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0. Introduction

Let KO, KU and KC be the real, complex and self-conjugate K-spectrum
respectively. Following [14] we call a CW-spectrum X a Wood spectrum if
there exists a KO-module equivalence f: KU— KO A X, and an Anderson spectrum
if there exists a KO-module equivalence g: KC—KOAX. The elementary spe-
ctra P and @ taken to be the cofibers of the maps : Z'—>3° and »*: 3> 3" respe-
ctively are known as typical examples of Wood and Anderson spectra [3], where
n: S'—>3° is the stable Hopf map of order 2. Recently Mimura, Oka and Yasuo
[14] gave some characterizations of finite CW-complexes whose suspension spec-
tra are such spectra. The following theorem is a spectrum version of one of their
results.

Theorem 0. i) X is a Wood spectrum if and only if KUX=~Z®DZ,
KU, X=0 and the conjugation t, on KUX is represented by the matrix ((1) 5)

il) X s an Anderson spectrum if and only if KU X=Z, KU, X=Z7, KO,X=0=
KOy X and the conjugation ty acts as the identity on both KUX and KU_,X.

Let E be an associative ring spectrum with unit. Given CW-spectra X, Y
we say that X is quasi Ey-equivalent to Y, written XY, if there exists a map
h: Y—=EAX such that the composite (u 1) (1 h): EAY—->EAEAX—EAX is
an equivalence. We are interested in the quasi K-homology equivalences, especi-
ally the quasi KOx-equivalence. According to our definition, a CW-spectrum
X is said to be a Wood spectrum if Xz P and an Anderson spectrum if X735 Q.

Let H be a finitely generated abelian group which is 2-torsion free. If the
cyclic group Z/2 of order 2 acts on H, then H admits a direct sum decomposition
H=A®BPCHC such that the action p behaves as p=1 on 4, p=—1 on B

and p=<(1) (1)) on CPC respectively [7]. For any abelian group G we denote by
SG the Moore spectrum of type G. The Moore spectrum SZ/m is constructed
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m i .
by the cofiber sequence E°—>E°—i>SZ/ml>21. In this note our purpose is a de-
velopment of the work of Mimura-Oka-Yasuo [14]. We will first show the fol-
lowing results (cf. [6]) which of course contain Theorem 0.

Theorem 1. Assume that KU,X is finitely generated, 2-torsion free and
KU, X=0. Then there exist abelian groups A', A”, B', B” and C so that XzsY V
(PASC) where Y denotes the wedge sum SA'N S:SB'\/ ZASA” N Z5SB” of the
Moore spectra (Theorem 2.4).

Theorem 2. Assume that KU, X and KU X are finitely generated, 2-torsion
free. If the conjugation ty acts as the identity on KUyX and KU,X, then there
exist abelian groups A', A”, D', D" and G so that Xgo Y V (Z'Q A\ SG) where Y
denotes the wedge sum SA'N/S'SD'\V/Z'SA”NVZSD” of the Moore spectra
(Theorem 3.4).

As an immediate corollary of Theorem 1 we can determine the quasi KOy-
type of the complex projective n-space CP” (Corollary 2.5), since KU,CP" is the
free abelian group of rank # and KU,CP"=0 [1]. However we need to dis-
cuss more richly to determine the quasi KOy-type of the real projective n-space
RP" [20, Theorem 5], since KU,RP" is not 2-torsion free for any n=2. In
fact, KU,RP"=0 and KU,RP"=Z|2' or Z@Z|2® according as n=2s or 2s-+1
[1], and besides KO,RP"=0 if n=1, 2, 3,4, 5 mod 8, KO,RP"=0 if n=0, 1, 5,
6,7 mod 8 and KO;RP"=0 for all n [8].

In order to state another main result we will only need the following ele-
mentary spectra with a few cells introduced in (4.1), (4.4) and (4.16). Let
M,,, @z, Vs, and Wy, (m=1) denote respectively the cofibers of the maps

in: S — SZ[2m s 52— SZ[2m
i57: S}SZJ2 - SZ|m and in+4j: S'SZJ2 — SZ[Am

where 7: 52—>SZ/2n is a coextension of n with j7=2» and 7%: S'SZ/2n—3=" is an
extension of » with 7i=7.

In the case when KU,X has 2-torsion and KU,X=0, we can vext show a
corrsponding theorem (Theorem 5.2) to Theorem 1 under certain restrictions,
using these elementary spectra. This theorem implies the following result,

which is useful in determining the quasi KOy-type of such a CW-spectrum as
RP".

Theorem 3. Assume that KU X=0 and KO, X=0=KO,X.
i) If KU, X=Z2m with m=2°,5=0, then Xgo Z*SZ[2m, V,,,, Ws,(m=4n) or
S*Wea(m=4n).
i) If KUX=ZDZ|2m withm=2°,s=0, then Xgp Z*V Y, VY, M,,,, Z*M,,,
S2Q,, or 24Q,, where Y is one of the four elementary spectra given in i). (Cf. [20,
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Theorem 2.5].)

This paper is organized as follows. As a preliminary, in §1 we will first
recall some relations among KO, KU and KC' theory [3] and then give basic
tools (Proposition 1.1 and Lemma 1.3) to prove our main results. After study-
ing the KOy-module structures of KO4X under the situations assumed in the
theorems (Propositions 2.3 and 3.2), we will prove Theorems 1 and 2 (Theorems
2.4 and 3.4) respectively in §2 and §3. In §4 we will introduce some ele-
mentary spectra with a few cells such as M,,, @,y, V>, and W, and then compute
their KU and KO homologies (Propositions 4.1, 4.2, 4.4 and 4.5). By making
use of the results obtained in §4 we will devote ourselves to prove Theorem 5.2
in §5, and finally show Theorem 3 as a consequence of this theorem.

In this note we will work in the stable homotopy category of CW-spectra.

1. Real, complex and self-conjugate K-theory

1.1. Let KU be the BU-spectrum representing the complex K-theory and
KO the BO-spectrum representing the real K-theory. Both KU and KO are as-
sociative and commutative ring spectra with unit. These spectra are related by
the Bott cofiber sequence

al &
(1.1) sik0 ™ k0% kv & k0
where 7: ='—3° is the stable Hopf map of order 2 and zy: Z?2KU—>KU denotes
the Bott periodicity. The complexification &: KO—KU and the conjugation
t: KU—KU are both ring maps, but the realification &,: KU—KO is merely a
KO-module map. As is well known, the equalities &, &y=2 and &, =141
hold.

Let KC be the BSC-spectrum representing the self-conjugate K-theory,
which is useful in studying the relation between KO and KU theory (see [3],
[6]). This spectrum KC is also an associative and commutative ring spectrum
with unit, and it is obtained as the fiber of the map 1—¢: KU—-KU. Thus we
have a cofiber sequence
(1.2) ke ko™ S sk I sikc
(see [3, Theorem 1.2]).

Since &y &, 7y'=ny'(1—1t), we get a cofiber sequence

2 1
(1.3) sx0 2L k0 % ke T8 K0

making the diagram below commutative
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SIKU — KU
Yy | V&t
KO — KC —> KO —> SKO
ec Tﬂ'El 772/\1
(14) Il ¢l N I
& oyt 1
K0 3 kU ™Y sik0 A sikO
g (1—12) | } &y
SIKU — SKU

Here z.: S*KC—KC denotes the periodicity satisfying {z.==4¢ and zoy=vx}.
The maps & and ¢ are ring maps such that {&;=¢&y, and the maps v and T are
KO-module maps such that ry=¢, [6].

Let P denote the suspension spectrum whose second term is the complex
projective space CP?. Thus the spectrum P is constructed by the cofiber se-
quence

o
(L.1y siAsplise

Take the element u s KU, P satisfying (6op1)x #=(12p)x ¢o and (mwyp jp)x =1ty
where ¢, KO,3° and ¢y, KU,3° denote the units. Consider the map Wp(u):
KU—KOAP definied to be the composite (Egpl) (uyal) (1#): KU-KUAKU
AP—=KUAP—-KOAP where uy denotes the multiplication of KU. Since
Wp(u) Ey=1,ip and (1,7p) Wp(u)=Epmy', we can use Five lemma to show that
Wp(u) is an equivalence. As is well known, this result says that the Bott cofiber
sequence (1.1) is produced by the cofiber sequence (1.1)" smashed with KO.
The map Wy(u): KU->KOAP is called the Wood equivalence [3, Theorem 2.1].

Let @ denote the suspension spectrum obtained as the cofiber of the com-
posite square %°>. Thus

, 2 <ol A Jo o
(1.3) 2535 Q53

is a cofiber sequence.

Take the element v KC_, @ satisfying (7o1)x v=(1%0)x to and (mwcn jo)x v=
tc where (€ KC,3" denotes the unit. Consider the map Wy(v): KC—-KOAQ
defined to be the composite (7,1) (ucpl) (1,0): KC—Z'KCAKCNAQ—>Z'KCAQ
—KOAQ where u¢ denotes the multiplication of KC. The map Wy(v) is also
an equivalence, since Wy(v) Ec=1,i¢ and (1, jo) Wo(v)=7=c'. Hence the cofiber
sequence (1.3) is produced by the cofiber sequence (1.3)" smashed with KO.
The map Wo(v): KC—KO AQ to be the KC-analogous of the Wood equivalence,
is called the Anderson equivalence (see [3, Theorem 3.1]).
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Combining the two cofiber sequences (1.1)" and (1.3)" we get the following
cofiber sequence

(12 Q- pP2E s2ps5ig,

which yields the cofiber sequence (1.2) by smashing with KO.
Let R denote the suspension spectrum constructed by the cofiber sequence
J
E3LE°—£R—£E4 Then we have two cofiber sequences

oJp

(1.5) 5'1Q » R— P28 529

(1.6)’ 2P > R—>Q 2% s3p

which yield cofiber sequences

(1.5) sk %) ko sik0 SV IE koo so e
(1.6) sk Eo™ =8 ko siko eV Tele ko T sk

(see [3, Theorems 3.2 and 3.3]).

1.2. Let E be an associative ring spectrum with unit and F any associa-
tive E-module spectrum. Given a CW-spectrum Y we denote by [EAY, Fl;
the subgroup of [EA'Y, F] consisting of all the homotopy classes of E-module
maps. We assign to any map f: Y—F the E-module map «z(f)=ps(1,f):
ENY—ENAF—F where uyp denotes the E-module structure map of F. The as-
signment «z: [Y, F]=[EAY, F]; is evidently an isomorphism.

