THE METHOD OF MOVING FRAMES APPLIED TO KÄHLER SUBMANIFOLDS OF COMPLEX SPACE FORMS ${ }^{1}$

Dedicated to Professor Shingo Murakami on his 60th birthday

Yoshinaru TANIGUCHI

(Received September 9, 1989)

0. Introduction

In this article, we will study Kähler submanifolds of complex space forms by the method of moving frames, which was used originally by E. Cartan in his researches for submanifolds of homogeneous spaces. In the last twenty years, the method itself has been reviewed and discussed in fairly rigorous ways by several authors. In [5], Griffiths pointed out among several problems that it is possible to prove the rigidity theorem of Calabi by the moving frame method for holomorphic curves of complex projective spaces. We would like to show that the method of moving frames works well also for Kähler submanifolds of complex space forms. We note that H.-S. Tai [12] constructed "Frenet frames" for complex submanifolds of complex projective spaces and applied them to solving problems for surfaces in $\boldsymbol{P}^{5}(\boldsymbol{C})$, but our interest lies in a different place. We will study the rigidity and the homogeneity of Kähler submanifolds of complex space forms.

Let $S_{c}(N)$ be the N-dimensional complex space form of holomorphic sectional curvature 4c. Let $G_{c}(N)$ be the group of holomorphic isometries of $S_{c}(N)$ and $\mathrm{g}_{c}(N)$ its Lie algebra. Basically we follow the formulation presented by Sulanke and Švec [10, 11], which interprets E. Cartan's method of moving frames in terms of fibre bundles and Lie algebra valued 1 -forms. In 2, we will introduce the S_{c}-structure (P, ω) over a connected complex manifold M (see Definition 2.1), where P is a principal fiber bundle over M and ω is a $\mathrm{g}_{c}(N)$-valued 1 -form on P. This is a kind of G, H-structures in the sense of [10] with some additional characteristic properties and it gives an interpretation of the higher order structure equations of a Kähler immersion of a connected Kähler manifold (M, g) into $S_{c}(N)$.

In 3, we will prove the uniqueness of S_{c}-structures for the Kähler metric

[^0]on M (see Theorem 3.1) and give a proof of the rigidity theorem of Calabi from our stand point of view (see Corollary 3.1). We will show that a Kähler immersion of M into $S_{c}(N)$ induces an S_{c}-structure over M and conversely if M is simply connected, every S_{c}-structure over M is obtained in this way (see Theorem 3.2).

In 4 , we will carry out the reduction of structure group of an S_{c}-structure in an appropriate way to our case, and define a subbundle $R F$, associated with the S_{c}-structure, of the unitary frame bundle over a certain open set of M. Then our final result is, roughly speaking, as follows: a connected complete Kähler submanifold (M, g) of $S_{c}(N)$ is homogeneous if and only if all the coefficients of every component of ω restricted to $R F$ with respect to a canonically chosen co-frame field on $R F$ are constant. In addition, when this is the case, $R F$ can be regarded as the group of holomorphic isometries of (M, g) imbedded in the bundle of unitary frames of M in a natural manner (see Theorems 4.1 and 4.2).

1. Preliminaries

In this paper we will use the following ranges of indices:

$$
1 \leq A, B, C \leq N, \quad 1 \leq i, j, k \leq n, \quad n_{p-1}<r(p), s(p), t(p) \leq n_{p}
$$

where $\left\{n_{0}, n_{1}, \cdots, n_{d}\right\}$ is a sequence of integers with $0=n_{0}<n=n_{1}<\cdots<n_{d}$. Note that the indices $i, j, k, r(1), s(1)$, and $t(1)$ will have the same range. For any repeated indices we will always take the summation over the corresponding ranges. Differential forms on manifolds are assumed to take their values in \boldsymbol{C}, the field of complex numbers, unless otherwise stated. For a matrix $\left(X_{\mu}^{\lambda}\right)_{\lambda=1, \cdots, q, \mu_{=1}, \cdots, m}$ we often denote it by $\left(X_{\mu}^{\lambda}\right)_{\lambda \mu}$ or $\left(X_{\mu}^{\lambda}\right)$ if the ranges of indices are obviously understood there. For a Lie group G, its Lie algebra is denoted by $\operatorname{Lie}(G)$ or by the corresponding German lower-case letter. Let $\pi_{P}: P \rightarrow M$ be a principal G-bundle over an m-dimensional manifold M. For any $E \in \mathfrak{g}$ we denote by E^{*} the vector field on P induced by the infinitesimal right action of E. Suppose that \boldsymbol{P} is a G-structure over M, i.e., G is a Lie subgroup of $G L(m ; \boldsymbol{R})$ and P is a principal G-subbundle of the linear frame bundle $L(M)$ of $M, L(M)$ $=\left\{e: \boldsymbol{R}^{m} \rightarrow T_{x} M\right.$ linear isomorphism, $\left.x \in M\right\}$. Then P admits the canonical form $\phi_{\boldsymbol{R}}=\left(\phi_{R}^{\lambda}\right)_{\lambda=1, \cdots, m}$, which is an \boldsymbol{R}^{m}-valued 1-form on P defined by $\phi_{\boldsymbol{R}}\left(X^{*}\right)=$ $e^{-1}\left(\pi_{P^{*}} X^{*}\right)$ for $X^{*} \in T_{e} P$, the tangent space to P at $e \in P$. If M is an n dimensional complex manifold with complex structure J, we regard $\phi_{\boldsymbol{R}}$ as a \boldsymbol{C}^{n} valued form, identifying $\boldsymbol{R}^{2 n}$ with \boldsymbol{C}^{n} by $\left(x^{1}, y^{1}, \cdots, x^{n}, y^{n}\right) \rightarrow\left(x^{1}+\sqrt{-1} y^{1}, \cdots, x^{n}+\right.$ $\sqrt{-1} y^{n}$). Then we call it the \boldsymbol{C}^{n}-valued canonical form and denote it by $\phi=$ $\left(\phi^{i}\right)_{i=1, \cdots, n}: \phi^{j}=\phi_{R}{ }^{2 i-1}+\sqrt{-1} \phi_{\boldsymbol{R}}{ }^{2 i}(i=1, \cdots, n)$. Suppose that the complex manifold M carries a hermitian metric g. We denote by $U(M, g)$ the bundle of unitary frames over M. A frame at $x \in M$ is called a unitary frame, if it is a
complex linear isometry of \boldsymbol{C}^{n} with the standard inner product $\langle z, w\rangle=\overline{\boldsymbol{z}}^{i} w^{i}$ $\left(z, w \in \boldsymbol{C}^{n}\right)$ onto $T_{x} M$ with inner product g_{x} and complex structure J_{x}. For a Lie group G with Lie algebra g , the Maurer-Cartan form Φ of G is the g -valued 1-form on G defined by $\Phi(X)=L_{a^{*}}{ }^{-1}(X)\left(X \in T_{a} G\right)$ under the usual identification of \mathfrak{g} with the tangent space to G at the identity element $e \in G$, where L_{a} denotes the left multiplication on G by $a \in G$.

Now let $S_{c}(N)$ be the N-dimensional simply connected complex space form with complex structure J_{c} and Kähler metric g_{c} of constant holomorphic sectional curvature 4c. As a complex manifold, $S_{c}(N)$ is the N-dimensional complex projective space, the vector space \boldsymbol{C}^{N} of N-tuples of complex numbers ${ }^{t}\left(z^{1}, \cdots, z^{N}\right)$, or the unit ball $\boldsymbol{D}^{N}=\left\{z \in \boldsymbol{C}^{N}:\|z\|<1\right\}$ according as c is positive, zero, or negative respectively. Let $G_{c}(N)$ be the group of isometric and holomorphic transformations of $S_{c}(N)$. In the following, we always consider $S_{c}(N)$ as the quotient space of the Lie group $G_{c}(N)$ by an isotropy subgroup H at a point and denote the projection of $G_{c}(N)$ onto $S_{c}(N)=G_{c}(N) / H$ by π_{G}. Let $\mathfrak{g}_{c}(N)$ and \mathfrak{G} be the Lie algebras of $G_{c}(N)$ and H respectively and

$$
\begin{equation*}
\mathfrak{g}_{c}(N)=\mathfrak{h}+\mathfrak{n} \tag{1,1}
\end{equation*}
$$

the canonical decomposition of the symmetric pair $\left(\mathfrak{g}_{c}(N), \mathfrak{h}\right)$. If we identify $\mathrm{g}_{c}(N)$ with the tangent space $T_{e} G_{c}(N)$ to $G_{c}(N)$ at the identity element $e,\left.\pi_{G^{*}}\right|_{n}$ maps \mathfrak{n} isomorphically onto the tangent space $T_{o} S_{c}(N)$ at $o=H$. We fix a linear isomorphism $\varepsilon: \boldsymbol{C}^{N} \rightarrow \mathfrak{n}$ so that $e_{o}=\pi_{G^{*}} \mid \mathfrak{n}^{\circ} \varepsilon: \boldsymbol{C}^{N} \rightarrow T_{o} S_{c}(N)$ becomes a complex liner isometry of C^{N} with the standard inner product onto $T_{0} S_{c}(N)$. The things above may be given as follows.

In the case $c>0$,

$$
\begin{aligned}
& G_{c}(N)=S U(N+1) / C \\
& H=S(U(1) \times U(N)) / C=\left(\left[\begin{array}{cc}
U(1) & 0 \\
0 & U(N)
\end{array}\right] \cap S U(N+1)\right) / C
\end{aligned}
$$

where $U(m)$ is the group of $m \times m$ unitary matrices, $S U(N+1)$ the group of $(N+1) \times(N+1)$ unitary matrices of determinant 1 , and C its subgroup of $(N+1) \times(N+1)$ scalar matrices $a 1_{N+1}$ with $a^{N+1}=1$;
$\mathrm{g}_{c}(N)=\mathfrak{H l t}(N+1)$, the Lie algebra of $(N+1) \times(N+1)$ skew hermitian matrices of null trace;

$$
\begin{aligned}
\mathfrak{h} & =\left\{\left[\begin{array}{ll}
a & 0 \\
0 & A
\end{array}\right]: a \in \sqrt{-1} \boldsymbol{R}, A \in M_{N}(\boldsymbol{C}),^{t} \bar{A}+A=0, \operatorname{tr} A+a=0\right\} \\
\mathfrak{n} & =\left\{\left[\begin{array}{cc}
0 & -t \\
z & 0
\end{array}\right]: z \in \boldsymbol{C}^{N}\right\} ; \\
\varepsilon(z) & =\left[\begin{array}{cc}
0 & -\sqrt{c}^{t} \bar{z} \\
\sqrt{c} & 0
\end{array}\right] \quad\left(z \in \boldsymbol{C}^{N}\right) .
\end{aligned}
$$

In the case $c=0$,

$$
\begin{aligned}
& \boldsymbol{G}_{c}(N)=\boldsymbol{C}^{N} \cdot U(N)=\left[\begin{array}{cc}
1 & 0 \\
\boldsymbol{C}^{N} & U(N)
\end{array}\right], H=U(N) \\
& \mathfrak{g}_{c}(N)=\left\{\left[\begin{array}{ll}
0 & 0 \\
z & A
\end{array}\right]: z \in \boldsymbol{C}^{N}, A \in M_{N}(\boldsymbol{C}),{ }^{t} \bar{A}+A=0\right\} \\
& \mathfrak{h}=\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & A
\end{array}\right]: A \in M_{N}(\boldsymbol{C}),{ }^{t} \bar{A}+A=0\right\} \\
& \mathfrak{n}=\left\{\left[\begin{array}{ll}
0 & 0 \\
z & 0
\end{array}\right]: z \in \boldsymbol{C}^{N}\right\} ; \\
& \varepsilon(z)=\left[\begin{array}{ll}
0 & 0 \\
z & 0
\end{array}\right] \quad\left(z \in \boldsymbol{C}^{N}\right) .
\end{aligned}
$$

In the case $c<0$,
$G_{c}(N)=S U(1, N) / C$, where $S U(1, N)$ is the group of $(N+1) \times(N+1)$ matrices which leave the quadratic form $-\left|z^{0}\right|^{2}+\left|z^{1}\right|^{2}+\cdots+\left|z^{N}\right|^{2}$ on C^{N+1} invariant and C its center;

$$
\begin{aligned}
& H=S(U(1) \times U(N)) / C ; \\
& \mathfrak{g}_{c}(N)=\left\{\left[\begin{array}{ll}
a & t \bar{z} \\
z & A
\end{array}\right]: a \in \sqrt{-1} \boldsymbol{R}, z \in \boldsymbol{C}^{N},{ }^{t} \bar{A}+A=0, \operatorname{tr} A+a=0\right\} ; \\
& \mathfrak{h}=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & A
\end{array}\right] \in \mathfrak{g}_{c}(N)\right\} ; \\
& \mathfrak{n}=\left\{\left[\begin{array}{ll}
0 & t \bar{z} \\
z & 0
\end{array}\right]: z \in \boldsymbol{C}^{N}\right\} ; \\
& \varepsilon(z)=\left[\begin{array}{cc}
0 & \sqrt{-c} t \bar{z} \\
\sqrt{-c} z & 0
\end{array}\right] \quad\left(z \in \boldsymbol{C}^{N}\right) .
\end{aligned}
$$

Let Φ be the Maurer-Cartan form of $G_{c}(N)$. We denote by $\Phi^{\mathfrak{y}}$ and Φ^{n} the \mathfrak{H} - and \mathfrak{n}-part of Φ with respect to the decomposition $(1,1)$. They satisfy that $\Phi^{\mathfrak{h}}\left(E^{*}\right)=E, R_{a}^{*} \Phi^{\mathfrak{h}}=\operatorname{Ad} a^{-1} \Phi^{\mathfrak{h}}, \Phi^{\mathfrak{n}}\left(E^{*}\right)=0$, and $R_{a}^{*} \Phi^{\mathfrak{n}}=\operatorname{Ad} a^{-1} \Phi^{\mathfrak{n}}(E \in \mathfrak{h}, a \in H)$, where R_{a} denotes the right multiplication on $G_{c}(N)$ by a. In particular, the \mathfrak{h} valued 1-form $\Phi^{\mathfrak{G}}$ defines a connection in the principal H-bundle $\pi_{G}: G_{c}(N) \rightarrow$ $S_{c}(N)$. The natural representation ρ of H on \mathfrak{n} induced by the adjoint representation of $G_{c}(N)$ on $\mathrm{g}_{c}(N)$ corresponds to the linear isotropy representation of H on $T_{o} S_{c}(N)$ under the isomorphism $\left.\pi_{G^{*}}\right|_{\mathfrak{n}}$. If we identify \mathfrak{n} with \boldsymbol{C}^{N} by ε, ρ maps H isomorphically onto $U(N)$. In the following, using these ε and ρ, we identify \mathfrak{h} with $\mathfrak{n}(N)$, the Lie algebra of $N \times N$ skew hermitian matrices, and \mathfrak{n} with \boldsymbol{C}^{N} :

$$
\begin{equation*}
\mathfrak{g}_{c}(N)=\mathfrak{u}(N)+\boldsymbol{C}^{N} \tag{1,2}
\end{equation*}
$$

Here we note that the $U(N)$-action Ad on the right hand side of $(1,2)$ corres-
ponding to the adjoint action of H on $\mathrm{g}_{c}(N)$ is given by

$$
\begin{aligned}
& \operatorname{Ad} a \cdot\left(\left(X_{B}^{A}\right)_{A, B=1, \cdots, N},\left(Y^{A}\right)_{A=1, \cdots, N}\right)=\left(a\left(X_{B}^{A}\right) a^{-1}, a\left(Y^{A}\right)\right) \\
& \quad\left(\left(X_{B}^{A}\right) \in \mathfrak{u}(N),\left(Y^{A}\right) \in C^{N}, a \in U(N)\right) .
\end{aligned}
$$

Let $\left(\varphi_{B}^{A}\right)_{A, B=1, \cdots, N}=\rho_{*}\left(\Phi^{\mathfrak{G}}\right)$ be the $\mathfrak{u}(N)$-part and $\left(\varphi^{A}\right)_{A=1, \cdots, N}=\varepsilon^{-1}\left(\Phi^{\mathfrak{n}}\right)$ the $\boldsymbol{C}^{N}-$ part of Φ with respect to the decomposition (1,2). They are actually given by

$$
\begin{align*}
& \varphi_{B}^{A}= \begin{cases}\Phi_{B}^{A}-\delta_{B}^{A} \Phi_{0}^{0} & (c \neq 0) \\
\Phi_{B}^{A} & (c=0)\end{cases} \tag{1,3}\\
& \varphi^{A}= \begin{cases}\frac{1}{\sqrt{|c|}} \Phi_{0}^{A} & (c \neq 0) \\
\Phi_{0}^{A} & (c=0) .\end{cases} \tag{1,4}
\end{align*}
$$

In the following, to avoid using excessive symbols, for any $X \in g_{c}(N)$ we will always denote by $\left(X_{B}^{A}\right)_{A, B=1, \cdots, N}$ and $\left(X^{A}\right)_{A=1, \cdots, N}$ the $\mathfrak{H}(N)$ - and C^{N}-part of X with respect to the decomposition (1,2). So the above ϕ_{B}^{A} and ϕ^{A} will be denoted by Φ_{B}^{A} and Φ^{A} respectively in the rest of this paper.

