since eR is a direct summand of P. M_o being M_2 -projective and P being a projective cover of M_o , h'(K) = 0 by Corollary 1. Hence

$$h(A) \subset h(B) \subset h'(K) = 0,$$

and so eR/A is M_2 -projective again by Corollary 1.

2) Assume that M_o is not M_2 -projective. Then $M_2 \approx e'R/C$ for some primitive idempotent e' by [6], Corollary 1. First assume i): $e \approx e'$. Then the above h is not an epimorphism. Hence we can find a non-epic homomorphism h' in $\operatorname{Hom}_R(P, M_2)$, which is an extension of h. Then since h'(K)=0 by Lemma 1, M_1 is M_2 -projective (and so $J(M_2)$ -projective) as the last sentence of the proof of 1). Similarly M_2 is M_1 -projective by symmetric assumption. Finally assume ii): $e \approx e'$. We may assume e = e'. Take a diagram with row exact:

M. HARADA

$$eR/A$$

$$\downarrow h$$

$$eJ/C \xrightarrow{\nu} eJ/D \rightarrow 0$$

Since eR is projective, there exists $h': eR \rightarrow eJ/C \subset eR/C = M_2$ with $\nu h' = h\rho$, where $\rho: eR \rightarrow eR/A$ is the natural epimorphism. Then since h' is not an epimorphism onto M_2 , h'(A)=0 by Lemma 1 as before, and so h' induces $\tilde{h}: eR/A \rightarrow eJ/C$ with $\nu \tilde{h} = h$. Hence eR/A is eJ/C-projective (similarly eR/C is eJ/A-projective). Now suppose that $M_1 \oplus M_2$ has LPSM. Let u be any unit in eRe. Then $(u+j)A \subset C$ or $(u+j)C \subset A$ for some j in eJe by definition. j_i , the multipliaction of j from the left side, gives an element in $\operatorname{Hom}_R(eR, eR/C)$ and j_i is not an epimorphism. Further j_i induces an element in $\operatorname{Hom}_R(P, M_2)$ as in the proof of 1). Since M_o is almost M_2 -projective, $jA \subset C$ by Lemma 1 and the last fact of the proof of 1). Similarly we obtain $jC \subset A$. Therefore $uA \subset C$ or $uC \subset A$. Hence M_1 and M_2 are mutually almost relative projective by [3], Proposition 2. a) implies b) by definition.

2. Main theorem

Let M_o be an R-module and $\{M_i\}_{i=1}^s$ a set of indecomposable R-modules. If M_o is almost $\sum_{i=1}^s \bigoplus M_i$ -projective, clearly M_o is almost M_i -projective for all i. We assume conversely that M_o is almost M_i -projective for all i. In [6] we have given a condition under which M_o is almost $\sum_{i=1}^s \bigoplus M_i$ -projective, when R is semiperfect and $M_o = eR/A$ for a primitive idempotent e and a submodule A in eR. In this section we shall generalize this condition, when R is a perfect ring and M_o is an R-module.

Now we assume that R is a semiperfect ring with radical J. Let M_o be an R-module such that $M_o \neq M_o J$. Then $M_o/M_o J$ is semisimple. Put $M_o/M_o J$ $=\Sigma \oplus S_i$, where the S_i are simple modules isomorphic to $e_i R/e_i J$ for some primitive idempotent e_i . We take m_j in M_o such that $(m_j R + M_0 J)/M_o J = S_j$; $m_j e_j = m_j$, and fix one simple component S_1 among S_j .

Lemma 2. Let R, M_{\bullet} , $\{m_i\}$ and e_1 be as above and M an R-module. Let x be an element in M with $xe_1 = x$. If

i) M_o is M-projective, or

ii) M_{\bullet} is almost M-projective, M is indecomposable and $xR \subseteq M$, then there exists a homomorphism $\tilde{h}: M_{\bullet} \rightarrow M$ such that

- 1) $h(m_1) = x + xj; j \in eJe and$
- 2) $\tilde{h}(m_i) \in xJ$ for $i \neq 1$, and hence $\tilde{h}(M_o) = xR$.

