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This paper is concerned with the following open problem for directly finite,
von Neuman regular rings. 'The problem was given by Goodearl and Handelman
[3]: what conditions on a regular ring R induce that the maximal right quotient
ring of R is right and left self-injective. In [4], the auther showed an example
of directly finite, right self-injective regular ring which is not left self-injective.
So we have an interest in this problem. In Theorem 17 in §3, we give neces-
sary and sufficient conditions for this problem. In §2, we consider the maximal
left quotient ring @ of a directly finite, right self-injective regular ring. We
show that @ is directly finite (Theorem 7) and the factor ring @/ is the maxi-
mal left quotient ring of the factor ring R/# for every maximal ideal ¥ (resp.
D) of Q (resp. R) (Theorem 9). In §3, we give one generalization of a result
in [5]: the maximal left quotient ring of a directly finite, right self-injective
regular ring is left and right self-injective. Further we obtain necessary and
sufficient conditions for the maximal right quotient ring of a regular ring to be
directly finite (Theorem 16).

1. Preliminaries

All rings in this paper are associative with unit and ring homomorphisms
are assumed to preserve the unit. A ring R is said to be directly finite if xy=1
implies yx=1 for all x,yER. A ring is said to be directly infinite if R is not
directly finite. A regular ring means von Neumann regular ring.

A rank function on a regular ring R is a map N: R—[0, 1] satisfying the
following conditions:

(a) ND=1,

(b) N(xy)=N(x) and N(xy)<N(y) for all x, yER,

(¢) N(e+f)=N(e)+N(f) for all orthogonal idempotents e, f ER,

(d) N(x)>0 for 1l non-zero xR.

If R is a regular ring with a rank function N, then 8(x, y)=N(x—y) defines a
metric on R, this metric § is called N-metric or rank metric and the (Hausdorff)



630 H. KaMBARA

completion of R with respect to 8 is a ring R which we call the N-completion
of R.

An idempotent e of a regular ring R is said to be abelian if eRe is strongly
regular i.e., all idempotents of eRe are central idempotents of eRe. An idem-
potent e of R is said to be directly finite if eRe is directly finite as a ring. For
a ring R, we use B(R) to denote the central idempotents in R. We note that
B(R) is a Boolean algebra in which eV f=e+-f—ef and e A f=ef, while e'=1—e.
If R is regular and right self-injective, then B(R) is complete [2].

Let R be a regular, right self-injective ring. For a given element x in R,
put H={g< B(R)|xg=0} and 1—h=g;/yg in B(R). The idempotent 4 is

called the central cover of x, denote c.c(x).

Let R be a directly finite, right self-injective regular ring. Then R is
said to be Type II, if R contains no abelian idempotents. And R is said to be
Type I, if R contains an abelian idempotent f with c.c(f)=1. Note that R is
uniquely a direct product of rings of Type I, II, ([2] Theorem 10.13).

For a regular ring R and elements a, bR, we use aR<"bR to mean that
aR is isomorphic to a direct summand of bR. A regular ring satisfies general
comparability provided that for any x, yER, there exists g€ B(R) such that
g¥R<RgyR and (1—g)xR=(1—g)yR. Note that every regular right self-
injective ring satisfies general comparability ([2] Corollary 9.15).

Let R be a subring of a ring Q. For every element x of @ and right ideal
I of @ and left ideal J of @, , we use (x°.I), (J."x) to denote the right ideal
{aeR|xac I}, the left ideal {a=R|axe J}, respectively.

Lemma A. For two idempotents e, f of a ring R, the following conditions
are equivalent.

1). eR=fR.

2). There exist elements xeRf, y=fRe such that yx=f, xy=e.

3). Re=Rf{.

Proof. It is trivial.

Lemma B. Let R be a subring of a ring Q and R be a factor ring of R.
For two idempotents e, f with eR= fR, the followings hold.

1). eéR=fR and Ré=Rf.

2). eQ=fQ and Qe=Qf.

Proof. By Lemma A, it is easy.

Lemma C. Let R be a ring. For two idempotents e, f and an integer n,
the followings are equivalent.

1) n(eR)=fR.

2) n(Re)=Rf.
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where n(eR), n(Re) are direct sums of n-copies of eR, Re, respectively.

Proof. It is easy.

Lemma D. Let R be a regular ring. For a right ideal ;.V;‘, a;R, there exist
pairwise orthogonal idempotents {e;} 7~, which satisfy the follozuin:g—:1

(1). é De,R = Z,:,: a;R for all m.

(2). eR=<a,R for alli.

If 33 @®a; R is directsum, then {e;} satisfy (1), (3).

3) _eiR'_VaiR for all i.

Proof. We prove Lemma by induction on m. For m=1 it is trivial.
Assume that w {¢;} 7', satisfy (1), (2) or (3). Now "g a,R= E'i @®e,R+a, R=
i‘, De;RP(1— Z:n} €)a, R. Let ey, be an idem;;c—);ent wit'I—l1 eni 1 R=(1— i}
e)ameiR. Pt epeyelys(1— ). Then elyi=eney. And (1— 33 ¢ )ame R
ehiiRD ehun(1— 3 ) RO e (1— S1e)ehaR = chuiR, ic, e R = (1—
21¢;)ayR. Thus {e;} 72/ are orthogonal and satisfy (1). Since (1— 21€)an R
i:projective, we have (1 —__Em} e)a,. R=e,  R<a,,,R. For (3;,_lwe have
A=l_=2m1 @Pe,RPa,, ., R= é EBl;:RGBe,,,HR. We denote by p the projection from

A4 to e,,R induced by the decomposition 4 = 2"' e,RPe,,R. Then p induce
an isomorphism of a,,,,R to e, ., R. =

2. Directly finite maximal quotient ring

We consider the necessary and sufficient condition for a regular ring R to
have the directly finite maximal right quotient ring of R. For a prime regular
ring with a rank fucntion, the following theorem is known [2], [3].

Theorem 1. ([2] Theorem 21.18 and 19) Let R be a prime regular ring
with a rank function N. Then Q(R) is directly finite if and only if QR)S R as
a subring if and only if sup {N(x)|x&I}=1 for all essential right ideals I of R
where Q(R) is the maximal right quotient ring of R and R is the completion of R
in the N-metric.

In general case, we have the following Proposition and we consider again
this property in Theorem 16.

Proposition 2. For a regular ring R, the following conditions are equivalent.
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(1) The maximal right quotient ring @ of R is directly finite.
(2) Ewery right ideal isomorphic to some essential right ideal is an essential
right ideal of R.

Proof. (1)=(2): Let @ be directly finite. Suppose that R does not
satisfy (2). Let I, J be isomorphic right ideals such that J is essential in R but
I is not essential in R. There exists an element ¢ @ such that g: J—I (x—>qx)
is a given isomorphism. Since the right R-module J is essendal in right R-
module Q, the homomorphism ¢: Q=@ is a monomorphism. Since I is not
essential in right R-module @, ¢@ is a proper direct summand of right R-
module Q. This contradicts that @ is directly finite.

(2)=(1): Assume that @ is directly infinite. Then there exists an element
g of such that 7¢(¢)={x=Q|gx=0} =0, @=+¢Q. Then (¢’ R)={x=R|qxER}
is an essential right ideal. By @Q=¢Q and ¢Q@ N R24(q".R), ¢(¢".R) is not es-
sential in R;. On the other hand, by 7¢(g)=0, the homomorphism g¢: (¢,"R)—
q(¢" .R) is an isomorphism between two right ideals of R. So (2) does not hold.

We consider the maximal left quotient ring of R which is directly finite,
right self-injective regular ring. For the end, we start with the following pro-
position.