Since the tangent bundle $T S_{c}(N)$ is associated with the principal bundle $\pi_{G}: G_{c}(N) \rightarrow S_{c}(N)$ by the representation ρ, the $\mathfrak{H}(N)$-valued 1-form $\left(\Phi_{B}^{A}\right)=\rho_{*}\left(\Phi^{\natural}\right)$ defines a hermitian connection in the tangent bundle $T S_{c}(N)$.

Let $\pi_{c}: U\left(S_{c}(N)\right) \rightarrow S_{c}(N)$ be the bundle of unitary frames over $S_{c}(N)$. Fixing the frame $e_{o}=\left.\pi_{G^{*}}\right|_{n} \circ \varepsilon$, we define $\iota: G_{c}(N) \rightarrow U\left(S_{c}(N)\right)$ by $\iota(a)=L_{a^{*}} e_{o}$ $\left(a \in G_{c}(N)\right)$, where $L_{a^{*}}$ denotes the action of a on $U\left(S_{c}(N)\right)$. Then we have

$$
\iota(a b)=L_{a^{*}} \iota(b), \iota(a h)=\iota(a) \cdot \rho(h) \quad\left(a, b \in G_{c}(N), h \in H\right)
$$

and ι is a diffeomorphism. We frequently identify $G_{c}(N)$ with $U\left(S_{c}(N)\right)$ by ι.
Lemma 1.1. (i) The \boldsymbol{C}^{N}-valued 1-form $\left(\Phi^{A}\right)$ on $G_{c}(N)$ is equal to the \boldsymbol{C}^{K}-valued canonical form on $U\left(S_{c}(N)\right)$ under the identification $G_{c}(N)=U\left(S_{c}(N)\right)$, that is,

$$
\begin{equation*}
\Phi^{A}(X) e_{A}=\pi_{c^{*}}\left(\iota_{*}(X)\right) \quad\left(X \in T_{a} G_{c}(N), e=\left(e_{1}, \cdots, e_{N}\right)=\iota(a)\right) . \tag{1,5}
\end{equation*}
$$

(ii) Similarly, the $\mathfrak{t t}(N)$-valued 1-form $\left(\Phi_{B}^{A}\right)$ on $G_{c}(N)$ is the Levi-Civita connection form on $U\left(S_{c}(N)\right)$.
(iii) The Maurer-Cartan equation $d \Phi+[\Phi, \Phi]=0$ for Φ is equivalent to the structure equations of $S_{c}(N)$,

$$
\begin{gather*}
d \Phi^{A}+\Phi_{B}^{A} \wedge \Phi^{B}=0 \tag{1,6}\\
d \Phi_{B}^{A}+\Phi_{C}^{A} \wedge \Phi_{B}^{C}=c\left(\Phi^{A} \wedge \Phi^{B}+\delta_{B}^{A} \Phi^{C} \wedge \Phi^{C}\right) \tag{1,7}
\end{gather*}
$$

Proof. We have

$$
\begin{aligned}
\Phi^{A}(X) e_{A} & =e\left(\left(\Phi^{A}(X)\right)_{A}\right)=L_{a^{*}} e_{o}\left(\varepsilon^{-1} \Phi^{n}(X)\right)=L_{a^{*}} \pi_{G^{*}} \varepsilon\left(\varepsilon^{-1} \Phi^{n}(X)\right) \\
& =L_{a^{*}} \pi_{G^{*}}(\Phi(X))=L_{a^{*}} \pi_{G^{*}}\left(L_{a^{*}}{ }^{-1} X\right)=\pi_{c^{*}}(\iota(X)),
\end{aligned}
$$

showing (i). The equations $(1,6)$ and $(1,7)$ can be obtained directly from the Maurer-Cartan equation by using $(1,3)$ and $(1,4)$. Then the equation $(1,6)$ shows that the hermitain connection $\left(\Phi_{B}^{A}\right)$ has no torsion and hence it is the Levi-Civita connection.
q.e.d.

The following proposition is well known and plays a basic role in our study. For the proof, see [5].

Proposition 1.1. Let G be a Lie group with Lie algebra g and Φ the MaurerCartan form of G.
(i) Let F and F^{\prime} be smooth mappings of a connected smooth manifold P into G. Then $F=a \cdot F^{\prime}$ for a fixed $a \in G$ if and only if $F^{*} \Phi=F^{*} \Phi$ on P. Moreover if it is the case, such an $a \in G$ is unique.
(ii) Let P be a simply connected manifold and φ a g-valued 1-form on P. In order that for any $e \in P$ and $a \in G$ there exists a unique smooth mapping $F: P \rightarrow G$ such that $F(e)=a$ and $F^{*} \Phi=\varphi$, it is necessary and sufficient to hold $d \varphi+[\varphi, \varphi]=0$.

For later use, we prepare a few lemmas. Let V be an n-dimensional complex vector space. A mapping $\eta: V \times V \rightarrow \boldsymbol{C}$ is called sesqui-linear if $\eta(u, v)$ is complex linear in v and anti-linear in u. A \boldsymbol{C}-valued skew symmetric \boldsymbol{R}-bilinear form Δ on V is called of type $(1,1)$, if $\Delta(i u, i v)=\Delta(u, v)(u, v \in V)$. There is a natural bijection h between the set of skew symmetric \boldsymbol{R}-bilinear forms on V of type (1,1), $\Lambda^{1,1} V$, and the set of sesqui-linear forms on $V, \mathcal{S}(V)$. It is explicitly given by

$$
\Lambda^{1,1} V \ni \Delta=\sqrt{-1} a_{i, j} \bar{z}^{i} \wedge z^{j} \rightarrow h(\Delta)=a_{i, j} \bar{z}^{i} \otimes z^{j} \in \mathcal{S}(V),
$$

where $\left\{z^{1}, \cdots, z^{n}\right\}$ is a basis of complex linear forms on V. Then, Δ is real valued if and only if $h(\Delta)$ is hermitian symmetric. A real form Δ in $\Lambda^{1,1} V$ is called positive of rank r, if the corresponding $h(\Delta)$ is positive semi-definite of rank r. It is equivalent to that $\left(a_{i, j}\right)=^{t} \bar{B} B$ for an $r \times n$-matrix B of rank r. Moreover, such a B is determined up to the left multiplication by a unitary matrix of order r. Now let $\Delta_{s, t}(s, t=1, \cdots, m)$ be skew symmetric \boldsymbol{R}-bilinear forms on V such that $\overline{\sqrt{-1} \Delta_{s, t}}=\sqrt{-1} \Delta_{t, s}$. The matrix $\left(\sqrt{-1} \Delta_{s, t}\right)_{s, t}$ of \boldsymbol{R}-bilinear forms on V is said to be positive semi-definite of rank r, if $\overline{\sqrt{-1} \Delta_{s, t}}$ $=\sqrt{-1} \Delta_{t, s}(s, t=1, \cdots, m)$ and the hermitian form on $V \otimes_{C} C^{m}$ defined by

$$
h\left(\sqrt{-1} \Delta_{s, t}\right)(u, v) \xi^{s} \eta^{t} \quad\left(u, v \in V, \xi, \eta \in \boldsymbol{C}^{m}\right)
$$

is positive semi-definite of rank r. For a matrix $\left(\omega_{s}^{r}\right)_{r, s}(r=1, \cdots, q, s=1, \cdots, m)$ of \boldsymbol{C}-valued \boldsymbol{R}-linear forms on V, its rank is by definition $\operatorname{dim}_{\boldsymbol{C}} \operatorname{Span}\left\{\left(\omega_{s}^{r}(v) z^{s}\right)\right.$
$\left.\in \boldsymbol{C}^{q}: v \in V, z \in \boldsymbol{C}^{m}\right\}$ and denoted by rank (ω_{s}^{r}). If all the ω_{s}^{γ} are complex linear, then rank $\left(\omega_{s}^{r}\right)$ is equal to the rank of the linear mapping $V \otimes_{\boldsymbol{C}} \boldsymbol{C}^{m} \rightarrow \boldsymbol{C}^{q}$ naturally defined by (ω_{s}^{r}).

Lemma 1.2. (i) Suppose that $\left(\sqrt{-1} \Delta_{s, t}\right)_{s, t=1, \cdots, m}$ is positive semi-definite of rank q. Then there exists a matrix $\left(\omega_{s}^{r}\right)_{r, s}(r=1, \cdots, q, s=1, \cdots, m)$ of complex linear forms on V of rank q such that $\Delta_{s, t}=\bar{\omega}_{s}^{r} \wedge \omega_{t}^{r}(s, t=1, \cdots, m)$. Moreover, such a mairix $\left(\omega_{s}^{r}\right)_{r, s}$ is uniquely determined up to the left multiplication by a unitary matrix of order q.
(ii) Let $\omega_{s}^{r}(r=1, \cdots, q, s=1, \cdots, m)$ be complex linear forms on V. If we set $\Delta_{s, t}=\bar{\omega}_{s}^{r} \wedge \omega_{t}^{r}(s, t=1, \cdots, m)$, then the matrix $\left(\sqrt{-1} \Delta_{s, t}\right)_{s, t}$ is positive semidefinite and $\operatorname{rank}\left(\sqrt{-1} \Delta_{s, t}\right)_{s, t}=\operatorname{rank}\left(\omega_{s}^{r}\right)$.

Lemma 1.3. (cf. [6].) (i) (Cartan's lemma) Let $\omega^{r}, \psi^{r}(r=1, \cdots, q)$ be \boldsymbol{C}-valued \boldsymbol{R}-linear forms on V. Suppose that $\omega^{1}, \cdots, \omega^{q}$ are linerly independent over \boldsymbol{C} and $\psi^{r} \wedge \omega^{r}=0$. Then there exist uniquely $a_{r, s} \in \boldsymbol{C}$ such that $\psi^{r}=a_{r, s} \omega^{s}$ and $a_{s, r}=a_{r, s}$.
(ii) Let $\left(\omega_{s}^{*}\right)(r=1, \cdots, q, s=1, \cdots, m)$ be a matrix of \boldsymbol{C}-valued \boldsymbol{R}-linear forms on V of rank q. Suppose that \boldsymbol{C}-valued \boldsymbol{R}-linear forms $\psi_{r}(r=1, \cdots, q)$ on V satisfy $\psi_{r} \wedge \omega_{s}^{r}=0(s=1, \cdots, m)$. Then each ψ_{r} is linearly dependent to the linear forms ω_{s}^{τ}.

2. The S_{c}-structure

Let (M, g) be an n-dimensional connected Kähler manifold with Kähler metric g. Let $f: M \rightarrow S_{c}(N)$ be a Kähler immersion, which means a holomorphic isometric immersion of a Kähler manifold. First we define higher order osculating bundles of f. We denote by ∇ the natural connection in the induced bundle $f^{*} T S_{c}(N)$ over M induced by f from the Levi-Civita connection in $T S_{c}(N)$. For $p=1,2, \cdots$, we set

$$
\begin{aligned}
& O^{p}(f)=\cup_{x \in \mathbb{M}} O_{x}^{p}(f), \\
& O_{x}^{p}(f)=\operatorname{Span}\left\{\left(\nabla_{X_{1}} \nabla_{X_{2}} \cdots \nabla_{X_{p^{\prime}-1}} f_{*}\left(X_{p^{\prime}}\right)\right)_{x}: X_{1}, \cdots, X_{p^{\prime}} \in \mathscr{X}(M), p^{\prime} \leq p\right\},
\end{aligned}
$$

where $\mathscr{X}(M)$ denotes the set of smooth vector fields on M. For convenience, we set $O^{0}(f)=M \times\{0\}$.

If the dimension of $O_{x}^{p}(f)$ is constant in $x \in M$, then $O^{p}(f)$ is a complex vector subbundle ${ }^{2}$ of $f * T S_{c}(N)$ and called the p-th osculaiing bundle of f.

Remark 2.1. In general, $\operatorname{dim}_{C} O_{x}^{p}(f)$, considered as a function on M, is upper semi-continuous, and hence it is constant on a connected open set M^{\prime}

[^1]of M. Further, because of the analyticity of $f, \operatorname{dim}_{C} O_{x}^{p}(f)$ is constant on an open dense subset of M. However, in the following, we always assume that $\operatorname{dim}_{C} O_{x}^{p}(f)$ is a constant n_{p} on M for each p.

By definition, the osculating bundles are increasing

$$
O^{1}(f)=f_{*} T M \subset O^{2}(f) \subset \cdots \subset O^{p}(f) \subset O^{p+1}(f) \subset \cdots
$$

so there exists an integer d such that $n_{d-1}<n_{d}=n_{d+1}$. We call it the degree of f and denote it by $d(f)$. For $p=1, \cdots, d$, we define the p-th normal bundle $\nu^{p}(f)$ of f to be the orthogonal complement to $O^{p-1}(f)$ in $O^{p}(f)$ and denote its \boldsymbol{C}-rank by $q_{p}\left(q_{p}=n_{p}-n_{p-1}\right)$. We further define Out (f) to be the orthogonal complement to $O^{d}(f)$ in $f^{*} T S_{c}(N)$, whose \boldsymbol{C}-rank q_{d+1} is $N-n_{d}$. Then we have

$$
\begin{equation*}
f^{*} T S_{c}(N)=\nu^{1}(f) \oplus \nu^{2}(f) \oplus \cdots \oplus \nu^{d}(f) \oplus \operatorname{Out}(f) \tag{2,1}
\end{equation*}
$$

Next, for $p=1, \cdots, d$, let $\pi_{p}: P_{p}(f) \rightarrow M$ be the principal $U\left(q_{1}\right) \times \cdots \times U\left(q_{p}\right)-$ bundle associated with the vector bundle $\nu^{1}(f) \oplus \cdots \oplus \nu^{p}(f)$: $P_{p}(f)=\left\{\left(x,\left(e_{1}, \cdots, e_{n_{p}}\right)\right):\left\{e_{r\left(p^{\prime}\right.}: n_{p^{\prime}-1}<r\left(p^{\prime}\right) \leq n_{p^{\prime}}\right\}\right.$ forms a unitary basis
of $\nu_{x}^{p^{\prime}}(f)$ for $\left.p^{\prime}=1, \cdots, p, x \in M\right\}$.

