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This paper is concerned with the following open problem for directly finite,
von Neuman regular rings. The problem was given by Goodearl and Handelman
[3]: what conditions on a regular ring R induce that the maximal right quotient
ring of R is right and left self-injective. In [4], the auther showed an example
of directly finite, right self-injective regular ring which is not left self-injective.
So we have an interest in this problem. In Theorem 17 in §3, we give neces-
sary and sufficient conditions for this problem. In §2, we consider the maximal
left quotient ring Q of a directly finite, right self-injective regular ring. We
show that Q is directly finite (Theorem 7) and the factor ring QIJM is the maxi-
mal left quotient ring of the factor ring R\m for every maximal ideal <3H (resp.
~D*n) of Q (resp. R) (Theorem 9). In §3, we give one generalization of a result
in [5]: the maximal left quotient ring of a directly finite, right self-injective
regular ring is left and right self-injective. Further we obtain necessary and
sufficient conditions for the maximal right quotient ring of a regular ring to be
directly finite (Theorem 16).

1. Preliminaries

All rings in this paper are associative with unit and ring homomorphisms
are assumed to preserve the unit. A ring R is said to be directly finite if xy=ί
implies yx=l for all x>y^R. A ring is said to be directly infinite if R is not
directly finite. A regular ring means von Neumann regular ring.

A rank function on a regular ring R is a map N: JR-̂ [O, 1] satisfying the
following conditions:

(a) ΛΓ(1)=1,
(b) N(xy)^N(x) and N(xy)^N(y) for all x,y(ΞRy

(c) N(e+f)=N(e)+N(f) for all orthogonal idempotents eJ&R,
(d) N(x)>0 for Άl non-zero x^R.

If R is a regular ring with a rank function Ny then 8(xyy)=N(x—y) defines a
metric on R, this metric δ is called N-metric or rank metric and the (Hausdorff)
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completion of R with respect to δ is a ring R which we call the N-completion
ofR.

An idempotent e of a regular ring R is said to be abelian if eRe is strongly
regular i.e., all idempotents of eRe are central idempotents of eRe. An idem-
potent e of R is said to be directly finite if eRe is directly finite as a ring. For
a ring R> we use B(R) to denote the central idempotents in R. We note that
B(R) is a Boolean algebra in which eV/=£+/— tf/and eΛf—ef, while e'=l— e.
If i? is regular and right self-injective, then 5(i?) is complete [2].

Let JR be a regular, right self-injective ring. For a given element x in i?,
put H=(g(ΞB(R)\xg = 0} and 1-A= V £ in 5(JR). The idempotent A is

called the central cover of #, denote £.c(#).
Let R be a directly finite, right self-injective regular ring. Then R is

said to be Type IIf if R contains no abelian idempotents. And R is said to be
Type If if R contains an abelian idempotent/ with c.c(f)=l. Note that R is
uniquely a direct product of rings of Type Ify ΐlf ([2] Theorem 10.13).

For a regular ring R and elements afb^R, we use aR<bR to mean that
aR is isomorphic to a direct summand of bR. A regular ring satisfies general
comparability provided that for any x, y^R, there exists g^B(R) such that
gxR^RgyR and (l—g)xR>(l—g)yR. Note that every regular right self-
injective ring satisfies general comparability ([2] Corollary 9.15).

Let 12 be a subring of a ring Q. For every element x of Q and right ideal
/ of Q and left ideal / of Q, , we use (x*./), (J/x) to denote the right ideal

> the left ideal {a^R\ax^J}, respectively.

Lemma A. For two idempotents e, f of a ring R, the following conditions

are equivalent.

1). eR—fR.

2). There exist elements x^eRf,y^fRe such thatyx=f, xy=e.

3). Re^Rf.

Proof. It is trivial.

Lemma B. Let R be a subring of a ring Q and R be a factor ring of R.

For two idempotents e, f with eR=^fRy the followings hold.

1). eR—fR and Re^Rf.

2). eQ~fQ and Qe—Qf.

Proof. By Lemma A, it is easy.

Lemma C. Let R be a ring. For two idempotents e, f and an integer n,

the followings are equivalent.

1) n(eR)=fR.

2)
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where n(eR), n(Re) are direct sums of n-copίes of eR, Re, respectively.

Proof. It is easy.

eo

Lemma D. Let R be a regular ring. For a right ideal Σ tyR, there exist
ί = l

pairwise orthogonal idempotents {βf }Γ-i which satisfy the following:

(1). Σ Φe{R = Σ afi for all m.
ί = l $ = 1

(2). eft^R for all i.
If Σ3 θtf, R is directsum, then {e} satisfy (1), (3).

(3) efi^aiR for all i.

Proof. We prove Lemma by induction on m. For m = 1 it is trivial.

Assume that w -fo }?-! satisfy (1), (2) or (3). Now Σ atR= Σ ΦeiR+am+ιR=

Σ θέ?, i?θ(l— Σ ei)am+1R. Let e'm+i be an idempotent with ^+i i?=(l— Σ
ί = 1 < = 1 m m ί = 1

et)am+ιR- Put em+1==e'm+1(l— Σ et). Then e2

m+ι=em+v And (1— Σ et)am+ιR=

^ + 1 i ? = ) ^ + 1 ( l - Σ ^ ) i ? 3 ^ + i ( l - Έei)eiu+1R = e/

m^1R9 i.e., ew+1i? = ( l -

Σ £, )dWi^ Thus {̂  }?JΊ are orthogonal and satisfy (1). Since (1— Σ *, )<Wr#

is projective, we have (1 — Σ ei)am+1R = em+1R<am+1R. For (3), we have

A= Σ ®eiR®am+1R= Σ θ ^ θ ^ + i ^ We denote by p the projection from
ί = l ί = l

m

A to em+1R induced by the decomposition A = Σ ^RQ)em+1R. Then ̂ > induce
an isomorphism of am+1R to ^+ Ii2.

2. Directly finite maximal quotient ring

We consider the necessary and sufficient condition for a regular ring R to
have the directly finite maximal right quotient ring of R. For a prime regular
ring with a rank fucntion, the following theorem is known [2], [3].

Theorem 1. ([2] Theorem 21.18 and 19) Let R be a prime regular ring
with a rank function N. Then Q(R) is directly finite if and only if Q(R)^R as
a subring if and only if sup {N(x)\xG:I} = l for all essential right ideals I of R
wheie Q(R) is the maximal right quotient ring of R and R is the completion of R
in the N-metric.

In general case, we have the following Proposition and we consider again
this property in Theorem 16.

Proposition 2. For a regular ring R, the following conditions are equivalent.
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(1) The maximal right quotient ring Q of R is directly finite.

(2) Every right ideal isomorphίc to some essential right ideal is an essential

right ideal of R.

Proof. (1)=Φ(2): Let Q be directly finite. Suppose that i? does not
satisfy (2). Let /, / be isomorphic right ideals such that / is essential in R but
I is not essential in R. There exists an element q&Q such that q:J—>I(x-*qx)
is a given isomorphism. Since the right i?-module / is essential in right R-
module Q, the homomorphism q: Q-*Q is a monomorphism. Since / is not
essential in right i?-module Q, qQ is a proper direct summand of right ϋ -
module Q. This contradicts that Q is directly finite.

(2)=# (1): Assume that Q is directly infinite. Then there exists an element
q of such that rQ(q)={x(ΞQ\qx=0}=0y QΦ?Q. Then (q\R)={x^R\qx^R}
is an essential right ideal. By QφqQ and qQf\R^q(q\R)y q(q',R) is not es-
sential in RR. On the other hand, by rQ(q)=09 the homomorphism q: (q.'R)-*
q{q JR) is an isomorphism between two right ideals of R. So (2) does not hold.

We consider the maximal left quotient ring of R which is directly finite,
right self-injective regular ring. For the end, we start with the following pro-
position.