Proposition 3. Let R be a directly finite, right self-injective regular ring
with no abelian idempotents. Then there exists a set {eX} -1 of orthogonal idempo-
tents such that EEBe R is an essential right ideal and 2 ex RC(I—— Z‘, eX)R—=
kR, 2"(e5R)=R for all m=1, 2, - e

Proof. By [2] Theorem 10.28, there exists an idempotent ef &R sucht
that 2efR=R, (1—ef)R=¢efR. For R,=(1—ef)R(1—ef), there exists an
idempotent ef €R, such that 2(efR))=R,, i.e., 2%(e¥R)=R and (1—ef—e¥F)R=
efR. We obtain inductively a set {e¥}y., of orthogonal idempotents such that

2"(e*¥R)=R, (1— Z} e¥)R=e¥R for all n=1,2, -
For a given nonzero idempotent fER, suppose that fR<Ce¥R for all n.
Then R,fR< 2 @e¥RCR. Since R is directly finite, we have f=0 from [2]

Corollary 9.23. This is a contradiction. So, for fER, we obtain from general
comparability on R that fR>>ge£R for some integer m and some nonzero idem-
potent g€ B(R).

Suppose that i @DeXR is not essential in Ry, i.e., there exists a nonzero
n=1
idempotent e with (33 @e¥R) NeR=0. By the above argument, eR=>gekR for
n=1
some integer m and some nonzero idempotent g € B(R). Then >} @gefRD
n=1
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geR +gR, ie., there exist exists a nonzero idempotent f’ such that 2"' ®
ge¥RD geROf'R=gR. While gR< 2 @DgexRPgeR from (1— Z e*)R~ e*R
and eR = geXR, that is, gR is 1som0rph1c to a proper direct summand of gR.

This contradicts that R is directly finite. So Z} @e¥R is essential right ideal of
R. m ©o
Now we have (1— 3 ¢f)RD 31 @efR. By the same argument, we

obtain that 2“ @De¥R is essential in (1— Euj e)R.
n=m+1 n=1
Throughout this paper, we use {¢f} to denote the orthogonal idempotents
as above.
From Proof of Proposition 3, we have the following proposition.

Proposition 4. Let R be a directly finite right self-injective regular ring
with no abelian idempotents. For every idempotent e, there exist an integer m and
a nonzero central idepmotent g B(R) and an idempotent f of eRe such that
gexR=fR.

Corollary of Proposition 3. Let R be as above. Then, for every n, 2 (&)

Re¥ is essential in R(1— 2" e¥).

Proof. Since {¢¥}7.: are pairwise orthogonal, R(1— Eei") contains 2 Re¥.

i=n+1

Suppose that there exists a nonzero idempotent e=R(1— Z} e¥) with Ren

2 Re¥=0. By Proposition 4, we may assume that eR=~=c- c(e)e*R for some m.

Put g=c-c(e)e B(R). ,

(i) A case of m<<n. Then Refig==ReC R(1— 3} ef)g==Refg implies
gexR<geXR. So the following holds: o

(1) 2"(ge¥R)=>2"(gexR)=¢R .

On the other hand we obtain from m<(n that 2"(ge}¥R) is isomorphic to a proper
direct summand of gR=2"(ge}R). By (1), we obtain that gR is isomorphic to
a proper direct summand of gR. This contradicts that R is directly finite.

(i) A case of m=n. Considering 2 @ Ref B 2 @ RefgDRe in a
regular ring, we may assume that {ge}} 7' U {e} are palr\'zv:s+e orthogonal. Then
zm‘, @ gefRDeR is a proper direct summand of ZMéB ge¥R@eR, ie., of gR. On
the other hand Re==Re};g=~=R(1— Z‘ e¥)g 1mphes 2‘. @D ge¥RPeR~—= 2 D ge*RD

g(1— Z} e¥)R=gR. This contrad1cts that R is dlrectly finite. Consequently we
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o

obtain that 23 @DRe¥ is essential in R(1— Z" e¥).
i=n+ i=1
In a right self-injective regular ring R, B(R) is complete Boolean algebra
([2] Proposition 9.9). For any subset {g;}; C B(R) of pairwise orthogonal
idempotents, (V g;)R is the injective hull of a right ideal ; @g;R, and the
I

natural ring homomorphism (V g;)R—1I g;R is an isomorphism ([2] Proposi-
1 I

tion 9.9 and 9.10), where 1;[ g:R is the ring of direct product of rings {g;R} .

So we regard as (\I/ g)R= I;_[ g:R and we denote by II a,(a;= g;R) the element

as(V g;)R such that ag,=aq; for all i]. A subset I of R is said to be centrally
closed if, for every subset A={a,E1} satisfying the following condition (x), I
contains a= 1;[ a,E 1;[ (c-c(a,,)R)z(\A/c.-c(a,))R.

(%) A{c-c(a)lacs A} are pairwise orghogoanl idempotents in B(R).
Note that every essentially closed left ideal is centrally closed in right self-injeative
regular rings.

Proposition 5. Let R be a directly finite, right self-injective regular ring
with no abelian idempotents and let I be a centrally closed non-zero left ideal of R.
Then there exist orthogonal idempotents {e;}7.. in I and an central idempptent
1—geB(R)N I which satisfy the following conditions:

1) e;R=c-c(e,)ex)R for all i, where {n(i)} .. is a strictly increasing sequence
of integers.

2) i @DRe; is essential in Ig and 0=1Ig N B(R).

Proof. Let {g,} be a maximal subset of orthogonal idempotents in
INB(R). Since I is centrally closed, I containes 1—g= ]:ZI gs= V h. So

heB(RINI
IgNB(R)=0. We may assume that 7 N B(R)=0 and I is centrally closed.

By induction on m, we will show that there exist orthogonal idempotents
{e;}7-1 of I and integers n(1)<<n(2)<<---<n(m) satisfying 1) and the following
condition: Y

2") For any idempotent f in I(1— Z‘.le,-), JR=c+¢(f)e¥R implies t>n(m).

For m=1, let n(1) be the smallest integer of {n|c-c(f)eXR=fR for some
nonzero idempotent f in I} which is not empty by Proposition 4. Let {g,} , be
a maximal subset of family of orthogonal idempotents in {g & B(R)|eR=
ge¥ R for some idempotent e in I}. Let {e,}, be a set of idempotents of I
such that c-c(e,)=g,, e.R=g.efR for all ac 4. Put ¢,= 1;[ s 1= 1;[ g4 in

I;I g,R=(Y 8.)R. Since I is centrally closed, it follows that I contains ¢, and
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I=Re,PI(1—e,). Let ¢t be an integer such that fR=c-¢(f)efR for some non-
zero idempotent f in I(1—e;). Since #(1) is minimal and {g,} , is maximal and
IN B(R)=0, we have n(1)<t.

Assume that {e;}7., satisfy 1), 2’). Now we consider a case of

I(1— 2 e)=0, ie., I= 2 @ Re;. By Corollary of Proposition 3, we have
R(1— Ee?*)D ' @Re*. Since Re, =~=Re¥mc* c(e,,,)_R(l— EBe*)c c(em),

e §= ﬂ(m)-l-l

it follows that Re, has an essential submodule isomorphic to 2‘, @Re?‘c c(ey)-
i=n(m)+1

We can see from Lemma D that there exist orghogonal idempotents {e/’} ., in
e,Re, and a sequence {n(¢)=n(m)+14-({—m)}7.» such that e}’ R=c-c(e,)ex R
for all i=m, m+-1, ---, 2 @DRe; is essential in I and {e/’} 7. U {e;} 7=i' are ortho-
gonal idempotents. Thus we have orthogonal idempotents {¢;} ., and a sequence
{n(:)} 7-1 satisfying 1), 2). i )

Next, we consider a case of I(1— Z}ei)ﬂzﬂ. Using I(1— 'z:;e,-) in place of
I, the same argument for m=1 implies ;hat there exist an idempotent ey, in
I(1— é e;) and an integer n(m--1) satisfying the same conditions’s above. We
can see that the idempotent e, ., =(1— gl €;)ems1 satisfy 1) and {e;} 7' are or-

thogonal and satisfy 2’). Thus we obtain orthogonal idempotents {e;} .,
satisfying 1).
We will show that 33 @Re; is essential in I. Suppose that 33 @Re; N Rf=0
i=1 i=1
for some non zero idempotent of of I. By Proposition 4, we may assume that
that fR=c-¢(f)e¥R for some integer . Let m be an integer with n(m)>¢.