Furthermore, let $\pi_{o P}: O P(f) \rightarrow M$ be the principal $U\left(q_{1}\right) \times \cdots \times U\left(q_{d+1}\right)$-bundle over M associated with the decomposition (2,1):
$O P(f)=\left\{\left(x,\left(e_{1}, \cdots, e_{N}\right)\right):\left\{e_{r}: n_{p^{\prime}-1}<r \leq n_{p^{\prime}}\right\}\right.$ forms a unitary basis of $\nu_{x}^{p^{\prime}}(f)$ for $p^{\prime}=1, \cdots, d$, and $\left\{e_{\alpha}: \alpha=n_{d+1}, \cdots, N\right\}$ forms a unitay basis of $\left.\operatorname{Out}_{x}(f), x \in M\right\}$.

Before going on, let us further prepare a few terminologies. Let $\pi_{P}: P \rightarrow M$ be a principal fibre bundle over a complex manifold M with almost complex structure J. In the following, a \boldsymbol{C}-valued 1 -form φ on P will be called of type $(1,0)^{h}$, if it vanishes in the directions of fibres of π_{P} and if, for any $e \in P, \varphi_{e}$ can be written as $\varphi_{e}=\psi_{x} \circ \pi_{P^{*}}$, where ψ_{x} is a C-valued linear form on $T_{x} M\left(x=\pi_{P}(e)\right)$ such that $\psi_{x} \circ J=\sqrt{-1} \psi_{x}$. If P is equipped with a conneation, we can define a linear endomorphism J^{h} of $T_{e} P$ for any $e \in P$ such that $\pi_{P^{*}} J^{h}\left(X^{*}\right)=J\left(\pi_{P^{*}} X^{*}\right)$ $\left(X^{*} \in T P\right),\left(J^{h}\right)^{2}=-1$ on \mathscr{H}_{e}, and $J^{h}=0$ on ϑ_{e}, where \mathcal{H}_{e} is the horizontal subspace of $T_{e} P$ with respect to the connection and \mathcal{V}_{e} the vertical one. Then
$(2,4) \quad a \boldsymbol{C}$-valued 1 -form φ on P is of type $(1,0)^{h}$, if and only if $\varphi \circ J^{h}=\sqrt{-1} \varphi$.
Now let F denote the natural immersion $F\left(\left(x,\left(e_{1}, \cdots, e_{N}\right)\right)\right)=\left(e_{1}, \cdots, e_{N}\right)$ of $O P(f)$ into $U\left(S_{c}(N)\right)$. We set $\tilde{\omega}=F^{*} \Phi$, where Φ denotes the Maurer-Cartan form of $U\left(S_{c}(N)\right)=G_{c}(N)$. Then we have the following

Proposition 2.1. (i) $\tilde{\omega}\left(E^{*}\right)=E\left(E \in \operatorname{Lie}\left(U\left(q_{1}\right) \times \cdots \times U\left(q_{d+1}\right)\right)\right.$;
(ii) $\quad R_{a}^{*} \tilde{\omega}=\operatorname{Ad} a^{-1} \tilde{\omega} \quad\left(a \in U\left(q_{1}\right) \times \cdots \times U\left(q_{d+1}\right)\right)$;
(iii) $d \tilde{\omega}+[\widetilde{\omega}, \tilde{\omega}]=0$;
(iv) $\quad \tilde{\omega}^{r}=0 \quad(n<r \leq N)$,
$\tilde{\boldsymbol{\omega}}^{r(p)}{ }_{s\left(p^{\prime}\right)}=0 \quad\left(1 \leq p, p^{\prime} \leq d,\left|p-p^{\prime}\right| \geq 2\right) ;$
(v) the $\tilde{\omega}^{i}$ are of type $(1,0)^{h}$ and linearly independent over \boldsymbol{C} at every point of $O P(f)$;
(vi) $\operatorname{rank}\left(\tilde{\boldsymbol{\omega}}^{r(p)}{ }_{s(p-1)}\right)_{r(p), s(p-1)}=q_{p}$ at any point of $O P(f)$ for $p=2, \cdots, d$;
(vii) $\quad \tilde{\boldsymbol{\omega}}_{\alpha}{ }_{\alpha}=0 \quad\left(r=1, \cdots, n_{d}, \alpha=n_{d}+1, \cdots, N\right)$.

Proof. We will show (v). For any $X^{*} \in T_{e} O P(f)\left(e=\left(x,\left(e_{1}, \cdots, e_{N}\right)\right)\right.$, $\left.\left(e_{1}, \cdots, e_{N}\right) \in U_{f(x)}\left(S_{c}(N)\right)\right)$, we have, by Lemma 1.1,

$$
\begin{equation*}
\tilde{\boldsymbol{\omega}}^{A}\left(X^{*}\right) e_{A}=\Phi^{A}\left(F_{*} X^{*}\right) e_{A}=\pi_{c^{*}} F_{*} X^{*}=f_{*} \pi_{O P^{*}} X^{*} \tag{2,5}
\end{equation*}
$$

Recall that by definition, $\left(e_{1}, \cdots, e_{n}\right)$ is a unitary frame of $f_{*} T_{x} M$ and the other e_{r} are orthogonal to $f_{*} T_{x} M$, and it follows from $(2,5)$ that $\tilde{\omega}^{r}=0(r=n+1, \cdots, N)$ and the $\tilde{\boldsymbol{\omega}}^{i}$ are linearly independent. At the same time, because f is holomorphic, the $\tilde{\boldsymbol{\omega}}^{i}$ are of type $(1,0)^{h}$. The rest would be easily obtained from the definition of $O P(f)$ and the fact that $\left(\tilde{\omega}_{B}^{A}\right)$ is just the restriction to $O P(f)$ of the connection form of the connection in $f^{*} T S_{c}(N)$ induced from Levi-Civita's one in $T S_{c}(N)$.
q.e.d.

Now we consider the $g_{c}\left(n_{d}\right)$-part of $\tilde{\omega}$, which we denote by φ for a moment. Here and in the following, the $\mathrm{g}_{c}\left(n^{\prime}\right)$-part of $X \in \mathrm{~g}_{c}(N)\left(n^{\prime}<N\right)$ means the element $\left(\left(X_{\mu}^{\lambda}\right)_{\lambda, \mu=1, \cdots, n^{\prime}},\left(X^{\lambda}\right)_{\lambda=1, \cdots, n^{\prime}}\right)$ of $g_{c}\left(n^{\prime}\right)$ defined by the identification $\mathrm{g}_{c}\left(n^{\prime}\right)=$ $\mathfrak{H}\left(n^{\prime}\right)+\boldsymbol{C}^{n^{\prime}}$. So φ is by definition $\left(\left(\tilde{\omega}_{\mu}^{\lambda}\right)_{\lambda, \mu=1, \cdots, n_{d}},\left(\tilde{\omega}^{\lambda}\right)_{=1, \cdots, n_{d}}\right)$. It is $U\left(q_{d+1}\right)$-invariant, because the $U\left(q_{d+1}\right)$-action on $g_{c}\left(n_{d}\right)$ is trivial. And it vanishes in the directions of fibres of the natural projection $\beta: O P(f) \rightarrow P_{d}(f)$ by Proposition 2.1 (i), (ii), and by its definition. Hence there exists a unique $\mathrm{g}_{c}\left(n_{d}\right)$-valued 1 -form ω on $P_{d}(f)$ such that $\beta^{*} \omega=\varphi$. The pair $\left(P_{d}(f), \omega\right)$ thus obtained is a model of S_{c}-structures over M of type $\left(n_{1}, \cdots, n_{d}\right)$ we so call, the meaning of which is given by the following

Definition 2.1. Let M be a connected complex manifold of complex dimension n. A pair (P, ω) is called an S_{c}-structure over M of type $\left(n_{1}, \cdots, n_{d}\right)$ if it fulfills the following conditions:
(A) $\left(n_{1}, \cdots, n_{d}\right)$ is a sequence of increasing integers with $n_{1}=n$, and if we set $n_{0}=0$ and $q_{p}=n_{p}-n_{p-1}(p=1, \cdots, d)$, then P is a principal $U\left(q_{1}\right) \times \cdots \times U\left(q_{d}\right)$ bundle over M;
(B) ω is a $g_{c}\left(n_{d}\right)$-valued 1 -form on \boldsymbol{P} such that
$(S C, 1) \quad \omega\left(E^{*}\right)=E \quad\left(E \in \operatorname{Lie}\left(U\left(q_{1}\right) \times \cdots \times U\left(q_{d}\right)\right)\right)$;
$(S C, 2) \quad R_{a}^{*} \omega=\operatorname{Ad} a^{-1} \omega \quad\left(a \in U\left(q_{1}\right) \times \cdots \times U\left(q_{d}\right)\right)$;
$(S C, 3) d \omega+[\omega, \omega]=0$;
$(S C, 4)$

$$
\begin{array}{ll}
\omega^{r}=0 & \left(n<r \leq n_{d}\right) \\
\omega^{r(p)}{ }_{s\left(p^{\prime}\right)}=0 & \left(1 \leq p, p^{\prime} \leq d,\left|p-p^{\prime}\right| \geq 2\right)
\end{array}
$$

$(S C, 5)$ the ω^{i} are of type $(1,0)^{h}$ and linearly independent over \boldsymbol{C} at every point of P;
$(S C, 6) \quad \operatorname{rank}\left(\omega^{r(p+1)}{ }_{s(p)}\right)_{r(p+1), s(p)}=q_{p+1}$ for $p=1, \cdots, d-1$ at every point of \boldsymbol{P}.
The preceding $\left(P_{d}(f), \omega\right)$ will be called the S_{c}-structure induced by Kähler immersion f and often denoted by $(P(f), \omega)$.

Example 2.1. Let us consider the natural totally geodesic Kähler imbedding $i_{\left(N^{\prime}, N\right)}: S_{c}\left(N^{\prime}\right) \rightarrow S_{c}(N)\left(N^{\prime}<N\right)$. Let Φ and Φ^{\prime} denote the Maurer-Cartan forms of $G_{c}(N)$ and $G_{c}\left(N^{\prime}\right)$ respectively. In this case, it is not difficult to see that $O P\left(i_{\left(N^{\prime}, N\right)}\right)$ coincides with the connected Lie subgroup $G_{c}\left(N^{\prime}\right) \cdot U\left(N-N^{\prime}\right)$ of $G_{c}(N)$ which is the maximal integral manifold through the identity element of $G_{c}(N)$ of the involutive differential system on $G_{c}(N)$:

$$
\begin{cases}\Phi^{\alpha}=0 & \left(N^{\prime}<\alpha \leq N\right) \tag{2,6}\\ \Phi_{r}^{\alpha}=0 & \left(N^{\prime}<\alpha \leq N, 1 \leq r \leq N^{\prime}\right)\end{cases}
$$

Moreover, the S_{c}-structure $\left(P\left(i_{\left(N^{\prime}, N\right)}\right), \omega\right)$ is just the pair $\left(G_{c}\left(N^{\prime}\right), \Phi^{\prime}\right)$.
Proposition 2.2. Let $f: M \rightarrow S_{c}(N)$ be a Kähler immersion of a connected Kähler manifold (M, g) into $S_{c}(N)$ and $\left(P_{d}(f), \omega\right)$ the S_{c}-structure of type $\left(n_{1}, \cdots, n_{d}\right)$ induced by f.
(i) There exist a Kähler immersion $f^{\prime}: M \rightarrow S_{c}\left(n_{d}\right)$ and $\tau \in G_{c}(N)$ such that $f=\tau \circ i_{\left(n_{d}, N\right)} \circ f^{\prime}$, where $i_{\left(n_{d}, N\right)}$ denotes the standard imbedding of $S_{c}\left(n_{d}\right)$ into $S_{c}(N)$. Furthermore there exist smooth mappings $F^{\prime}: P_{d}(f) \rightarrow G_{c}\left(n_{d}\right)$ and $F^{\prime \prime}: O P(f) \rightarrow$ OP $\left(i_{\left(n_{d}, N\right)}\right)$ which make the following diagram commutative:

where $I_{\left(n_{d}, N\right)}$ is the inclusion mapping and the vertical arrows denote the obvious
projections.
(ii) The above immersion f^{\prime} is ful, that is, its image does not lie in any proper totally geodesic complex submanifold of $S_{c}\left(n_{d}\right)$.

Proof. We choose $\sigma \in G_{c}(N)$ so that $\sigma \cdot F(O P(f))$ contains the identity element e_{o} of $G_{c}(N)$. It follows $(\sigma \cdot F) * \Phi=F^{*} \Phi=\tilde{\omega}$. By Proposition 2.1, we have $\tilde{\omega}^{\alpha}=0$ and $\tilde{\omega}_{r}^{\alpha}=0$ for any $\alpha=n_{d}+1, \cdots, N$ and $r=1, \cdots, n_{d}$. This means that $\sigma \cdot F$ satisfies the differential system $(2,6)$, where we must replace N^{\prime} with n_{d}. By the assumption that M is connected, $O P(f)$ is connected. Hence $\sigma \cdot F(O P(f))$ is contained in the maximal integral manifold of $(2,6)$ through $e_{o} \in G_{c}(N)$ which is nothing but $O P\left(i_{\left(n_{d}, N\right)}\right)$. In particular, $\sigma \circ f$ has its image in $S_{c}\left(n_{d}\right)$ and gives rise to a holomorphic isometric immersion $f^{\prime \prime}$ of M into $S_{c}\left(n_{d}\right)$, where σ is regarded as an isometry of $S_{c}(N)$. If we set $\tau=\sigma^{-1}$ and $f^{\prime}=\tau \circ f^{\prime \prime}$, then τ and f^{\prime} have the desired properties. The rest of Proposition 2.2. (i) would be now obvious.

Next, we will prove (ii). From the definition of n_{d}, the dimension of a totally geodesic complex submanifold of $S_{c}\left(n_{d}\right)$ containing $f(M)$ is not less than n_{d}. Hence we have (ii).
q.e.d.

Corollary 2.1. The integer n_{d} equals to the minimum dimension of totally geodesic complex submanifolds of $S_{c}(N)$ containing $f(M)$. In particular, f is full if and only if $O P(f)=\boldsymbol{P}(f)$, in other words, $N=n_{d}$.

Proof. It is immediate from Proposition 2.2.
q.e.d.

Remark 2.2. Corollary 2.1 is known in the case $c>0$ (cf. [13] and it is still valid without the assumption in Remark 2.1 because of the analyticitiy of f.