A map f: Y—F is said to be a quasi Ey-equivalence if «z(f): EANY—F
becomes an equivalence. For any CW-spectra X, Y we say that X is quasi E-
equivalent to Y if there exists a quasi Ey-equivalence f: Y—>EAX. In this case
we write X7 Y

Consider the homomorphism #y: [Y, F1—=Homg,(EY, Fy) defined by #(f)
=rg(f)x, where Exy=nyE and Fy=mn,F. 'Taking E=KU we have a universal
coefficient sequence

(17) 0 Extey,(KUs_, Y, Fy) = [Y, F] % Homyy,(KUyY, Fy) — 0

for any associatvie KU-module spectrum F (use [1, Theorem 13.6]). In par-
ticular, we note that

(1.8) Ryt [Y, F1— Homyy (KUY, Fy)

is an isomorphism if KUY is free, or if KU, Y=0=F,.
Taking E=KO and Y=SG, the Moore spectrum of type G, we have a short
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exact sequence

(1.9) 0 Extyo(KOx_,SG, Fy) — [SG, F] % Homo,(KO4SG, Fy) = 0

for any associative KO-module spectrum F, if the abelian group G is 2-torsion
free.

Given two CW-spectra X, W there exists a unique CW-spectrum F(X, W),
called the function spectrum, with a natural isomorphism Dy y: [Y, F(X, W)]—
[XAY, W] for any CW-spectrum Y (see [12] or [18]). Let DX denote the
Spanier-Whitehead dual spectrum of X. Thus DX is just the function spectrum
F(X, S) where S is the sphere spectrum.

The elementary spectra P and @ are both self-dual in the sense that DP=
S72Pand DQ=37%Q. So there exist duality isomorphisms D,: [Z?Y, PA X]—
[PAY, X]and Dg: [}Y, QA X]—=[QAY, X] for any CW-spectra X, Y. Let
#=KU'P be the dual element of (zy\1)su€KU,P and 9 KC°Q the dual
element of (z;\1)xvEKC;Q. Then the element # satisfies i #=¢y and (77"«
#=j%to, and similarly the element ¥ satisfies 1§ 9=1¢; and (77¢")x D=j§¢o. Mak-
ing use of these equalities and Five lemma we can show that xxo(#): KOAP—KU
and xxo(9): KO AQ—KC are both equivalences, which give the inverses of Wp(u)
and Wy(v) respectively. Thus

(1.10) #: P->KU and ©:Q—>KC are both quasi KOy-equivalences.
Moreover we note that the following diagram is commutative

(1.11) S'P > Q - P — 3?P
@l v \ @ \a
SIKU - KC — KU — 3!KU

in which the cofiber sequences (1.2), (1.2)" are involved (cf. [3, Lemma 3.2]).
For any maps f: Y>KUAX and g: Y=KCAX we define a map ep(f):
PAY—=KUAX to be the composite (uypl) (1,f) (#\1): PAY—-KUAY—
KUANKUAX—-KUAZX, and similarly a map eq(g): Q AY—KCAX to be the
composite (ucal) (10 2) (TA1): QAY—->KCAY—->KCAKCAX—-KCAX. Ob-

viously «xo(ep(f))=rxu(f) (kxo(#)A1) and xgc(ee(g))=rkc(g) (£xo(F)a1). There-
fore it follows immediately from (1.10) that

(1.12) 1) f: Y->KUAX is a quasi KU y-equivalence if and only if ep(f): PAY
—>KU A X is a quast KOg-equivalence.

i) g: Y->KCAX is a quasi KCy-equivalence if and only if eq(g): QA\NY—
KC A\ X is a quasi KOy-equivalence.

The following result, which states a relation between quasi KUy- and KOx-
equivalences, is very useful in proving our main theorems.
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Proposition 1.1. A map h: Y->KOAX is a quasi KOy-equivalence if and
only if the composite (Ey 1) h: Y—>KONX—>KUAX is a quasi KU x-equivalence.
(Cf. [15, Theorem 8.14] or [13].)

Proof. Given a quasi KOy-equivalence h: Y—>KOAX we consider the
commutative diagram

'Y - Y - PAY - Y
X h 2% 24
S')KOAX - KOANX — KUAX — S’KOAX

involving the cofiber sequences (1.1), (1.1)', where h,=ep((éypl) k). Applying
Five lemma we see that 4, is a quasi KOy-equivalence. Thus (1.12)1) shows
that (Eyn1) & is a quasi KUy-equivalence.

Conversely we assume that (Eya1) h: Y=KUAX is a quasi KUy-equiva-
lence. Use the two commutative diagrams

SIPAY -  QAY — PAY — SPAY
bl hy Vh vh
S'IKUAX - KCAX — KUAX — S!KUAX
SPAY - RAY — QAY — SPAY
hl hy | Vh Vh
S’ KUAX — KOARAX — KCAX — SKUAX

involving the cofiber sequences (1.2), (1.2)’, (1.6) and (1.6)’, where h,=ep((Ey,1)h),
hy=eo((€cal) b) and h;=(T'\1) (1,4) for the switching map T: RA KO—-KOAR.
Then Five lemma shows that 4, and hence %; is a quasi KOy-equivalence as
h, is. This implies that Ay: KO4Y—>KO,X is an epimorphism as well as a
monomorphism, because KOAR=KOVZ*KO. Thush: Y->KOAX is a quasi
KOy -equivalence.

1.3. Letf: Y—=KUAX be a map satisfying (¢£,1) f=f. Then there exists
amap g: Y>KCAX such that ({,1)g=f. Given such maps f, g we have a
commutative diagram

'Y - Y - PAY - 3V
(1.13) fi gl b ex(f) Lf
SIKUAX = KCAX - KUAX — S’)KUAX

involving the cofiber sequences (1.1), (1.1)’, because yzy {=n,1: ' KC—KC.
In other words, there exists a commutative diagram

SIPAY —- QAY — PAY — ZSPAY

(1.14) ex(f) | ¢o(8) ¥ bex(f) bex(f)
SIKUAX — KCAX - KUAX — S KUAX



472 Z. YOSIMURA

involving (1.2), (1.2)’, since [4, Theorem 1.3] says that yuy(1,8)=pc(vAl):
KUAKC—Z'KC. Applying Five lemma and (1.12) we see that

(1.15) g: Y>KCAX is a quasi KCy-equivalence if f: Y->KUAX is a quasi
KU y-equivalence.

Lemma 1.2. Assume that [Y, S'KU A X]=0 and the map n%: [Y, Z*KON
X]—[Y, 22 KON X] is trivial.  If a map f: Y—-KUAX satisfies (t\1) f=f, then
there exists a map h: Y—>KOAX such that (Ey,1) h=f.

Proof. Under the assumption that [V, ST KUAX]=0, ({\1)x: [PAY,
2?’KCAX]—[PAY,3*KUAX]is a monomorphism. Then (1.14) implies that
(Ec€omi' A1) ex(f)=eq(g) (fojrnl).- Hence there exists a map hz: RAY—=KOA
RA X making the diagram below commutative

tojral
S QAY—- RAY —» PAY —/5 3SQANY
eq(8) by | ep(f) | eq(g)
S'KCAX - KOARAX - KUANX —— SKCAX
Ec€omu A

where the rows are induced by the cofiber sequences (1.5), (1.5)'. We here
consider the commutative diagram

1 il 1
Y 25 RAY o PAvY A sty BAL soAY
he | yex(f) | eo(g)
KOAX — KOARAX —KUAX —— S’)KOAX — S(KCAX
ALRA Eomy'al &cal

Since Ecx: [V, SEKOAX]—[Y, S2KC A X] is a monomorphism by our second
as sumption, the composite (Eoz5'A1) ep(f) (ipp1): Y—>Z2KOA X is trivial. So
we can find a map h: Y—>KOA X such that (E;,1) h=f.

In proving our main theorems we shall often use the following result, whose
proof is given in [20, Lemma 1.1 and (1.7)].

Lemma 1.3. Let f: Y—>KU A X be a map satisfying (¢\1) f=f and k: W—
Y be a map inducing an epimorphism k*: [Y, S'KU A X]—=>[W, S’ KUAX]. Then
there exist maps hy: W—KOAX and g: Y—KC A\ X making the diagram below
commutative

k
w > Y f

ho | gl N
KOANX — KCAX — KUANX
EN1 Al

if the composite (Eony'n1) fh: W—S*KOAX is trivial, in particular if (pp1):
[W, 3 KOAX]—[W, 3’ KO A X] is trivial.
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1.4. Let VE denote the Anderson dual spectrum of E (see [4], [5], [9]
or [19, I and II]). The CW-spectra E and VE are related by the following uni-
versal coefficient sequence

0 — Ext(Ex_, X, Z) - VE*X — Hom(ExX, Z) - 0.

The Anderson dual spectrum VE is just the function spectrum F(E, VS) where
VS is the Anderson dual of the sphere spectrum .

We now assume that E is an associative ring spectrum with unit. Note
that the Anderson dual VE is an associative E-module spectrum [19, II]. To
any map f: Y>EAX we may assign the E-module map «z(f)*: F(X, VE)—
F(Y,VE) where F(W,VE)=F(W, F(E,VS))=F(EAW,VS). Evidently it
follows that

(1.16) the E-module map rg(f)* is an equivalence whenever f: Y->ENX is a
quast Ex-equivalence.

For any CW-spectra X, Y we say that X is quasi E*-equivalent to Y if there
exists an E-module map g: F(X, E)—F(Y, E) which is an equivalence. Recall
that VKU=KU as KU-module spectra, VKO=3*KO as KO-module spectra
and also VKC=3'KC as KC-module spectra (see [4] or [19, I]). Then we
obtain

Proposition 1.4. Let E denote the K-spectrum KU, KO or KC. If X is
quasi Ey-equivalent to Y, then X is quasi E*-equivalent to Y.

Proof. If amap f: Y—=EAX is a quasi E4-equivalence, then the E-module
map f*: F(X, E)->F(Y, E) induced by f is an equivalence because we may
replace E with VE in this case.

A CW-spectrum W is said to be of finite type if z;W¥ is finitely generated
for each 7. Notice that EAW=VV(EAW)=F(F(W,VE),VS) if EAW is of
finite type (see [19, I] or [5]). Then we obtain

Proposition 1.5. Let E denote the K-spectrum KU, KO or KC. Assume
that both ENX and ENY are of finite type. Then X is quasi Ey-equivalent to Y
if and only if X is quasi E*-equivalent to Y.