Since I= Z_‘, Re, ®I(1— Z e)> 2 Re; @ Rf implies I(1— 5_‘2 ;)= Rf, there
exists an idempotent f' of I(1— Em ¢;) such that Rf'==Rf=~Refc-c(f). This
contradicts 2), So 2 @DRe; is essential in 1.

Corollary. Let R, I be as above. Then there exist pairwise orthogonal
idempotents {f} 7.1 satisfying the following conditions:

(@) fiR=c-c(f)exnyR for all i, where {n(i)}7.. is a strictly increasing se-
quence of integers.

(b) i @DRY; is essential in I.

Proof. Let g, {e;}, {n(?)} be as in Proposition 5. If 1—g=0, the assertion
is trivial. Suppose that 1—g=0. Put f;=(1—g)ef+e; if i=n(j) for some j, put
fi=(1—g)ef if i%n(j) for all j. Put n(d)=1: for all 2. By Proposition 5, the
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assertion is clear.

Proposition 6. Let R be a directly finite, right self-injective regular ring,
O be the maximal left quotient ring of R. Then, for a given element < Q, there ex-
ists a central idempotent g< B(R) and orthogonal idempotents {e,} -, which satisfy
the following

(1) R(1—g)® 33 @Rel, is essential in (R.'g), §: @ Re, is essential in Rg.

(2) eR=gefR for all n,

Proof. By [2] Theorem 10.13, there is a central idempotent g*¥& B(R) such
that (1—g*)R is a ring of type I, g*R is a ring of type II,. Then by [2] Coro-
llary 10.25, we have (1—g*)R=(1—g*)Q, so we have (1—g*)E(R.’q). It is
sufficient ot show that g*R satisfy the assertion. So we may assume that R
is type I1,.

Let {a,} 4, be a subset of (R,"g) such that {c-c(a,)} , are pairwise orthogonal

idempotents in B(R). Since a,g € R for all a € 4, it follows that (I a,)g=
4

1;[ (a,q)EIAI (c-c(a,)R)z(Yc-c(a,))R, ie., I;Ia,G(R,'q)). So (R.°q) is centrally

colsed. By Proposition 5, there exist orthogonal idempotents {e;} 7., and a cen-
tral idempotent 1—g& B(R) N (R,’q) satisfying 1), 2) of Proposition 5. Then we
may assume for the sake of simpleness that R=Rg, B(R)N(R,’q)=0. Since

(R."q) is an essential left ideal, i @DRe; is essential left ideal from 2) of Proposition
5.
We will show that c-c(e;) =1 and n(s)=1 for all /& N. Suppose that

c-c(e))=+1 or n(t)=+t for some . Then we have K ,= i‘. B(1—c-c(e;))edinRD
' ¢XR=+0. While we obtain z“: De; Rzieac -c(e;)e¥sR=K, from 1)

meN\{n()}2,
of Proposition 5 and and Lemma A. So 2 @eR is isomorphic to a proper

direct summand K, of an essential right 1d;al 2 @efR=K P K, By Propo-
sition 2, Z; @e;R is not essential in Rp. Smce R is right self-injective,
there exist’; an idempotent e in R such that eRN Zm} @e;R=0 and e(é De;R)=0.
Put x=xe= ﬁ‘. x,6;ReN 3 DRe;. Then we (‘)Ltain that Ozxee:—zxie,- for all
ieN, so Re}]- 12 @ Re;=0. This contradicts that 2” @D Re; is essential in zR.
We obtain that c-c(e) =1, n(i)—i for all i€N.

Theorem 7. Let R be a directly finite, right self-injective regular ring.
Then the maximal left quotient ring @ of R is directly finite.

Proof. We may assume that R is Type II,. Suppose that @ is direatly
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infinite. Then there is an element g of @ such that 1¢(¢)=0 and @3+Q. There
exist a central idempotent g and orthogonal idempotents {e,}y.; of R which
satisfy the following conditions:

M (R 2R(1—)® 3} ©Re,
@ Rg> 31 ©Re,
A3) e;R~ge¥R for all 7.

We will show that (i) Q(1—g)g=@Q(1—¢) and (ii) Qgg=@Qg.

(i): Since 1—ge (R, q) implies(1—g)g<E R, we have R(1—g)aPA=R(1—g).
While we have R(1—g)=R(1—g)q from 1;/(g) C1o(g)=0. Since R is directly
finite, we obtain 4=0, i.e., Q(1—g)=Q(1—g)q.

(i1): Here we claim that i @DRe,q is essential in Rg. Suppose that there
n=1
exists a nonzero idempotent e in Rg such that ReN >} @Re,g=0. Further we
u=1

may assume from Proposition 4 that eR==g’¢XR for some integer m and some
nonzero central idempotent g’ in Rg. Considering the proper direct summand

MEE @Re,qg'DRe of Rg', there exist orthogonal idempotents {e'} U {e} 721 such
that Re'=Re, Rej—Re,qg'=Retg’ for all n=1,2, -, m+1. Then (¢'+ 3 c)R
is a proper direct summand of g'R. On the other hand it easily follov;s_ 1from
(3) and Prlposition 3 that g'R= ﬁ @PeRPe’'R. This contradicts that R is
directly finite. So we obtain tha"lc—l_i;‘, @Re,q is essential in Rg.

Since Rg is essential in zQg, :A;e have "2: @DRe,9C,Qg. While we obtain

from (2) and non-singularity of @ that ﬁ @Re,q is essential in Qgg. Thus we
obtain Qgg=Qg.

From (i) and (ii), we obtain @¢=@. This is a contradiction. Thus @
is directly finite.

Proposition 8. Let R be a directly finite, right self-injective regular ring
which contains no nonzero abelian idempotents and M a maximal ideal of B(R).
Let m be the maximal ideal of R such that m>IMR are essential right ideal of R.
We denote by R the facter ring R/IR.

(I) For a given idempotent e of R, the following conditions are equivalent.

(@)  contains e but MR does not contain e.

(b) M does not contain the central cover c-c(e) of e and IR contains all central
idempotents g < B(R) satisfying gefR=<eR for some integer n.

(c) There exist orthogonal central idempotents {g;} 7., and idempotents ey, e;
and integers {n(t)} ., which satisfy the following conditions;
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(1) giei=gek -1 and ge;=g.ek | for all t.
(i) {n(t)}7-1 is a strictly increasing sequence of integers.
(i) ezR<eR<erR.

(iv) S-; gi=c-c(e) M, g, M for all t.

(d) R(eR)<R and e=0.
(II) For an idempotent e in R, » does not contain e if and only if there exist
a nonzero central idempotent g and an integer n such that gef R<<eR and g&I.