For later use, we rewrite $(S C, 3)$ in detail. First we set

$$
\begin{align*}
& \Delta_{r(p), s(p)}=d \omega_{s(p)}^{r(p)}+\omega_{t(p)}^{r(p)} \wedge \omega_{s(p)}^{t(p)}+\overline{\omega_{t(p-1)}^{s(p)}} \wedge \omega_{t(p-1)}^{r(p)} \tag{2,7}\\
& \quad+ \begin{cases}c \delta_{s(p)}^{r(p)} \omega^{k} \wedge \omega^{k} & (p>1), \\
c\left(\omega^{r(1)} \wedge \overline{\omega^{s(1)}}+\delta_{s(1)}^{r(1)} \omega^{k} \wedge \overline{\omega^{k}}\right) & (p=1)\end{cases}
\end{align*}
$$

Then the equation $(S C, 3)$ is rewritten in component wise as follows:

$$
\begin{align*}
& d \omega^{i}+\omega_{j}^{i} \wedge \omega^{j}=0 \tag{2,8}\\
& \omega_{j}^{r(2)} \wedge \omega^{j}=0 ; \tag{2,9}\\
& \omega_{r(p)}^{t(p+1)} \wedge \omega_{s(p)}^{t(p+1)}=\Delta_{(p), s(p)} \tag{2,10}\\
& d \omega_{s(p)}^{r(p+1)}+\omega_{t(p+1)}^{\gamma(p+1)} \wedge \omega_{s(p)}^{t(p+1)}+\omega_{t(p)}^{r(p+1)} \wedge \omega_{s(p)}^{t(p)}=0 ; \tag{2,11}\\
& \omega^{r(p+2)}{ }_{t(p+1)} \wedge \omega^{t(p+1)}{ }_{s(p)}=0 \tag{2,12}
\end{align*}
$$

Remark 2.3. In the case where (P, ω) is the S_{c}-structure induced by a full Kähler immersion f, the geometrical meanings of $(2,8)-(2,12)$ would be more or
less obvious, since $\left(\omega_{B}^{A}\right)$ is just the restriction to $\boldsymbol{P}=\boldsymbol{O P}(f)$ of the connection form of the connection in $f^{*} T S_{c}(N)$. The equations $(2,8)$ and $(2,10)$ for $p=1$ correspond to the first and second structure equations of (M, g) respectively. The $(2,10)$ for $p>1$ and $(2,11)$ may be regarded as the generalized GaussCoddazi's and the Ricci-Minardi's equations. The equations $(2,9)$ and $(2,12)$ have the following geometrical consequence: Let α^{p} be the p-th fundamental form of f, defined by

$$
\begin{aligned}
\alpha^{p}\left(X_{1}, \cdots, X_{p}\right)= & \text { the } \nu^{p}(f) \text {-part of } \nabla_{X_{1}} \cdots \nabla_{X_{p-1}} f_{*} X_{p} \text { with respect } \\
& \text { to the decomposition }(2,1) \quad\left(X_{1}, \cdots, X_{p} \in \mathscr{X}(M)\right) .
\end{aligned}
$$

Then α^{p} is symmetric in X_{1}, \cdots, X_{p} and satisfies $\alpha^{p}\left(X_{1}, \cdots, J X_{r}, \cdots, X_{p}\right)=J \alpha^{p}$ $\left(X_{1}, \cdots, X_{p}\right)(r=1, \cdots, p)$. Indeed it follows from (2,9) that

$$
\omega_{j}^{\gamma(2)}\left(X^{*}\right) \omega^{j}\left(Y^{*}\right)=\omega_{j}^{r(2)}\left(Y^{*}\right) \omega^{j}\left(X^{*}\right) \quad\left(X^{*}, Y^{*} \in T P\right) .
$$

Since $\omega_{j}^{\gamma(2)}$ can be expressed by a linear combination of ω^{j} by $(2,9)$ and Cartan's lemma, Proposition 2.1 (v) implies that it is of type $(1,0)^{h}$. Using $(2,12)$ Proposition 2.1 (vi), and Lemma 1.3 inductively, we see that the other $\omega^{r(p+1)}{ }_{s(p)}$ are also of type $(1,0)^{h}$. Moreover we have immediately from $(2,12)$ that
$\omega^{r(p)}{ }_{s(p-1)}\left(X^{*}\right) \omega^{s(p-1)}{ }_{s(p-2)}\left(Y^{*}\right)=\omega^{r(p)}{ }_{s(p-1)}\left(Y^{*}\right) \omega^{s(p-1)}{ }_{s(p-2)}\left(X^{*}\right) \quad\left(X^{*}, Y^{*} \in T P\right)$.
On the other hand, the relation between α^{p} and ω_{B}^{A} is given by

$$
\alpha^{p}\left(X_{1}, \cdots, X_{p}\right)=\omega^{r(p)}{ }_{s(p-1)}\left(X_{1}^{*}\right) \omega^{s(p-1)}{ }_{s(p-2)}\left(X_{2}^{*}\right) \cdots \omega_{j}^{s(2)}\left(X_{p-1}^{*}\right) \omega^{j}\left(X_{p}^{*}\right) e_{r(p)}
$$

for any $X_{1}, \cdots, X_{p} \in T_{x} M$ and $X_{1}^{*}, \cdots, X_{p}^{*} \in T_{e} P$ such that $\pi_{P}(e)=x$ and $\left(\pi_{P}\right)_{*}$ $\left(X_{r}^{*}\right)=X_{r}(r=1, \cdots, p)$. Hence we obtain the desired consequence.

Remark 2.4. As we have seen above, each $\omega^{\gamma(p+1)}{ }_{s(p)}$ is linearly dependent to $\omega^{1}, \cdots, \omega^{n}$ and of type $(1,0)^{h}$. By Lemma 1.2 (ii), the identity $(2,10)$ together with $(S C, 6)$ shows that $q_{p+1}=\operatorname{rank}\left(\Delta_{r(p), s(p)}\right)$.

3. Basic properties of $\boldsymbol{S}_{\boldsymbol{c}}$-structures

Now let (P, ω) be an S_{c}-structure over a connected complex manifold M of type $\left(n_{1}, \cdots, n_{d}\right)$. We will observe it in more detail. Set $P_{p}=P / U\left(q_{p+1}\right) \times \cdots \times$ $U\left(q_{d}\right)$ for $p=1, \cdots, d$. In the case where (P, ω) is induced by a Kähler immersion $f: M \rightarrow S_{c}\left(n_{d}\right), P_{p}$ is canonically isomorphic to $P_{p}(f)$ which has been defined in (2,2). We have the following natural projections between P, P_{p}, and M :

$$
\beta_{p}: P \rightarrow P_{p}, \beta_{p^{\prime}, p}: P_{p^{\prime}} \rightarrow P_{p} \quad\left(p<p^{\prime}\right), \pi_{p}: P_{p} \rightarrow M
$$

which are all principal fibrations with obvious structure groups.

Having these fibrations in mind, we will consider the $\mathrm{g}_{c}\left(n_{p}\right)$-part of ω, $\left(\left(\omega_{\mu}^{\lambda}\right)_{\lambda, \mu_{=1}, \cdots, n_{p}},\left(\omega^{\lambda}\right)_{\left.\lambda=1, \cdots, n_{p}\right)}\right) . \quad$ By (SC, 1) and (SC, 2), it is invariant under the right action of $U\left(q_{p+1}\right) \times \cdots \times U\left(q_{d}\right)$ and vanishes in the directions of fibres of $\beta_{p}: P \rightarrow P_{p}$. Hence it comes from a unique $\mathrm{g}_{c}\left(n_{p}\right)$-valued 1-form $\omega^{(p)}$ on $P_{p}: \beta_{p}^{*}$ $\omega^{(p)}=$ the $g_{c}\left(n_{p}\right)$-part of ω. It is obvious that for $p<p^{\prime}$,

$$
\begin{equation*}
\beta_{p^{\prime}, p} * \omega^{(p)}=\text { the } g_{c}\left(n_{p}\right) \text {-part of } \omega^{\left(p^{\prime}\right)} \tag{3,1}
\end{equation*}
$$

If we denote the (i, j) - and the (i-component of $\omega^{(1)}$ on P_{1} by ω_{j}^{i} and ω^{i} respectively, then we have

$$
\left\{\begin{array}{l}
\omega^{i}=\beta_{1}^{*} \underline{\omega}^{i}, \tag{3,2}\\
\omega_{j}^{i}=\beta_{1}^{*} \omega_{j}^{i} .
\end{array}\right.
$$

By definition, the 1 -forms $\underline{\omega}^{i}$ and $\underline{\omega}_{j}^{i}$ on P_{1} have the following properties:
$(3,3) \quad$ the $\underline{\omega}^{i}$ are linearly independent and of type $(1,0)^{h}$;

$$
\begin{align*}
& \underline{\omega}^{i}\left(E^{*}\right)=0 \quad(E \in \mathfrak{u}(n)) ; \tag{3,4}\\
& \left(\underline{\omega}_{j}^{i}\left(E^{*}\right)\right)_{i, j=1, \cdots, n}=E \quad(E \in \mathfrak{H}(n)) ; \tag{3,5}\\
& \underline{\omega}_{j}^{i}+\underline{\omega}_{i}^{j}=0 ; \tag{3,6}\\
& R_{a}^{*}\left(\underline{\omega}^{i}\right)_{i=1, \cdots, n}=a^{-1}\left(\omega^{i}\right)_{i=1, \cdots, n} \quad(a \in U(n)) ; \tag{3,7}\\
& R_{a}^{*}\left(\underline{\omega}^{i}\right)_{i, j=1, \cdots, n}=\operatorname{Ad} a^{-1}\left(\underline{\omega}_{j}^{i}\right)_{i, j=1, \cdots, n} \quad(a \in U(n)) ; \tag{3,8}\\
& d \underline{\omega}^{i}+\underline{\omega}_{j}^{i} \wedge \underline{\omega}^{j}=0 . \tag{3,9}
\end{align*}
$$

In fact, these are direct consequences of (SC, 1), (SC, 2), (SC, 5), (3,2) and (2,8).
Using the properties $(3,3),(3,4)$ and $(3,7)$, we can define a hermitian metric g on M by

$$
\begin{equation*}
\pi_{1}^{*} g={\underline{\omega^{i}}}^{i} \otimes \underline{\omega}^{i}+\underline{\omega}^{i} \otimes \overline{\omega^{i}} \tag{3,10}
\end{equation*}
$$

Proposition 3.1. Let $P_{1}, \underline{\omega}^{i}, \underline{\omega}_{j}^{i}$, and g be as above. Then g is a Kähler metric on M and P_{1} is naturally isomorphic to $U(M, g)$, the bundle of unitary frames of (M, g). Moreover, under the isomorphism, $\left(\underline{\omega}^{i}\right)_{i=1, \cdots, n}$ and $\left(\underline{\omega}_{j}^{i}\right)_{i, j=1, \cdots, n}$ correspond to the \boldsymbol{C}-valued canonidal form and the Levi-Civita connection form on $U(M, g)$ respectively.

We will call g the Kähler metric induced by S_{c}-structure (P, ω).
For the proof, we need the following lemma. Let M be an n-dimensional smooth manifold and $\phi_{\boldsymbol{R}}$ the \boldsymbol{R}^{n}-valued canonical form on the linear frame bundle $L(M)$.

Lemma 3.1. (i) Let G be a Lie subgroup of $G L(n ; \boldsymbol{R})$ with Lie algebra \mathfrak{g} and $\pi: Q \rightarrow M$ be a principal G-bundle over an n-dimensional smooth manifold M. Suppose that Q admits an \boldsymbol{R}^{n}-valued 1 -form ω on Q such that (a) $\omega\left(E^{*}\right)=0(E \in \mathfrak{g})$,
(b) $R_{a}^{*} \omega=a^{-1} \omega(a \in G)$, and (c) the linear mapping $\omega_{e}: T_{e} Q \rightarrow \boldsymbol{R}^{n}$ is surjective at every point $e \in Q$. Then Q can be naturally considered as a G-structure over M, that is, there exists uniquely a G-subbundle inclusion $\iota: Q \rightarrow L(M)$ such that $\iota^{*} \phi_{\boldsymbol{R}}=\omega$.
(ii) Let $\pi^{\prime}: Q^{\prime} \rightarrow M^{\prime}$ be another principal G-bundle over an n-dimensional manifold M^{\prime} and ω^{\prime} an \boldsymbol{R}^{n}-valued 1-form on it with the above properties (a), (b), and (c). Let $F: Q \rightarrow Q^{\prime}$ be a principal bundle isomorphism such that $F^{*} \omega^{\prime}=\omega$. Then the following diagram commutes

$$
\begin{aligned}
& \underset{\downarrow \iota}{\boldsymbol{Q}} \xrightarrow{F} \underset{\substack{ \\
\downarrow^{\prime}}}{Q^{\prime}} \\
& L(M) \xrightarrow{f_{*}} L\left(M^{\prime}\right),
\end{aligned}
$$

where f denotes the diffeomorphism of M onto M^{\prime} induced by F and ι^{\prime} the canonical G-bundle inclusion $Q^{\prime} \rightarrow L\left(M^{\prime}\right)$ as in (i).

Proof. It is clear that the conditions (a) and (c) are equivalent to Ker $\omega=$ $\operatorname{Ker} \pi_{*}$. So, at any point e in Q, we can choose $E_{1}(e), \cdots, E_{n}(e)$ in $T_{e} Q$ such that $\omega^{i}\left(E_{j}(e)\right)=\delta_{j}^{i}$. Each $E_{j}(e)$ is determined uniquely modulo Ker π_{*}. If we set $e_{j}=\pi_{*}\left(E_{j}(e)\right)(j=1, \cdots, n)$, then each e_{j} depends only on ω and the point e in Q. As is easily seen, the e_{j} are linearly independent, in other words, $\left(e_{1}, \cdots, e_{n}\right)$ is a frame of $T_{x} M$ at $x=\pi(e)$. We can choose $E_{j}(e)$ to depend smoothly on e at least locally, so the mapping $\iota: Q \rightarrow L(M)$, defined by $\iota(e)=\left(e_{1}, \cdots, e_{n}\right)$, is smooth.

We will show that this ι is the desired one. First, we prove that $\iota(e a)=$ $\iota(e) a(e \in Q, a \in G)$. From (b), $\omega_{e a}^{i}\left(a_{j}^{k} R_{a^{*}} E_{k}(e)\right)=\delta_{j}^{i}$. If we set $\left(e_{1}^{\prime}, \cdots, e_{n}^{\prime}\right)=$ $\iota(e a)$, it follows

$$
e_{j}^{\prime}=\pi_{*}\left(a_{j}^{k} R_{a^{*}} E_{k}(e)\right)=a_{j}^{k} \pi_{*}\left(R_{a^{*}} E_{k}(e)\right)=a_{j}^{k} \pi_{*}\left(E_{k}(e)\right)=e_{k} a_{j}^{k} .
$$

Thus we have $\iota(e a)=\iota(e) a$.
Next, to show $\iota^{*} \phi_{\boldsymbol{R}}=\omega$, we will prove

$$
\begin{equation*}
\omega^{i}(X) e_{i}=\pi_{*}(X) \quad\left(X \in T_{e} Q,\left(e_{1}, \cdots, e_{n}\right)=\iota(e)\right) \tag{3,12}
\end{equation*}
$$

First, we write $X=\lambda_{j} E_{j}(e)+E\left(\lambda_{j} \in \boldsymbol{R}, E \in \operatorname{Ker} \pi_{*}\right)$. Then it follows from (a) that

$$
\omega^{i}(X) e_{i}=\lambda_{j} \omega^{i}\left(E_{j}(e)\right) e_{i}=\lambda_{i} e_{i}=\lambda_{i} \pi_{*}\left(E_{i}(e)\right)=\pi_{*}(X) .
$$

Hence we have

$$
\begin{equation*}
\omega(X)=\iota(e)^{-1} \pi_{*}(X)=\left(\iota^{*} \phi_{R}\right)(X), \tag{3,13}
\end{equation*}
$$

showing $\iota^{*} \phi_{R}=\omega$.
The uniqueness of such an ι is now clear by $(3,13)$. The statement (ii) can be verified easily.
q.e.d.