Proposition 3. Let R be a directly finite, right self-irtjective regular ring

with no άbelian idempotent s. Then there exists a set {ef}7^i of orthogonal idempo-

tents such that Σ θ r f Λ is an essential right ideal and Σ etRc(l— Σ e%)R—

all m=l, 2, .... n=m+ι

Proof. By [2] Theorem 10.28, there exists an idempotent ef&R sucht
that 2efR—R, (l-ef)R^efR. For jR1 = (l-βf)jR(l—rf), there exists an
idempotent ef^Rx such that 2(efR^R19 i.e., 22(efR)~R and (l-ef-ef)R^
efR. We obtain inductively a set {̂ ?}Γ-i of orthogonal idempotents such that

2n(e*R)^R, ( 1 - Σ e*)R—e*R for all n = l , 2, ....
ί = l

For a given nonzero idempotent f^R, suppose that fR<e$R for all n.

Then XofR< Σ ®e*R(ZR. Since R is directly finite, we have / = 0 from [2]
» = 1

Corollary 9.23. This is a contradiction. So, for/ei?, we obtain from general
comparability on JR that fR>ge%R for some integer m and some nonzero idem-

CO

Suppose that Σ (BeϊR is not essential in RR) i.e., there exists a nonzero
Λ = l ^

idempotent e with ( Σ (BefR) Γ\eR=0. By the above argument, eK>ge%R for
» = 1

m

some integer m and some nonzero idempotent g^B(R). Then Σ
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m

y i.e., there exist exists a nonzero idempotent / ' such that Σ Φ
» = 1

ge*R@geR@f'R=gR. While gR< Σ ®ge*R@geR from ( 1 - Σ <#)£— «SΛ
n = l » = 1

and eR>ge%R, that is, #2? is isomorphic to a proper direct summand of gR.
CO

This contradicts that 2? is directly finite. So Σ 0 £ ? # is essential right ideal of

R.

Now we have (1— Σ e$)Ri) Σ θe ί i? . By the same argument, we

obtain that Σ θefR is essential in (1— Σ £?)#•
n=m+l »=1

Throughout this paper, we use {ef} to denote the orthogonal idempotents
as above.

From Proof of Proposition 3, we have the following proposition.

Proposition 4. Let R be a directly finite right self-injective regular ring

with no abelian idempotents. For every idempotent e, there exist an integer m and

a nonzero central idepmotent g&B(R) and an idempotent f of eRe such that

CO

Corollary of Proposition3. Let R be as above. Then, for every n, Σ θ

Reΐ is essential in i ? ( l - Σ ef).
i l

n eo

Proof. Since {e?}Γ=i are pairwise orthogonal, JR(1— Σ^f) contains Σ
ί = l n »=»+l

Suppose that there exists a nonzero idempotent e^R{\— Σ e?) with Reft

Σ Ret = 0 . By Proposition 4, we may assume that eR—c c(e)e%R for some m.
ί = » + l

Put g=c-c(e)(EB(R).
(i) A case of m<n. Then Re%g—Re c i ? ( l — Σ eT)g—Retg implies

ge*R<ge%R So the following holds:
(1) 2m(ge*R)>2m(ge*R)^gR.

On the other hand we obtain from m<jι that 2m(gefR) is isomorphic to a proper
direct summand of gR^2n(ge%R). By (1), we obtain that gR is isomorphic to
a proper direct summand of gR. This contradicts that R is directly finite.

(ii) A case of m^n. Considering Σ 0 i ? £ ? θ Σ ®Refg®Re in a
i=l t=»+l

regular ring, we may assume that {gef} T*ϊ U {e} are pairwise orthogonal. Then
m tn + l

Σ (Bge*R(BeR is a proper direct summand of Σ ®gefR®eR, i.e., of gR. On
» = 1 ί = l

the other hand Re^Re*g~R(ί~ Σ ef)g implies Σ ®gefR®eR— Σ ®gefR®
ί = l ^ i = l ί = l

^(1— Σ ef)R=gR- This contradicts that R is directly finite. Consequently we
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obtain that Σ φRef is essential in R(l — Σ ef).
ί=n+3 * = 1

In a right self-injective regular ring R, B(R) is complete Boolean algebra

([2] Proposition 9.9). For any subset {gi}IdB(R) of pairwise orthogonal

idempotents, (V gi)R is the injective hull of a right ideal Σ ®giR> and the

natural ring homomorphism (V gi)R->ΐίgiR is an isomorphism ([2] Proposi-ί
tion 9.9 and 9.10), where HgiR is the ring of direct product of rings {g{R}i*

So we regard as (Vgi)R= TLgiR and we denote by Π ai{ai^giR) the element

ΰG(V gi)R such that agi=ai for all i^I. A subset / of R is said to be centrally
closed if, for every subset ^4= {βrte7} satisfying the following condition (*), /
contains a= Π #*<= Π (c'c(aΛ)R)=(Vc. c(aoi))R.

(*) {c £(α)|αe^ϊ} are pairwise orghogoanl idempotents in B(R).
Note that every essentially closed left ideal is centrally closed in right self-injeative
regular rings.

Proposition 5. Let R be a directly finite, right self-injective regular ring

with no abelian idempotents and let I be a centrally closed non-zero left ideal of R.

Then there exist orthogonal idempotents {ejΓ-i in I and an central idempptent

l—g^B(R)f]I which satisfy the following conditions:

1) eiR^^c c(ei)ef(ki)Rfor all i, where {#(*)} Γ=i is a strictly increasing sequence
of integers.

2) Σ ΘRei is essential in Ig and 0=Ig Π B(R).Σ

Proof. Let {gΛ} be a maximal subset of orthogonal idempotents in

If)B(R). Since / is centrally closed, / containes 1—g= Π g*~ V h. So

IgΓ\B(R)=Q. We may assume that I f]B(R)=0 and / is centrally closed.

By induction on my we will show that there exist orthogonal idempotents
fe }Γ-i of I and integers n(l)<n(2)<---<n(m) satisfying 1) and the following
condition:

2') For any idempotent / in 7(1— Σ *,•)> fR—c-c(f)efR implies t>n(m).
ι = l

For fli=l, let n(ί) be the smallest integer of {n\c c(f)e%R~fR for some
nonzero idempotent / in 7} which is not empty by Proposition 4. Let igJ:A be
a maximal subset of family of orthogonal idempotents in {£G=i?(jR)|&R—
ge%\)R for some idempotent e in 7}. Let {e^A be a set of idempotents of 7
such that c*c(eΛ)=gΛ, eΛR—gΛe*{l)R for all O E A Put ex= Π eΛ, gλ= Π&* in

IIgctR=(VgΛ)R. Since 7 is centrally closed, it follows that 7 contains ex and
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I=Reι®I(l—e1). Let t be an integer such that fR^c c(f)efR for some non-
zero idempotent / in 7(1—^). Since n(l) is minimal and igΛ}A is maximal and
7Π B(R)=0, we have n(l)<t.

Assume that {̂  }?=i satisfy 1), 2'). Now we consider a case of

/ ( I — Σ £, ) = 0, i e., / = Σ Θ ^ , By Corollary of Proposition 3, we have

Σ«?)=> Σ ΘΛβf. Since Λe^^
ί l ί O) + lit follows that Rem has an essential submodule isomorphic to Σ (&Refc*c(em).