Proof. (a)=>(b): Let e be an idempotent in #\TMR. Then eIMR im-
plies c-c(e) =M.  Suppose that there exist a central idempotent g and an in-
teger n satisfying the following condition:

(1) gefR<<eR and g&M.
From 2"(e¥R)=R, there exist orthogonal idempotents {e/}%.; such that
ei=1, e{R=¢e}R for all i=1,2, ---,2" and e{=e¥. So we obtain that fz:_‘: e/=1,

.E,-EZEZ‘E, é¥+0in R. So we have the following:

2) R = R#R.

. [N
Il 2
oy

On the other hand, we obtain from (1) and Lemma B that =1 and e¥R=
Ze*R<<eéR. Then by (2), we obtain R=RefR=ReR. This contradicts eS.
We obtain the last part of (b).

(b)=>(c): Assume that (b) for an idempotent e holds. Let #n(l) be a
minimal integer of {n=0|eR>=>ge}R for some 0= g B(R)} = N where ef = 1.
Let {g;}; be a maximal subset of orthogonal idempotents in {g&B(R)|eR=
gefyR} =]. Since Ry is injective and % Dgef,R<eR, it follows that
giex1,R<<eR for gl:-;/f g:- Since {g;}; is maximal and R satisfies general compara-
bility, we obtain (1—g,)eR<SekR. Since n(1) is minimal, we have g,eR <
gie¥ 1R when n(1)>0. From c-c(e)eM and g,&M we see that (1—g,)e+0
and (1—g,)e holds (b). By the same argument as above for (1—g,)e, there exist
a central idempotent g, and an integer 7(2) which satisfy the same conditions as
above. Since #(1) is the minimal of N, we have 7(1)<n(2). By induction, we

can obtain orthogonal central idempotents {g;} -1 and an increasing sequence
{n(2)} v-1 of integers, which satisfy the following conditions:

)  R=Z @gehoR, 3 Ogehi R 3 GgeR.
) ‘\7 g=cce), nl)y<n(2)<--.

Because it follows from (1—g,)---(1—g,)eR<(1—g,)e¥ R that g'eR=lef,R for all
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t=1,2, -, where g'=c-c(e)— Vg, Then we obtain Ry(g'eR)< 2 @PefnRC
2 @efRCR. By [2] Corollary 9.23, we obtain that g’e=0, i.e. c-¢(e)= Vg,,
because eR> g.ef R implies c-c(e)> g, for all ¢.

Put e;= Eg,en(,)_l(, = :l;Il gk in ‘I;IZg,R:t\Z (g:)R. We see from (3),

(4) that {g,}, €3, € satisfy (i), (ii) and (iii) and (iv).
(c)=>(d): Let e be an idempotent satisfying (c). By (iv) c-c(e) &M, we
have e RM, i.e., e+0. By (iii) in (c), we have &R==¢R. By (iv) g, M, we

obtain that (I— 2 Z)ei=e; for all t=1, 2, ---. By (i) and general comparability
i=1

on R, we obtain the following:
(5) (1— R g)eiR<ekoR
for all £.  Then the following hold:
Ro(eR)<<Ry(¢iR)  (from eR<<#R)
<Hed-BgmR  (foma=1-3 £)7)

. E Dekn RCR. (from (5)) .

Thus we have R,(eR)<<R.

(d)=>(a): By [2] Theorem 9.32, R=R/m=R/m is a directly finite, right
self-injective simple regular ring. For an idempotent e satisfying (d), we see
from n(eR)<R that n(@R)<R for all n=1,2,--. By [2] Corollary 9.23, it
follows that é=0, i.e., ecm.

(IT) It is clear from (I).

Theorem 9. Let R be a directly finite, right self-injective regular ring and
Q the maximal left quoitent ring of R. Let M be a maximal ideal of B(R). Let
M and m be the maximal ideals of @ and R including the ideal MR, respectively.
Then the factor ring Q| M is the maximal left quotient ring of R|m.

Proof. By Theorem 7 and [2] Theorem 10.13, there exists a decomposi-
tion @=@Q,XQ, such that Q, is type I, and @, is type II,., We denote by
R=R, X R, the decomposition of R as same as @. By [2] Proposition 10.4, we
have R, C@Q, Since R, is left and right self-injective and @, NR,=0 ([2]
Proposition 10.4), we have R,=Q,. Then every prime ideal contains R, or R,.
So, if » contains R,, the assertion is clear. Since MR is prime ideal of R, we
may assume that R is type 1.

First we prove that RN Jf=m. Suppose that the equality does not hold. By
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[2] Corollary 8.23,  is a unique maximal ideal of R which contains the minimal
prime ideal MR. Hence nRRN MUDRIM. There exists an idempotent e in
M\MNR. From ee M and Proposition 8 (II), there exists a nonzero central
idempotent g in B(Q) such that g&=IM and

(1) Qe=>Qekg

for some integer m. From e~ and Proposition 8 (I)-(c), there exist orthogonal
central idempotents {g;} 7-, and idempotents e;, €1 and integers {n()} 7.1 satisfy-
ing the conditions of Proposition 8 (1) (c). From e;R<<eR=<leiR, we obtain the
following:

2) Qe;<Qe=<Qe; .
There exists an integer ¢ such that n(i)>m for all i=¢. From g,&M, we have

(cec(e)— ﬁ £)g=+0. There exists an integer s>t satisfying
i=1

3) 8:8%0.

Then the following relations hold:

QeXiy-18.8 = Qeig,g  (from Prop. 8 (c) (1))
= Qeg.g (from (2))
= Qeng.g  (from (1))

Thus we obtain

“4) Qefio-18.8 = Qeng.g.

On the other hand we obtain from Proposition 3 that 2*®-1"m(¢k , | R)==eXR.
So we have

) 2007 (Qells) 1) = Qer -

Hence, from (3), (4) and (5), nonzero Qe}g,g is isomorphic to a proper direct
summand of itself. This contradicts that @ is directly finite, So we obtain
m=JYCR.

We prove that B = R/m is essential in @ = Q/H as left R-module. From
Proposition 6, for a given element ¢ in @, we obtain an essential left ideal

R(1—h)® i @Re; in (R, q) such that k< B(R) and Re,== Re¥h for all integer .
in1

Now B(R)=A{1,0} implies (I—A)=1 or 0. If (I—k)=1, then R contains 7,

ie., (R,'g)=R. If (1—k)=0, then (R.'g) contains >IDRe, Since K is a

simple regular ring with a unique rank function N, 2'(e;'R)=R implies N(ex)=

1/2". Further é¥R=~=¢,R implies N(¢})=N(z,). Since {¢;}7.. are pairwise
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orthogonal, we obtain 1= i N(z,)=sup{N(x)|x& Zj_‘. @¢; R}. Hence zt} DR:,

is an essential left ideal of R, that is, (R,"7) an is essential left ideal of R for every
7<Q. Thus R is essential in @ as left R-module.

By [2] Theorem 9.32, @ is a left self-injective regular ring. Thus @ is
the maximal left quotient ring of R from RE?Q

3. Left and right self-injective regular ring

A ring R is said to be right (resp. left) Ry-injective if every homomorphism
from a countablely generated right (resp. left) ideal of R into R extends to an
endomorphism of right (resp. left) R-module R.

By Proposition 6, we obtain the following theorem.

Theorem 10. Let R be a directly finite, right self-injective regular ring.
Then R is a left self-injective ring if and only if R is left Ry -injective.

Proof. Let R be left R,-injective and @ the maximal left quotient ring of
R. For any element ¢ in @, there exist a set {e,} ., of orthogonal idempotents

and a central idempotent g& B(R) such that Zio‘, @DRe,BR(1—g) is essential in

(R.’q) and Re,~Rejf g for all n. Since the right multiplication by ¢ is a homo-
morphism from 31@Re,BR(1—g) to R, there exists an element x in R such that
(Z2DPRe,DR(1—g)) (—x)=0. Since @ is a nonsingular left R-module, we
obtain that R contains g=u, i.e., that @Q=R.