Proof of Proposition 3.1. By (3,4), (3,7), (3,3), and Lemma 3.1 (i), P_{1} can be considered as a $U(n)$-structure over M, regarding $\left(\omega^{i}\right)_{i=1, \cdots, n}$ as the \boldsymbol{C}^{n}-valued canonical form on P_{1}. And $\left(\omega_{j}^{i}\right)$ can be considered as a connection form on the $U(n)$-bundle P_{1} by $(3,5),(3,6)$, and $(3,8)$. Then the relation $(3,9)$ shows that the connection has no torsion. Hence the hermitian metric g on M associated with the $U(n)$-structure turns out to be Kählerian. q.e.d.

The following lemma constitutes a crucial step in the proof of Theorem 3.1 which deeply relates to the rigidity of Kähler submanifolds of complex space forms.

Lemma 3.2. Let (P, ω) and $\left(P^{\prime}, \omega^{\prime}\right)$ be two S_{c}-structures of type $\left(n_{1}, \cdots, n_{d}\right)$ and of type ($n_{1}^{\prime}, \cdots, n_{d^{\prime}}^{\prime}$) over connected complex manifolds M and M^{\prime} respectively. For an integer p with $p \geq 1$, suppose we are given an isomorphism $f_{p}: P_{p} \rightarrow P_{p}^{\prime}$ of the principal bundles over M and M^{\prime} such that $f_{p}^{*} \omega^{\prime(p)}=\omega^{(p)}$. Then $n_{p+1}=n_{p+1}^{\prime}$ and there exists uniquely an isomorphism f_{p+1} of the principal $U\left(q_{p+1}\right)$-bundle P_{p+1} over P_{p} onto P_{p+1}^{\prime} over P_{p}^{\prime} which covers f_{p} and such that $f_{p+1} * \omega^{\prime(p+1)}=\omega^{(p+1)}$.

Proot. We denote the (r, s)-component and the (i)-component of $\omega^{(p)}$ by $\left(\omega^{(p)}\right)_{s}^{r}$ and $\left(\omega^{(p)}\right)^{i}$ respectively $\left(r, s=1, \cdots, n_{p}, i=1, \cdots, n\right)$. In view of (2,7), there exist uniquely 2-forms $\Delta_{r(p), s(p)}$ on P_{p} such that $\Delta_{r(p), s(p)}=\beta_{p}^{*} \underline{\Delta}_{r(p), s(p)}$ on P. Similarly, we define the 2 -forms $\underline{\Delta}_{s(p), t(p)}^{\prime}$ on P_{p}^{\prime} for $\left(P^{\prime}, \omega^{\prime}\right)$. In fact both the $\underline{\Delta}_{r(p), s(p)}$ and $\underline{\Delta}_{r(p), s(p)}^{\prime}$ can be given in terms of components of $\omega^{(p)}$ and $\omega^{\prime(p)}$ in the same way as in (2,7). Hence from the assumption $f_{p}^{*} \omega^{\prime(p)}=\omega^{(p)}$, we have

$$
\begin{equation*}
f_{p}^{*} \underline{\Delta}_{s(p), t(p)}^{\prime}=\underline{\Delta}_{s(p), t(p)} . \tag{3,14}
\end{equation*}
$$

From this and Remark 2.4, we must have $q_{p+1}=q_{p+1}^{\prime}$ and hence $n_{p+1}=n_{p+1}^{\prime}$.
By the way, $\left(\omega^{(p+1)}\right)^{r(p+1)}{ }_{s(p)}$ vanishes in the directions of fibres of $\beta_{p+1, p}$: $P_{p+1} \rightarrow P_{p}$ by (SC, 1). So for any $e \in P_{p+1}$, there exists uniquely an element of $T_{\underline{e}}^{*} P_{p} \otimes \boldsymbol{C}\left(e=\beta_{p+1, p}(e)\right)$, which we denote by $\underline{\omega}^{r(p+1)}{ }_{s(p)}(e)$, such that

$$
\begin{equation*}
\beta_{p+1, p}{ }^{*} \underline{\omega}^{r(p+1)}{ }_{s(p)}(e)=\left(\omega^{(p)}\right)^{r(p+1)}{ }_{s(p), e} . \tag{3,15}
\end{equation*}
$$

By (SC, 6) and Remark 2.4, it is of type $(1,0)^{h}$. Similarly, for $\left(P^{\prime}, \omega^{\prime}\right)$ we can define $\underline{\omega}^{\prime r(+1)}{ }_{s(p)}\left(e^{\prime}\right) \in T_{\underline{\theta^{\prime}}}^{*} P_{p}^{\prime} \otimes \boldsymbol{C}\left(\underline{e}^{\prime}=\beta_{p+1, p}^{\prime}\left(e^{\prime}\right), e^{\prime} \in P_{p+1}^{\prime}\right)$ so that

$$
\begin{equation*}
\beta_{p+1, p}^{\prime} \underline{\omega}^{\prime r(p+1)} \underline{s(p)}\left(e^{\prime}\right)=\left(\omega^{\prime(p)}\right)^{r(p+1)}{ }_{s(p), e^{\prime}} . \tag{3,16}
\end{equation*}
$$

Then, using $(2,10),(3,15),(3,14)$, and $(3,16)$, we have

$$
\begin{gather*}
\overline{\omega_{s}^{r(p+1)}}(e) \wedge \underline{\omega}_{t(p)}^{r(p+1)}(e)=\underline{\Delta}_{s(p), t(p), \underline{e}} \tag{3,17}\\
\overline{\underline{\omega}_{s(p)}^{\prime \prime(p+1)}}\left(e^{\prime}\right) \wedge \underline{\omega}_{t(p)}^{\prime \prime(p+1)}\left(e^{\prime}\right)=\underline{\Delta}_{s(p), t(p), e^{\prime}}^{\prime} . \tag{3,18}
\end{gather*}
$$

Since $\beta_{p+1, p}: P_{p+1} \rightarrow P_{p}$ is a $U\left(q_{p+1}\right)$-bundle, we see that the set $\left\{\underline{\omega}^{r(p+1)}{ }_{s(p)}(e)\right.$:
$\left.e \in \beta_{p+1, p}{ }^{-1}(\underline{e})\right\}$ exhausts the set of $(1,0)^{h}$-forms $\omega^{r(p+1)}{ }_{s(p)}$ such that $\overline{\omega_{s(p)}^{r(p+1)}} \wedge \omega_{t}^{r(p+1)}$ $=\underline{\Delta}_{s(p), t(p), \underline{e}}$ by Lemma 1.2 (i) and it is in one-to-one correspondence with the fibre $\beta_{p+1, p}{ }^{-1}(\underline{e})$. It is alsov valid for $\left\{\underline{\omega}^{\prime r(p+1)}{ }_{s(p)}\left(e^{\prime}\right): e^{\prime} \in \beta_{p+1, p}^{\prime-1}\left(\underline{e}^{\prime}\right)\right\}$. Hence from $(3,14),(3,17)$, and $(3,18)$, there exists uniquely a mapping $f_{p+1}: P_{p+1} \rightarrow P_{p+1}^{\prime}$ such that

$$
\begin{equation*}
\underline{\omega}^{r(p+1)}{ }_{s(p)}(e)=f_{p}^{*}\left(\underline{\omega}^{\prime r(p+1)}{ }_{s(p)}\left(f_{p+1}(e)\right)\right) \quad\left(e \in P_{p+1}\right) . \tag{3,19}
\end{equation*}
$$

We will show that this f_{p+1} is the desired one. It is clear by definition of f_{p+1} that $\beta_{p+1, p}^{\prime} \circ f_{p+1}=f_{p} \circ \beta_{p+1, p}$. As is easily seen, f_{p+1} commutes with the right $U\left(q_{p+1}\right)$-actions on P_{p+1} and P_{p+1}^{\prime}. It remains to us to prove $f_{p+1}{ }^{*} \omega^{\prime(p+1)}=\omega^{(p+1)}$ and the uniqueness of such an f_{p+1}.

First, we will show that

$$
\begin{equation*}
f_{p+1}^{*} *\left(\omega^{(p+1)}\right)_{s}^{r}=\left(\omega^{(p+1)}\right)_{s}^{r} \quad\left(1 \leq r, s \leq n_{p}\right) . \tag{3,20}
\end{equation*}
$$

In fact, it follows from (3,1) and the assumption $f_{p}^{*} \omega^{\prime(p)}=\omega^{(p)}$ that

$$
\begin{aligned}
& f_{p+1}^{*} *\left(\omega^{(p+1)}\right)_{s}^{r}=f_{p+1} * \beta_{p+1, p}^{\prime} *\left(\omega^{\prime(p)}\right)_{s}^{r}=\beta_{p+1, p} * f_{p}^{*}\left(\omega^{\prime(p)}\right)_{s}^{r} \\
& \quad=\beta_{p+1, p} *\left(\omega^{(p)}\right)_{s}^{r}=\left(\omega^{(p+1)}\right)_{s}^{r} .
\end{aligned}
$$

So in order to verify $f_{p+1}^{*} \omega^{(p+1)}=\omega^{(p+1)}$, we have only to show $f_{p+1}{ }^{*}$ $\left(\omega^{\prime(p+1)}\right)^{r(p+1)}{ }_{s(p)}=\left(\omega^{(p+1)}\right)^{r(p+1)}{ }_{s(p)}$ and $f_{p+1} *\left(\omega^{\prime(p+1)}\right)^{r(p+1)}{ }_{s(p+1)}=\left(\omega^{(p+1)}\right)^{r(p+1)}{ }_{s(p+1)}$. From $(3,15),(3,16)$, and $(3,19)$ it follows that for any $X \in T_{e} P_{p+1}$,

$$
\begin{align*}
& \left(f_{p+1}{ }^{*}\left(\omega^{\prime(p+1)}\right)^{r(p+1)}{ }_{s(p)}\right)_{e}(X)=\left(\omega^{\prime(p+1)}\right)^{r(p+1)}{ }_{s(p)}\left(f_{p+1} * X\right) \tag{3,21}\\
& \quad=\underline{\omega}^{\prime r(p+1)}{ }_{s(p)}\left(f_{p+1}(e)\right)\left(\beta_{p+1, p}^{\prime} * f_{p+1} * X\right) \\
& =\omega^{\prime r(p+1)}{ }_{s(p)}\left(f_{p+1}(e)\right)\left(f_{p} * \beta_{p+1, p} * X\right) \\
& =\underline{\omega}^{r(p+1)}{ }_{s(p)}(e)\left(\beta_{p+1, p^{\prime}} * X\right) \\
& =\left(\omega^{(p+1)}\right)^{r(p+1)}{ }_{s(p), e}(X),
\end{align*}
$$

as desired. The rest is easily obtained by using $(2,11),(3,20),(3,21)$, and Lemma 1.3 (ii).

The uniqueness of f_{p+1} is now obvious, because such an f_{p+1} must satisfy $(3,19)$.
q.e.d.

We are now in a position to give a few basic results concerning our S_{c} structures. Let (P, ω) and $\left(P^{\prime}, \omega^{\prime}\right)$ be S_{c}-structures over connected complex manifolds M and M^{\prime} respectively. We say that a diffeomorphism $F: P \rightarrow P^{\prime}$ is an isomorphism of (P, ω) onto ($P^{\prime}, \omega^{\prime}$), if F is a principal bundle isomorphism of P onto P^{\prime} such that $\omega=F^{*} \omega^{\prime}$.

Theorem 3.1. Let (P, ω) be an S_{c}-structure over an n-dimensional connected complex manifold M and $\left(P^{\prime}, \omega^{\prime}\right)$ an S_{c}-structure over a connected complex
manifold M^{\prime}. Let g and g^{\prime} denote the Kähler metrics on M and M^{\prime} induced by those S_{c}-structures respectively.
(i) Let $F: P \rightarrow P^{\prime}$ be an isomorphism of (P, ω) onto $\left(P^{\prime}, \omega^{\prime}\right)$. Then the base mapping f induced by F of M onto M^{\prime} is a holomorphic isometry.
(ii) Conversely, any holomorphic isometry f of (M, g) onto ($\left.M^{\prime}, g^{\prime}\right)$ gives rise to a unique isomorphism f_{5} of (P, ω) onto $\left(P^{\prime}, \omega^{\prime}\right)$ such that $\pi_{P^{\prime}} \circ f_{1}=f \circ \pi_{P}$, where π_{P} and $\pi_{P^{\prime}}$ denote the projections $P \rightarrow M$ and $P^{\prime} \rightarrow M^{\prime}$ respectively. In particular, if $M=M^{\prime}$ and $g=g^{\prime}$, then (P, ω) is isomorphic to $\left(P^{\prime}, \omega^{\prime}\right)$.

Proof. By Proposition 3.1, P_{1} (resp. P_{1}^{\prime}) can be identified with $U(M, g)$ (resp. $U\left(M^{\prime}, g^{\prime}\right)$). On the other hand, F in (i) induces an isomorphism F_{1} of P_{1} onto P_{1}^{\prime} which covers the base mapping f of F. By Lemma 3.1 (ii), F_{1} is now regarded as f_{*}. In other words, f preserves the $U(n)$-structures of (M, g) and (M^{\prime}, g^{\prime}). Hence (i) follows.

If f is a holomorphic isometry of (M, g) onto $\left(M^{\prime}, g^{\prime}\right)$, then it induces an isomorphism $f_{(1)}: P_{1} \rightarrow P_{1}^{\prime}$ corresponding to $f_{*}: U(M, g) \rightarrow U\left(M^{\prime}, g^{\prime}\right)$ under the identification mentioned above. Then, by Lemma 3.2, it follows by induction that $f_{(1)}$ gives rise to a unique isomorphism $f_{\mathbf{4}}: P \rightarrow P^{\prime}$ such that $f_{\#}^{*} \omega^{\prime}=\omega$ and $\pi_{P^{\prime}} \circ f_{t}=f \circ \pi_{P}$.

Corollary 3.1. (The Rigidity Theorem of E. Calabi) Let f and f^{\prime} be two holomorphic isometric immersions of a connected Kähler manifold (M, g) into $S_{c}(N)$. Suppose that f is full. Then f^{\prime} is also full and there exists a unique automorphism τ of $S_{c}(N)$ which transforms f into f^{\prime}.

Proof. Let $(P(f), \omega)$ and $\left(P\left(f^{\prime}\right), \omega^{\prime}\right)$ be the S_{c}-structures over M induced by f and f^{\prime} respectively. They are isomorphic to each other by Theorem 3.1 (ii) and in particular they are of the same type. By the assumption that f is full and by Corollary 2.1, we have $O P(f)=P(f)$, and hence $O P\left(f^{\prime}\right)=P\left(f^{\prime}\right)$, i.e., f^{\prime} is also full. Moreover, if we denote by F and F^{\prime} the immersions of $P(f)=$ $O P(f)$ and $P\left(f^{\prime}\right)=O P\left(f^{\prime}\right)$ into $G_{c}(N)$ respectively, we see by Theorem 3.1 (ii) that there exists uniquely an isomorphism I of $P(f)$ onto $P\left(f^{\prime}\right)$ such that it covers the identity mapping of M and satisfies $\omega=I^{*} \omega^{\prime}$. Hence $F^{*} \Phi=\left(F^{\prime} \circ I\right)^{*}$ Φ, where Φ denotes the Maurer-Cartan form of $G_{c}(N)$. Then it follows from Proposition 1.1 that there exists uniquely $\tau \in G_{c}(N)$ such that $\tau \cdot F=F^{\prime} \circ I$, which implies $\tau \circ f=f^{\prime}$. q.e.d.

Remark 3.1. Corollary 3.1 is still valid without the assumption in Remark 2.1 owing to the analyticity of f and f^{\prime}.