Proof. We have only to prove the “if”’ part. Let g: F(X, E)—>F(Y, E)
be an E-module equivalence. Under the finiteness assumption on EAX and
EAY we get an E-module map g*: EA Y—E A X which is also an equivalence,
by replacing E with VE.

For the Spanier-Whitehead dual spectrum DW=F(W, S) there exists an
equivalence §: DW AE—F (W, E) if W is finite. Note that the equivalence J is
an E-module map when E is an associative ring spectrum. As is easily seen, we
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have

Corollary 1.6. Let E denote the K-spectrum KU, KO or KC. Assume
that X and Y are finite CW-spectra. Then X is quasi Ey-equivalent to Y if and
only if DY is quasi Ey-equivalent to DX.

2. Wood spectra

2.1. Let H be a finitely generated abelian group which is 2-torsion free.
Assume that the cyclic group Z/2 of order 2 acts on H. 'Thus the abelian group
H possesses an automorphism p: H—H with p’=1. By applying the integral
representation theory of the cyclic group Z/2 [7] we observe that H has a direct
sum decomposition H=ASBHCPHC with C free, on which the Z/2-action p
behaves as follows:

(2.1) p=1lonAd, p=—1lonB and p:((l) é)onCéBC.

The conjugation t: KU—KU gives rise to a Z/2-action ¢y on KU.X for
any CW-spectrum X. We first deal with a CW-spectrum X such that KU X
and KU, X are decomposed into the forms KU X=APBPHCHC and KU, X ==
DPEDFDF respectively, on which the conjuagtion #4 behaves as follows:

(2.2) t« =1lonAdAorD, ty,=—1onBorE, and
by = ((1) (1)> on CPC or FOF.

For such a CW-spectrum X we will study K-homologies KC'4X and KO, X.

Lemma 2.1. i) There are short exact sequences

0— DP(EQZI2)PF — KC,X — AP (B+Z[2)HC — 0

0— (ARZ[2)®BHC — KC, X — DP(E+Z[2)DF — 0

0— (DRZ2)PEDF — KC, X — (AxZ[|2)OBHC — 0

0— AP(BRZ2)PC — KC:X — (D+Z|2)PEPF — 0.
i) KOXQZ[12]=(ADC)Q Z[1/2], (DOF)Q Z[1/2], B C)Q Z[1/2] or
(EPF)QZ[1/2] corresponding to i=0, 1,2 or 3 mod 4.
iii) If KU,X is 2-torsion free, then the 2-torsion subgroup KO, XxZ[2> of KO, X
is a Z|2-module.

Proof. i) Use the long exact sequence induced by the cofiber sequence
(1.2).

ii) Use the exact sequence 0—-KO,XQZ[12]-KU,XQZ[1/2]—
KU, ,X®Z[1/2]-KO,_, XQZ[1/2]—0 induced by the cofiber sequence (1.1).

iii) Under the 2-torsion freeness assumption on KU, X, the complexifica-
tion &yy: KO, X—KU,X restricted to the 2-torsion subgroup KO;X%Z/2" is
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trivial. 'Then it follows that 2(KO,;X%Z[2*)=0 because &,&,=2.

Lemma 2.2. Assume that KU,X=0. Then
i) KO XPKOX=(AQZ[2)D(B%Z[2) and
KO, X®PKO,X = (AxZ|2)D(BRZ|2).
ii) 0—» APBRZ/2)PC - KOXPKO,X - AD(B+Z[2)BC — 0
00— (AQRZ2)BBPHC — KO,XPKOX — (A*Z|2)PBHC — 0

are short exact sequences.

Proof. Consider the exact sequences

0 - KC,X — KO,X®KO0,X — KUX 2 KC,X - KO, X®KO0,X — 0
0 > KC,X — KO,X®KOX — KU,X 22 KC,X — KO, XBKO.X — 0

induced by the cofiber sequence (1.5). Here the homomorphisms ¢,: AP BPH
CHC— (A+Z2)PBHC and ¢,: ADBDHCPHC—-AP (B+Z/2)PC induced by
the map &:&ny': KU—3?KC, are respectively expressed as g,(a, b, ¢;, ¢;)=
(0, 28, c;—c,) and @y(a, b, ¢,, ¢;) = (2a, 0, ¢;+c,) because L& Eony'=ny' (1—1).
The result is now immediate.

2.2. We here deal with a CW-spectrum X such that KU, X is finitely
generated, 2-torsion free and KU, X=0. In this case KUy,X has a direct sum
decomposition KU X=APBPCHC with C free, on which the conjugation 74
behaves as (2.2).

Proposition 2.3. There are direct sum decompositions A=A'PA" and B==
B'@®B” with A”, B” free, so that KOywX = (KO4+QA")B(KOx_,QB')B(KOx._,
QRA")B(KOx_¢B")D(KU4xQC) as KOy-modules.

Proof. Consider the exact sequences KU2,~+2X—>KC2,-X1E£'.K02,-+1X (%)

KO,;,s X—0 induced by the cofiber sequence (1.5). Set KO, X=A4,, KO;X=4;,
KO,X=B, and KO,X=B,;, all of which are Z/2-modules by Lemma 2.2 i).
Since 4 and B are both 2-torsion free, we can choose direct sum decompositions
KCX=A'"®A"PC and KC,X =B'PB”"PC so that A'QZ[2=A,, A" QZ[2==
As, B'®Z|2==B, and B"®Z|2==B,, and moreover r,, yr, are both the canonical
epimorphisms (use [11, §20]). Here A", B” may be taken to be free.

The commutative diagram (1.4) gives rise to the following diagram

KOy X — KOy, X — KCy X — KOy s X — 0

V I ’ V
0— KOz,'_IX—* KOZiX__) KUz,'X—> KOzi_2X—> KOz,'._lX_> 0

with exact rows. Denote by L,; the cokernel of ny4: KO, X—KO,X. Itis



476 Z. YOSIMURA

just the kernel of (t7¢')y: KCy; X—KO,;_;X. Since the homomorphism v, is
induced by the pair (—7,77zc"): SIKC—-KOV 3'KO, we observe that L,=
KC,;X, and the inclusions J;: L,,— KC,; X are expressed as ly(a,, a3 €)=
(ay, 2y, ¢), l(ay, ay, €)=(2a,, a,, c) for any (a,, a,, c)€ A’ A"PC, and so on.

In order to determine the KOy-module structure of KO4X we will describe
explicitly the complexification &yx=28&,;: KO,; X—KU,,; X, admitting a factoriza-
tion KO, X—L,—~KC, X—KU, X. Note that KO, X=L,PKO,; ,X. As
is easily computed, &,;: KO,; X—KU,;X are given by the following homomorp-
hisms:

& AAPA"B(B'QRZI2)YPC - A'PA"PBHCHC

&: (A'QZ2)PB'PB"HC — ABB'PB"HCHC

& APA"D(B'QZI2)BC — A'PA'"PBHCHC

&: (A"QZ2)BB'@B"PC — APB'PB"®CHC
defined by &(ay, a5 b, ¢)=(a, 2a,, 0, ¢, ¢), &(a, by, by, ¢)=(0, b, 2b,, ¢, —c),
&i(ay, a3, b, ¢)=(2a,, a,, 0, ¢, ¢) and &a, b,, by, ¢)=(0, 2b,, b,, ¢, —c).

We moreover investigate the induced homomorphism 7y=7%;: KO; X—
KO,,,X. Obviously %,;_, is the canonical monomorphism. On the other hand,
7y; is obtained as the composite KO, X — L,,—~KCy,, X SKCy X — KOy X
because n 1=71&;: Z'KO—-KO. Therefore 5,; is the canonical epimorphism.

The above investigations about &y and 74 show that KO4 X =(KO04,QA4")D
(KOx-,@B"YB(KOy4_ QA" YP(KOx_¢R@B"YB(KU4QC) as KOy-modules.

2.3. Using the cofiber sequences (1.1), (1.1)" we consider the commuta-
tive diagram

KUS® .
UOE & (72'[7 fy)/ KOZP
! KU,P V
/ .
ko,p  Sox Jpx KU,s?
0 0

Here both of the two vertical arrows are identified with multiplication by 2 on Z.
Evidently KU, P=KUS*@KU,S'~ZPZ. Set (n7'&)x(1)=(2, —n) for some
integer #. 'Then p4(0, 1)=2 and &yx(1, 0)=n. Note that n is odd because &y«
is an epimorphism. We may take # to be 1 by replacing suitably the splitting of
Jpx. Since E,t=E&,, the conjugation ¢, on KU,P is represented by the matrix

<—i (1)) where the matrix behaves as left action on Z@Z. Thus
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11
After changing the isomorphism KU,P=Z@Z suitably we obtain

(23) KUP=KUSOKUS = Z&Z on which t, = ( ) and KU,P—0.

(2.3) KU,P=Z®Z on which ty — (‘1) (1)) and KU,P = 0

because the matrix (_% (1)) is congruent to (? (1)>

We can now prove one of our main results concerning Wood spectra (cf.

[20, Theorem 1.6] or [16]).

Theorem 2.4. Let X be a CW-spectrum such that KU,X is finitely gen-
erated, 2-torsion free and KU X=0. Then there exist abelian groups A', A", B’,
B"” and C so that X is quasi KOx-equivalent to the wedge sum SA'\ =SB’V
S4SA"V=SSB” V(P ASC).

Proof. We may write KU, X =~ A@BPCPHC with C free, on which t, acts
as (2.2). By Proposition 2.3 we admit direct sum decompositions 4 = A'P A"
and B==B'@B" so that KO4X =~ (KO4+Q A"\ B(KO4_,QB"\P(KO4_,Q4")D
(KO _s@B"YP(KU4Q®C) as KOyg-modules.

Set Y=SA4'VZ*SB'V=!SA”VZ5SB”, the wedge sum of the Moore
spectra. 'Then we can choose a map Ay: Y—KO A X whose induced homomor-
phism rgo(hy)x: KOxY—KO4X is the canonical inclusion, by means of (1.9).
Putting fy=(Ey1) Ay, its induced homomorphism rgy( fy)s: KUY >KUxX is
of course the canonical inclusion.

We next choose a map fp: PASC—KU A X whose induced homomorphism
kg (fp)x: KUL(PASC)—KU4X is the canonical inclusion. Because of (1.8)
such a map f, is uniquely chosen, and hence (¢,1)fp=fp. Note that ny:
[P, = KO A X]—[P, 2 KO A X] is always trivial as 5,1=3i,vjp: 3'P—P where
v: 3*—>30 is the stable Hopf map. We may here apply Lemma 1.2 to obtain a
map hp: PASC—KOAX satistying (Eypl) hp=fp.