ί=»O0+l

We can see from Lemma D that there exist orghogonal idempotents {eY}7mm in

£MJfeM and a sequence {n(ί)=Λ(m)+l+(ί—w)}Γ-» such that e//R^^c c(em)efii)R
CO

for all i=m, m+1, •••, Σ φlfe. is essential in / and {e"}ΓL« U {e. }JίΓi1 are ortho-
ι = l

gonal idempotents. Thus we have orthogonal idempotents {̂ , }Γ-i and a sequence

{«(<)}"-I satisfying 1), 2).
HI ^ »I

Next, we consider a case of 7(1— Σ^O+O Using 7(1— Σ ^ f ) in place of

7, the same argument for m=ί implies that there exist an idempotent e'm+i in
m

7(1— Σ 0, ) and an integer w(m+l) satisfying the same conditions's above. We

can see that the idempotent eM+1=(l— Σ ^,)^+i satisfy 1) and {^ΓJi1 are or-

thogonal and satisfy 2'). Thus we obtain orthogonal idempotents {̂  }Γ-i

satisfying 1).
We will show that Σ ®Re{ is essential in 7. Suppose that Σ θi&, Π Rf=0

ί=l i= l

for some non zero idempotent of of 7. By Proposition 4, we may assume that

that fR^c*c(f)efR for some integer t. Let m be an integer with n(m)>t.
Since 7 = Σ i? f̂ 0 7(1 - Σ e%) 3 Σ Λ*, 0 Rf implies 7(1 - Σ e, ) >i?/, there

ί=l i= l i= l ί=l

exists an idempotent/' of 7 ( 1 - Σ ^ , ) such that Rf'~Rf~Re*c-c(f). ThisΣ
contradicts 2'), So Σ 0 ^ , is essential in 7.

ί = l

Corollary. Let R, I be as above. Then there exist paίrwise orthogonal
idempotents {/JΓ-i satisfying the following conditions:

(a) fiR—c c{ft)e%i)R for all i, where {w(ί)}Γ-i is a strictly increasing se-
quence of integers.

eo

(b) Σ © R/» w essential in I.

Proof. Let g> {e,}, {n{i)} be as in Proposition 5. If 1—^=0, the assertion
is trivial. Suppose that 1—gφ0. Put fi=(l—g)ef+ej if i=n(j) for some j , put
f.=(\-g)e* if i#=w(j) for all j . Put Λ(Z)=I for all /. By Proposition 5, the
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assertion is clear.

Proposition 6. Let R be a directly finite, right self-injective regular ring,
Q be the maximal left quotient ring of R. Then, for a given element q^Q, there ex-
ists a central idempotent g^B(R) and orthogonal idempotents {ett}n-i which satisfy
the following

(1) R(l—g)φ Σ φRe/n is essential in (R.'q), Σ ®Ren is essential in Rg.
»=1 »=1

(2) enR^ge*Rforalln,

Proof. By [2] Theorem 10.13, there is a central idempotent g*^B(R) such
that (1— g*)R is a ring of type / /, g*R is a ring of type IIf. Then by [2] Coro-
llary 10.25, we have (l—g*)R=(l—g*)Q, so we have (1—£*)e(2?.'j). It is
sufficient ot show that g*R satisfy the assertion. So we may assume that R
is type IIf.

Let {aΛ}A be a subset of (R/q) such that {c c(aΛ)}A are pairwise orthogonal
idempotents in B(R). Since a^q^R for all α e ^ , it follows that (ΐ[aef)q =

A

Π ( « ) e Π {cc{aΛ)R)={yc'c(aΛ))Ri i.e., UaΛeΞ(R.'q)). So (R/q) is centrally

colsed. By Proposition 5, there exist orthogonal idempotents -fo JT-i and a cen-
tral idempotent 1— g^B(R) Π (R.'q) satisfying 1), 2) of Proposition 5. Then we
may assume for the sake of simpleness that R = Rgy B(R)Γ){R.°q) = 0. Since

(R/q) is an essential left ideal, Σ Θi&, is essential left ideal from 2) of Proposition
5.

We will show that c c(£ t)=l and n(i) — i for all i^N. Suppose that

c c(et)*l or n(t)Φt for some t. Then we have Kx= Σ 0 ( 1 — £ f(et-))e*;)#θ

Σ 4 # Φ 0 . While we obtain Σ φeiR^f^®cc(ei)eϊii)R=K2 from 1)

of Proposition 5 and and Lemma A. So Σ Φ eft is isomorphic to a proper
i = l

CO

direct summand K2 of an essential right ideal Σ ®efR = ϋ ^ θ K2. By Propo-
ί = l

CO

sition 2, Σ ®^, 1? is not essential in RR. Since R is right self-injective,
ί = 1

there exists an idempotent e in R such that έ?i? Π Σ θeft=0 and β(Σ ®eft)=0.

Put x=xe= Σ ^jGJRβΠ Σ (BRei Then we obtain that 0=#££,•=#,•£,• for all

zΈJV, SO Ref] Σ θ i ^ , = 0 . This contradicts that Σ ΦRe{ is essential in RR.
i=l ί = l

We obtain that c c(et)=\, n(i)=i for all ίeiV.

Theorem 7. L ί̂ R be a directly finite, right self-injective regular ring.
Then the maximal left quotient ring Q of R is directly finite.

Proof. We may assume that R is Type IIf. Suppose that Q is direatly
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infinite. Then there is an element q of Q such that lQ(q)=:0 and QqΦ Q. There
exist a central idempotent g and orthogonal idempotents {en}n-ι of R which
satisfy the following conditions:

(1) ( « . ί ) ^ l

(2) Rg^ Σ ,

(3) eft—getR for all i.

We will show that (i) Q0—g)q=Q(l-g) and (ii) Qgq=Qg.
(i): Since 1—g(Ξ(R/q) imρ]ies(l—g)qeR,wehaweR(l—g)q(BA=R(l--g).

While we have R(l-g)c^R(l-g)q from lΛ/(g)clo(g)=0. Since R is directly
finite, we obtain A=0y i.e., (?(1— £) = Q(1 — g)q*

CO

(ii): Here we claim that Σ θi?eng is essential in Rg. Suppose that there

exists a nonzero idempotent £ in Rg such that JR^Π Σ ®Renq=0. Further we
κ = l

may assume from Proposition 4 that eR^g'e%R for some integer ra and some
nonzero central idempotent gr in Rg. Considering the proper direct summand
m + l

Σ (BRenqg'®Re of Rg', there exist orthogonal idempotents {e'} U {^Jίi1 such

that Re'=Re, Re'n=Renqgf^Re*g' for all Λ = 1 , 2, —, m + l . Then (e'+ Σ ^ ) Λ

is a proper direct summand of g'R. On the other hand it easily follows from

(3) and Prlposition 3 that g'R~ Σ θeίRφe'R. This contradicts that R is

directly finite. So we obtain that Σ ®R^ni ^s essential in Rg.
» = 1

CO

Since Rg is essential in RQg, we have Σ ΦR^uί^-eQg' While we obtain
co Λ = 1

from (2) and non-singularity of ΛQ that Σ ®Ren9 is essential in Qgq. Thus we
obtain Qgq=Qg.

From (i) and (ii), we obtain Qq=Q. This is a contradiction. Thus Q
is directly finite.

Proposition 8. Let R be α directly finite, right self-injective regular ring

which contains no nonzero abelίan idempotents and 3JΪ a maximal ideal of B(R).

Let m be the maximal ideal of R such that *aZD*$!lR are essential right ideal of R.

We denote by R the fader ring R/WIR.

(I) For a given idempotent e of R, the following conditions are equivalent.

(a) m contains e but SSSIR does not contain e.

(b) 2JΪ does not contain the central cover c c{e) of e and 2JΪ contains all central

idempotents g^B(R) satisfying gefR<eR for some integer n.

(c) There exist orthogonal central idempotents igt}7=i and idempotents e\, e\

and integers {#(*)} Γ-i which satisfy the following conditions;
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( i ) gte'i=gtefω-i andgte2=gte*it)l for all t.
(ii) {n(t)}T=i is a strictly increasing sequence of integers,
(iii) e\R<eR<e\R.

(iv) V ft = * c(e) $ 2H, gt e 2ft /or α// *.

(d) K 0 ( e # ) < # ^ e φ 0 .
(II) For an idempotent e in R, *& does not contain e if and only if there exist

a nonzero central idempotent g and an integer n such that gefR<eR andg^ΌUl.