Proof. Since $xe_1 = x$, $xR/xJ \approx e_1R/e_1J$. Further $M_o/M_oJ = \Sigma \oplus \overline{m_i}R$; $\overline{m_i}R = (m_i R + M_o J)/M_o J$. Hence we can take a submodule B in M_o such that $B \supset M_o J$, $M_o/B \approx m_1 R$ and $m_j \in B$ for $j \neq 1$. Take a diagram:

$$M_{o}$$

$$\downarrow \nu_{o}$$

$$M_{o}/B$$

$$\gtrless g$$

$$xR/xJ$$

$$\mu' \cap$$

$$M \xrightarrow{\nu'} M/xJ \rightarrow 0$$

where $g(\overline{m}_1) = x + xJ$. Then from the assumption i) or ii) together with (#) there exists $\tilde{h}: M_o \to M$ such that $\nu' \tilde{h} = g\nu_o$. Hence $\tilde{h}(m_1) = x + xj; j \in J$ and $\tilde{h}(m_i) \in xJ$ for $i \neq 1$. Clearly $\tilde{h}(M_o) = xR$.

Corollary 2. We assume in Lemma 2 that J is left T-nilpotent. Then we can find $\tilde{h}: M_o \rightarrow M$ with $\tilde{h}(m_1) = x$ and $\tilde{h}(m_i) \in xJ$ for $i \neq 1$.

Proof. We obtain $\tilde{h}_1: M_o \to xR \subset M$ such that $\tilde{h}_1(m_1) = x - xj_1; j_1 \in J$. Being $xj_1e_1 = xj_1$ and $xj_1R \subset xR \neq M$ (in case ii)), we have $\tilde{h}_2: M_o \to xj_1R \subset xR \subset M$ such that $\tilde{h}_2(m_1) = xj_1 - xj_1j_2; j_2 \in J$ and $\tilde{h}_2(m_i) \in xJ$ for $i \neq 1$. Hence $(\tilde{h}_1 + \tilde{h}_2)(m_1) = x - xj_1j_2$ and $(\tilde{h}_1 + \tilde{h}_2)(m_i) \in xJ$ for $i \neq 1$. Since J is left T-nilpotent, we can find $\{\tilde{h}_i\}$ such that $(\tilde{h}_1 + \tilde{h}_2 + \cdots + \tilde{h}_n)(m_2) = x$ for some n and $(\tilde{h}_1 + h_2 \cdots + \tilde{h}_n)(m_i) \in xJ$ for $i \neq 1$.

Similarly to Lemma 2 we obtain

Lemma 2'. Let R be a semiperfect rnig with J left T-nilpotent. Let $M_1 = eR/A_1$, $M_2 = eR/A_2$ be mutually almost relative projective. Then for any element x_i in $M_i - J(M_i)$ with $x_i = x_i$ e (i=1, 2) there exists either $h_1: M_1 \rightarrow M_2$ (or $h_2: M_2 \rightarrow M_1$) with $h_1(x_1) = x_2$ (or $h_2(x_2) = x_1$), where e is a primitive idempotent.

Proof. Take a diagram

$$M_{2}$$

$$\downarrow \nu_{2}$$

$$M_{2}/J(M_{2})$$

$$\gtrless f$$

$$M_{1} \xrightarrow{\nu_{1}} M_{1}/J(M_{1}) \rightarrow 0$$

where $f(x_2+J(M_2)) = \nu_1(x_1)$. Then there exists $\tilde{h}_2: M_2 \to M_1$ (or $\tilde{h}_1: M_1 \to M_2$) with $\tilde{h}_2(x_2) = x_1 - x_1 j; j \in eJe$ (or $\tilde{h}_1(x_1) = x_2 - x_2 j$). Further from Corollary 2 there exist $\tilde{h}_2: M_2 \to M_1$ and $\tilde{h}_1: M_1 \to M_2$ with $\tilde{h}_2'(x_2) = x_1 j$ and $\tilde{h}_1'(x_1) = x_2 j$, respectively. Therefore $(\tilde{h}_2 + \tilde{h}_2')(x_2) = x_1$ or $(\tilde{h}_1 + \tilde{h}_1')(x_1) = x_2$.

The following simple lemma is useful in this paper.