Set h=hyV hp: YV (PASC)—>KOAX. Obviously (éyp1)h: YV (PASC)
—KUAX is a quasi KUx-equivalence. By making use of Proposition 1.1 we
can show that the map /4 is a quasi KOy-equivalence as desired.

Let CP" be the complex projective n-space. As is well known, KU,CP"
is the free abelian group of rank #» and KU,CP"=0 [1]. So we can apply The-
orem 2.4 to show

Corollary 2.5. CP"gs VP or VPV Z* according as n=2t or 2¢+1. (Cf.
[10].) ’ ’

Proof. KO*CP" has been computed by Fujii [8, Theorem 2]. So we can
determine the additive structure of KO4CP", by applying the universal coeffi-
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cient sequence 0—Ext(KO** X, Z)—>KO4X—Hom(KO**"*X, Z)—0 for any
finite CW-spectrum X. Then the result follows immediately from Theorem
2.4.

3. Anderson spectra

3.1. We here deal with a CW-spectrum X such that KU, X=<A4 and
KU,X==D are finitely generated, 2-torsion free and #4=1 on both KU,X and
KU, X. Then it follows from [20, Lemma 1.9] that

(3.1) i) KO;X is 2-torsion free for each i=0 mod 4, and
ii) KO;X is a Z|2-module for each j =2, 3 mod 4.

We will first calculate K-homologies KCyX and KO4X by means of
Lemma 2.1 and (3.1).

Lemma 3.1. i) KCX=A®D, (AQRZ/2)PD, DQZ|2 or A correspond-
ing to 1=0, 1,2 or 3 mod 4.
i) KO;X=A, A/®D, A,_\®D,; . BG, or D, for some Z|2-modules A,, As, Ds,
D, and G,, corresponding to 1=0,1,2 or 3 mod 4. Here these Z|2-modules hold
the relations AP AsPGy=ARZ|2 and D;PD,BGy=DRZ|2.

Proof. i) Consider the short exact sequence 0->KU_ X—KC X—KU X
—0 induced by the cofiber sequence (1.2). This sequence splits if tensored with
Z[1]2], since &y=tE&; and Epy: KOXQ®Z[1/2]-KU,XQZ[1/2] becomes an
isomorphism by (3.1) ii). So we observe that this sequence remains split even if
not tensored with Z[1/2], because it is a pure exact sequence. Thus KCyX=¢
A@®D. The other cases when 730 mod 4 are immediate from Lemma 2.1 i).

ii) The 7%=2 mod 4 cases follow immediately from Lemma 2.1 ii), iii)
and (3.1).

To show the remainders we first consider the two exact sequences

kC,x 2 kU, x ¥ KO, XDKO, X > 0

0— KC,X 2 KU, x ¥ KO,X®KO,X — KC,X — 0

induced by the cofiber sequence (1.6). The former gives rise to an epimorphism
DRZ[2—-KO, XP KO, X, and the latter a short exact sequence 0-AQZ/2—
KO, X®KO; X—DQRZ|2—0 since @,: A—A is just multiplication by 2. Thus
KO; X® KO, XPG,=DQRZ[2 for some Z/2-module G,, and KO, XPKO; X =
(ADD)RZ/2.

Let j be a fixed integer with j=1 mod 4. Combine the two exact sequences
0—-KU;X—-KO0;X—-KO0;,;X—0 and KO;X—-KU;X—-KO;_,X—0 induced
by the cofiber sequence (1.1). Then we get a short exact sequence 0—>KO;_, X
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—KO,;XQ®Z|2—-KO,,, X—0 because §Ey=2. Thus KO, ,XPKO,, X=A;
DDRZ|2) with A;=KO; X*Z[2~ the 2-torsion subgroup of KO;X. On the
other hand, the cofiber sequence (1.3) gives an exact sequence KO, X—
KC;,;X—KO;_ ,X—0. Therefore we get immediately that KO, X=A4 D
D;,®G,, since KC;,X=DQZ[2=D,dD,®HG, where D;=KO;X and D,=
KO, X. 'Then it is easily verified that 4, PAPG,=ARZ|2 because KO, XD
KO; X=(A®D)QZ|2.

We again consider the exact sequences

kC,x 2 kU x Y KO, X®KO, X > 0

0— KC,x 2 KU, x ¥ KO, XPKO, X — KC,X — 0.
As is easily seen, KUy X and KU, X admit direct sum decompositions such that
Vo and +r, are given as the canonical morphisms (use [11]). Thus they are writ-
ten into the forms KU, X=A'PA"PG and KU, X=D'@D"’HG so that
A'QZ2=A,, A'"Q®Z[2=A;, D'QZ2=D,, D"QRZ|2=D, and GQRZ/2=G,
where A”’, D" and G are taken to be free. Besides

Yo: A’ PA" DG - ADD,PBG,PA;PD,HG, and +r;: D'SD"’"HG — D;HD,
are expressed as

(3.2) Vrola, @z 8) = ([a], 0, [g], [@.], 0, [g]) and  Ari(dy, dy, 8) = ([d1], [2])

where [ ] stands for the mod 2 reduction.

Hence Lemma 3.1 says that

(3.3) KOuX is decomposed as an abelian group into the direct sum (KOxQA")PD
(KO4-,.QD"YDB(KO4_,QA"YB(KOx_sQD")P(KCx-,QG) for some abelian
groups A’', A", D', D" and G.

3.2. Let X be a CW-spectrum such that KUy X and KU, X are finitely
generated, 2-torsion free. Assume that z4=1 on both KU, X and KU, X. By
studying the KOy-module structure of KO4X as in Proposition 2.3 we will
show

Proposition 3.2. There are direct sum decompositions KUy X=A'P A" DG
and KU, X=D'®D" DG with A", D" and G free, so that KOX=(KO+QA')
B(KO4_,Q@D")YD(KOy4_,QA”)P(KO4_sQD")B(KCyx_,QG) as KOx-modules.

Proof. In order to determine the KOy-module structure of KOy X, we
will describe explicitly the complexification &yx=¢;: KO, X—KU;X and the
induced homomorphism 4=7%;: KO; X—-KO,,, X. It is sufficient to show that
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& ADA' DG — A DA DG 6 A'DA" DG — A DA DG
&: A,OD'®D' DG — D'OD' DG &: ADD'®D'DG — D'SD'DG

are given by &y(ay, a,, §)=(ay, 2a,, 2g8), &(a,, a,, §)=(2a,, a 2g), E([ay], 4, d, 8)=
(4, 2d,, g) and &([a,], d,, d,, g8)=(2d,, dy, g), and moreover

7 A'QA"DG — A,PD 5, A'PA"PG — AsDBD

are given by n(a;, a5, g)=([a,], 0), 74(ay, @5, g)=([a,], 0) and also 7; the canonical
epimorphisms when =1, 2 mod 4.

Let j be a fixed integer with j=1 mod 4 as in the proof of Lemma 3.1.
Recall (3.2) that r: KU, X—KO,X®PKO,X is given as the canonical epimor-
phism D'@D"SG—-D,®D,. Then &;: KO, X—>KU,;X is immediately deter-
mined since 4, is induced by (6y7y, —Eo7y'). Note that Ecy: KO; 1 X—KC;, X
is given as the canonical morphism A;PD; ,PG—>D;PD,DG,, and 7y:
KC;,;X—KO,,,X as the canonical epimorphism D,®D,BG,—>D;,,. Thus
7j+1: KO;1,X—>KO; X is just the canonical epimorphism because n,1=7&.

Ejts Nj+1
We next use the exact sequences 0—>KO,-+3X—1—>KU ,-HX—)KOJ-HX;»

e : ni-
KO,,,X—0, O—»KUjX—’>KOjX7i’>KOj+1X—>O and 0->KU,,, X—~KO,_, X——

KOinKU,-X%KOj_ZXAO. Then &;.; and 7;_, are easily determined by
means of 7;,, and &; respectively. Moreover it follows that »; is the canonical
epimorphism since e;&; is multiplication by 2 on KO; X.

These investigations imply that KOX==(KO4+QA)P(KOx_,@D")D
(KOx-,@A")P(KO4_sQD")B(KCx_,QG) as KOy-modules.

3.3. Making use of the cofiber sequence (1.3)" we see immediately
(34) KU,>'Q=Z and KU,3'Q == Z, on both of which t,=1.

Consider the commutative diagram

O\v /O
K0.Q KU,Q
& /
y KC;Q ¥
— T~
KU,Q & KO,Q
0~ \0

induced by the cofiber sequences (1.2) and (1.3). Here both of the vertical
arrows are identified with multiplication by 2 on Z. Evidently KC;Q=KU,Q
©KU,Q=ZDZ, and then &.4(1)=(2,2m-+-1) for some integer m. We may
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take m to be 0 by replacing suitably the splitting of ¢{y. Thus
(3.5) &cx: KO;Q— KC,Q is represented by the row (2 1): Z—ZPZ.

Let X be a CW-spectrum as in Proposition 3.2. Choose a map f: S'Q A SG
—KU A X whose induced homomorphism #xy(f)x: KUy_1(Q ASG)—=KUX is
the canonical inclusion. By means of (1.8) we note that such a map f is
uniquely chosen, and hence (#,1) f=f. 'Then there exists a map g: Z'Q ASG—
KC A X satisfying ({,1) g=f. The diagram (1.14) gives a commutative diagram

0 — KU,(QASG) — KCy(Q ASG) — KU(QASG) -

} } !
0> KUX - KCX — KUX —0.

The two rows are split exact sequences by Lemma 3.1 i), so KCy(Q A SG)==
KU (QASG)DPKU,(QNSG) and KC, X=KU,X®PKU,;X. The central arrow

kge(8)x: KCy(QASG)—KC,X is represented by the matrix (8 g (1) 16 8?)

GHG—-A'PA"HGCGPHD' PD"DG for some homomorphisms #, v and w. Com-
bine this expression with (3.5) to obtain

(3.6)  kkc(8)xScx: KOj(QANSG)—KC, X is represented by the row
(002 2u 2v2w+1): G->A'PA"SGBD' D" HG.

Lemma 3.3. (175" xkxc(€)s€cx: KOy(Q N SG)—>KO, X is represented by
the row (0 4x 2y 42): G—(A'QZ[2)PDD'PD"BG for some homomorphisms x, y
and z.