Proof. (a)=φ(b): Let e be an idempotent in ^\3fti?. Then e^ΊHR im-
plies C'c(e)^<ϋΰl. Suppose that there exist a central idempotent g and an in-
teger n satisfying the following condition:

(1)

From 2n{e%R)^R, there exist orthogonal idempotents {eftf-i such that

Σ «ί=l, e'{R^e*R for all i = l , 2 , ••, 2n and eί=e*. So we obtain that Σ ϊ ί = I ,
f = l ί = l

eiRc^efR, i?=#D in J .̂ So we have the following:

(2) j? = RefR .

On the other hand, we obtain from (1) and Lemma B that JΓ=Ϊ and efR—
ge*R<eR. Then by (2), we obtain R=Re*R=ReR. This contradicts eG^.
We obtain the last part of (b).

(b)^(c) : Assume that (b) for an idempotent e holds. Let n{\) be a
minimal integer of {n^0\eR>gefR for some 0Φg^B(R)} = N where ef=l.
Let {gi}ί be a maximal subset of orthogonal idempotents in {g^B(R)\eR>
ge%i)R}=J. Since RR is injective and Σ θ ^ * i ) i ? < ^ , it follows that

&**(\)R<eR for ĵ== V ft. Since ig{} / is maximal and R satisfies general compara-
ίei

bility, we obtain (1 — gi)eR<ef(i)R. Since w(l) is minimal, we have gλeR<
ftβ?.i)-iJR when w(l)>0. From c ^)$5Πί and g^W we see that (1—ft>Φ0
and (1—ft)^ holds (b). By the same argument as above for (1— g^)e9 there exist
a central idempotent £2 and an integer n(2) which satisfy the same conditions as
above. Since n{\) is the minimal of N9 we have n(l)<n(2). By induction, we
can obtain orthogonal central idempotents igt}?~i and an increasing sequence
{n(t)}T«i of integers, which satisfy the following conditions:

(3)

(4)

Because it follows from (1—&)•••(!—gi)eR<(l—gt)efit)R that g'eR<e*(t)R for all
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t= 1, 2, -., where g'=c-c(e)- Vgt. Then we obtain X0(g'eR)< Σ θefωR c

Σ ΦefRczR. By [2] Corollary 9.23, we obtain that £'* = 0, i.e. c-c(e)=Vgtj

because eK>gte^t)R implies c c(e)>gt for all t.

Put eϊ= Π^?(o-κ> <£= ΐίgtefv) in Π & R = V (&)#• W e s e e f r o m (3)>
/=1 t=l ί=2 f = l

(4) that igt}y eu e2 satisfy (i), (ii) and (iii) and (iv).
(c)=#(d): Let e be an idempotent satisfying (c). By (iv) c c(e)^3Jlf we

have e&RSΰl, i.e., eφO. By (iii) in (c), we have e[R>eR. By (iv) &e27i, we

obtain that (1— Σ ^i)^ΐ=«Ί for all ί = l , 2, •••. By (i) and general comparability

on i?, we obtain the following:

(5) (\-±gi)eiR<e*ίt)R

for all t. Then the following hold:

H0(eR)<»0(e[R) (from eR<e\R)

< Σ θ d - Σ il)5;« (from ϋ=(ϊ- Σ ft)?t)
ί 2 ί l ί l

Σ Θ5?(o+.i*£* ( f r o m (5)) -

Thus we have X0(eR)<R.

(d)«»(a): By [2] Theorem 9.32, R=RjM=Rjm is a directly finite, right

self-injective simple regular ring. For an idempotent e satisfying (d), we see

from n(eR)<R that n(eR)<R for all 11=1,2, •••. By [2] Corollary 9.23, it

follows that e=0, i.e., e^m.

(II) It is clear from (I).

Theorem 9. Let R be a directly finite, right self-injective regular ring and

Q the maximal left quotient ring of R. Let 501 be a maximal ideal of B(R). Let

<5H and *n be the maximal ideals of Q and R including the ideal SSJIR, respectively.

Then the factor ring Q\<!M is the maximal left quotient ring of R\mt

Proof. By Theorem 7 and [2] Theorem 10.13, there exists a decomposi-

tion Q=Q1XQ2 such that Qx is type If and Q2 is type IIf. We denote by

R=R1χR2 the decomposition of R as same as Q. By [2] Proposition 10.4, we

have JRjCQ^ Since R1 is left and right self-injective and QiΓli^ — O (P]

Proposition 10.4), we have R1=Q1. Then every prime ideal contains Ri or JR2.

So, if M- contains R2, the assertion is clear. Since TIR is prime ideal of i?, we

may assume that R is type IIf.

First we prove that R Π <3ί=<n. Suppose that the equality does not hold. By



640 H. KAMBARA

[2] Corollary 8.23, *n is a unique maximal ideal of R which contains the minimal
prime ideal 9JI/?. Hence *n 52 Rf)<3H D R3JI. There exists an idempotent e in
<n\JMΓ)R. From^φc5K and Proposition 8 (II), there exists a nonzero central
idempotent g in B{Q) such that £$3Ji and

(1) Qe>Qe*g

for some integer m. From e^™ and Proposition 8 (I)-(c), there exist orthogonal
central idempotents {£f }Γ-i and idempotents e'2y e[ and integers {n(t)}T-i satisfy-
ing the conditions of Proposition 8 (1) (c). From e'2R<eR<elR, we obtain the
following:

(2) Qel£

There exists an integer t such that n(i)>τn for all i*zt. From £t G501, we have
t-i

(c*c(e)— 2£ί)£Φθ. There exists an integer s>t satisfying

(3)

Then the following relations hold:

Qetω-ig,g =* Qβϊft^ (from Prop. 8 (c) (i))

^ 0«.^ (from (2))

> QeZg,g (from (1))

Thus we obtain

(4) Qe%s)-ιg,g>Qe*g,g.

On the other hand we obtain from Proposition 3 that
So we have

Hence, from (3), (4) and (5), nonzero Qe%gsg is isomorphic to a proper direct
summand of itself. This contradicts that Q is directly finite, So we obtain

We prove that R = R\m is essential in Q = Q/JM as left i?-module. From
Proposition 6, for a given element q in Q, we obtain an essential left ideal

R(l—h)ξB Σ θ i& t in (i?.'#) such that h(=B(R) and Re—Refti for all integer ί.

Now B(R)=(ϊyϋ} implies ( ϊ — £ ) = I or 0. If (I—S)=l,_then R contains ?,
i.e., (R/q)=R. If (I—£)=0, then (R.'q) contains Σ θ % Since i? is a
simple regular ring with a unique rank function ΛΓ, 2n(etR)—R implies N(e$)=
l/2n. Further efR^enR implies N(e$)=N(en). Since {i, }Γ-i are pairwise
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orthogonal, we obtain 1= Σ N(ei)=sup{N(x)\xG Σ θ«, R} Hence Σ ®Ren
ι = l ί = l ί = l

is an essential left ideal of R> that is, {R.'q) an is essential left ideal of R for every
g^Q. Thus R is essential in Q as left i?-module.

By [2] Theorem 9.32, Q is a left self-injective regular ring. Thus Q is
the maximal left quotient ring of R from RRdQ.

3. Left and right self-injective regular ring

A ring R is said to be right (resp. left) K0-injective if every homomorphism
from a countablely generated right (resp. left) ideal of R into R extends to an
endomorphism of right (resp. left) i?-module R.

By Proposition 6, we obtain the following theorem.

Theorem 10. Let R be a directly finite, right self-injective regular ring.
Then R is a left self-injective ring if and only if R is left ^-injective.

Proof. Let R be left K0-injective a n d 0 the maximal left quotient ring of
R. For any element q in Q, there exist a set {en}n-\ of orthogonal idempotents

CO

and a central idempotent g&B(R) such that Σ ®Ren®R(l— g) is essential in
1 = 1

(R.'q) and Ren—Re$g for all n. Since the right multiplication by q is a homo-
morphism from *Σ(BRenξBR(l—g) to i?, there exists an element x in R such that
( Σ θ ^ » θ ^ ( l - ^ ) ) ( f - ^ ) = 0 . Since Q is a nonsingular left i?-module, we
obtain that R contains q—x, i.e., that Q=R.