Theorem 3.2. Let M be a simply conntected complex manifold and (P, ω) an S_{c}-structure over M of type $\left(n_{1}, \cdots, n_{d}\right)$. Let g be the Kähler metric on M induced by (P, ω).
(i) For any $e_{0} \in P$ and $u_{0} \in G_{c}\left(n_{d}\right)$, there exist uniquely immersions $F: P \rightarrow$ $G_{c}\left(n_{d}\right)$ and $f: M \rightarrow S_{c}\left(n_{d}\right)$ with the properties (a) $F\left(e_{0}\right)=u_{0}$, (b) $\omega=F^{*} \Phi$, and (c) $\pi_{c} \circ F=f \circ \pi$, where π_{c} and π denote the projections $G_{c}\left(n_{d}\right) \rightarrow S_{c}\left(n_{d}\right)$ and $P \rightarrow M$ respectively and Φ denotes the Maurer-Cartan form of $G_{c}\left(n_{d}\right)$.
(ii) $f: M \rightarrow S_{c}\left(n_{d}\right)$ is a holomorphic isometric immersion.
(iii) (P, ω) is isomorphic to the S_{c}-structure induced by f.

Proof. Our S_{c}-structure (P, ω) is a $G_{c}\left(n_{d}\right), U\left(q_{1}\right) \times \cdots \times U\left(q_{d}\right)$-structure in the sense of [10]. Although (i) seems to be substantially contained in the results of [10] and [11], we will give a detailed proof of it, because the situation is slightly different from there.

We set $\boldsymbol{U}=U\left(q_{1}\right) \times \cdots \times U\left(q_{d}\right) . \quad$ By Satz 3.2 in [11] or Theorem 1.1 in [10], there exist uniquely immersions $F: P \rightarrow G_{c}\left(n_{d}\right)$ and $f^{\prime}: M \rightarrow G_{c}\left(n_{d}\right) / \boldsymbol{U}$ such that (a) $F\left(e_{0}\right)=u_{0}$, (b) $\omega=F^{*} \Phi$, and (c) $\pi^{\prime} \circ F=f^{\prime} \circ \pi$, where π^{\prime} is the projection $G_{c}\left(n_{d}\right) \rightarrow$ $G_{c}\left(n_{d}\right) / \boldsymbol{U}$. Define $f: M \rightarrow S_{c}\left(n_{d}\right)$ by $f=\pi^{\prime \prime} \circ f^{\prime}$, where $\pi^{\prime \prime}$ denotes the natural projection $G_{c}\left(n_{d}\right) / \boldsymbol{U} \rightarrow S_{c}\left(n_{d}\right)$. Clearly, $\pi_{c} \circ F=f \circ \pi$.

We will show that f is an immersion. For any $X \in T_{x} M$, we choose $X^{*} \in T_{e} P$ such that $\pi_{*} X^{*}=X$. By the identification $G_{c}\left(n_{d}\right)=U\left(S_{c}\left(n_{d}\right)\right)$, we consider F as a mapping of P into $U\left(S_{c}\left(n_{d}\right)\right)$, so that we set $F(e)=\left(e_{1}, \cdots, e_{n_{d}}\right)$ $(e \in P)$. We will first show

$$
\begin{equation*}
\omega^{i}\left(X^{*}\right) e_{i}=f_{*} X \tag{3,22}
\end{equation*}
$$

By (SC, 4) we have $\omega^{r}=F^{*} \Phi^{r}=0\left(r=n+1, \cdots, n_{d}\right)$. This together with (c) and Lemma 1.1 implies that

$$
\omega^{i}\left(X^{*}\right) e_{i}=\Phi^{i}\left(F_{*} X^{*}\right) e_{i}=\Phi^{A}\left(F_{*} X^{*}\right) e_{A}=\pi_{c *} F_{*} X_{*}=f_{*} X
$$

We see firstly that $f_{*} X$ is zero if and only if all the $\omega^{i}\left(X^{*}\right)$ vanish. Secondly, the ω^{i} are linearly independent by (SC, 5). Hence we see that $f_{*} X=0$ if and only if $X=0$. Thus f is an immersion.

We will next prove (ii). By (SC, 1) and (SC, 2), the $\operatorname{Lie}\left(U\left(q_{1}\right) \times \cdots \times U\left(q_{d}\right)\right)-$ part of ω can be considered as a connection form on P. Let J^{h} be the horizontal almost complex structure on P with respect to the connection. Then from $(2,4),(\mathrm{SC}, 5)$, and $(3,22)$, it follows that

$$
f_{*} J X=\omega^{i}\left(J^{h} X^{*}\right) e_{i}=\sqrt{-1} \omega^{i}\left(X^{*}\right) e_{i}=J f_{*} X
$$

which shows that f is holomorphic.
By $(3,10)$, and $(3,22)$, we have

$$
g(X, X)=2 \overline{\omega^{i}\left(X^{*}\right)} \cdot \omega^{i}\left(X^{*}\right)=g_{c}\left(f_{*} X, f_{*} X\right)
$$

where g_{c} denotes the Kähler metric of $S_{c}\left(n_{d}\right)$. Thus f is isometric.
The statement (iii) follows from Theorem 3.1 (ii).

4. Reduction of the structure group of $\mathbf{S}_{\boldsymbol{c}}$-structure

Before describing the reduction procedure by which we define the bundle of reduced frames $R F$ mentioned in the introduction, we will first recall some basic facts known in the theory of transformation groups. For detail, we refer to [7] and [2]. Let H be a compact Lie group acting on a smooth manifold W. For our purpose, we may assume that W is a vector space and the H action is linear. For any $w \in W$, we denote by H_{w} the isotropy subgroup of H at w and by $\left(H_{w}\right)$ the conjugate class of $H_{w},\left(H_{w}\right)=\left\{a^{-1} H_{w} a: a \in H\right\}$. Further we denote by $[H, W]$ the set of conjugate classes of all the isotropy subgroups of $H,[H, W]=\left\{\left(H_{w}\right): w \in W\right\}$. There is a naturally defined partial ordering in $[H, W]$, that is, by definition $\left(H_{w}\right) \leq\left(H_{w^{\prime}}\right)$ if and only if $a^{-1} H_{w} a$ is a subgroup of $H_{w^{\prime}}$ for some $a \in H$.

Proposition 4.1. (i) The set $[H, W]$ is finite.
(ii) The mapping $W \ni w \rightarrow\left(H_{w}\right) \in[H, W]$ is lower semi-continuous, i.e., for any $w_{0} \in W$, there exists a neighborhood U of w_{0} such that $\left(H_{w}\right) \leq\left(H_{w_{0}}\right)$ for any $w \in U$.

For an isotropy subgroup L, we denote by $W_{(L)}$ the set of points w such that $H_{w} \in(L)$.

Proposition 4.2. (i) For any isotropy subgroup L, the set $W_{(L)}$ is an H invariant submanifold of W.
(ii) For any $w_{0} \in W_{(L)}$ such that $H_{w_{0}}=L$, there exists a submanifold Γ_{L} of $W_{(L)}$ with the following properties:
(a) Γ_{L} meets each H-orbit of $W_{(L)}$ at most once and crosses transversally those H-orbits it intersects;
(b) $w_{0} \in \Gamma_{L}$ and $H_{w}=L$ for any $w \in \Gamma_{L}$;
(c) the image of Γ_{L} by the natural projection $W_{(L)} \rightarrow W_{(L)} / H$ is open.

We will call the above Γ_{L} a normal form of $W_{(L)}$. Now let $\pi: P \rightarrow M$ be a principal H-bundle over an n-dimensional complex manifold M. Let V be a finite dimensional H-module over \boldsymbol{C}. A function $T: P \rightarrow V$ is said to be tensorial if it satisfies $T(e a)=a^{-1} T(e)(e \in P, a \in H)$. Suppose that $\boldsymbol{R}^{2 n}$ is an H-module and there is an H-equivariant reduction $\iota: P \rightarrow L(M)$. Let φ be a V-valued tensorial 1-form on P, i.e., it vanishes in the directions of fibres of P and satisfies $R_{a}^{*} \varphi=a^{-1} \varphi$ for any $a \in H$. Then the tensorial function T of φ is by definition the $\operatorname{Hom}\left(\boldsymbol{R}^{2 n}, V\right)$-valued tensorial function on P determined by the relation

$$
\begin{equation*}
T(e)\left(\phi_{R}\left(\iota_{*} X^{*}\right)\right)=\varphi_{e}\left(X^{*}\right) \quad\left(X^{*} \in T_{e} P, e \in P\right), \tag{4,1}
\end{equation*}
$$

where $\phi_{\boldsymbol{R}}$ denotes the $\boldsymbol{R}^{2 n}$-valued canonical form on $L(M)$ and $\operatorname{Hom}\left(\boldsymbol{R}^{2 n}, V\right)$ is now naturally considered as an H-module. Denoting by $\left\{\varepsilon_{1}, \cdots, \varepsilon_{2 n}\right\}$ the stand-
ard basis of $\boldsymbol{R}^{2 n}$ and setting $T_{k}=\frac{1}{2}\left(T(e)\left(\varepsilon_{2 k-1}\right)-\sqrt{-1} T(e)\left(\varepsilon_{2 k}\right)\right), T_{k}=\frac{1}{2}(T(e)$ $\left.\left(\varepsilon_{2 k-1}\right)+\sqrt{-1} T(e)\left(\varepsilon_{2 k}\right)\right)$ for $k=1, \cdots, n$, we can express φ as

$$
\begin{equation*}
\varphi=T_{k} \iota^{*} \phi^{k}+T_{k} \iota^{*} \bar{\phi}^{k}, \tag{4,2}
\end{equation*}
$$

where $\left(\phi^{k}\right)_{k=1, \cdots, n}$ is the \boldsymbol{C}^{n}-valued canonical form on $L(M)$.
Let W be a finite dimensional H-module over \boldsymbol{C}. We will now consider a W-valued tensorial function T on a principal H-bundle P over M. By Proposition 4.1 (i), the set $\left\{\left(H_{T(e)}\right): e \in P\right\}$ is finite and hence there exists an isotropy subgroup L of H such that its conjugate class is minimum there. We will call such an L a principal stabilizer of T. Choosing a normal form Γ_{L} of $W_{(L)}$, we set $P_{L}=T^{-1}\left(\Gamma_{L}\right)$ and $M_{L}=\pi\left(P_{L}\right)$. We will show that M_{L} is an open set of M and P_{L} is a principal L-subbundle of $\left.P\right|_{M_{L}}$. If we set $P^{\prime}=T^{-1}\left(H \cdot \Gamma_{L}\right)$, then $M_{L}=\pi\left(P^{\prime}\right)$ and $P^{\prime}=\left.P\right|_{M_{L}}$. By Proposition 4.1 (ii) and Proposition 4.2 (ii) (c), $W_{(L)}$ is an open set of W and $H \cdot \Gamma_{L}$ is open in $W_{(L)}$. Hence M_{L} is an open set of M. By Proposition 4.2 (ii) (a) and (b), we see easily that P_{L} is a principal L subbundle of $\left.P\right|_{M_{L}}$. We call this P_{L} the reduction of P with respect to $\left(T, \Gamma_{L}\right)$ or (φ, Γ_{L}), or the reduction of P with respect to T or φ for short, if T is the tensorial function of a W-valued 1-form φ on P. By definition, $\left.T\right|_{P_{L}}$ takes its values in Γ_{L} and is constant along any fibre of $P_{L} \rightarrow M_{L}$.

Now let (P, ω) be an S_{c}-structure of type $\left(n_{1}, \cdots, n_{d}\right)$ over a connected complex manifold M. We denote simply by \boldsymbol{U} the structure group $U\left(q_{1}\right) \times \cdots \times U\left(q_{d}\right)$ of P. Let B^{p} be the vector space $\operatorname{Hom}\left(\boldsymbol{C}^{q}{ }^{q}-1 \otimes \boldsymbol{C}^{n}, \boldsymbol{C}^{q} p\right)$ with the obvious \boldsymbol{U}-action and b^{p} the B^{p}-valued tensorial function of the $\operatorname{Hom}\left(\boldsymbol{C}^{q}{ }^{q}-1, \boldsymbol{C}^{q}\right)$-valued tensorial 1-form $\left(\omega^{r(p)}{ }_{s(p-1)}\right)_{r(p), s(p-1)}$ of type $(1,0)^{h}$ on P. Denoting the components of b^{p} with respect to the natural basis of B^{p} by $b^{r(p)}{ }_{s(p-1), k}$, we have

$$
\begin{equation*}
\omega^{r(p)}{ }_{s(p-1)}=b^{r(p)}{ }_{s(p-1), k} \omega^{k} . \tag{4,3}
\end{equation*}
$$

We are now going to reduce the structure group of P by these b^{p}. Let H_{2} be a principal stabilizer of b^{2}. Choosing a normal form $\Gamma_{H_{2}}$ of $B_{\left(H_{2}\right)}^{2}$, we make the reduction $R P_{2}$ of P with respect to ($b^{2}, \Gamma_{H_{2}}$), which is a principal H_{2}-bundle over a certain open set of M. Then the b^{2} restricted to $R P_{2}$ takes its values in $\Gamma_{H_{2}}$ and is constant along each fibre of $R P_{2}$. Next, by means of b^{3} restricted to $R P_{2}$, we make the reduction $R P_{3}$ of $R P_{2}$ over a certain open set of M with respect to $\left(b^{3}, \Gamma_{H_{3}}\right)$. We continue this reduction process for all b^{4}, \cdots, b^{d}, and we get the reduction $R P_{d}$ of $R P_{d-1}$ over a certain open set $M_{d}=\pi\left(R P_{d}\right)$ with respect to $\left(b^{d}, \Gamma_{H_{d}}\right)$, where H_{d} and $\Gamma_{H_{d}}$ denote a principal stabilizer of b^{d} and a normal form of $B_{\left(H_{d}\right)}^{d}$ respectively. We will now observe the structure group of $R P_{d}$ more closely. Let $\chi_{1}: \boldsymbol{U} \rightarrow U\left(n_{1}\right)$ be the natural projection and K_{1} the image of H_{d} by χ_{1}. We have the following

Lemma 4.1. There exist uniquely homomorphisms $\rho_{p}: K_{1} \rightarrow U\left(q_{p}\right)(p=$
$1, \cdots, d)$ with the following properties:
(a) $\rho_{1}\left(a_{1}\right)=a_{1} \quad\left(a_{1} \in K_{1}\right) ;$
(b) $\rho_{p}\left(a_{1}\right) b^{p}(e)=\rho_{p-1}\left(a_{1}\right)^{-1} a_{1}^{-1} b^{p}(e) \quad\left(a_{1} \in K_{1}, e \in R P_{d}, p>1\right)$;
(c) let $\rho\left(a_{1}\right)=\left(\rho_{1}\left(a_{1}\right), \cdots, \rho_{d}\left(a_{1}\right)\right)\left(a_{1} \in K_{1}\right)$, then ρ is the inverse mapping of χ_{1} : $H_{d} \rightarrow K_{1}$ and in particular it is an isomorphism of K_{1} onto H_{d}.