Proof. Let 7y: G>KU,X=A'@®A”"DG be the canonical inclusion and
ic: G>KC, X=A'PA"PGHD'®D"DG the injection into the former G.
First we will show that (t7¢')x ic: G—KO, X = (A'QRZ[2)PD'PD"PHG is re-
presented by the row (0 2p g 2r+1) for some homomorphisms p, ¢ and . Ex-
press (776"« ic: G—(A'QZ[2)PD'@D” PG into a form ([s] p’ ¢’ 7’), and then
note that (p\1) 77c'=Epxy' ¢ and {yic=1ty. Proposition 3.2 asserts that ny:
KO, X—KO0,X and (§,77")x: KU, X—-KO,X are respectively the canonical
morphisms 7,: (4'QRZ/2)DD'PD"PG—(A'PD'PG)RZ|2 and ¢,: A'PA"D
G—(A'®D'DG)RZ|2 (or see the proof of Proposition 3.2). Since »,(t7¢")x ic
=e, iy, we then see that ([s] [p'] [*'])=(00[1]): G—>(A'®D'BG)RZ/2 where
[ 1 denotes the mod 2 reduction. Thus [s]=0, p'=2p, ¢'=q and r'=2r-+1 for
some homomorphisms p, ¢ and 7.

On the other hand, 77cyz, =&, 77" and (Ey7y')s: KU; X—KO, X is identi-
fied with the homomorphism ¢;: D'PD”"BG—(A'QZ[2)PD'®D” PG defined
by e,(d,, d,, £)=(0, 2d,, d,, 2g). Combining the above observations with (3.6), we
can easily show that (77¢")x #xc(€)x Ecx: KO(Q ASG)—KO, X is expressed as
the sum (0 4p 2q 4r+2)+(0 4u 2v 4w+-2): G—(A'RZ[2)SD'PD"PG.
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We can now prove another main result concerning Anderson spectra (cf.

[20, Theorem 1.7]).

Theorem 3.4. Let X be a CW-spectrum such that KUy X and KU, X are
finitely generated, 2-torsion free. Assume that ty—=1 on both KUy X and KU, X.
Then there exist abelian groups A', A", D', D" and G so that X is quasi KOy-
equivalent to the wedge sum SA'\/ ' SD'\V/ 34 SA” 35 SD"V (2'Q SG).

Proof. By Proposition 3.2 we have direct sum decompositions KU X =
A'®A"DG and KU, X=D'PD" PG so that KOxX=(KO+RA"\P(KOx_,Q
D"YB(KO4_ QAP (KO4_sQD")B(KCx-,®G) as KOy-modules. Here A",
D" and G may be taken to be free. Set Y=SA'VZ'SD'VZSA4"V=*SD”,
the wedge sum of the Moore spectra, and choose a map 4y: Y—-KOA X whose
induced homomorphism #xo(fy)s: KOxY—KO4X is the canonical inclusion.
Then the homomorphism #gy(fy)sx: KUyxY—KU4X induced by the composite
fr=(Eyal) hy is the canonical inclusion, too.

We next choose a map fo: S'QASG—KUAX whose induced homomo-
rphism #xy(fo)x: KUx_ (@ ASG)—KU4X is the canonical inclusion. Because
of (1.8) it is obvious that (#,1) fo=fe. First we will find vertical arrows g, A,
and h, making the diagram below commutative

fonl Janl
SISG NS SIQASG A, 348G
hoi lg —1 lh
Eonl 1 !
KOAX =85 KCAX ZEN SSKOAX
H \L§/\1 ‘L’?Al
KOAX — KUAX —— S’KOAX
U/\l 807[5/\1

with (£ 11) g=fo, where the cofiber sequence (1.3)" and a part of the commutative
diagram (1.4) are involved. Consider the composite fo=(Eo7z'Al) fo(ionl):
S!SG—-3*KOAX. The composite homomorphism (E,77")x #xu(fo)x:
KUy(QA\SG)—KU,X—KO,X becomes trivial, since (§,77")s: KU; X—KO,X
is given by the canonical epimorphism e;: D'@D"PG—-D"RQZJ2. Hence
kgo( fo)x: KO, SG—KO,X is trivial. 'This triviality means that the composite
map fb is in fact trivial. So we can apply Lemma 1.3 to obtain the required
maps g: S'QASG—-KC A X and hy, h: 3'SG—-KOAX.

In order to show that the composite (7,1) 2,(jopl): Q ASG—='KO A X be-
comes trivial, we will find a map k: SG—>KOAX satisfying (y*,1) k=(9,1) k,.
Consider the commutative square

[SG,S'KOAX] - Hom(KO(SG), KO.X)
(jorD)* | ]  Gjew)*
[EQASG, S KO A X] S Hom (KOy(Q A SG), KO, X)

in which the arrows % assign to any map f the induced homomorphism xxo( f)x



Quast K-HoMOLOGY EQUIVALENCES 483

in dimension 0. Obviously #(%,(jesl)) coincides with the composite (T7¢")x
kxc(2)s Ecx. Since the right vertical arrow (jo4)* is just multiplication by 2 on
Hom(G, KO, X), Lemma 3.2 asserts that #(h,) is written into the form
([s] 2x y 22): G—(A'RZ2)PD'®D”"PG. Recall that 54: KO, X—KO,X is
the canonical epimorphism 7,;: (4'QZ/2)PD'PD"PG—(A'®D'PG)RZ/2.
So nxk(hy): KO(SG)—>KO,X is represented by the row ([s] 0 0): G—(A4'@D’
DG)RZ|2. On the other hand, %: KOy X—KO, X is identified with the com-
posite homomorphism 7, ,: A'@A”"BG—(A'GD'PG)RZ/|2 defined by », %,
(ay, a3, g)=([a,], 0, 0). Therefore the homomorphism §=(s 0 0): G>A'PA” D
G satisfies the equality 7% 8=n4#%(h,). This means that there exists a map k:
SG—KOA X with (%,1) k=(9,1) k. Consequently we get a map &q: S'Q A SG
—KO A X such that (Eyx1) he=fq, because Eyzy' fo=0.

Set h=hyVhe: YV(S'QASG)—->KOAX. Itisobviousthat (§5,1)A: YV
(Z'QASG)—»KUAX is a quasi KUy-equivalence. So we can apply Proposi-
tion 1.1 to show that the map % is a quasi KOx-equivalence.

4. Some elementary spectra with a few cells

4.1. We first study KU and KO homologies of some elementary spectra
with three cells. The Moore spectrum SZ/2m is obtained by the cofiber se-

) .
quence E°-z>n Z“—l>SZ/2m~]—>21. Denote by M,,,, Ny, Popy @, and R,,, respec-
tively the finite CW-spectra constructed by the following cofiber sequences:

in in’
St— SZ2m — M,,, — 3%, 33— SZ[2m— N,,, — =}
(4.1) 322 SZjom—> Py > 30, S8 SZj2m > Q,y — S
~. 2
5477 S712m — Ry, — S5
where 7: 3*—>SZ/2m is a coextension of » satisfying jfj=1.
Dually we denote by M%m, Nim, Pim, @i and R}, respectively the finite
CW-spectra constructed by the following cofiber sequences:
2,

SZj2m 3 30 > M — 51 SZ)2m, S1SZJ2m B 50— N — 32SZ)2m

“42) ='SZ2m 2 S0 — Pj, — S2SZ2m, S*SZ|2m 7 50— Qb — Z2SZ2m
2.
S3SZ/2m ' 30— Rim —> SASZ[2m
where 77: 2'SZ/2m—3? is an extension of 5 satisfying zi=.
The Moore spectrum SZ/2m is self-dual in the sense that DSZ/2m=
>71SZ/2m where DX stands for the Spanier-Whitehead dual of X. By means
of [17, Theorem 6.10] we obtain that

(4’3) Mém = EZDMZW Ném = stNZm) Pém - ZSDPZm) Qém == 24DQ2m and
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R}, = 3’DR,, .
We will first compute the KU homologies of the elementary spectra men-

tioned above.

Proposition 4.1. The KU homologies KU, X, KU, X and the conjugation
tx on KU, XPKU, X are tabled as follows:

X = M,,, Noyw Py Qom Rom
KUpX =~ ZDZ/2m Z/2m Z/m Z®DZ/2m Z/2m
KU X =~ 0 zZ z 0 zZ

== (1) o) 6D G 6

X = Mj., Nim Pim (M om
KUpX =~ VA Z®Z/2m Z®Z/m zZ ZDZ/2m
KU X =~ Z/2m 0 0 Z/2m 0

w- o) b)) G G- ()

where the matrices behave as left action on abelian groups.

Proof. We will investigate the behaviour of the conjugation ¢y on KU, X
KU, X only in the cases when X=Pj3, and @,,. The other cases are easy.
i) The X=Pj}, case: Consider the commutative diagram

X
hp | } 2m
s A2 pL w
o Il kel Vi

S1SZ2m ; 30— Piw —> Z2SZ[2m .

Recall (2.3) that KU, P= KU, S*® KU, 5"~ Z@Z on which u:(“% (1’) The
induced homomorphism /py: KU,Z?*—>KU,P is given by hpx(1)=(2m, —m) be-
cause tyhpyx(1)=—hp«(1). Hence an easy computation shows that KU,P3, ==
ZPZ|m, KU, P3,=0 and the induced homomorphism k,,: KU,P—KU,P3, is
given by kpy(x, y)=(x+2y,v). So we obtain that t*=<i _(1)) on KU,P},==
ZDZm.

ii) The X=@,, case: We next consider the commutative diagram

2L 5 3P

l L Vhg I

% —> SZ[2m —> Q,, —> =
m ! lQ !

PZm ':PZm
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Evidently KUQ,,=KU,5'®KU,SZ|2m=ZBZ|2m and KU,Q,,,=0. We will
use the induced homomorphism Agy: KU_,P—>KU,Q,, to determine the be-
havior of t4 on KU,Q,,. By means of (4.3) we see that KU,P,,=~KU?®Pj},==
Z[m. This implies that #y: KU,3*—>KU,SZ|2m is given by 7jx(1)=m. So the
induced homomorphism /gy : KU_,P—KUyQ,, is expressed as hox(1, 0)=(1, n)
and /gx(0, 1)=(0, m) for some integer n, where KU_,P=KU,S*@ KU, =

ZBZ. Since tyiqu—iox on KU,SZ/2m and t*hg*zha*(_% _‘1)) on KU._,P,

an easy computation shows that t*:(nlz (1)) on KU,Q,,=Z&@Z2m.

We will moreover compute the KO homologies of the elementary spectra
treated in the above proposition.