The converse is trivial.

A ring is said to satisfy Kt (resp. Kr) if every non-essential left (resp. right)
ideal has a non zero right (resp. left) annihilator ideal. We consider one gener-
alizition of Kobayashi's theorem. For the end we use the following Utsumi's
theorem:

Theorem. Let R be a regular ring and Qγ (resp. Qr) the maximal left
(resp. right) quotient ring of R. Then Qλ=Qr if and only if R satisfies Kx

and Kr. ([6] Theorem 3.3)
In the following Lemmas 11, 12 and 13 and 14, we denote by R a right

self-injective regular ring of type IIf and by Q the maximal left quotient ring
of R. We use {ef}T^i to denote the orthogonal idempotents of R given by
Proposition 3.

Lemma 11. Let {̂  }Γ-i, {/,}Γ«i be pairwise orthogonal idempotents res-
pectively, which satisfy the following conditions:

(a), (i) Re^RefwC-ciei) for all i(EN,
(ii) {/|ef.φ0} is infinite, and for every nonzero g^B(R), ge{φ0 for

infinite many ί,
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where {w(i)}Γ-i is a strictly increasing sequence.
(b). There exists an integer t such that Rf^Ref+i for all i

(c). Σ ®Re, Π Σ 0i?/;=O rarf Σ ®i&, θ Σ 0i?/t. w essential in RR.
1 = 1 ί = l ι = l » = 1

Then Re^Ref for all ί = l , 2, ••, * - l and Re^Re%x for all i^t.

Proof. If n(i)Φt for all ίeΛΓ, then the following relations hold:

Σ θifc, — Σ θ&?«) *•*(**) (from (a))
= l ί l

< Σ θi&f (from n(i)Φ* for alii)
=i=μ

Σ θi?/, ^ ^ Σ t θi?ef (from (b))

c JR(1— Σ βf) — i? f̂ . (from Proposition 3
and its Corollary).

By Theorem 7, R satisfy (2) of Proposition 2 for left ideals of JR. Since

Σ ®Re{® Σ ®Rfi is an essential left ideal, it follows from Proposition 2 that

Rβi—Ref for all i = l , 2, ••• ί—1, Re~Ref+1 for all i>f. So we will show that
w(i)Φί for all ieiV.

We begin by showing that n(i)=i for i = l , 2, •••, ί— 1. Suppose that there
exists an integer s with τz(i)Φ$>£ for all i. Now the following relations hold:

Σ Ifcϊcnoφί) (from (a))
»CO>« :

C R{\~ Σ ^f) — Ref (from Proposition 3
and its Corollary)

Σ Rei— Σ Jkfίoc φ,) (from (a))
CO< ί C O <

Σ θlξ/i = Σ ΘRet (from (b))
ί=l f=/+l t

(from Proposition 3
and its Corollary)

Consequently essential left ideal Σ ®jRe, Φ Σ ® ?̂/l is subisomorphic to a proper
i = l » = 1

direct summand R(ef+ef-\ \-ef+ef) of R. This contradicts that R satisfy
(2) of Proposition 2. Thus we obtain n(i)=i for i = l , 2, •••, ί— 1.

Here we show that Re^Ref for all i<£. Suppose that there exists an
nonzero idempotent g€zB(R) which esg=0 for some s<t. Using the simillar
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argument as above for e{ g and efg> essential left ideal Σ ΦR^i gΦ Σ (BRfi g of
ί = l ί = l

Rg is subisomorphic to a proper direct sυmmand R(ef+ef-\ \-ef+ef)g of Rg.
This is a contradiction as above. So we obtain that for every s<t, esg=t0 for
every nonzero g^B(R). So we have

(1) Ref^Rβi

for all ί<t.

Suppose that n(t)=t. Put h=c-c(et)Φ0. Now Σ θ ^ ^ θ Σ 0i?/A—

Σ ΘJ&f λ θ Σ3 θίfc?/* from (1) and (b). By (a), Σ ®Re{h is a proper direct
f l i t + l l

Σ
ι = l

summand of Σ φRβih, that is, Σ θ ^ λ θ JlΦRfih is not essential in JRA.
*=1 1=1 ί = l

This is a contradiction. Hence we obtain w(i)Φί for all i.

Lemma 12. Lei e^Q be an idetnpotent with eQ^efQ for some integer n.

There exist orthogonal idempotents {/}Γ=I,Φ« in lR{e) such that Σ ®Rfi is es~
« = 1,Φ»

sential in lR{e), Rff^Ref for all i{^n)(=N.

Proof. We see that lR{e) is a centrally closed left ideal of 12. By Corollary
of Proposition 5, there exists a set {/^Γ-i of orthogonal idempotents in ls(e)
which satisfys the following conditions:

(1) fiR~c c(fi) eS(i)R for all / where {#(/)}Γ-i is a strictly increasing
sequence of integers.

(2) Σ (BRfi is essential in lR{e).

Then there exists an essentially closed left ideal K of R such that Σ @Rfi@K

is essential in RR. Let a be an element in eQef such that the right multiplica-
tion by a induces a given isomorphism Qe—Qe$. By Corollary of Proposition
5, there exists a set {//}Γ-i of orthogonal idempotents in Kf](R.'a) which
satisfies the following conditions:

(3) f'iR~c c{fty e*/(ί) R for all i where {w'(ί)}Γ-i is a strictly increasing se-
quence of integers.

(4) Σ @Rfi is essential in K Π (R.ma).

Here we claim that Λ/ί—Ref+i for all u From lQ(a) = Q(l— e)ZDlR(e)Z) Σ θ
e e , = i

Rf{ and Σ ®RfiΓ\K=Oi the right multiplication by a is a monomorphism from

Σ ®Rf'i to Re*. Since Σ ®Rfi®K Π (i?."«) is essential left ideal, we obtain
i = l ί=l

(5)
i



644 H. KAMBARA

If n\ϊ)<n for some i, then n\i)<n implies Ref>Rf^Re$(i)c c(f^) which
contradicts that R is directly finite. So we have n\i)^n for all u Suppose
thatn(l)=n. Put g=c-c(fί)^B(R). If/*£Φ0 for some), then we obtain
RfίΦRfjg<Retg from (5) and RfΊ~Re* from n(l)=n, and they imply that
Ref g is isomorphic to a proper direct summand of itself. This is a contradic-
tion. So we have/ί£=0 for all /^2. By Corollary of Proposition 3, the fol-
lowing holds:

(6) Rέ*^R(l-ΣeT)Ώ Σ ΦRef

CO

Then Rfί(—Reϊg) contains a left ideal which is isomorphic to Σ φRef g and
ί = » + l

is essential in Rf{. Changing suitable {/{}Γ-i from Lemma D, we may assume
that rl'(i)>n for all i. Then we obtain the following relation:

Σ ΘRf'i ̂  Σ θ ^ ( ί ) c c ( / 0 (from (3))

(7) < Σ eifef (from n\i)>n)
» = » + l

- Σ ef) ~ Ref (from (6))Σ

Using Proposition 2 and Theorem 7 for two left ideal Σ Θik?, Σ

(from (5), (7)), the homomorphism (7) Σ φ β / { < Σ θi?e? implies that /?/< —
Reϊ+i for all ί.

Suppose that there exists a nonzero central idempotent g^B(R) satisfying
gfi=0 for all but finite many L For the sake of simplicity, put {zΊg/iΦθ} =

{1, 2, - , in}. So we have i%O Σ ®Rf{g® Σ θ l ^ ί ^ .

Here we claim that (I): {n(i)|i=l, 2, •-, m} 2{1, 2, ...,n}, (II): Rf.g^Refg
for all ί^n, (III): {n(ί) |l^f^«} = {l,2, - , n } .