Proof. Let e be a point of $R P_{d}$. Then for any $a=\left(a_{1}, \cdots, a_{d}\right)$ in H_{d}, we have

$$
b^{p}(e)=b^{p}(e a)=a^{-1} b^{p}(e)=a_{p}^{-1} a_{p-1}^{-1} a_{1}^{-1} b^{p}(e)
$$

and hence

$$
\begin{equation*}
a_{p}\left(b^{p}(e)(u \otimes v)\right)=b^{p}(e)\left(a_{p-1} u \otimes a_{1} v\right) \quad\left(u \otimes v \in \boldsymbol{C}^{q}{ }_{p-1} \otimes \boldsymbol{C}^{n}\right) . \tag{4,4}
\end{equation*}
$$

Since the linear mapping $b^{p}(e): \boldsymbol{C}^{q_{p-1}} \otimes \boldsymbol{C}^{n} \rightarrow \boldsymbol{C}^{q}(p>1)$ is surjective by the condition (SC,6), a_{p} is uniquely determined by a_{p-1}, a_{1}, and $b^{p}(e)$. Then by induction, it turns out that a_{p} depends only on a_{1} and $b^{p}(e)$. Hence we can define mappings $\rho_{p}: K_{1} \rightarrow U\left(q_{p}\right)(p=2, \cdots, d)$ such that

$$
\begin{equation*}
\rho_{p}\left(a_{1}\right)\left(b^{p}(e)(u \otimes v)\right)=b^{p}(e)\left(\rho_{p-1}\left(a_{1}\right) u \otimes a_{1} v\right) \tag{4,5}
\end{equation*}
$$

for any $u \otimes v \in \boldsymbol{C}^{q_{p-1}} \otimes \boldsymbol{C}^{n}$ and $a_{1} \in K_{1}$. Moreover, every element $a \in H_{d}$ is then expressed by $a=\left(a_{1}, \rho_{2}\left(a_{1}\right), \cdots, \rho_{d}\left(a_{1}\right)\right)$, where $a_{1}=\chi_{1}(a)$. We will show that these ρ_{p} do not depend on e. For any $e^{\prime} \in R P_{d}, b^{p}\left(e^{\prime}\right)$ belongs to $\Gamma_{H_{p}}$, because $R P_{d}$ is a subset of $R P_{p}$. Since H_{d} is a subgroup of H_{p}, every element of H_{d} leaves $b^{p}\left(e^{\prime}\right)$ invariant. Hence the equation $(4,4)$ holds for any $a \in H_{d}$ even if we replace e by e^{\prime}, and the relation between a_{p}, a_{p-1}, and a_{1} remains unchanged. It is easy to verify that each ρ_{p} is a homomorphism. From (4,5), we see (b). The statement (c) is clear.
q.e.d.

Using the projection $\beta_{1}: P \rightarrow P_{1}$, we set $R F_{1}=\beta_{1}\left(R P_{d}\right)$. Then without difficulties, we have the following

Proposition 4.3. (i) $\left.\beta_{1}\right|_{R P_{d}}$ is bijective. Its inverse mapping $\gamma: R F_{1} \rightarrow R P_{d}$ is a principal bundle isomorphism, i.e.,

$$
\begin{equation*}
\gamma(e a)=\gamma(e) \rho(a) \quad\left(e \in R F_{1}, a \in K_{1}\right), \tag{4,6}
\end{equation*}
$$

where $\rho: K_{1} \rightarrow H_{d}$ is the isomorphism defined in Lemma 4.1.
(ii) The $\mathrm{g}_{c}\left(n_{d}\right)$-valued 1 -form $\vartheta=\gamma^{*} \omega$ on $R F_{1}$ have the following properties corresponding to $(S C, 1)$ and $(S C, 2)$:
(a) $\vartheta\left(E^{*}\right)=\rho_{*}(E) \quad\left(E \in \mathfrak{Z}_{1}\right)$;
(b) $R_{a}^{*} \vartheta=\operatorname{Ad} \rho(a)^{-1} \vartheta \quad\left(a \in K_{1}\right)$.

Moreover, the properties $(S C, 3)-(S C, 6)$ are hereditarily brought to ϑ :
(c) $d \vartheta+[\vartheta, \vartheta]=0$;
(d) $\vartheta^{r}=0 \quad\left(n<r \leq n_{d}\right)$,
$\vartheta^{r(t)} s_{\left.s p^{\prime}\right)}=0 \quad\left(1 \leq p, p^{\prime} \leq d,\left|p-p^{\prime}\right| \geq 2\right) ;$
(e) the ϑ^{i} are of type $(1,0)^{k}$ and linearly independent over \boldsymbol{C} at every point of $R F_{1}$;
(f) $\operatorname{rank}\left(\vartheta^{r(p+1)} s_{s p)}\right)_{r(p+1), s(p)}$ is constant q_{p+1} for $p=1, \cdots, d-1$ at every point of $R F_{1}$.
(g) the coefficient functions $\gamma^{*} b^{r(p+1)}{ }_{s(\phi), ~}$ of $\vartheta^{r(p+1)}{ }_{s(\phi)}$ with respect to ϑ^{i} take constant values along each fibre of $R F_{1} \rightarrow M_{d}$.

As we have seen, the S_{c}-structure P is now reduced to the subbundle $R F_{1}$ of $\left.U(M, g)\right|_{M_{d}}$ identified with $\left.P_{1}\right|_{M_{d}}$, where g is the Kahler metric induced by (P, ω). From now on, we denote M_{d} by M_{1} anew. We will further perform the reduction procedure for the structure group of $R F_{1}$. In the following, for any $g_{c}\left(n_{d}\right)$-valued 1 -form φ and $p=1, \cdots, d$, we will denote by $\phi^{[p]}$ the $\mathfrak{u}\left(n_{p}\right)$ part of it:

$$
\phi^{[p]}=\left(\phi^{r(\phi)}{ }_{s(p)}\right)_{r(p), s(p)=n_{p-1}+1, \cdots, n_{p}} .
$$

Now we make a decomposition

$$
\begin{equation*}
\mathfrak{u}(n)=\mathfrak{f}_{1}+\mathfrak{p}_{1} \quad \text { such that } \quad \operatorname{Ad} K_{1} \cdot \mathfrak{p}_{1} \subseteq \mathfrak{p}_{1}, \tag{4,7}
\end{equation*}
$$

which is possible because K_{1} is compact and denote by θ_{1} the \boldsymbol{t}_{1}-part of $\vartheta^{[1]}$. By Lemma 4.1 (a), it follows

$$
\begin{cases}R_{a}^{*} \theta_{1}=\operatorname{Ad} a^{-1} \theta_{1} & \left(a \in K_{1}\right), \tag{4,8}\\ \theta_{1}\left(E^{*}\right)=E & \left(E \in \mathfrak{t}_{1}\right) .\end{cases}
$$

Lemma 4.2. We set $\eta^{[p]}=\vartheta^{[p]}-\rho_{p^{*}}\left(\theta_{1}\right)$ for $p=1, \cdots, d$. Then the $\mathfrak{u}\left(n_{p}\right)-$ valued 1 -form $\eta^{[p]}$ is a tensorial form on $R F_{1}$, i.e.,
(i) $R_{a}^{*} \eta^{[p]}=\operatorname{Ad} \rho_{p}(a)^{-1} \eta^{[p]} \quad\left(a \in K_{1}\right)$;
(ii) $\eta^{[B]}$ vanishes in the directions of fibres of $R F_{1} \rightarrow M_{1}$.

Proof. From Proposition 4.3 (ii) (b) it follows $R_{d}^{*} \vartheta^{[p]}=\operatorname{Ad}_{\rho}(a)^{-1} \vartheta^{[p]}$ $\left(a \in K_{1}\right)$. At the same time, by (4,8), we have $R_{a}^{*} \rho_{p^{*}}\left(\theta_{1}\right)=\operatorname{Ad} \rho_{p}(a)^{-1} \rho_{p^{*}}\left(\theta_{1}\right)$ $\left(a \in K_{1}\right)$. Hence we obtain (i). By Lemma 4.1, $\rho_{*}(E)=E+\rho_{2^{*}}(E)+\cdots+\rho_{d^{*}}(E)$ $\left(E \in \mathfrak{I}_{1}\right)$. From this together with $(4,6)$ and $(4,8)$, we have

$$
\vartheta_{[p]}^{[p]}\left(E^{*}\right)=\omega^{[p]}\left(\rho_{*}(E)^{*}\right)=\rho_{p^{*}}(E)=\rho_{p^{*}}\left(\theta_{1}\left(E^{*}\right)\right) \quad\left(E \in \mathfrak{T}_{1}\right),
$$

which implies (ii).
q.e.d.

We perform successive reductions of the structure group of $R F_{1}$ by means of the tensorial functions $T^{[p]}$ of $\eta^{[p]}$ for $p=1, \cdots, d$, choosing respective principal stabilizers $K_{1, p}$ and normal forms $\Gamma_{K_{1}, p}$. So let $R F_{2}$ be the last reduction of $R F_{1}$ over a certain open set M_{2} of M_{1} and K_{2} its structure group. In the fol-
lowing, when we restrict any form on a manifold to a submanifold of it, we will denote it by the same symbol: so we denote $\left.\vartheta\right|_{R F_{2}}$ by ϑ and $\left.\theta_{1}\right|_{R F_{2}}$ by θ_{1}. We make a decomposition $\mathfrak{f}_{1}=\mathfrak{f}_{2}+\mathfrak{p}_{2}$ such that $\operatorname{Ad} K_{2} \mathfrak{p}_{2} \subseteq \mathfrak{p}_{2}$. We denote by θ_{2} the \dot{t}_{2}-part of θ_{1} and set $\tau_{2}=\theta_{1}-\theta_{2}$. Then θ_{2} satisfies that $R_{a}^{*} \theta_{2}=\operatorname{Ad} a^{-1} \theta_{2}$ and $\theta_{2}\left(E^{*}\right)=E\left(a \in K_{2}, E \in \mathfrak{f}_{2}\right)$, i.e., it defines a connection in $R F_{2}$. And the $\mathfrak{u}(n)$ valued 1-form τ_{2} is a tensorial 1-form on $R F_{2}$. Let T_{2} be the tensorial function of τ_{2}.

Furthermore for $\nu=2,3, \cdots$, we define inductively $R F_{\nu+1}, K_{\nu+1}, M_{\nu+1}, \theta_{\nu+1}$, $\tau_{\nu+1}$, and $T_{\nu+1}$ as follows: Suppose that we have defined $R F_{\nu}, K_{\nu}, M_{\nu}, \theta_{\nu}$, and τ_{ν}. If the tensorial function T_{ν} of τ_{ν} is constant along any fibre of $R F_{\nu}$, we stop making further $R F_{v+1}$ etc.. Otherwise, let $R F_{v+1}$ be a reduction of $R F_{v}$ with respect to T_{ν}. Let $K_{\nu+1}$ and $M_{\nu+1}$ be the structure group and the base manifold of it. Then by definition, T_{ν} is constant along any fibre of $R F_{\nu+1}$. Next, making a decomposition $\mathfrak{f}_{\nu}=\mathfrak{f}_{\nu+1}+\mathfrak{p}_{\nu+1}$ such that $\operatorname{Ad} K_{\nu+1} \mathfrak{p}_{\nu+1} \subseteq \mathfrak{p}_{\nu+1}$, let $\theta_{\nu+1}$ and $\tau_{\nu+1}$ be the $\mathfrak{t}_{\nu+1}$-part and $\mathfrak{p}_{\nu+1}$-part of θ_{ν} respectively. Then we see easily that $\theta_{\nu+1}$ is a connection form on $R F_{v+1}$ and the $\mathfrak{u}(n)$-valued 1 -form τ_{ν} is a tensorial 1 -form on $R F_{\nu+1}$. Let $T_{\nu+1}$ be the tensorial function of $\tau_{\nu+1}$.

At each step in the above procedure of making $R F_{\nu+1}$ etc., since K_{1} is compact, either the dimension or the number of connected components of K_{ν} must decrease. In any case the above procedure terminates after finite steps. Thus, let $R F_{\nu}, K_{\nu}, M_{\nu}, \theta_{\nu}$, and τ_{ν} be the last ones. By definition, T_{ν} is constant along any fibre of $R F_{\nu}$.

Choosing a basis $\left\{E_{\lambda}\right\}$ of \mathfrak{t}_{ν}, we set $\theta_{\nu}=\theta_{\nu}^{\lambda} \otimes E_{\lambda}$. Then the set $\left\{\theta_{\nu}^{\lambda}, \vartheta^{k}, \overline{\vartheta^{k} k}\right.$ forms a basis of the space of \boldsymbol{C}-valued 1 -forms at any point of $R F_{\nu}$. Using this basis, we will now write down the non-zero components of the $\mathrm{g}_{c}\left(n_{d}\right)$-valued 1form ϑ on $R F_{\nu}$. First we express $\eta^{[p]}$ and τ_{μ} in the way as in $(4,2)$ with ι inclusion:

$$
\begin{gathered}
\eta^{[p]}=T_{k}^{[p]} \vartheta^{k}+T_{k}^{[p]} \overline{\vartheta^{k}} \quad(p=1, \cdots, d), \\
\tau_{\mu}=T_{\mu, k} \vartheta^{k}+T_{\mu, k} \overline{\vartheta^{k}} \quad(\mu=2, \cdots, \nu) .
\end{gathered}
$$

Here all the $T_{k}^{[p]}, T_{k}^{[p]}, T_{\mu, k}$, and $T_{\mu, k}$ are constant along any fibre of $R F_{\nu}$. On the other hand, from $\vartheta^{[p]}=\rho_{p^{*}}\left(\theta_{1}\right)+\eta^{[p]}$ and $\theta_{1}=\theta_{\nu}+\tau_{\nu}+\cdots+\tau_{2}$,

$$
\begin{equation*}
\vartheta^{[p]}=\rho_{p^{*}}\left(\theta_{\nu}\right)+\rho_{p^{*}}\left(\tau_{\nu}\right)+\rho_{p^{*}}\left(\tau_{\nu-1}\right)+\cdots+\rho_{p^{*}}\left(\tau_{2}\right)+\eta^{[p]} \tag{4,9}
\end{equation*}
$$

on $R F_{\nu}$ for $p=1, \cdots, d$. Hence we have that on $R F_{v}$,

$$
\begin{gather*}
\vartheta^{i}=\vartheta^{i}, \tag{4,10}\\
\vartheta^{[1]}=\theta_{\nu}+\sum_{\mu=2}^{\nu}\left(T_{\mu, k} \vartheta^{k}+T_{\mu, k} \overline{\vartheta^{k}}\right)+T_{k}^{[1]} \vartheta^{k}+T \frac{T_{k}^{1]}}{\left[\overline{\vartheta^{k}}\right.}, \tag{4,11}\\
\vartheta^{[p]}=\rho_{p^{*}}\left(\theta_{\nu}\right)+\sum_{\mu=2}^{\nu}\left(\rho_{p^{*}}\left(T_{\mu, k}\right) \vartheta^{k}+\rho_{p^{*}}\left(T_{\mu, \bar{k}}\right) \overline{\vartheta^{k}}\right)+T_{k}^{[p]} \vartheta^{k}+T_{\bar{k}}^{[p]} \overline{\vartheta^{k}}, \tag{4,12}
\end{gather*}
$$

$$
\begin{equation*}
\vartheta^{r(p+1)}{ }_{s(p)}=b^{r(s+1)}{ }_{s(p), k} \vartheta^{k} \tag{4,13}
\end{equation*}
$$

From $(4,10)-(4,13)$, all the coefficients of the components of the $g_{c}\left(n_{d}\right)$-valued 1form ϑ on $R F_{\nu}$ with respect to the basis $\left\{\theta_{\nu}^{\lambda}, \vartheta^{k}, \overline{\vartheta^{k}}\right\}$ become constant along any fibre of $R F_{\nu}$, because $\rho_{p^{*}}$ is a linear representation of \mathscr{t}_{1}.