Proposition 4.2. The KO homologies KO; X are tabled as follows:

i = 0 1 2 3 4 5 6 7
Mo Z/2m 0 z®z/2  Z/)2 Z/Am 0 z 0
Nom Z/2m z/2 zZ/2 Z®Z/2 Z/4m z/2 0 z
Pom Z/2m zZ/2  Z)2QZ/m  Z Z/m 0 0 z
Qo Z®Z/2m  Z/2 ()m 0 Z@®Z/m 0 z/2 0
Ry Z/2m  Z®Z/2 (O Z/2 Z/m zZ z/2 oz
M z Z/4m z/2 Z/2 z Z/2m 0 0
N z Z/2 Z/4m Z/2 Z0z/2 Z/2 Z/2m 0
P z 0 Z/m 0 Z®(Z/2QZ/m) Z/2 Z/2m 0
Qo z z/2 0 Z/m Z (Om  Z/2 Z/2m
R ZZ/2m  Z/2 Z/2 0 Z®Z/m Z/2 (Wm  Z/2

in which (*),, stands for Z|4 if m is odd, but Z|2BZ|2 if m is even.

Proof. Use the long exact sequences of KO homologies induced by the
cofiber sequences (4.1), (4.2). In computing KO4X for the latter five spectra
X we may apply the universal coefficient sequence 0—Ext(KO,_4DX, Z)—
KO4X—Hom(KO,_4« DX, Z)—0 combined with (4.3) if necessary.

4.2. We next study the KU and KO homologies of some elementary
spectra with four cells. Denote by Syum Tomans Vemows Vimzs and Wy, o,
respectively the finite CW-spectra constructed by the following cofiber sequneces:

.
SZion " $7)2m — Sy — S157)20
intj
SISZ)28 1) SZ12m —> Ty g — S2SZJ2n
(4.4) 18221 2 SZ[2m —> V1 — S2SZ)20

SISZ)21 3 SZ|2m —> Viman — 528720
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i+
5182120 3 S712m —> Wiy 4 — 325Z)20.
Note that

(45) S2m,2n = EZDS%,Z»H T2m,2n == EaDTZn,Zm’ Vém.Zﬂ = ZSDVM,ZM and
Wzm,2n - Z3DW2n,2m .

We first consider the commutative diagram

20 — 20
7 \ 2m ;P ! EP
S'SZ2n— 3 — Pj, — Z2SZ[2n
I Vi VEp |

SSZ2n — SZ[2m — V,, 5, — Z2SZ|2n .
in
The map 7, has a factorization ip=Fkpip through P where k, is the map used in
the proof of Proposition 4.1 i). So we see that

(4.6) the induced homomorphism hpy: KU,3'—>KU,Pj}, is identified with the
homomorphism fo, ,: Z—ZDZ[n defined by fo, (1) = (4m, 2m).

We also consider the commutative diagram

22 — 22

: - hy \ 2n
st 2 szom ™ M, - o=
i Il ky | Vi

S'SZ[2n ——> SZ[2m — W,, 5, — 3*SZ|2n.
1+

Lemma 4.3.  The induced homomorphism hys: KU,2*—> KU, M,,, is identifi-
ed with the homomorphism h,, ,,: Z—Z®Z|2m defined by h,, ,(1)=2n, m—n).

Proof. Consider the induced homomorphism hyy=h,: KO,3*—KO,M,,,.
An easy computation shows that h,: Z—Z@Z|2 is expressed as hy(1)=(n, ;) for
some ¢, Z/2. We will verify that ¢g=Z/2 is non-trivial. In order to observe
the complexification Eyge=E&,: KO, M,,—KU,M,, and the realification Eyx=e,:
KU, M,,—KO,M,, we recall that t&,—=&y, &,€o—=1--¢ and t*=(_% _‘1)) on
KU,M,,=Z®Z[2m. As is easily checked, &: ZBZ[2—-ZBZ|2m and e,:
ZBZ2m—ZPZ|2 are respectively given by &(x, y)=(2x, my—x) and e,(2, w)=
(2,0). We here choose a map p: M,,—3 satisfying pi,;=j. Then the compos-
ite phy, is just the Hopf map 5: 3*>3, and hence pyh,(1)=1€K0,3'=Z/2.
On the other hand, the composite homomorphism pye,: KU, M,,,— KO, M,,—
KO, is evidently trivial. So we see that p(0, g))=1, which means that g,=1.
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This implies that &,k,(1)=(2n, m—n), and hence the result follows immediately.

We will here discuss the homomorphisms f,, ,: Z—Z&Z/n and h,, ,: Z—
Z®Z|2n defined by f,, ,(1)=(2m, m) and k,, ,(1)=(2m, n—m) respectively. The
results (4.7)—(4.15) obtained below will be needed in studying the KU homologies
of Viypon and W, ,, later. Let C, , denote the cokernel of f, ,. Thus the
sequence

0— Zf Yze Z/ngﬁ;” Cpn—0

is exact. Write m=2Fm’ and n=2'n’ with m’, n’ odd.
In the 2=1 case it follows that
4.7) C,.,=Z]2mPZ[2’DZ|n', and
(4.8) gun: ZRZ2'DZIn'—Z2mPZ|2'PZ|n’ is given by g, .(%, ¥y, Vo) =(%, Y1,
x—2y,). In particular, g,.,(1,0," 1) = (1,0,0), g...(0, 1, 0) = (0, 1, 0) and

, 2
2nr(0,0," 2“1) — (0,0, 1).

On the other hand, in the A</ case it follows that

4.9) C,.,=Z2nPZ2*PZ|m’', and
(4.10) gu.: ZDZ|In—Z2nDZ2*DZ|m" is given by g, .(x,y) = (2y—x,y,

(1_—’_2”?,)—90) In particular’ gM,n(_m’a7 2kb) = (1, 0, 0)’ gm,n(zmla, m’tl) = (0, 1, O)

and g,, ,(2¥*2b, 2¥*1b) = (0, 0, 1) for some integers a, b with m'a-}2+'p = 1,

Denote by D,,, the cokernel of h, ,: Z—Z®Z/2n. Obviously 2k, ,=
Son foman Where 8,0 ZDZ[2n—>ZPZ[2n denotes the automorphism defined by
Sou(%, ¥)=(x, —¥). So there exists a short exact sequence

Cm,n dm,n
0—>Z2 5 Cpgn =" Dy —0.

Here the connecting homomorphism ¢,, , is obtained as ¢,, ,(1)=gzmn 21 S2n Fim »(1).
In place of ¢, , we write with emphasis ¢y , when 2=/ and ¢;/, when k</.

The connecting homomorphism ¢ 42 Z/2—>Z[4mPZ|2' T P Z|n’ is expressed
as cpa(1)=2m, m—n, 0). Thus cp(1)=2m, n, 0) if k> and c,.(1)=
(2m, 0, 0) if k=1. In the k> case it follows that

(4.11) D, ,=Z|2***DZ2'PZIm'PZ[n’, and

(4.12) d,,: ZAm B Z2" D ZIn' - Z2" D Z[2' D ZIm' © Z|n' is given by
dy (1, v, w) = (W—2%"""0, v, u, w). In particular, d, ,(m'a,0,0)=(1,0,0,0),
dp (2" 'm'a, m'a, 0) = (0, 1, 0, 0), d,, ,(2¢*?b, 0, 0) = (0, 0, 1, 0) and d,, ,(0, 0, 1)
=(0, 0, 0, 1) for some integers a, b with m'a+2*"*p = 1.
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Moreover, in the k=1 case it follows that

(4.13) D, ,=Z2m®Z2"SZn’, and
(4.14) d,.: Z[AmDZ2""'DZ|n' — Z|2mDPZ[2''DZ|n' is the canonical epi-

morphism.

On the other hand, the connecting homomorphism ¢}/ ,: Z[2—Z[4nDZ|2+*!
@DZ/m’ is expressed as c;/,(1)=(2n, m—n, 0). Thus ¢/ (1)=(2n, m, 0) if k<],
and ¢y /(1)=(2n, 0, 0) if k=/. 'This means that

(4.15) Cma=Crm inthe k=I case.

4.3. Using the results discussed in 4.2 we will compute the KU homologies
of the elementary spectra with four cells given in 4.2.

Proposition 4.4. Let m=2*m’' and n=2'n" with m', n' odd. The KU
homologies KUy X, KU, X and the conjugation ty on KU, X@ KU, X are tabled as
follows:

X = szm,zn sz,Zn Vzm,zn
k+1=1 k+1=s!
KUyX =~ Z/2m Z/2m@DZ/2n Z/AmDZ /n Z/2mPZ/2n
KU, X =~ Z/2n 0 0 0
_ 10 1 0 1 0 1
e = (6 1) 6 -1) (v —1) © 2)
X = V;m,zrz WZm,Zn
k=l+1 k=l+1 k<l k=1 k>1
KU X~ Z/m®Z/in Z/2mPZ/2n Z/mPZ/An Z/2mPZ/2n Z/AmDZ/n
KU, X = 0 0 0 0 0
1 0 k=l 1 0
by = (21+2—kn’ _1) (é 2 _rln) tAi-s (n' _1) Apg
la; 1—a? 0 0
Here A,:((l) —Oai (1) g) with a;=1—2"*'.  The matrix A,_, acts on Z|2*"*P
0 0 0-1,

Z12'PZIm'DZ|n' and the transposed matrix *A,_, acts on Z|2*PZ|2"*DZIm’' D
Zln'.

Proof. 1) The X=32S,, 2., Tom 2. Cases are easy.

ii) The X=V,,,, case: From (4.6) it follows that KU, V,,, 5,2C,, , and
KU, V;,2a=0 where C,, , denotes the cokernel of f,,,. Thus KU,V,, ,,=
ZAmPZ|2'PZ[n’ or Z|2nDZ[2* ' PZ|m’ according as k+1=1 or k-+1=1, as is
shown by (4.7) and (4.9).

The induced homomorphism Epy: KU, P},—KU, Vaman 1 written as the
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homomorphism g, , given in (4.8) and (4.10). To investigate the behaviour of
the conjugation ty on KU, V,, ,, we recall that t*=G _(1)) on KU,Pj,=ZD
Z|n. By making use of (4.8) and (4.10) we can easily observe that fy=
1 0 0 —10 0
(1 —1 O) on KUyVyy 0a=Z[4mPZ|2'PZ|n" if k+1=1, and t*=<—1 1 O)
0 0-1 001
on KUy V,yy 3.==Z2nDZ|2'DZ|m’ if k+1=I. Note that the latter matrix is

—100
congruent to ( 11 0). Then the result is immediate.
001
ili) The X=V}, 2. case: Consider the commutative diagram

2 = 3
7j iy by b, i
S1SZ[2n —> SZ[2m — Vipow = 32 SZ|2n
i = |l ky | VJ

s2 Lszom— P, — 3

This gives rise to the following commutative diagram

0 0
KU,3!® Z)4n KU,SZ|2m
~ /
\I/ KUo Vém,Qu \L

KUOEZSZ/ZTZ \KUonm

where the diagonal sequences are exact and the vertical arrows are both epimor-
phism. By means of the duality (4.5) we get that KUV 5 2 =Ext(KU, V3, o, Z),
and hence KU,V i, 202 KU, P,,B(KU,2*QZ[An)=Z|mPZ|4n if k<I+1, and
KUV 2a==KU,2*SZ2n KU, SZ|2m=Z[2n P Z[2m if k=1+1.