(I) Suppose that there exists an integer s( ̂ ή) with ί4=w(ί) for all l^i^m.
Now we obtain the following from Proposition 3:

(8) £
(9) Σ θ i ξ f , ί = Σ ΦRc cigfde*^ (from(l))

« : «CO<* « : «CO<*

c Σ Φget Q
ί = l

(10) Σ ®Rf,g- Σ
t: »CO>* « : «CO>*

nCtn )

< Σ
ί
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On the other hand, from Proposition 3, Σ (Bgef Q is isomorphic to a proper
S eo

direct summand of Ref g (^i?(l— Σ ef)gZ) Σ Refg). Thus we obtain from
co eβ / = = 1 * ί = * + l

(8), (9), (10) t h a t Σ φ i ? / ; 5 θ Σ θ i ? / ί 5 ( C ' R ? ) is subisomorphic to a proper

direct summand of Rg. This contradict that R is directly finite. So we have
(i).

(II). Suppose that for a given nonzero idempotent h=gh^B(R)y hgfs=0
for some s^n. Using if'igh, ghfiy ghef} for {/,£, /<£, ef £}, the same argu-
ment as above implies that an essential left ideal of Rgh is subisomorphic to a
proper direct summand of Rgh. This is a contradiction. So we obtain that

for all
(III). Suppose that n(m)>n. Then Σ Θ R/^Θ Σ θ # / ί £ is a proer

proper direct summand of Σ ®Rfi gΦ Σ θ-R/ί g On the other hand we ob-
ί=l i=ln ^ ^

tain from (I), (II) and Proposition 3 that Σ ΘRfig® Σ ®Rf'ig(~ Σ ΦRefg)
ι = l 1 = 1 ί = i

is essential in Rg. This is a contradiction. Thus we have (III).
Put / = {g<ΞB(R)\gfi=0 for all but finite many i}. Put h= \/g in B{R).

Then Rfih—Refh for all / = 1 , 2, •••, n. By Proposition 3, it follows that Rhfn
CO

contains a left ideal which is isomorphic to Σ (BRefh. Changing suitable pair-
ί = ιι + l

wise orthogonal idempotents {/, }Γ-i from Lemma D, we may assume that for
every nonzero central idempotent g^B(R)> g/i4=0 hold for infinite many z'eiV.
By Lemma 11, we obtain that Rf~Ret{i) for all iΦn and n(i)=i for all i^n—ί
and n(ί)=i+l for all i^n.

Lemma 13. Let I be an essentially closed right ideal of Q such that IφeQ
is essential in QQ, eQ — efQ for some integer t. There exist pairwise orthogonal

CO

idempotents {en}n-\,*t of I such that Σ ®enQ is essential in I, enQ — efQ for

Proof. Since / is essentially closed, / is centrally closed in Q. From
Corollary of Proposition 5, there exist pairwise orthogonal idempotents {£t EΞ/}Γ,.i
which satisfy the following conditions:

(1) eiQ^=^C'C(ei) e*(ί)Q for all i where {n(i)}7~i is a strictly increasing se-
quence.

(2) Σ Φe{Q is essential in /.
ί = l

Suppose that there exists a nonzero central idempotent g^B(R) satisfying
ge~Q for all but finite many i. By the similar argument in (/), (//), (///) of
Proof of Lemma 12, we obtain that gβiQ—gefQ for all /<£ί and ge~0 for all
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Put J=ig&B(R)\ge~O for all but finite many /}. Put h=Vg in B(Q).

Then hβiQ — hefQ for all £=1, 2, •••, f. By Proposition 3 and its Corollary, it
oo

follows that hetQ contains a right ideal which is isomorphic to Σ φhefQ and
ί = / + l

essential in hetQ. Changing suitable pairwise orthogonal idempotents -fojT-i
from Lemma D, we may assume that for every nonzero central idempotent

g^B(R),gβiΦ0 for infinite many I'eΛΓ. Since <?Q —e?Q — ( 1 —

Σ (BefQ, it follows that there exist pairwise orthogonal idempotents
CO

satisfying e Q p Σ Θ/, Q and f.Qc^e*+tQ for all ί. Applying Lemma 11 to

the present argument, we complete the proof.

Lemma 14. Let I be an essentially closed right ideal of Q such that I@eQ
is essential in QQ, eQ — efQ for some integer t. Then lQ(I) is nonzero.

Proof. By Lemma 13, there exist pariwise orthogonal idempotents -fojΓ-i.φf
in / which satisfy the following for every

(1) enQ

(2) Σ ®euQcI

By Lemma 12, for every eny there exist pairwise orthogonal idempotents {/n/}Γ-i,φn
in ljt(en) which satisfy the following for every /

(3) Rfm

Σ 7 « ; in lR{en) for all «Φί. From [2] Theorem 4.14, R satisfy cancel-

lation property. Since R has two decompositions R= Σ ®Rfni®R(l—fn)—

"2®R4ΘReΐ®R(l-n1Σ2fni)y we obtain the following from (3):
ι = l,φn

— Re$®Ref+t+2 (from Proposition 3)

So we obtain:

(4) (l

On the other hand lR(en)Z)Rfn implies rRlR(en)d(ί—fn) R. So we have

(5) Σ rRlR(en)a fj (l-fu)R.
» = l φ ί » l φ ί
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By Lemma D, there exist pairwise orthogonal idempotents {AΛ}Γ-i,φί in R, which
satisfy the following for every

(6) (l~fn)R>hn

(7) Σ (l-/.)*= Σ
» = l,φ* Λ = l ,φ

Consequently we obtain:

Σ ΦKR< Σ Θ(^ΛΘ^+/+2JR) (from (4), (6))
» = l,φ* » = l,φ/

(8) ^ Σl θe* i?θ Σ θe*+/+2i?
» l φ f » l φ *

where we denote by φ outer direct sum. Since /? satisfy cancellation property,

R=(ί-ef) RφefR= Σ ®e*R®{l- Σ e?) i? and ( 1 - Σ e*)R^efR implies

(l—et)R— Σ θ^i?. So we obtain from (8) that Σ ®KR<
1 lφ/

e?+2i?. Since R= Σ ee?i2©ef+2i?eef+ii2®(l- Σ ^ ) Λ , i.e., Σ Φef+2R@
»=1 »=1 «=1

ef+2R is a proper direct summand of R> it follows from (7) and Proposition 2 that
CO

Σ (1—/„) Λ is not essential in RR.

Let e' be an idempotent in R such that Σ (1—fn)R is essential in β'i?.
»=i,=μ

We obtain that OΦi?(l-β') = /Λ(^ /)c/Λ((l-/n)Λ) = i?/Λc/ i ?(^) for all nφt.
Thus Π l{en)Z)R(l—^')Φ0. For any element # in /, we obtain from (2) that

» l φ /
CO

(?#. Σ (BenQ)=J is an essntial right idela of Q. Since (1— er) qJ=0 and QQ is

nonsingular, we see that (1—e') q=0. Thus / Q ( / ) D Q ( 1 - « ' ) Φ 0 .

Theorem 15. Le£ R be a directly finite, right self-injective regular ring.
Then the maximal left quotient ring of R is a left and right self-injecttve regular
ring.

Proof. By [2] Theorem 10.13, R has a decomposition R=RxxR2 such
thrt Rλ is type If and R2 is type IIf. Then Rλ is right and left self-injective.
So we may asmme that R is type IIf.

Suppose that Q satisfies Kr. Since Q satisfies Kly it follows by Utsumi's
Theorem that the maximal right quotient ring of Q is equal to the maximal
left quotient ring of Q, i.e., Q. Thus Q is left and right self-injective ring. So
it is sufficient to show that Q satisfies Kr.