Lemma 3. Let R be a perfect ring and let M_o be an R-module and $M_1 = eR/A$ for a primitive idempotent e. Let x = xe be an element in $M_1 - J(M_1)$ and

M. HARADA

h: $M_1 \rightarrow M_o$ any homomorphism such that $h(x) (=m_o = m_o e) \notin J(M_o)$. Under those assumptions if M_o is almost M_1 -projective, then for each element j in eJe, there exists an endomorphism f of M_o such that $f(m_o) = m_o + m_e j$.

Proof. Since $xj \in J(M_1) e$, there exists $g: M_o \to M_1$ such that $g(m_o) = xj$ by Corollary 2. Hence $f = 1_{M_o} + hg$ is the desired endomorphism.

Before stating Main Theorem, we give here a simple remark, which is helpful for us to understand the argument in [3], §1.

Let $D=D_1\oplus D_2\oplus D_3$ be a direct sum of modules D_i , and $\pi_i: D \to D_i$ the projection. Take any submodule K of D and put $K^i = \pi_i(K)$. Then we have the following commutative diagram:

Now we assume that R is a perfect ring. Let M_o be an R-module and $\{M_i, N_k\}_{i=1,k=1}^t$ a set of LE R-modules. Further assume that M_o is almost $\sum_{i=1}^t \bigoplus M_i \bigoplus \sum_{k=1}^n \bigoplus N_k$ -projective. Therefore we may suppose that

(*) M_{e} is N_{k} -projective for all k and

 M_o is almost M_i -projective, but not M_i -projective for all *i*. Then from [6], Corollary 1, $\{M_i\}$ is divided into the following subsets

(5)
$$\{M_i\}_{i=1}^t = \{M_{ij} = e_1 R/A_{ij}\}_{j=1}^{a(1)} \cup \{M_{2j} = e_2 R/A_{2j}\}_{j=1}^{a(2)} \cup \cdots$$

where the e_i are primitive idempotents.

We give some remarks related with [6], Proposition 5. We assumed there that M_o was finitely generated. However we assume here that R is perfect and so we can find a maximal submodule B given in its proof. Hence [6], Proposition 5 is true for any module M_o , provided R is perfect. Therefore $M_i \oplus M_j$ has LPSM for any $i \neq j$. Moreover since M_o is almost M_i -projective, M_{ks} is almost $M_{ks'}$ -projective for all k and $s \neq s'$ by Proposition 1-2).

We are ready to obtain a generalization of [6], Theorem 2, when R is a perfect ring.

Theorem. Let R be a perfect ring and M_o an R-module and let $\{M_{ij}, N_k\}_{i=1,j=1,k=1}^{m}$ be the above set of LE modules with (*) and (5). Then the following conditions are equivalent:

1) M_o is almost $(\Sigma_{ij} \oplus M_{ij} \oplus \Sigma_k \oplus N_k)$ -projective.

2) M_{ij} is almost $M_{i'j'}$ -projective for all $(i'j') \neq (ij)$ and hence $\Sigma_{ij} \oplus M_{ij}$ is a lifting module.

3) For each *i* and any pair *j*, *j'* $(j \neq j')$ either M_{ij} is almost $M_{ij'}$ -projective or $M_{ij'}$ is almost M_{ij} -projective.

4) $M_{ij} \oplus M_{i'j'}$ has LPSM for each $(ij) \neq (i'j')$, and hence $\Sigma_{ij} \oplus M_{ij}$ has LPSM.

Proof. $1 \rightarrow 2$, $2 \rightarrow 3 \rightarrow 4$). These are clear from Proposition 1, [6], Corollary 1, Proposition 5 together with above remark and [3], Theorem 1. (2) \rightarrow 1). Take any diagram with row exact:

(6)
$$\begin{array}{c} M_{o} \\ \downarrow h \\ 0 \to K \to M = \Sigma_{ij} \oplus M_{ij} \oplus \Sigma_{k} \oplus N_{k} \xrightarrow{\nu} M/K \to 0 \end{array}$$

We shall show that

(7) there exists $\tilde{h}: M_o \to M$ with $\nu \tilde{h} = h$ or there exist a non-zero direct summand M^* of M and $\tilde{h}: M^* \to M_o$ with $h\tilde{h} = \nu | M^*$.