The converse is trivial.

A ring is said to satisfy K, (resp. K,) if every non-essential left (resp. right)
ideal has a non zero right (resp. left) annihilator ideal. We consider one gener-
alizition of Kobayashi’s theorem. For the end we use the following Utsumi’s
theorem:

Theorem. Let R be a regular ring and @, (resp. @,) the maximal left
(resp. right) quotient ring of R. Then @,=@, if and only if R satisfies K,
and K,. ([6] Theorem 3.3)

In the following Lemmas 11, 12 and 13 and 14, we denote by R a right
self-injective regular ring of type I/, and by @ the maximal left quotient ring
of R. We use {ef} 7., to denote the orthogonal idempotents of R given by
Proposition 3.

Lemma 11. Let {e}7.1, {f}7-1 be pairwise orthogonal idempotents res-
pectively, which satisfy the following conditions:
(a). (i) Re;=Re¥; c-c(e]) forall ieN,
(i) {ile;==0} is infinite, and for every nonzero g=B(R), ge;+ 0 for
infinite many 1,
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where {n(i)} -1 is a strictly increasing sequence.
(b). There exists an integer t such that Rf,~ Re¥.; for alli€N.

©. S @Re;N S BRA=0 and 3 ®Re;D S DRf, is essential in ¢R.
=1 i=1 i=1 =1
Then Re;= Ref for all i=1,2, ---,t—1 and Re;== Re},, for all i=t.
Proof. If n(i)=t for all &N, then the following relations hold:

gnl @BRe; = é @DRe¥i coc(e;) (from (a))

< ST @Re} (from n(z) ==t for all 7)

i=1,%¢

2 ORf =3 @Rt (from (b))

C R(1— _ﬁ e¥)= Re¥. (from Proposition 3
= and its Corollary).

By Theorem 7, R satisfy (2) of Proposition 2 for left ideals of R. Since
2.: @D Re; D 2.: @DRYf; is an essential left ideal, it follows from Proposition 2 that

Re;~=Re¥ for all i=1, 2, --- t—1, Re;~Re¥,, for all i>¢. So we will show that
n(z)=t for all ieN.
We begin by showing that n(f)=i for i=1, 2, ---, t—1. Suppose that there
exists an integer s with #()==s>¢ for all . Now the following relations hold:
>3 Re;= >3 Reficec(e)  (from (a))

i1 RG> iinG>s

< Y Re¥

c R(1—- z“, e¥)= Re¥  (from Proposition 3
= and its Corollary)
23 Re;= >} Refycec(e)  (from (a))

(RO <] i n(id<s

<% Re¥
i=1

,-‘_‘ii‘; @R, :‘glGBRe?‘ (from (b))

c R(1— ﬁ e¥) = Re}  (from Proposition 3
and its Corollary)

Consequently essential left ideal i} @DRe;® ﬁ @R, is subisomorphic to a proper
i=1 i=1

direct summand R(ef+ef+---+e¥+e¥) of R. This contradicts that R satisfy
(2) of Proposition 2. Thus we obtain n(i)=1 for i=1, 2, -+, t—1.

Here we show that Re,~Re¥ for all i<<t. Suppose that there exists an
nonzero idempotent g& B(R) which ¢, g=0 for some s<¢. Using the simillar
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argument as above for ¢; g and e g, essential left ideal i @DRe; gD i @DRf; g of

Ryg is subisomorphic to a proper direct summand R(e¥+ef+---+e¥+-e¥) g of Rg.
This is a contradiction as above. So we obtain that for every s<t, e,g=0 for
every nonzero g B(R). So we have

¢)) Re¥ = Re;

for all i<z.

‘ Suppose that n(t)=t. Put h=c-c(e;) 0. Novs: Z'E @ Re;hD g @D Rf;h=
.gl EBRe’,"hGBE]Hl@Re?‘h from (1) and (b). By (a), g @Re;h is a proper direct

summand of —2., D Re; h, that is, 2 @D Re; kD i @ Rf;h is not essential in Rh.

This is a contradiction. Hence we obtain #(z)=¢ for all 7.

Lemma 12. Let e=Q be an idempotent with eQ==e}Q for some integer n.
There exist orthogonal idempotents {f;}7-14n in l(€) such that % @ Rf; is es-
i=1,%n
sential in l(e), Rf=Re¥ for all i(%£n)EN.
Proof. We see that [4(e) is a centrally closed left ideal of R. By Corollary
of Proposition 5, there exists a set {f}7., of orthogonal idempotents in Ix(e)
which satisfys the following conditions:

(1) fiR==c-c(f;) efnR for all i where {n({)}7., is a strictly increasing
sequence of integers.

) ‘fj, @RS, is essential in Ig(e).
Then there exists an essentially closed left ideal K of R such that i} DRf,®K

is essential in xR. Let a be an element in eQe;f such that the right multiplica-
tion by a induces a given isomorphism Qe=Qes. By Corollary of Proposition
5, there exists a set {f/}7.1 of orthogonal idempotents in KN (R, °a) which
satisfies the following conditions:

(3) fiR==c-c(f!)els;, R for all i where {n'()}7., is a strictly increasing se-
quence of integers.

(4) 3 @Rf! is essential in K N(R, a).
Here we claim that Rf/=Re},; for all &, From lo(a)=Q(1—€)Dlx(e)D 3 EE
Rf; and i‘, @ Rf; N K=0, the right multiplication by @ is a monomorphism from

i @DRf’ to Re¥. Since i @DRf; DK N (R, a) is essential left ideal, we obtain
i=1 i=1

(5) > @Rfi <, Rek .
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If n’(f)<<n for some 7, then n'(f)<<n implies Re}=>Rf!=Re¥.c-c(f!) which
contradicts that R is directly finite. So we have n'(f)=n for all 7. Suppose
that n(1)=n. Put g=c-c(f1)€B(R). If fig+0 for some j, then we obtain
Rf{DRf’ g <Re¥ g from (5) and Rf{==Re} from n(1)=n, and they imply that
Re}¥ g is isomorphic to a proper direct summand of itself. This is a contradic-
tion. So we have f{g=0 for all {=2. By Corollary of Proposition 3, the fol-
lowing holds:

6) Re} = R(1— Ee*)D 3! ®Ret

€ i=n+1

Then Rf{(= Re}¥ g) contains a left ideal which is isomorphic to _ﬁ @ReF g and

is essential in Rf{. Changing suitable {f/}?., from Lemma D, we may assume
that #'(z)>n for all £ Then we obtain the following relation:

E DRf: = 2 DRe} ;e c(.ff) (from (3))

(7) < S ®Re* (from n'()>n)

i=n+1

C R(1— 2 e¥)=Re¥  (from (6))

Using Proposition 2 and Theorem 7 for two left ideal E D Re¥, 2 @Rf! < Re¥

(from (5), (7)), the homomorph1sm (7) 2 @Rf < 3 @Ref implies that Rfi=
Re, ; for all 4. =

Suppose that there exists a nonzero central idempotent g& B(R) satisfying
gf;=0 for all but finite many 7. For the sake of simplicity, put {¢|gf;#0}=

{1,2,---,m}. So we have RgD é @DRf; gD i DRf!g.

Here we claim that (I): {n(7)|i=1, 2, ---, m} 2{1, 2, ---,n}, (II): Rf; g=Re¥ g
for all i<n, (II1): {n()|1<i<m}={1,2, -+, n}.