Let 7 be a non-essential right ideal of Q such that eQ Π / = 0 for some non-
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zero idempotent e in Q. Put e'~e'2 in eQe such that Qe'^Qef gy g=c c(e') for
some integer t. We prove that /0(/)=t=0. So we may assume that Qe~Qgef,
c c(e)=g and eQφI is an essential right ideal of Q. Since /cz/c implies
l(Γ)ζZl(I) and /CΠ^Q=O where / c is the essential closure of /, we may assume
that / is essentially closed. From lgQ(gI)^lQ(I), we can assume that c c(e)=l.
By Lemma 14, we have /$(/)#= 0, i.e., that Q satisfies Kr.

Corollary. ([5]) Let R be a regular ring with a rank function N. Suppose
that N satisfy l=snp{N(x) \x^I} for every essential left ideal I of R. Then the
maximal right quotient ring of the maximal left quotient ring of R is left and right
self-injective and is isomorphic to the N-completion of R by an extetition of natural
map φ\ R->R (See [2]).

Proof. From [2] Theorem 21.17, the maximal left quotient ring S of R is
directly finite. By Theorem 15, the maximal right quotient ring Q of S is left
and right self-injective. By the hypothesis and [2] Theorem 21.17, we consider
that S is a subring of the iV-completion of R and there exists a rank function N of
S as a extention of N. For every essential left ideal / of S, we have RIZ)e I Γ\R
and i?z>,/n#. So l = sup {N(x)\x(Ξl f)R}^sup {N(x)\xtEl}^l, i.e. sup
{N(x)\x&I} = l for all essential left ideal / of S. For a given essential right
ideal / of S, there exist pairwise orthogonal idempotents {gn} such that JZDe

Σ @gnS. Suppose Σ ®Sgu e^S(l-g) Then ga=Σgn anεEgSf)"ΣgnS im-
»=1 n = l

plies 0=gnga=gnan for all n, so £ = 1 , i.e., Σ Sgn is essential in SS. Thus 1 = Σ
iV(£M)^sup{iV(tf)|#e/}5Π,i.e., l=sup {N(x)\x^J} for all essntial right ideal
/ of 5. From [2] Theorem 21.17, we consider that Q is a subring of the JV-
completion R of R and have a same rank function N. In the same way as S, we
obtain that l=sup {N(x)\x^K} for all essential right ideal of Q. From [2]
Proposition 21.3 and 4, N is countably additive on Q. By [2] Theorem 21.7, Q
is complete in the iV-metric. So RczQdR implies Q=R.

We consider again a necessary and sufficient condition for the maximal
right quotient ring of a regular ring to be directly finite.

Theorem 16. For a regular ring R, the following conditions are equivalent.
1) The maximal right quotient ring of R is directly finite.
2) Every right ideal isomorphic to some essential right ideal is essentail in RR.
3) The maximal left quotient ring of the maximal right quotient ring of R

is right and left self-injective.
4) There exists a left and right self-injective regular ring S such that R is

a subring of S and S is a non-singular right R-molule:

Proof. 1) °Φ 2): Proposition 2.
1) -» 3): Theorem 15 and Proposition 2.
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3)=#4): Let Q be the maximal right quotient ring of R and S the maximal
left quotient ring of Q. Suppose that x is a singular element in S such that r{x)
is an essential right ideal of R. Since ((?/#)= iq^Q \qx^Q} is an essential left
ideal of Q, ((Q.'x) x) rR(x)=0 implies 0=Z(QR)Z)(Q/x) x. Since S is a non-
singular left Q-module, it follows that Λ?=0, i.e., S is a non-singular right R-
module.

4)=^ 1): Let SR be non-singular. Since R is regular, S is a flat left
i?-module. So S is non-singular injective right i?-module ([2] Lemma 6.17).
Put Q={s^S\(s\R) is an essential right ideal of i?}. For every OΦgeQ, we
have qR Π RZ)q(q\R)Φ0 from nonsingularity of SR. So Q is essential hull of R
in injective module SR> i.e., QΛ is injective.

We will show that (t\(s\R)) is an essential right ideal for every s, t&Q.
Suppose that (t\(s\R)) fϊxR=0 for some nonzero t, s e Q and x^R. Then
0=txRf)(s\R) and (s\R)(zR implies ^ # = 0 , i.e., xRd(t/(s\R))9 which is a

contradiction. So (t\(s"R)) is essential right ideal for all ί, s e Q . Thus we
obtain that Q is a subring of 5. So Q is the maximal right quotient ring of R.

Since S is directly finite from Utsumi [7] (see [2] Theorem 9.29), Q is di-
rectly finite.

Let R be a regular ring and Q be the maximal right quotient ring of the
maximal left quotient ring of R. Here we consider necessary and sufficient con-
ditions for Q to be complete in the iV-metric for some rank function N of Q
(Corollary 1). And, in Corollary 2, we consider a case that R is a prime regular
ring

Corollary 1. Let R be a regular ring and Q be the maximal right quotient

ring of the maximal left quotient ring of R. Then the following conditions are

equivalent.

1). There exists a rank function on R such that l = s u ρ {N{x) | # e / } for all

essential left ideal I of R.

2). There exists a rank function N of R such that the N-completion of R is

the maximal right quotient ring of the maximal left quotient ring of R.

3). There exists a rank function N on Q such that Q is complete in the N-

metric.

4). There exists a rank function N on R such that the N-completion R of R

is a nonsίgular R-module.

Proof. Let S be the maximal left quotient ring of R.

1) •* 2): Corollary of Theorem 15.

2 ) = Φ 3 ) : [2] Theorem 19.6.

3) =#• 4): The restriction of N to R is a rank function on R. From 3) and

QZ)R, the iV-completion Q=Q of Q contains the iV-completion R of 7? as a sub-
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ring. Suppose that 0Φq^Z(RQ) is a singular element of Q. Then there
exists bG{q ,S)={x^S\qx^S} such that qbφ0. Then lR(q) qb=0, which con-
tradicts that RS is nonsingular.

4) ==> 1): For a given essential left ideal / of R, there exist pairwise ortho-

gonal idempotents {e, }Γ-i sucht hat IZ)e Σ -Re,-. Set/=lim Σ */ in 1?. Then
» t' = l

Σ Rei(l-f)=0 implies l - / = 0 . So, from [2] Theorem 19.6, l=ΛΓ(/)=lim Σ

y i.e,
Corollary 2, Let R be a prime regular ring. Then the following conditions

are equivalent.
1). There exists a rank function N on R such that l=suρ {N(x)\x^I} for

all essential left ideal I of R.
2). The maximal left quotient ring of R is directly finite.
3). The maximal right quotient ring of the maximal left quotient ring of R

is right and left self-injective.
4). There exists a rank function N on R such that the N-completion of R is

a nonsingular left R-module.

Proof. 1) =s> 2): [2] Corollary 21.19.
2)=s>3): Theorem 15.
3) =3> 4): [2] Corollary 21.14 and 3)-»4) in Proof of Corollary 1 of The-

orem 16.
4) ==#> 1): See 4)-* 1) in Proof of Corollary 1 of Theorem 16.

A regular ring R is said to satisfy Kf if rR(I)®rR(J) is an essential rihgt
ideal of R for every essential left ideal I®J. Note that essentiality of / ® /
implies rR(I)Γ\r(RJ)=0.

Let R be a subring of a ring S such that RR is nonsingular. Then S is
said to be left quotient ring of R if R is essential in RS.

In the following theorem, we consider necessary and sufficient conditions
that the maximal right quotient ring of a regular ring is left and right self-
injective.

Theorem 17. For a regular ring R, the following conditions are equivalent.
1) The maximal right quotient ring of R is right and left self-injective.
2) The maximal left quotient ring of R is directly finite and a right quotient

ring of R.
3) i) Every left ideal isomorphic to some essential left ideal is an essential

left ideal of R.
ii) R satisfies Kf.

Proof. Let Q be the maximal right quotient ring of R.
1 ) ^ 2 ) : Let Q be a right and left self-injective ring. By [2] Lemma 6.17,
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Q is injective left 2?-modlue. Suppose that x is a singular element of left R-
module Q. Since R is a non-singular left i?-module, it follows that lR(x){x(pc mR)}
= 0 implies x(x\R)=09 Since Q is a non-singular right i?-module, it follows
that #=0, i.e., Q is non-singular left i?-module.