Now we shall prove (7) by induction on the number $\sum a(i)$ of direct summands M_{ij} . Since the argument is very long, we shall divide it into several steps. Step 1 $\sum a(i)=0$. We are done from Azumaya's theorem [2].

Hence we assume $\sum a(i) \neq 0$. Let $\pi_{ij}: M \rightarrow M_{ij}$ be the projection and put $\pi_{ij}(K) = K^{ij}$.

Step 2 $K^{ij} = M_{ij}$ for some (ij). We can reduce, by the proof of [3], Lemma 1, a new diagram from (6), which is essentially same as (6) and in which M_{ij} disappears, i.e.

$$\begin{array}{c} M_{o} \\ \downarrow h \\ M \rightarrow M/K \rightarrow 0 \\ \cup & \wr \\ M' \rightarrow M'/K' \rightarrow 0 \end{array}$$

where $M' = \sum_{(i'j') \neq (ij)} \bigoplus M_{i'j'} \bigoplus \sum_k \bigoplus N_k$ and $K' = K \cap M'$. Hence we obtain (7) by induction hypothesis (cf. the proof of [3], Lemma 1). Thus we may assume always

(8)
$$K^{ij} = \pi_{ij}(M) \neq M_{ij} \text{ for all } i \text{ and } j.$$

Following the argument in [3], §1, we can derive the new diagram from (6):

(9)
$$\begin{array}{c}
M_{o} \\
 \nu'_{ij} \nu \mid M_{ij} & \downarrow \nu'_{ij} h \\
M_{ij} & \longrightarrow M_{ij}/K^{ij} \to 0
\end{array}$$

where $\nu'_{ij}: M/K \rightarrow M_{ij}/K^{ij} \oplus (1_M - \pi_{ij}) (M)/(1_M - \pi_{ij}) (K) \xrightarrow{\overline{\pi}_{ij}} M_{ij}/K^{ij}$ (cf. (4)).

Step 3 Existence $\tilde{h}_{ij}: M_o \rightarrow M_{ij}$ for all *i* and *j*. We shall show under the assumption (8)

(10) if there exists $\tilde{h}_{ij}: M_o \to M_{ij}$ with $\nu'_{ij} \nu \tilde{h}_{ij} = \nu'_{ij} h$ in (9) for all *i* and *j*, then we can find $\tilde{h}: M_o \to M$ such that $\nu \tilde{h} = h$, i.e. (7).

We shall prove (10) again by induction on the number $\Sigma a(i)$ of direct summands M_{ij} . If $\Sigma a(i)=0$, we obtain (10) from Azumaya's theorem [2]. Put $\Sigma_{(ij)\pm(11)} \oplus M_{ij} \oplus \Sigma_k \oplus N_k = M - M_{11}$. Then since $M = M_{11} \oplus (M - M_{11})$, we obtain from (3) and (3') in [3] (see (9))

(11)
$$M_{11} \xrightarrow{\nu'_{11} \nu \mid M_{11}} \xrightarrow{\psi'_{11} h} M_{11}/K^{11} \rightarrow 0$$

and

(12)
$$(M-M_{11}) \xrightarrow{\nu_{11}^* \nu \mid (M-M_{11})} (M-M_{11}) \xrightarrow{\nu_{11}^* h} (M-M_{11})/(1_M - \pi_{11}) (K) \to 0$$

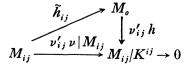
where $\nu_{11}^*: M/K \rightarrow (M-M_{11})/(1_M - \pi_{11}) (K)$. We want to apply the induction hypothesis on (12). Now for each $(ij) \neq (11)$ we derive a diagram (9') similar to (9) from (12)

7.1

(9')
$$M_{ij} \xrightarrow{\nu'_{ij} \nu \mid M_{ij}} \xrightarrow{\psi_{ij} \nu \mid h} M_{ij}/K^{ij} \to 0 \quad (\text{cf. [3]}).$$