(I) Suppose that there exists an integer s(=<n) with s==n(:) for all 1=i=<m.
Now we obtain the following from Proposition 3:

8) ST @ORfig <, Refg=R(1— 3 ef)g

©) o PRfig= 3 ORec(gf)edy  (from (1)
c g: Dget Q

(10) o ORfig= 3 ORelncc(ef)

< 2 Dgef Q

i=s+1



FINITE REGULAR RINGS 645

On the other hand, from Proposition 3, ‘i(z’i PDge¥ Q is isomorphic to a proper
direct summand of Re¥ g (=R(1— g.: e?‘;;?iglRe}" g). Thus we obtain from
(8), (9), (10) that .E_l DRf, gD ‘§=_‘.1 GBRfﬁg(gRg) is subisomorphic to a proper
direct summand of Rg. This contradict that R is directly finite. So we have

(1.

(IT). Suppose that for a given nonzero idempotent h=ghe B(R), hgf,=0
for some s=<n. Using {fgh, ghf,, ghe¥} for {f, g, f!g, ef g}, the same argu-
ment as above implies that an essential left ideal of Rgh is subisomorphic to a
proper direct summand of Rgh. This is a contradiction. So we obtain that
Rf,g=Re¥g for all 1<i=<n.

(III). Suppose that n(m)>n. Then E @DBRf; gD 2 @DRf!g is a proer
proper direct summand of E @RS, gD 2 @Rf ‘g. On the other hand we ob-
tain from (I), (IT) and Proposmon 3 that é‘{ DBRf; gD 2 DRfig(= }_] DRef g)

is essential in Rg. This is a contradiction. Thus we have (III).
Put J={geB(R)|gf;=0 for all but finite many ¢}. Put 2=Vg in B(R).
J

Then Rf;h=Refh for all =1, 2, -+, n. By Proposition 3, it follows that RAf,

contains a left ideal which is isomorphic to Z‘, @Re¥h. Changing suitable pair-

wise orthogonal idempotents {f;} 7., from Lemma D, we may assume that for
every nonzero central idempotent g€ B(R), gf;#0 hold for infinite many ;EN.
By Lemma 11, we obtain that Rf;=Re};, for all /3=n and n(/)=1 for all i<n—1
and n()=i+1 for all i =n.

Lemma 13. Let I be an essentially closed right ideal of Q such that 1PeQ
is essential in Qq, eQ==e¥Q) for some integer t. There exist pairwise orthogonal

idempotents {e,} w14 of I such that 2 ‘EBe,,Q is essential in I, e,Q=e}@Q for
all n(+t)EN.

Proof. Since I is essentially closed, I is centrally closed in . From
Corollary of Proposition 5, there exist pairwise orthogonal idempotents {¢;& 1} 7.,
which satisfy the following conditions:

(1) eQ@=c-c(e) i@ for all i where {n(i)} 7., is a strictly increasing se-
quence.

2) i @De; Q is essential in 1.
i=1
Suppose that there exists a nonzero central idempotent g& B(R) satisfying

ge;=0 for all but finite many 7. By the similar argument in (1), (II), (III) of
Proof of Lemma 12, we obtain that ge,@=ge}Q for all /<t and ge,=0 for all
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1>t
Put J={g=B(R)|ge;=0 for all but finite many 7}. Put h=\J/g in B(Q).
Then he;Q=he¥@Q for all i=1, 2, ---,¢. By Proposition 3 and its Corollary, it
follows that ke, @ contains a right ideal which is isomorphic to é_:.‘ @DheFQ and
i=f+1

essential in ke, Q. Changing suitable pairwise orthogonal idempotents {e;} 7.,
from Lemma D, we may assume that for every nonzero central idempotent
2EB(R), ge;+0 for infinite many ¢€N. Since eQ~ei"Q~(1— t e*)Q D
2 @efQ, it follows that there exist pairwise orthogonal 1dempotents {f}71
i=t+1

satisfying e@ ,O 2 @ f;Q and f;Q=e¥,,Q for all i. Applying Lemma 11 to

the present argument, we complete the proof.

Lemma 14. Let I be an essentially closed right ideal of Q such that I1DeQ
is essential in Qq, eQ=¢}Q for some integer t. Then lo(I) is nonzero.

Proof. By Lemma 13, there exist pariwise orthogonal idempotents {e,} a1+
in I which satisfy the following for every n==¢:

(1) e,Q=¢r@.
(2 ,% ®e,QCI

By Lemma 12, for every e,, there exist pairwise orthogonal idempotents {f,;} f-1,+4
in Ip(e,) which satisfy the following for every i ==n.

3) Rf,; = Re¥ .
Put f,= 2 f,,, in Ix(e,) for all n4=¢t. From [2] Theorem 4. 14- R satisfy cancel-

latlon property Since R has two decompositions R= E EBRf,,,EBR(l—f )=
2 @Re @D Re¥ EBR(I— Z f,,,) we obtain the followmg from 3):

i=1,7%

R(1—f,) = Ref®R(1— "3 £,)
= Re*@PRe¥, .2 (from Proposition 3)
So we obtain:
4 (1—f,)R = e}R®ef\ 142 R .
On the other hand Ii(e,) D Rf, implies rzlg(e,) ©(1—f,) R. So we have

(5) 3 rel(e)c 33 (1-f)R.
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By Lemma D, there exist pairwise orthogonal idempotents {A,} ...+, in R, which
satisfy the following for every n==t.

(6) (1—-f) R= hR.
@) "$¢,(1—fn) R= > ®hR.

Consequently we obtain:

S PR S ea(e*ReaeHmR) (from (4), (6))

=Lt L
®) 2_2‘. el RS E el R
<(1—¢} )R@e,+2R
where we denote by @ outer direct sum. Since R satisfy cancellation property,
R=(1—¢} )RGBe R= 2 Pe¥ RB(1— Ee )R and (1— Ze )R~e;"R implies
(1—e¥) R= Z‘, PDerR. So we obtain from 8) that E @h R< 2 BeXRD

e¥..R. Since R= 2 @e¥ RPef.: RDeF . RO (1— 2 eX) R, ie., 2 De¥. . RD
ef,2 R is a proper direct summand of R, it follows from (7) and Proposition 2 that

2*(1—f ) R is not essential in Rp.

Let ¢’ be an idempotent in R such that E (1-—f ) R is essential in ¢'R.
We obtain that 0=R(1—e’ )—lR(e)ClR((l—f,,) R) Rf,Clg(e,) for all n=t.
Thus n#l (es)DR(1—e")=0. For any element g in I, we obtain from (2) that
n=1,

(q. §j¢ @e,Q)=] is an essntial right idela of @. Since (1—e’) ¢/=0 and Qg is
n=1,3¢
nonsingular, we see that (1—e’) g=0. Thus (/)2 Q(1—e')=0.

Theorem 15. Let R be a directly finite, right self-injective regular ring.
Then the maximal left quotient ring of R is a left and right self-injective regular
ring.

Proof. By [2] Theorem 10.13, R has a decomposition R=R,X R, such
thrt R, is type I, and R, is type II,. Then R, is right and left self-injective.
So we may asmme that R is type II,.

Suppose that @ satisfies K,. Since @ satisfies K|, it follows by Utsumi’s
Theorem that the maximal right quotient ring of @ is equal to the maximal
left quotient ring of @, i.e., @. Thus @ is left and right self-injective ring. So
it is sufficient to show that @ satisfies K,.

Let I be a non-essential right ideal of @ such that eQ N I=0 for some non-
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zero idempotent e in Q. Put e’=e"? in eQe such that Qe'=Qe}¥ g, g=c-c(e’) for
some integer £. We prove that [o(I)#0. So we may assume that Qe=Qge¥,
c-c(e)=g and eQ@I is an essential right ideal of @. Since ICI° implies
I(I°)ci(I) and I°NeQ=0 where I° is the essential closure of J, we may assume
that I is essentially closed. From /,o(gI)S/o(I), we can assume that c-c(e)=1.
By Lemma 14, we have lo(I)=0, i.e., that @ satisfies K.