Put S={x^.Q\(R/x)dRR}. By similar symmetric argument as 3)^1) in

Proof of Theorem 16, we obtain that S is the maximal left quotient ring of R and
S is a right quotient ring of R.

2) *=§> 1): Let S be the maximal left quotient ring of R such that S is a
directly finite, right quotient ring of R, i.e., RRdSR. So we can consider that

S is a submodule of Q. For any element ί, / of S, we denote by sot the multi-
plication of s and ί in Q. Put /=(**.(/.#)) and J=(sf mR). Then t(If]J)
d(s\R) and (*of) (7n/)=*(*(7Π jΓ))=rt(7ΓΊ / ) . Since Q is a non-singular
right i?-module, we have sot=st. Thus S is a subring of Q. Since Q is rihgt
self-injective and a flat left 5-module, it follows from [2] Lemma 6.17 that Q
is right S-injective module. While QRedRR implies Qs^>e Ss- Thus Q is the
maximal right quotient ring of S. By Theorem 15, it follows that Q is left
and right self-injective.

3) <=> 2): By Proposition 2, 3)-i) is equvalent that the maximal left quotient
ring of JR is directly finite. Let S be the maximal left quotient ring of 2?.

Suppose that R satisfies Kf. By [2] Theorem 13.14, S has a decompo-
sition S=S1 xS2 such that S1 is strongly regular ring and S2 has no non-zero
central abelian idempotent. Since S1ΓiRdeS1 as right i?-module, it is suf-
ficient to show that S2Γ\RdeS2 as right i?-modules. By [2] Theorem 13.16,
S2 is generated as a ring by all its idempotents. For a given idempotent e in
S29 put I=Se Π R and J=S(ί—e) Π #. Then 7 ® / is an essential left ideal of
R. Since r(I)(&r(J)=(l—e) S C)R(BeS ΓiR is essential in RR, it follows that
(e'#i?)Dr(/)φr(/) are essential right ideals of R. Therefore SR is an essential
extention of RR.

Conversely, suppose that S is a right quotient ring of R, i.e., S is a subring
of Q. Let 7 0 / be an essential left ideal of R. There exists an idempotent/in
S such that 7 C β 5/ and / C e S(l-/). Then/Q Π i ? 0 (1 -f)Qf]R is essential
in i?*. Now fQr\R^>fSf)Rz)fRC)R. While we have/QnΛc/RΠTί from
f(fQnR)=fQf)R SorU)=fSΓiR=fQΓiR. Similarity r(7)=(l-/)<?n#.
Therefore r(7)©r(/) is essential in i?^. Thus R satisfies Kf.

REMARK. For a regular ring, the condition Kf implies the condition Kv

For, let R be a regular ring satisfying Kf. Suppose that 7 is a non essential left
ideal of R with r(7)=0. Let / be a nonzero left ideal of R such that 7 ® /
is essential in RR. Then r(I)®r(J)=r(J) is an essential right ideal. Since
RR is nonsingular, it follows that J=0. This is a contradiction.

We don't know whether the converse hold or not.
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Here we consider the same problem as Theorem 17 for a regular ring
with a rank function (Corollary 1) and for a prime regular ring (Corollary 2).
The equivalence 2)<=>4) in Corollary 1 was proved by A. Vogel [8],

Collorary 1. For a regular ring R with a rank function N, the following
conditions are equivalent.

1). The maximal left quotient ring S of R is a right quotient ring of R and
sup {N(x) I x^I} = 1 for all essential left ideal I of R.
2). The N-completion R of R is the maximal right quotient ring of R
3). The maximal right quotient ring Q of R is right and left self-infective
and there exists a rank function N on Q such that N is an extention of N and
Q is complete in the N-metric.
4). For every left ideal I of R,
sup {N(x) IXEΞI} +sup {N(x) I x(=r(/)} = 1.

Proof. 1) *Φ 2): Since S is right quotient ring, we have QRZDe SRZ)eRRf

where Q is the maximal right quotient ring of R. Let E be an injective hull
of Ss. For every a^Ey (a\S)s= {x^S \ax^S} is an essential right ideal of S,
so(a\S)f)R is an essential right ideal of R. Then we have EReZ)SRy so we
consider QZDE. For every q^Q, we have (q\S)sZ)(q\R)R and (q\R)R is es-
sential right ideal of R, so E~DQ. Then Q is maximal right quotient ring of S.
From Corollary 1 of Theorem 16, R satisfies 2).

2 ) = Φ 3 ) : It is clear from [2] Theorem 19.6.
CO

3) =^ 4): Let {tft}Γ-i be pairwise orthogonal idempotents with ][] Re{ ecR.

Set/=lim φ e{ in Q. Then 0=r(Σ Re^il-f) QΓ\R implies l - / = 0 . From

[2] Theorem 21.7, N is countably additive on Q. Thus we obtain 1 = Σ 2V( t̂)=
2 Nfa), i.e., l=suρ {N(x) \x^I} for all essential left ideals /of R. While, from
[2] Theorem 21.7, we have l=sup {N(x)\x^Γ} for all essential right ideals /'
oϊR.

For a given left ideal I of R, set I@JedR and RJdR. Then l=suρ
{iV(^)|^G/}+sup{iV(^)|^e/} Then r{I)@r{J) eczRR from Theorem 17.
So l = sup{N(x)\x<EΞr(I)}+supiN(x)\x(=r(])}. From (l-f)RlDr(I) for
every / 2 = / e 7 , we have 1—iV(/)^suρ \N(x) \x^r(I)} for every / e / , i.e., 1 —
sup {N(x) I xe/} ^ sup {N(x) \ xe r (I)}. Similarly, 1—sup {N(x) | x<Ξ /} ;> sup
iN(x)\x&(J)}. Then l^sup {N(x)\x^I}+sup {N(x)\x(Ξr{I)}=suV {N(x)

Thus R satisfies 4).
4 ) # 1 ) : By 4), sup \N(x)\x^I} = l for every essential left ideal / of R.

So we have sup {N(x)\x^J}-\-sup {N(x)\x^J'} = l for every essential left
i d e a l / θ / of R. From 4), sup {iV(tf)|xe/}+sup {N(x)\x^r(J)} = l and
sup (N(x)\x^J'} +sup (N(x)\x^r(/')} = 1. Hence we have sup {N(x)\xe
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r ( / ) } + s u P {iV(Λ?)|ΛGr(/')} = l, so r(J)φr(f) is essential in #*, i,e. # satisfies
3) of Theorem 17. Thus the maximal left quotient ring of R is right quotient
ring of R and l=sup {N(x) | # e / } for all essential left ideal I of i?.

Collorary 2. For # ̂ >πme regular ring R, following conditions are equivalent.
1). The maximal left quotient ring ofR is a right quotient ring of R and directly
finite.
2). There exists a rank function N on R such that the N-completion of R is
the maximal right quotient ring of R.
3). The maximal right quotient ring of R is left and right self-injective.
4). There exists a rank function N on R such that l=sup {N(x)\x^I} +

sup (N(x) \x<=r(I)} for every left ideal I of R.

Proof. 1) =#> 2): From [2] Corollary 21.19, there exists a rank function N
on R such that sup {N(x) |a?e/} = l for every essential left ideal / of R. By
Corollary 1 of Theorem 17, R satisfies 2) by the rank function N.

2 ) = Φ 3 ) : [2] Theorem 19.6.
3) =Φ 4): By Corollary 21.14, there exists a rank function N of the maximal

right quotient ring Q of R such that Q is complete in the iV-metric. From
Corollary 1 of Theorem 17, R satisfies 4).

4)=#> 1): It is clear from Corollary 1 of Theorem 17 and [2] Corollary
21.19.

I thank K.R. Goodearl for sending me a letter that directed my attention
to [8].
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