We remark that the diagram (9') satisfies the assumption in (10). It is clear that the assumption (8) holds true in the diagram (12). Recalling the diagram (4), we know that $\nu'_{ij}: M/K \rightarrow M_{ij}/K^{ij}$ in the diagram (9) is essentially determined by π_{ij} . Hence the assumption of existence of \tilde{h}_{ij} in (10) guarantees an existence of \tilde{h}_{ij} in the diagrams (9'). Accordingly we can apply the induction hypothesis on (12), and hence there exists $\tilde{h}': M_o \rightarrow (M-M_{11})$ such that $\nu_{11}^* \nu \tilde{h}' =$ $\nu_{11}^* h$. Further from the assumption (10) we obtain also $\tilde{h}'': M_o \rightarrow M_{11}$ which makes (11) commutative. Therefore from (\$\$), (8) and the argument in [3], §1, we obtain $\tilde{h}: M_o \rightarrow M$ such that $\nu \tilde{h} = h$. Thus we have shown (10). As a consequence

Step 4 Existence $\tilde{h}_{ij}: M_{ij} \rightarrow M_o$ for some (ij). We can assume that for some (ij) there exists $\tilde{h}_{ij}: M_{ij} \rightarrow M_o$ which makes the following diagram commutative:



We note that the above diagram is actually given from the following one:

Hence ker $\nu'_{ij} = \nu(K^{ij} \bigoplus (M - M_{ij}))$. Put $M_{ij} = e_i R / A_{ij}$, $\tilde{e}_i = e_i + A_{ij}$ ((5)) and $\tilde{h}_{ii}(\tilde{e}_i) = m_o$ (= $m_o e_i$),

It is clear from (8) and the above diagram that $m_o \notin J(M_o)$. Since $h(m_o) - \nu(\tilde{e}_i) \in$ ker $\nu'_{ij'}$, $h(m_o) - \nu(\tilde{e}_i) = \nu(k_{ij} + \sum_{(i'j') \neq (ij)} x_{i'j'} + \sum_k y_k)$, where $k_{ij} = k_{ij} e_i \in K^{ij}$, $x_{i'j'} = x_{i'j'} e_i \in M_{i'j'}$ and $y_k = y_k e_i \in N_k$. Further $K^{ij} \subset J(M_{ij}) = \tilde{e}_i J$ by (8) and hence $k_{ij} = \tilde{e}_i b$; $b \in e_i Je_i$. Therefore

$$h(m_o) = \nu (x_{ij} + \sum_{(i'j') \neq (ij)} x_{i'j'} + \sum_k y_k) \quad (= \nu(x)),$$

where

$$x_{ij} = \tilde{e}_i(e_i + b)$$
 is a generator of M_{ij}

and

$$x = x_{ij} + \sum_{(i'j') \neq (ij)} x_{i'j'} + \sum y_k.$$

Here we consider $\{x_{i1}, x_{i2}, \dots, x_{ij}, \dots, x_{ia(i)}\}$. Among those elements we put $X = \{x_{it} \notin J(M_{it})\} \ni x_{ij}$. Since M_{it} is almost $M_{it'}$ -projective for $t \neq t'$, we can find an x_{is} in X and

$$g_{i'j'}: M_{is} \rightarrow M_{i'j'}$$
 with $g_{i'j'}(x_{is}) = x_{i'j'}$ for any $(i'j') \neq (is)$

by Lemma 2' (use induction) and Corollary 2, and we obtain

$$g_k: M_{is} \rightarrow N_k$$
 with $g_k(x_{is}) = y_k$ for all k.

by Proposition 1 and Corollary 2. Step 5-1 $s \neq j$. Putting $g = \sum_{(i'j') \neq (is)} g_{i'j'} + \sum_k g_k : M_{is} \rightarrow M - M_{is}$,

$$x = x_{ij} + \sum_{(i'j') \neq \{(ij), (is)\}} x_{i'j'} + \sum_{k} y_{k} + x_{is} = (1+g) (x_{is})$$

is a generator of $M_{is}(g) = \{z + g(z) | z \in M_{is}\}$. Hence we obtain $M = M_{is}(g) \oplus (M - M_{is})$ and $x \in M_{is}(g)$. On the other hand

$$ilde{h}_{ij}(x_{ij}) = ilde{h}_{ij}(ilde{e}_i(e_i+b)) = m_o + m_o b (= m'_o = m'_o e_i) \; .$$