From now on, we will denote these $R F_{\nu}, K_{\nu}, M_{\nu}$ and θ_{ν} simply by $R F, K$, $M_{\text {red }}$ and θ respectively. The pair $(R F, \vartheta)$ will be called a reduced S_{c}-structure of (P, ω) over $M_{\text {red }}$, while $R F \rightarrow M_{\text {red }}$ is a principal K-subbundle of $\left.U(M, g)\right|_{M_{\mathrm{red}}}$. Here we should remark that as is obvious by its definition, $(R F, \vartheta)$ does not uniquely determined by the Kähler metric g on M.

We say that ϑ is of constant coefficients if and only if all the coefficients of the components of ϑ with respect to the basis $\left\{\theta^{\lambda}, \vartheta^{k}, \overline{\vartheta^{k}}\right\}$ are constant functions on $R F$, where θ^{λ} is defined by $\theta=\theta^{\lambda} \otimes E_{\lambda}$ for a basis $\left\{E_{\lambda}\right\}$ of \mathfrak{t}.

Proposition 4.4. Let (P, ω) be an S_{c}-structure over M and g the Kähler metric induced by (P, ω). Let f be a holomorphic and isometric transformation of (M, g). Then $R F$ and ϑ are invariant under the mapping $f_{*}: U(M, g) \rightarrow U(M, g)$, and in particular $f\left(M_{\text {rep }}\right) \subseteq M_{\text {red }}$.

Proof. By Theorem 3.1 (ii), f gives rise to $f_{4}: P \rightarrow P$ which satisfies $\left(f_{\mathbf{t}}\right)^{*} \omega=\omega$. Then in particular f leaves each component of ω invariant and hence the tensorial functions b^{p} are f_{4}-invariant in view of $(4,3)$. Since $R P_{2}=\left(b^{2}\right)^{-1} \Gamma_{H_{2}}$, $R P_{2}$ is invariant under f_{4} and so is $\left.\omega\right|_{P R_{2}}$. Similarly we see that f_{3} preserves $R P_{3}, \cdots, R P_{d}$ and ω restricted to any of them. By Proposition 4.3 (i), $\beta_{1}: P \rightarrow P_{1}$ maps $R P_{d}$ onto $R F_{1}$ isomorphically. Using the identification $P_{1}=U(M, g)$ by Proposition 3.1, we see that $\beta_{1} \circ f_{t}=f_{*} \circ \beta_{1}$. Hence $R F_{1}$ and ϑ are both $f_{*^{-}}$ invariant.

We will now examine the reduction procedure after that. To define $R F_{2}$ from $R F_{1}$, we have made the decomposition $(4,7)$ and defined θ_{1} by means of it. We see easily that θ_{1} and $\vartheta^{[p]}$ are f_{*}-invariant. Therefore the tensorial functions $T^{[p]}$ of $\eta^{[p]}=\vartheta^{[p]}-\rho_{p^{*}}\left(\theta_{1}\right)$ are f_{*}-invariant. Hence $R F_{2}$ is f_{*}-invariant. Recall that the remaining $R F_{3}, \cdots, R F_{\nu}$ have been defined by means of $\tau_{2}, \cdots, \tau_{\nu-1}$. As is easily seen, each of $\tau_{2}, \cdots, \tau_{\nu}$ is f_{*}-invariant and hence $R F_{3}, \cdots, R F_{\nu}$ are also f_{*}-invariant. On the other hand, ϑ has already been seen being f_{*}-invariant on $R F_{1}$.
q.e.d.

We will give below a few results concerning the homogeneity of Kahler submanifolds of complex space forms.

Proposition 4.5. Let (M, g) be an n-dimensional connected Kähler submanifold of $S_{c}(N)$ and (P, ω) the S_{c}-structure induced by the inclusion f. Let $(R F, \vartheta)$ be a reduced S_{c}-structure of (P, ω) over $M_{\text {red }}$ with structure group K. Suppose that ϑ is of constant coefficients. Then
(i) each connected component of RF is identified with an open subset of a certain right coset $\tau \cdot G$, where G is a connected Lie subgroup of $G_{c}(N)$ and $\tau \in G_{c}(N)$;
(ii) each connected component of $M_{\text {red }}$ is an open set of an orbit in $S_{c}(N)$ of the above Lie subgroup G of $G_{c}(N)$.

The method of proof, given below, of this proposition is due to Sulanke.
Proof. We may assume that the submanifold (M, g) is full in $S_{c}(N)$. We denote by F the imbedding $R F \rightarrow G_{c}(N)$ which is defined by the composition of the canonical injection $R F \rightarrow P$ and the inclusion mapping $P \rightarrow G_{c}(N)$. Then we have $F^{*} \Phi=\vartheta$, where Φ denotes the Maurer-Cartan form of $G_{c}(N)$. Choosing a basis $\left\{E_{\lambda}\right\}$ of \mathfrak{t}, let $\left\{\theta^{\lambda}\right\}$ be the components of the reduced connection form θ of $R F$ with respect to this basis. Then by $(4,10)-(4,13)$ each component of ϑ can be expressed in the form

$$
\begin{cases}\vartheta^{i}=\vartheta^{i} \tag{4,14}\\ \vartheta_{B}^{A}=c_{B, \lambda}^{A} \theta^{\lambda}+c_{B, k}^{A} \vartheta^{k}+c_{B, \bar{k}}^{A} \overline{\vartheta^{k}} & (A, B=1, \cdots, N) \\ \vartheta^{r}=0 & (n<r \leq N)\end{cases}
$$

where the coefficients c^{\prime} s are certain \boldsymbol{C}-valued functions on $R F$. By the assumption on ϑ the c^{\prime} s are constant. Let $\Psi=\Psi^{\lambda} \otimes E_{\lambda}$ be the t-part of Φ.

Now we consider the differential system

$$
\begin{cases}\Phi^{i}=\Phi^{i} & (i=1, \cdots, n) \tag{4,15}\\ \Phi_{B}^{A}=c_{B, \lambda}^{A} \Psi^{\lambda}+c_{B, k}^{A} \Phi^{k}+c_{B, k}^{A} \Phi^{k} & (A, B=1, \cdots, N) \\ \Phi^{r}=0 & (n<r \leq N)\end{cases}
$$

Since each term of $(4,15)$ is a left invariant 1-form on $G_{c}(N)$, the distribution defined by $(4,15)$ is $G_{c}(N)$-invariant. Moreover, since $\left\{\Psi^{\lambda}, \Phi^{k}, \Phi^{k}\right\}_{\lambda, k}$ are linearly independent, the dimension of our distribution amounts to $\operatorname{dim} \boldsymbol{t}+2 n$, which coincides with $\operatorname{dim} R F$.

Let M_{0} be a connected component of $M_{\text {red }}$ and $R F^{0}$ a connected component of $\left.R F\right|_{M_{0}}$. Then $(4,14)$ shows that $F\left(R F^{0}\right)$ is an integral manifold of $(4,15)$. Therefore it turns out that the differential system $(4,15)$ has a maximal dimensional solution and it is involutive. Since the equation $(4,15)$ is of constant coefficients, the maximal integral manifold of $(4,15)$ through the identity element of $G_{c}(N)$ becomes a connected Lie subgroup of $G_{c}(N)$, which we denote by G, and any other maximal integral manifold of $(4,15)$ is a right coset $\tau \cdot G\left(\tau \in G_{c}(N)\right)$. Hence (i) follows.

At the same time, we see that M_{0} is an open set of a G-orbit in $S_{c}(N)$, because it is the image of $R F^{0}$ under the projection $G_{c}(N) \rightarrow S_{c}(N)$ with which the G-actions commute. Thus we have proved (ii).
q.e.d.

Theorem 4.1. In addition to the condition of Proposition 4.5, suppose that
(M, g) is complete. Then (M, g) is a homogeneous Kähler submanifold of $S_{c}(N)$.
Proof. By Proposition 4.5 (ii), there is a non-empty open subset M^{\prime} of M which is, at the same time, an open subset of a G-orbit in $S_{c}(N), G$ being a Lie subgroup of $G_{c}(N)$. Since the submanifold M is connected and analytic, M is necessarily contained in that G-orbit. By the assumption that (M, g) is complete, M must coincide with that orbit. Then we see that each element of G induces a holomorphic isometry of M, because it is an element of $G_{c}(N)$ and preserves M. This implies that M is homogeneous.

Remark 4.1. Theorem 4.1 is valid without the assumption in Remark 2.1.
Conversely we have the following
Theorem 4.2. Let (M, g) be a connected homogeneous Kähler submanifold of $S_{c}(N)$ and Aut (M, g) the Lie group of holomorphic isometric transformations of M.
(i) The S_{c}-structure (P, ω) induced by the inclusion $f: M \rightarrow S_{c}(N)$ is defined over the whole M (cf. Remark 2.1).
(ii) Let $(R F, \vartheta)$ be a reduced S_{c}-structure of (P, ω). Then
(a) RF is defined over the whole M, i.e., $M_{\mathrm{red}}=M$;
(b) ϑ is of constant coefficients;
(c) the Aut (M, g)-action on $R F$ is simply transitive, i.e., Aut $(M, g) e=R F$ $(e \in R F)$.

Proof. We set $G=\operatorname{Aut}(M, g)$. We may assume that f is full. By the rigidity theorem of Calabi, any $\tau \in G$ extends to a unique holomorphic isometric transformation $\rho(\tau)$ of $S_{c}(N)$, and we have an injective homomorphism $\rho: G \rightarrow G_{c}$ (N). Hence we see that all the things used to define $O^{p}(f)$ for $p=1, \cdots, d(f)$ are invariant under τ and $\rho(\tau)$. This together with our assumption that G is transitive on M implies that the rank of $O^{p}(f)$ is constant on M for $p=1, \cdots, d(f)$. Thus we get (i).

Next, we will prove (ii), By Proposition 4.4, G acts on $R F$ and G is transitive on M. Hence (a) follows. Let $F: R F \rightarrow G_{c}(N)$ be the imbedding defined in the proof of Proposition 4.5. Then we have $\vartheta^{A}=F^{*} \Phi^{A}$ and $\vartheta_{B}^{A}=F^{*} \Phi_{B}^{A}$ for any $A, B=1, \cdots, N$ and moreover $\theta^{\lambda}=F^{*} \Psi^{\lambda}$ for any λ. Since F commutes with both the left G-actions on $R F$ and $G_{c}(N)$, all the $\vartheta^{A}, \vartheta_{B}^{A}$, and θ^{λ} are G invariant, because the corresponding components of Φ are left invariant. Hence the coefficients in $(4,14)$ are G-invariant. Since they are constant along any fibre of $R F$ and G is transitive on M, we see that they are constant on $R F$. Thus we have shown (b).

Finally, we will prove (c). In the following, we identify $R F$ with its image
$F(R F)$. We may assume that $R F$ contains the identity element e_{0} of $G_{c}(N)$. Otherwise, we multiply a certain element of $G_{c}(N)$ to both F and M. Since $e_{0} \in R F$, it follows from Proposition 4.4 that G is contained in $R F$. Denote by $R F^{0}$ the connected component of $R F$ through $e_{o} \in G_{c}(N)$ and by G^{0} the connected component of G containing e_{0}.

First, we claim that $R F^{0}=G^{0}$. From Proposition 4.5 (i) and the above (b), it follows that there exists a connected Lie subgroup G_{1} of $G_{c}(N)$ which is the maximal integral manifold of $(4,15)$ through e_{0} and includes $R F^{0}$ as its open set, because $R F^{0}$ contains e_{o} of G. As we have seen in the proof of Theorem 4.1, G_{1} acts on M as holomorphic and isometric transformations. Hence G_{1} is a subgroup of G^{0} and in particular $R F^{0}$ is a subset of G^{0}. On the other hand, since G^{0} leaves $R F^{0}$ invariant by virtue of the connectivity of them and the latter contains e_{o}, we see $G^{0} \subset R F^{0}$. Therefore we have $G_{1}=G^{0}=R F^{0}$ and in particular $R F^{0}$ is the maximal integral manifold of $(4,15)$ through e_{0}.

Next, let K denote the structure group of our principal bundle $\pi: R F \rightarrow M$. Then the image of the fibre $\pi^{-1}\left(\pi\left(e_{o}\right)\right)$ by F is just the subgroup K of $G_{c}(N)$, because F commutes with both the right K-actions on $R F$ and $G_{c}(N)$. For any $a \in K$, we denote by $R F(a)$ the connected component of $R F$ containing a.

We will show that $R F(a)=a \cdot R F^{0}$. For that purpose, we will first show that $R F(a)$ is the maximal integral manifold through a of $(4,15)$. If we replace our f by $f^{\prime}=a^{-1} \cdot f$, then $F^{\prime}=a^{-1} \cdot F$ becomes the corresponding imbedding of $R F$ into $G_{c}(N)$. Moreover $F^{\prime}(R F(a))=a^{-1} \cdot F(R F(a))$ turns out to be the connected component of $F^{\prime}(R F)$ containing e_{0} and hence it is the maximal integral manifold through e_{0} of $(4,15)$ as we have seen above. This implies that the integral manifold $R F(a)$ is maximal, because $(4,15)$ is left invariant. On the other hand, by the same reason, $a \cdot R F^{0}$ is also its maximal integral manifold through a. Hence we must have $R F(a)=a \cdot R F^{0}$.

From this we have $R F=K \cdot R F^{0}$. The left multiplication by each element of K preserves $R F$ and also its base manifold M. This shows that K is a subgroup of G. As we have seen above, $R F^{0}$ is also a subgroup of G. From these facts, we see that $R F$ is contained in G. Thus we have completed the proof of Theorem 4.2.
q.e.d.

References

[1] W. Ambrose and I.M. Singer: On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647-669.
[2] G.E. Bredon: Introduction to compact Transformation Groups, Academic Press, New York, 1972.
[3] E. Calabi: Isometric imbedding of complex manifolds, Ann. of Math. 58 (1953), 1-23.
[4] E. Cartan: Théorie des groupes finis et continus et la méthode du repère mobile, Gauthier-Villars, Paris, 1937.
[5] P.A. Griffiths: On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J. 41 (1974), 775-814.
[6] P. Griffiths and J. Harris: Algebraic geometry and local differential geometry, Ann. scient. Ec. Norm. Sup. 4^{e} série, 12 (1979), 335-432.
[7] K. Jänich: Differenzierbare G-Mannigfaltigkeiten, Lect. Notes in Math. 59, Springer-Verlag, Berlin-Heidelberg-New York, 1968.
[8] R. Jesnen: Higher order contact of submanifolds of homogeneous spaces, Lect. Notes in Math. 610, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
[9] S. Kobayashi and K. Nomizu: Foundation of differential geometry, I, II. Wiley (Interscience), New York, 1963 and 1969.
[10] R. Sulanke: On E. Cartan's method of moving frames, Proc. Colloq. Differential Geometry Budapest, 1979, 681-704.
[11] R. Sulanke and A. Švec: Zur Differentialgeometrie der Untermannigfaltigkeiten eines Kleinschen Raumes, Beiträge zur Algebra und Geometrie, 10, Halle, 1980, 63-85.
[12] H.-S. Tai: On Frenet frames of complex submanifolds in complex projective spaces, Duke Math. J. 51 (1984), 163-183.
[13] R. Takagi and M. Takeuchi: Degree of symmetric Kählerian submanifolds of a complex projective space, Osaka J. Math. 14 (1977), 501-518.

Department of Mathematics Osaka University
Toyonaka, Osaka 560, Japan

[^0]: 1 This work was supported by Grant-in-Aid for Scientific Research, The Ministry of Education, Science and Culture.

[^1]: 2 This means that $O^{p}(f)$ is a J-invariant subbundle of $f * T S_{c}(N)$, where J is the almost complex structure on $f * T S_{c}(N)$ induced by f from that on $T S_{c}(N)$.