Corollary. ([5]) Let R be a regular ring with a rank function N. Supposc
that N satisfy 1=sup{N(x)|x& 1} for every essential left ideal I of R. Then the
maximal right quotient ring of the maximal left quotient ring of R is left and right
self-injective and is isomorphic to the N-completion of R by an extention of natural
map @: R—R (See [2]).

Proof. From [2] Theorem 21.17, the maximal left quotient ring S of R is
directly finite. By Theorem 15, the maximal right quotient ring @ of S is left
and right self-injective. By the hypothesis and [2] Theorem 21.17, we consider
that S is a subring of the N-completion of R and there exists a rank function IV of
S as a extention of N. For every essential left ideal I of S, we have (/D, INR
and RD,INR. So l=sup{N(x)|x€INR} <sup{N(x)|xI} <1, ie. sup
{N(x)|xI}=1 for all essential left ideal I of S. For a given essential right
ideal J of S, there exist pairwise orthogonal idempotents {g,} such that /DO,

2? @®g,S. Suppose i ®&Sg, .cS(1—g) Then ga=3>lg,a,€gSN> ¢g,S im-

plies 0=g,ga=g,a, for all n, so g=1, i.e., 3} Sg, is essential in 3S. Thus 1=
N(g,)<sup {N(x)|xs J} =1, i.e., 1=sup {N(x)|x< J} for all essntial right ideal
J of S. From [2] Theorem 21.17, we consider that @ is a subring of the N-
completion R of R and have a same rank function N. In the same way as S, we
obtain that 1=sup {N(x)|x= K} for all essential right ideal of @. From [2]
Proposition 21.3 and 4, N is countably additive on . By [2] Theorem 21.7, @
is complete in the N-metric. So RCQC R implies Q=R.

We consider again a necessary and sufficient condition for the maximal
right quotient ring of a regular ring to be directly finite.

Theorem 16. For a regular ring R, the following conditions are equivalent.

1) The maximal right quotient ring of R is directly finite.

2) Ewvery right ideal isomorphic to some essential right ideal is essentail in Rp.

3) The maximal left quotient ring of the maximal right quotient ring of R
is right and left self-injective.

4) There exists a left and right self-injective regular ring S such that R is
a subring of S and S is a non-singular right R-molule:

Proof. 1)=>2): Proposition 2.
1)=3): Theorem 15 and Proposition 2.
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3)=>4): Let @ be the maximal right quotient ring of R and S the maximal
left quotient ring of @. Suppose that x is a singular element in S such that r(x)
is an essential right ideal of R. Since (@.'x)={¢=Q|gx=@Q} is an essential left
ideal of @, ((Q."x) x) rx(x)=0 implies 0=Z(Qr)D(Q."x) ». Since S is a non-
singular left @-module, it follows that x=0, i.e., S is a non-singular right R-
module.

4)=1): Let S; be non-singular. Since R is regular, S is a flat left
R-module. So S is non-singular injective right R-module ([2] Lemma 6.17).
Put Q= {s=.S|(s’".R) is an essential right ideal of R}. For every 0+¢qEQ, we
have gRN RDq(g" .R)=+0 from nonsingularity of S;. So Q is essential hull of R
in injective module Sk, i.e., @ is injective.

We will show that (£,(s",R)) is an essential right ideal for every s, t€Q.
Suppose that (¢",(s".R)) N*R=0 for some nonzero ¢, s€Q and x€R. Then
0=txRN(s".R) and (5 ,R)(‘:R implies txR=0, i.e., xRC(t,"(s".R)), which is a

contradiction. So (£°,(s""R)) is essential right ideal for all ¢, s€@Q. Thus we
obtain that @ is a subring of S. So @ is the maximal right quotient ring of R.

Since S is directly finite from Utsumi [7] (see [2] Theorem 9.29), @ is di-
rectly finite.

Let R be a regular ring and @ be the maximal right quotient ring of the
maximal left quotient ring of R. Here we consider necessary and sufficient con-
ditions for @ to be complete in the N-metric for some rank function N of
(Corollary 1). And, in Corollary 2, we consider a case that R is a prime regular
ring

Corollary 1. Let R be a regular ring and Q be the maximal right quotient
ring of the maximal left quotient ring of R. Then the following conditions are
equivalent.

1). There exists a rank function on R such that 1=sup {N(x)|x&1} for all
essential left ideal I of R.

2). There exists a rank function N of R such that the N-completion of R is
the maximal right quotient ring of the maximal left quotient ring of R.

3). There exists a rank function N on Q such that Q is complete in the N-
metric.

4). There exists a rank function N on R such that the N-completion R of R
is a nonsigular R-module.

Proof. Let S be the maximal left quotient ring of R.

1)=2): Corollary of Theorem 15.

2)=3): [2] Theorem 19.6.

3)=>4): The restriction of N to R is a rank function on R. From 3) and
QOR, the N-completion =@ of Q contains the N-completion R of R as a sub-
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ring. Suppose that 0F¢&Z(xQ) is a singular element of Q. Then there
exists be(q".S)={x& S |grE S} such that gh3=0. Then lx(q) ¢b=0, which con-
tradicts that S is nonsingular.

4)=1): For a given essential left ideal I of R, there exist pairwise ortho-

gonal idempotents {e;} 7.; sucht hat /D, >} Re;. Set f—lim é e; in R. Then

>3 Re,(1—f)=0 implies 1—f=0. So, from [2] Theorem 19.6, 1 =N(f)= llmE
N(e;)=> N(e;)<sup {N(x)|x< I}, i.e, sup {N(x)|xcI}=1.

Corollary 2. Let R be a prime regular ring. Then the following conditions
are equivalent.

1). There exists a rank function N on R such that 1=sup {N(x)|xI} for
all essential left ideal I of R.

2). The maximal left quotient ring of R is directly finite.

3). The maximal right quotient ring of the maximal left quotient ring of R
is right and left self-injective.

4). There exists a rank function N on R such that the N-completion of R is
a nonsingular left R-module.

Proof. 1)=>2): [2] Corollary 21.19.
2)=>3): Theorem 15.
3)=4): [2] Corollary 21.14 and 3)=>4) in Proof of Corollary 1 of The-

orem 16.
4)=>1): See 4)=>1) in Proof of Corollary 1 of Theorem 16.

A regular ring R is said to satisfy K¥ if 7x(I)@rg(J) is an essential rihgt
ideal of R for every essential left ideal 7@ J. Note that essentiality of I J
implies 7x(I) N7 (zJ)=0.

Let R be a subring of a ring S such that R; is nonsingular. Then § is
said to be left quotient ring of R if R is essential in zS.

In the following theorem, we consider necessary and sufficient conditions
that the maximal right quotient ring of a regular ring is left and right self-
injective.

Theorem 17. For a regular ring R, the following conditions are equivalent.
1) The maximal right quotient ring of R is right and left self-injective.
2) The maximal left quotient ring of R is directly finite and a right quotient
ring of R.
3) i) Ewvery left ideal isomorphic to some essential left ideal is an essential
left ideal of R.
i) R satisfies KF.

Proof. Let @ be the maximal right quotient ring of R.
1)=>2): Let @ be a right and left self-injective ring. By [2] Lemma 6.17,



FiNITE REGULAR RINGS 651

Q is injective left R-modlue. Suppose that x is a singular element of left R-
module @. Since R is a non-singular left R-module, it follows that lz(x) {x(x" R)}
=0 implies x(x" R)=0, Since @ is a non-singular right R-module, it follows
that =0, i.e., @ is non-singular left R-module.