Since $e_i + b$ is a unit in $e_i Re_i$, we can put $(e_i + b)^{-1} = e_i + b'$; $b' \in e_i Je_i$. Then $m_o = m'_o(e_i + b') = m'_o + m'_o b'$. By Lemma 3 there exists an endomorphism f of M_o

such that

$$f(m'_o) = m_o \pmod{m'_o \oplus J(M_o)}$$

Further we have an isomorphism $p: M_{is}(g) \rightarrow M_{is}$ with $p(x) = x_{is}$. Put

~

$$\begin{split} \tilde{h} &= f \tilde{h}_{ij} g_{ij} p \colon M_{is}(g) \to M_o ,\\ \text{and } \tilde{h}(x) &= f \tilde{h}_{ij} g_{ij}(x_{is}) = f \tilde{h}_{ij}(x_{ij}) = f(m'_o) = m_o. \quad \text{Hence } h \tilde{h}(x) = h(m_o) = \nu(x), \text{ i.e.}\\ h \tilde{h} &= \nu \mid M_{is}(g) ((7)) . \end{split}$$

Step 5–2 s=j. Then again by the assumption 2) and Corollary 2, there exist

$$g'_{i'j'}: M_{ij} \rightarrow M_{i'j'}$$
 with $g'_{i'j'}(x_{ij}) = x_{i'j'}$ for all $(i'j') \neq (ij)$

and

$$g'_k \colon M_{ij} \to N_k$$
 with $g'_k(x_{ij}) = y_k$ for all k .

Putting $g' = \sum_{(i',i') \neq (i,i)} g'_{i',i'} + \sum_k g'_k$ as above,

$$x = x_{ij} + \sum_{(i'j') \neq (ij)} x_{i'j'} + \sum_k y_k = (1+g') (x_{ij})$$

Hence we obtain $M = M_{ij}(g') \oplus (M - M_{ij})$ and $x \in M_{ij}(g')$. Now there exists an isomorphism $p': M_{ij}(g') \rightarrow M_{ij}$ with $p'(x) = x_{ij}$. Put

$$\tilde{h} = f \tilde{h}_{ij} p' \colon M_{ij}(g') \to M_{g}$$

and $\tilde{h}(x) = m_o$. Therefore

$$h\tilde{h} = \nu | M_{ij}(g') .$$

Thus we have proved (7), i.e. M_{ρ} is almost *M*-projective.

Corollary 3. Let R be perfect. Let M_0 be an R-module and let M_1 and M_2 be finite direct sums of LE R-modules. Assume that M_{o} is M_{1} -projective and almost M_2 -projective. Then M_o is almost $M_1 \oplus M_2$ -projective.

Proof. We take a direct decomposition $M_2 = \Sigma_i \oplus T_i \oplus \Sigma_k \oplus N_k$ into LE modules T_i , N_k such that M_o is N_k -projective and M_o is almost T_i -projective, but not T_j -projective. Then $\Sigma_j \oplus T_j$ is a lifting module by Theorem. Hence M_{o} is almost $M_{1} \oplus M_{2}$ -projective by Theorem.

REMARK. We know from the proof of Theorem that 2) implies 1) without assumption "LE modules".

References

^[1] T. Albu and C. Nastasescu: Relative finiteness in module theory, Monographs

Textbooks Pure Appl. Math. 84, Marcel Dekker, Inc., New York and Basel.

- [2] G. Azumaya, F. Mbuntum and K. Varadarajan: On M-projective and M-injective modules, Pacific J. Math 59 (1975), 9-16.
- [3] Y. Baba and M. Harada: On almost M-projectives and almost M-injectives, Tsukuba J. Math., 14 (1990), in press.
- [4] M. Harada: Uniserial rings and lifting properties, Osaka J. Math. 19 (1982), 217-229.
- [6] M. Harada and T. Mabuchi: On almost M-projectives, Osaka J. Math. 26 (1989), 837-848.
- [7] M. Harada and A. Tozaki: Almost M-projectives and Nakayama rings, J. Algebra 122 (1989), 447–474.
- [8] M. Harada: Characterizations of right Nakayama rings, to appear.
- [10] K. Oshiro: Semiperfect modules and quasi-semiperfect modules, Osaka J. Math. 20 (1983), 337–373.

Department of Mathematics Osaka City University Sugimoto-3, Sumiyosi-ku Osaka 558, Japan