We next investigate the behaviour of the conjugation #x on KUy Vim,2s . In

the k<I+1 case we use the short exact sequence 0—KU, SZ/Zmll,-i< KUOVQ,,,,Z,,] ¥

KU,3*SZ2n—0. Here iyy: Z|2m—ZmPZ[4n is expressed as iy(1)=(1, q))
for some integer q,. Note that mg,=2n mod 4n. As is easily verified, t,=

(21q _?) on KU,V w=ZmPZ|4n, which is congruent to the matrix
1

(2,+21_ - _(1)> On the other hand, we use the short exact sequence 0—-KU,>?

hV*

k
QZ/4n 5 KUy Vim2n = KUyPyu—0 in the k=141 case. Here hys: Zj4n—
Z|2n@®Z|2m is expressed as hy4(1)=(1, ¢;) for some integer g, satisfying 2ng,=m

mod 2m. Then t*=<—£ql (1)> on KU,V 20==Z[20nPZ|2m, which is also con-
2
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ruent to the matrix __11 , 0 . The result is now immediate.
g 28"tm

iv) The X=W,,,, case: Lemma 4.3 implies that KUy W,, ,,=<D, , and
KU, W,y ,,=0 where D, ,, denotes the cokernel of 4, ,. Thus (4.11), (4.13) and
(4.14) show that KUy W, ,,=<Z[2""*DZ|2*DZn' DZ|m', Z[2nD Z|2**' D Z|m’ or
Z|2**PZ[2'DZ|m' D Z|n' according as k<<l, k=1 or k>L

Note that the induced homomorphism Ry : KUy M,p—> KU, Wy, 5, is written
as the composite d,, ,, Z2s.2m Som: ZDZ2m—ZPBZ|2m—Cs, 2n—>D, . Recall that

ty= =10 on KUyM,,=Z@®Z|2m. The conjugation ¢, on KU, M,, produces

a conjugation #, ,, on Cy, ,, through the epimorphism g,, s $2m. In place of 2, ,,
we write with emphasis £, , when k<! and #,’, when k=/. In ii) we have im-

—100
plicitly observed that t,’,,,,,=<—1 1 O) on Cy, 5n=Z/AnPZ[2*"'®Z[m' and t,/ =
001

1 0 0
(1 —1 0) on Cy, 2,=Z[4AmBPZ[2''DZ|n’'.
0 0-1
Use these matrix representations of #; » and /s, (4.12) and (4.15). Then
a routine computation shows that the conjugation ty on KU, W,, ,, is represented
by the matrix —A4,;_, or A,_; corresponding to k<</ or k>I. Here the former
matrix —A,;_, acts on Z[2"?*PZ|2*PZ[n'@®Z|m’ and the latter A4, ; acts on
ja;1—a?0 0
Z2¥PZI2IDZIm ' DZ[n'. Since A;= (1) -6“" (1) 8) is congruent to B,=
( a; —144i0 0 0 0 0—1/
(—(1) Y 8) with a,—1—2¢*1, the result follows in the k=1 cases. On
0 0 0-1
the other hand, (4.14) says that d,, ,,: Cyy 2w—>D, » is the canonical epimorphism
when k=I. Therefore the conjugation ty on KU, W,, ,,=Z2mPZ|2""'DZn’

1 0 0
is represented by the matrix (1 —1 0), and hence the result is immediate in
the k=1 case. 0 0-1

4.4. Using the long exact sequences of KO homologies induced by the
cofiber sequences (4.4) we can easily compute

Proposition 4.5. The KO homologies KO, X are tabled as follows:

i = 0 1 2 3 4 5 6 7
Somzn  Z/2m  Z/An  Z/2DZ/2  Z/2@Z/2 Z/Am Z/2n 0 0
Toman  Z/2m Z/2  Z)2@Z/An  Z/2DZ/2 Z/Am@Z/2  Z/2  Z/2n O
Veman  Z/2m 0 Z/2®Z/n Z/2 O Z/2 Z/2n O
Viman  Z/2m z/2 K)o z/2 Z/m@®Z/2 0 Zi2m 0
Woman  Z/2m 0 Z/2n 0 Z/2m 0  Z/2n 0
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in which (%), stands for Z|8m if n is odd, but Z|[AmPDZ[2 if n is even.

For simplicity we denote by V,,, Vim, Wy, and W}, the cofibers of the
following maps

ig: S'SZJ2— SZm, 7j: S'SZjm — SZ|2
in+75j: SVSZJ2— SZj4m, in+7j: S SZ/Am — SZJ2

respectively. Thus
(4.16) Viw = Vonos Vin = Viom, Won = Win and Win = Wy, .
But V,,=S8Z|m\/ 3*SZ|2 and V},=S8Z|2\ 3*SZ|m if m is odd.

As a special case Propositions 4.4 and 4.5 give

Corollary 4.6. i) The KU homologies KU, X, KU, X and the conjugation
ty on KU, X are tabled as follows:

X = Vzm V:lm Wam Walm W2m.2m
KUX= Z/2m Z/2m Z/8m Z/8m Z/2m®Z/2m
KU, X =~ 0 0 0 0 0

te = 1 —1 dm+1 4m—1 (‘1’ (1))

i) The KO homologies KO; X are tabled as follows:

i = 0 1 2 3 4 5 6 7
Vom Z/m 0 Z/2 Z/2 Z/4m Z/2 Z/2 0
Vim Z/2 Z/2 Z/4m Z/2 Z/2 0 Z/m 0
Wam Z/4m 0 Z/2 0 Z/4m 0 Z/2 0
Wem Z/2 0 Z/4m 0 zZ/2 0 Z/4m 0
Wam,2m Z/2m 0 Z/2m 0 Z/2m 0 Z/2m 0

5. Elementary Z/2-actions

5.1. If the cyclic group Z/2 of order 2 acts on the abelian group Z@Z/2:*,
s=0, then its matrix representation is written as one of the following twelve

types:

£ 1) =029 =0 ) =@1) £62%) £625)

where the matrices behave as left action on Z@Z/25*.
A Z|2-action p on an abelian group H is said to be elementary if the pair
(H, p) is one of the following kinds of pairs:
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1) (4,1) (B —1) (CHC, (‘1) o)) (Z[8m, 4m-t1) (Z&2Z[2m, L (1 _(1)))

zozjzm, + (., 1)

We here deal with a CW-spectrum X such that the conjugation 4 on KU, X
is decomposed into a direct sum of the above elementary Z/2-actions, and KU, X
=0. Thus

(5.2) KU, X

= ADBDH(CHC)DA' DB D(DDSD")D(EDE)D(FOF)D(GDG)
where each of the summands 4’ and B’ is a direct sum of the forms Z/8m and
each of the summands DPD’, EQE’', FPF' and GHG' is a direct sum of the

forms Z@Z[2m. Moreover the conjugation Z4 acts on each component of KU, X
as follows:

(G3)  te=1, -1,((1’ (1)) on 4,B,COC.
ty = 4m—+1,4m—1 on the component Z/8m of A', B’ .

1 —1 —
ty =(1 _(lj), < 1 ?), ”11 (1)>, ( 1111—(1)) on the component

Z®Z2m of DPD',EPE', FOF', GHG'.

For any direct sum H= G?Z/Zmi we denote by H (%) the direct sum @(*),,
where (¥),,,=Z[4 or Z|2Z|2 according as m; odd or even. Besides we‘write
2H=®Z|m; and 12 H=@Z[4m;. For any CW-spectrum X satisfying (5.2)
with (;3) we will give a ge‘neralization of Lemmas 2.1 and 2.2.

Lemma 5.1. Assume that KU, X=0.
i) KC;X=
AP (B+Z2)PCPD(2A")B(B'+Z[2)B(DDD'+Z|2)DE D (FDF')D(G'+Z/2)
(AQZI2)PBPHCPH(A'QRZI2)B(2B')PB(1/2 D")BE'B(F*)B(GP2G")
(A*Z]2)BDCPH(A'*Z[2)D(2B"YDOD' B(EDE'*Z|2)D (F'+Z|2) B(GHG")
ADBRZ2)PCH(2AYB(B'QZI2)DDD(1/2 E")YD(FP2F')DG'(*)
corresponding to 1=0, 1, 2, 3 mod 4.
i) KOuyXQ®Z[1/2] = (ADCDDDF)QZ[1/2] or (BECHEDG)RQ Z[1/2]
according as i even or odd, and KO, XQZ[1/2] =0 for any 1.
iii) There are short exact sequences

0— KC; X - KO, X®KO,X - KC, X—0
0 - KC,X— KO, X®KO; X - KC,X—0
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and isomorphisms

KO, XDKO; X ~(AQZ[2)D(B+Z/|2)D(D'*Z|2)®(F'QRZ/2)
KO, X®KO,X = (A*Z|2) D(BRZ|2) D (E'+Z|2)D(G'RZ/2) .

Proof. i) Use the exact sequences

1—t¢
(”U ( ))* ¥ KU,X (')’ﬂ‘t/)* W0 KO, X — 0

14t
0 - KC,X — KU, X x D70 gy 5 OO 0 %, 0

0> KC,X—KUX—"~—"

and compute the kernels and cokernels of 14-#,: KU, X—KU, X.

ii) First notice that KO,;,; X®Z[1/2]=0 because ,6y=2. Then it fol-
lows that &c4: KO,; X®Z[1/2]—-KC,; X®Z[1/2] is an isomorphism. The result
is now immediate from 1).

iii) The cofiber sequence (1.6) gives rise to two exact sequences

0 - KO, X®KO,X — KC; X 2 KU, X - KO, X®KO0; X — KC, X — 0
0 — KO, X®KO,X — KC, X 2 KU_,X — KO, X®KO,X — KC, X — 0

where @, (1=0, 2) are induced by the composite & 7z¢'. Note that & r7¢' yay=
(1+2) #g". Then the kernels and cokernels of @;(=0, 2) are easily obtained,
since (fyn,,)*: KU;,,X—-KC, ;X has already computed in i).