Put S= {xEQl(R,'x)g gR}. By similar symmetric argument as 3)=>1) in

Proof of Theorem 16, we obtain that S is the maximal left quotient ring of R and
S is a right quotient ring of R.

2)=>1): Let S be the maximal left quotient ring of R such that S is a
directly finite, right quotient ring of R, i.e., RR(“_: Sz. So we can consider that

S is a submodule of @. For any element s, ¢ of S, we denote by sot the multi-
plication of s and ¢ in . Put I=(t".(s".R)) and J=(st',R). Then #(INJ)
C(s'.R) and (set) (I N J)=sINJ))=st(INJ). Since @ is a non-singular
right R-module, we have sot=st. Thus S is a subring of @. Since @ is rihgt
self-injective and a flat left S-module, it follows from [2] Lemma 6.17 that @
is right S-injective module. While @ ,C R implies @sD,Ss. Thus @ is the
maximal right quotient ring of S. By Theorem 15, it follows that @ is left
and right self-injective.

3) @ 2): By Proposition 2, 3)-i) is equvalent that the maximal left quotient
ring of R is directly finite. Let .S be the maximal left quotient ring of R.

Suppose that R satisfies K¥. By [2] Theorem 13.14, S has a decompo-
sition S=S,X S, such that S, is strongly regular ring and .S, has no non-zero
central abelian idempotent. Since S;NRC,S; as right R-module, it is suf-
ficient to show that S,NRC, S, as right R-modules. By [2] Theorem 13.16,
S, is generated as a ring by all its idempotents. For a given idempotent e in
S,, put I=SeNR and J=S(1—e)NR. Then IP ] is an essential left ideal of
R. Since r(I)Pr(J)=(1—e) SNRDPeSNR is essential in Ry, it follows that
(€ R)Dr(I)®r(J) are essential right ideals of R. Therefore S is an essential
extention of Rg.

Conversely, suppose that S is a right quotient ring of R, i.e., S is a subring
of Q. Let I J be an essential left ideal of R. There exists an idempotent f in
S such that I <, Sfand J <, S(1—f). Then fQNRP (1—f) N R is essential
in R;. Now fQNRDfSNROfRNR. While we have fQNRC fRNR from
f(f@NR)=fQNR. Sor(J)=fSNR=fQNR. Similarily r(I)=(1—f)@QNR.
Therefore r(I)@r([J) is essential in R,. Thus R satisfies K¥.

RemMARk. For a regular ring, the condition K¥ implies the condition K.
For, let R be a regular ring satisfying K¥. Suppose that I is a non essential left
ideal of R with r(I)=0. Let J be a nonzero left ideal of R such that /pJ
is essential in R;. Then r(I)@r(J)=r(J) is an essential right ideal. Since
Ry is nonsingular, it follows that J=0. This is a contradiction.

We don’t know whether the converse hold or not.
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Here we consider the same problem as Theorem 17 for a regular ring
with a rank function (Corollary 1) and for a prime regular ring (Corollary 2).
The equivalence 2)«4) in Corollary 1 was proved by A. Vogel [8].

Collorary 1. For a regular ring R with a rank function N, the following
conditions are equivalent.

1). The maximal left quotient ring S of R is a right quotient ring of R and

sup {N(x)|x&I}=1 for all essential left ideal I of R.

2). The N-completion R of R is the maximal right quotient ring of R

3). The maximal right quotient ring Q of R is right and left self-injective

and there exists a rank function N on Q such that N is an extention of N and

Q is complete in the N-metric.

4). For every left ideal I of R,

sup {N(x)|x& I} +sup {N(x)|xsr(I)} =1.

Proof. 1)=>2): Since S is right quotient ring, we have Q;D, SyD, R,
where @ is the maximal right quotient ring of R. Let E be an injective hull
of Ss. For every a€E, (@’ .S)s={x=S|axe S} is an essential right ideal of S,
so(a .S)NR is an essential right ideal of R. Then we have E; ,D.S;, so we
consider @ DE. For every ¢g=Q, we have (¢'.S)sD (¢ .R)z and (¢" .R); is es-
sential right ideal of R, so EDQ. Then @ is maximal right quotient ring of S.
From Corollary 1 of Theorem 16, R satisfies 2).

2)=3): Itis clear from [2] Theorem 19.6.

3)=4): Let {¢}7-1 be pairwise orthogonal idempotents with i Re; ,CR.
Set f=lim P! e;in Q. Then0=7(] Re))D(1—f) @ N Rimplies 1—f=0. From

7 i=1

[2] Theorem 21.7, N is countably additive on @. Thus we obtain 1=3) N(¢;)=
S1N(e)), i.e., 1=sup {N(x) |x< I} for all essential left ideals I of R. While, from
[2] Theorem 21.7, we have 1=sup {N(x)|x<I'} for all essential right ideals I
of R.

For a given left ideal I of R, set I@ J,CRand JCR. Then 1=sup
{N(x)|xeI}+sup {N(x)|xe J} Then r(I)Pr(J).CRg from Theorem 17.
So 1=sup{N(x)|xsr(I)} +sup {N(x)|xr(])}. From (1—f)R>Dr(I) for
every f?’=f&lI, we have 1 —N(f)=sup {N(x)|xsr(I)} for every f&, ie., 1—
sup {N(x)|xI} =sup {N(x)|xsr(I)}. Similarly, 1—sup {N(x)|x< J} =sup
{N(x)|x€r(J)}. Then 1=sup {N(x)|xI}+sup {N(x)|x&r(I)} =sup {N(x)
lx€l}+1—sup{N(x)|xsr(J)}=sup{N(x)|xc I} +sup{N(x)|x J}=1.
Thus R satisfies 4).

4)=1): By 4), sup {N(x)|xsI}=1 for every essential left ideal I of R.
So we have sup {N(x)|x J}+sup {N(x)|x< J'} =1 for every essential left
ideal J@J' of R. From 4), sup {N(x)|x€ J}+sup {N(x)|xr(J)}=1 and
sup {N(x)|x € J'} +sup {N(x)|x=r(J')}=1. Hence we have sup {N(x)|x &
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r(J)}Fsup {N(x)|xr(J')} =1, so r(J)Pr(J’') is essential in Ry, i,e. R satisfies
3) of Theorem 17. Thus the maximal left quotient ring of R is right quotient
ring of R and 1=sup {N(x)|x< I} for all essential left ideal I of R.

Collorary 2. For a prime regular ring R, following conditions are equivalent.

1). The maximal left quotient ring of R is a right quotient ring of R and directly

finite.

2). There exists a rank function N on R such that the N-completion of R is

the maximal right quotient ring of R.

3). The maximal right quotient ring of R is left and right self-injective.

4). There exists a rank function N on R such that 1=sup {N(x)|xI}+
sup {N(x)|xsr(I)} for every left ideal I of R.

Proof. 1)=2): From [2] Corollary 21.19, there exists a rank function N
on R such that sup {N(x)|xI}=1 for every essential left ideal I of R. By
Corollary 1 of Theorem 17, R satisfies 2) by the rank function NN.

2)=3): [2] Theorem 19.6.

3)=4): By Corollary 21.14, there exists a rank function N of the maximal
right quotient ring @ of R such that @ is complete in the N-metric. From
Corollary 1 of Theorem 17, R satisfies 4).

4)=1): It is clear from Corollary 1 of Theorem 17 and [2] Corollary
21.19.

I thank K.R. Goodearl for sending me a letter that directed my attention
to [8].
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