5.2. By observing Proposition 4.1 and Corollary 4.6 we here list up some
of finite CW-spectra X with a few cells such that the conjugation ¢4 on KU, X
is elementary and KU, X=0.

X = V2m Vém W8m W{im W2m,2m
KUX= Z/2m Z/2m Z/8m Z/8m Z/2m@®Z/2m

b = 1 -1 dm+1 dm—1 ((1’ (1))

(5.4)

= Mgm Q?m N;m Pém Rém

KU X Z®Z/2m Z®Z/2m Z®Z/2m Z®Z/m Z®Z/2m

~1 0 10 1 0 1 0 10

be = ( 1 1) (o 1) (o —1) (1 _9) (o 1)

We write Yy="\VY,,, for any direct sum H=@Z/2m; when Y=V, W, M,

Q@ and so on. We will here determine the quasi KOx-type of a CW-spectrum
X satisfying (5.2) with (5.3) under certain restrictions.

Theorem 5.2. Let X be a CW-spectrum such that KUy X has a direct sum
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decomposition as (5.2), KU,X=0 and ty acts on KU, X as (5.3). Assume that
A=A, DA, where A, is 2-torsion free and A, is a direct sum of cyclic 2-groups. If
KO, X=0=KO0,X, then X is quasi KOy-equivalent to the wedge sum 3*SA,\
ZZSB\/(P/\SC) V VA1V W N W e V SIM N M N ZAQ N 22 Q0. (Cf. [20,
Theorem 2.5].)

Proof. Abbreviate by Y the desired wedge sum of elementary spectra with
a few cells. From (5.4) it is obvious that KU, Y=KU, X on both of which the
conjugations £, behave as the same action. Moreover we note that KO, Y=0=
KO, Y by means of Proposition 4.2 and Corollary 4.6. For each component
Yy of the wedge sum Y we can choose a unique map f: Y;—KU A X whose
induced homomorphism #xy(fg)x: KU, Yz—>KU,X is the canonical inclusion,
because of (1.8). Here H is taken to be 4,, 4, B, -+, F' or G'. Notice that
there exists a map gy Y,—KC A X satisfying (§ 1) gg=fy for each H since (£,1)
fe=fz. Wewill find a map hgz: Y;—KOAX such that (E,,1) hg=f5 for each
H, and then apply Proposition 1.1 to show that the map A=Vhy: Y=V Y~
KOAX is a quasi KOx-equivalence. 8 §

i) The H=A, case: Consider the commutative diagram

0 — Ext(4,, KO, X) — [3*S4,, 3* KO A X] — Hom(4y, KO, X) — 0

¥ nsesk U (AD)x ¥ Mk
0 — Ext(do, KO3 X) — [S4SAo, S2KOAX] — Hom (4, KO, X) — 0

with exact rows. Since A4, is 2-torsion free and KO;X is a Z/2-module by
Lemma 5.1 iii), we see that Ext(4,, KO;X)=0. So the central arrow (y,1)x
becomes trivial because KO, X=0. This implies that the composite (E,77'A1)
fao: Z2SA4,—~KOAX is trivial because it coincides with the composite (1)
(twc'A1) g4, Hence there exists a map k,,: 2*S4,—>KO A X satisfying (Eypl) Ay,
=/ 49°

ii) The H=B case is obtained more simply than the case i), by making
use of only the assumption that KO,X=0=KO, X.

ili) The H=C case: We will find vertical arrows %, /#, making the dia-
gram below commutative

1 i1
sc 5 pasc’®t stsc

hy y 8c VA
KOAX - KCAX - 33KOANX

I LEal ! pl
KOAX -KUAX - 3*KOAX

after replacing the map g with (§A1) gc=/¢ suitably if necessary. The homomor-
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phism xxo(gc(ippl))s: KOy SC—KC, X is just the canonical inclusion C C KC, X,
and the induced homomorphism (77¢!)y: KCoX—>KO;X restricted to CC
KC,X is trivial by Lemma 5.1 iii). Therefore xxo((725'A1) ge(ipnl))x: KO, SC
—>KO; X becomes trivial. As in the case i) we here use the commutative diagram

0 — Ext(C, KO, X) — [SC, S* KO A X] — Hom(C, KO X) — 0

i Moksk J/ (77/\1)* i /EES
0 — Ext(C, KO, X) — [SC, 3*KO A X] - Hom(C, KOs X) — 0

with exact rows, in which KO,X=0. Then it follows that the composite (y,1)
(t75'AL) go(ippl): SC—Z*KOA X becomes trivial. So we apply Lemma 1.3 to
obtain maps #,: SC—>KOAX and h,: SC—3'KO A X as desired where the map
gc might be replaced suitably. However the composite (y51) #,: SC—>KOAX is
trivial because KO, X=0=KO0O,X. Consequently we get a map hs: PASC—
KO A X such that (&y51) ke=f.

iv) The H=A, case: Setting 4,=&Z/2m; we have to find vertical ar-

rows h,, b, making the diagram below commutative

vszm% v, ysszpe

hol V 84 W
KOANX - KCANX - 33KOANX
” it/\l Jr’?/\l

KOANX - KUANX - Z*KOANX

as in the case iii). The complexification &yy: KOy V 5, —>KU,V 4, is the canonical
monomorphism P Z/m,—@®Z[2m;, and the realification (€p77")x: KU, X—KOs X

restricted to A C KU, X is factorized through A®Z/2 by Lemma 5.1 iii). These
facts imply that xxo((Eo77' A1) fa,)x: KOo V 4,—>KOs X is trivial. Hence the com-
posite map (Eo77'A1) fa, 2y V SZ[m;—Z? KO A X becomes trivial because KO, X
=0. Applying Lemma 1.3 we get the required maps %,: V SZ/m;,—~KO A X and
hy: V SZ|2—3' KO A X, after replacing the map g, suitably if necessary. Then

there exists a map k4 : V,,—KO A X satisfying (Eyp1) hy=f4, since (n,1) A;=0 as
in the case iii).

v) The H=A' case is obtained by a quite similar discussion to the above
case iv).

vi) The H=B’ case: Set B'=Z/2m; and consider the commutative
diagram ‘
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V2 Szim X stw, 2 ysiszpe

ho | % Vb
KOAX - KUANX—-3KOANX
I L&Al N

KOAX - KUANX—3’KOAX .

In this case we can find vertical arrows %, k, more easily than the case iv), by
making use of only the assumption that KO, X=0=KO,X. The map k;: VZ!

SZ[2—-KOAX has an extension h,: VZ*—>KOAX, thus k=hy(Vj). Hence

the composite map (y,1) A, jp: Wer—KOAX becomes trivial because 7j=
j(m+77). So we get a map hy: S2Wyp—KO A X satisfying (Eypa1) bgr=fp.
vii) The H=D', E’ cases are shown by similar discussoins to the case iv).
Use the assumption that KO, X=0=KO, X in the former case, and Lemma 5.1
iii) and the assumption that KO, X=0 in the latter case.
vili) The H=F' case: Setting F'=epZ/2m,, we will find vertical arrows
hy, h, making the diagram below commutative
5P 8 3.1 sesE
hy | \ &s Vi
KOAX > KCAX—3KONX

|| lg/\l l ’7/\1
KOAX —- KUANX—3S2KONX .

where SF'=V SZ|2m; and SF=VZ=’. Since KO, X=0, the composite (t7c'A1)

grriq: SVSF'—>KOAX has an extension ky: S2SF—-KOAX. The induced
homomorphism gy KO,Qr—>KC;X carries KO,Qy onto the component
FQZ|2cKCsX. On the other hand, (17¢")s: KC; X—KO; X restricted to the
component FQZ/2C KCy X is trivial by Lemma 5.1 iii). Combining these facts
we see that kgy: KO, SF—>KO,X is trivial. 'Thus the composite (y51) ko: =* SF
—KOAX becomes trivial, and hence the composite (o5 \1) friq: Z*SF'—
KON X is trivial, too. So we apply Lemma 1.3 to obtain the required maps h,:
S*SF'-KOAX and h,: 3°SF->KONAX.

The coextension #: 3*—>SZ/2m of 5 induces an epimorphism 7*: [S*SZ/2m,
KOAX]—[=5, KOAX] because jij=%. So there exists a map h,: =*SF'—-KO
AX such that &,(\V%)=h,. Then the composite map (1) 4, jo: Z*Q—>KOAX

becomes trivial. So we get a map hy: 3 Q—>KO A X satisfying (Eyn1) bpr=fps
as desired.

ix) The H=G" case is obtained easily by a parallel discussion to the above
case Viii).
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As a special case of Theorem 5.2 we have

Corollary 5.3. Let X be a CW-spectrum and C, A', B’ abelian groups where
A" and B’ are direct sums of the forms Z|8m. Then Xgg(PNSC)V W\ =2 Wy
if and only if KU X=CHCPA'®B’, KU, X=0 and ty acts on KUy X as in
(5.3). (Cf. [20, Theorem 1.6].)

Proof. The “only if” part is evident.
The “if” part: In this case it follows from Lemma 5.1 iii) that KO,;,, X=0
for any 7. So we may apply Theorem 5.2.

As an easy application of Theorem 5.2 combined with Propositions 4.1 and
4.2 and Corollaries 1.6 and 4.6, we obtain

Corollary 54. Pi,562*M,, P62 "Mim, Vou 26 2 Vim, Wen 70
24 W8m 50 22W£m and W2m,2m 50 P/\ SZ/Zm

As a consequence of Theorem 5.2 we can finally show Theorem 3 stated in
the introduction.

Proof of Theorem 3. i) The KU,X=Z/2m case: The conjugation #4x on
KU,X behaves as one of the following four types: ty=+1, 4n4-1 (m=4n).
Thus the pair (KU, X, t4) is itself elementary. So we may apply Theorem 5.2
to show that X is quasi KOx-equivalent to one of the following four elementary
spectra: V,,, 22SZ|2m, Wy, and S* W,

ii) The KU, X=Z@Z[2m case: The conjugation ¢, on KU, X behaves
as one of the following twelve types: t*::t<(1) ;I:(l)>’ j:<(1) 4n(;)|:1> (m=4n),
j:(% __(1)), j:("ll (1)) Thus the pair (KU,X, ty) is itself elementary, too.

Hence we can show that X is quasi KOy-equivalent to one of the twelve ele-
mentary spectra given in Theorem 3 ii), by applying Theorem 5.2 again.
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