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0. Introduction

In papers [11], [12] (which will be called henceforth part I and part II, res-

pectively) we developed some abstract results about existence and uniqueness

of solutions of Cauchy problems related to degenerate evolution equations which

might be put under the general pattern

(0.1) -L (M(t)u(t))+L(t)u(t) = f(t, «(<)), for every ί e [0, T]
at

where L, M are linear operators, possibly depending upon t (we shall call it the

time variable, as opposed to the variable x of the functional space in which u(t)

lies, to be referred to as the space variable); more precise assumptions will be

made in each particular case.

In parts I and II the technique involved deeper abstraction, leading to study

of (0.1) as a particular case of more general, quite algebraically-looking equations:

(0.2) BMu+Lu = F(u)

or even

(0.3) BMu=f(u);

here, we recall or restate in the specific case those results: while doing so, we

hope to make this part reasonably self-contained.

A remark about style: the assumptions which work are sometimes rather

lengthy, the details cumbersome; we choose therefore not to seek maximal gener-

ality; in some applications, we do not emphasize degeneration, even though we

might introduce it throughout, and stress nonlinearity. Sometimes assumptions

could be weakened: we often label 'regular* (='of cass C(1)>) something which

could have been differentiable, plus something better, or even less, as well. At

first, problems and equations are formally stated, i.e. without precise assumptions
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about objects involved: these will be made clear after appropriate discussion, and

the cooperative reader should understand better the aim of some postulations.

Here is the plan of this part: § 1 contains a discussion about linear problems

related to (0.1), that is, the case /independent of u. In 1.4 (Example 1) we study

the nondegenerate linear case M= identity, L—strongly uniformly elliptic; in

1.5 (Example 2) a more specific framework is involved, as L(t), M(t) are related

to quadratic forms in Hubert spaces. These two examples are rather general

models, recorded for future reference. A first application, to degenerate inte-

grodifferential equations follows (1.9). It is nearly impossible to give a full bi-

bliographical discussion of this topic, studied extensively by many authors: we

refer mainly to the beautiful papers of Lunardi and Sinestrari [19], and Lunardi

[18]: in the former the ambient space is h* (little-hoelder continuous functions),

but the calculations may be adapted to the C* case (personal communication of

Prof. A. Lunardi to the second author); in the latter a more general type of

kernel than ours is considered, but in the framework of α-hoelder continuity.

In §2 we show how to reduce into form (0.1) some other equations, and obtain

new existence results (theorems 4 and 5), in case of a truly nonlinear right-hand

side. In §3, 4 we give the main applications: to semilinear equations (3.1), de-

generate semilinear equations in Hubert space setting (3.2), fully nonlinear equa-

tions in spaces of continuous functions (3.3), degenerate parabolic equations

(3.4), higher dimensional problems (3.5, 3.6), abstract Navier-Stokes equations

(4.1 and 4.2); finally, in 4.3, we discuss shortly the equation u'(t)=F(—A(t)u(t)):

references will be given when appropriate.

Notations are rather standard: see however part I as a general remark, we

use the 3-notation for partial differentials even in the abstract case: this should

cause no confusion.

Unless otherwise stated, constants C, k, ••• are meant to be positive numbers

independent of the relevant parameters; they are subject to numerical change

even from step to step.

1. Linear Problems

Recall that we are concerned with concrete instances of the abstract equation

(1) BMu+Lu = F(u)

where B is a closed invertible linear operator in Eίy L} M are closed linear opera-

tors from E2 into E1 (two complex Banach spaces), F is a (possibly nonlinear)

mapping from a subset of E2 into Ev The equation

(2) BMu=f(u)

may be put into the form (1) conveniently if e.g. / is differentiate at a point

2, since then (2) becomes
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BMu=f'(uo)u+G(u)

with G(u)=f(u)-f'(uo)u.
Let us now restate the assumptions of parts I (§3: (H1)—(H3)) and II

(§3, Theorem 1) concerning (1):

(A) 3)(B) is dense in Eλ and V #<ΞC, \π—arg s | <φ<ττ/2, B—si is
invertible, with H ^ - * / ) " 1 ; J?(£1)II<C(1 + I* !)" 1 ;

(B) L,M are two closed linear operators from E2 into El9 with L
invertible and 2}{L)<Z3)(M)\ moreover, if φ is as above, and £>0
is small, we suppose that V # e C , |arg z\ <π—φ-\-S there exists
L^M+LY1 and HL^M+L)"1; X(£0H<C;

(C) let Γ be a path in the complex plane parametrized by 2—•
t exp (±*Φ), *>tfo>O(we put Φ=π—φ-\-8β for short), and by t->
a0 exp (Λ), I * I < Φ we set V= VB=(Eλ 3){B))9t0O with 0<θ< 1, Γ =
ML"1, and assume that there exists θ such that (s.t.) for every
# e Γ the commutator [5; (zT+I)"1] has bounded extensions as
an operator from Ex into itself and from Vθ into itself as well,
with bounds max {||[B; (zT+I)'1]; J ^ l l , | | [β; (2Γ+/)- 1 ];
-C(V)\\}<C(l+\z\Y with suitable σG[0,1[;

(D) Let r > 0 and write S1 for the closed F-ball at the origin with
radius r. Assume the existence of κy β s.t.

V Ai, h2^Su with 0 held fixed as previously.

We obtained in Part II (§3, Theorem 1):

Theorem 1. Let (A) through (D) hold true. Then (1) has exactly one

solution u with Lu in V= VB.

We may restate easily the preceding theorem in the linear case, in which
case assumption (D) may be consistently weakened.

Proposition 1. Assume (A), (B), (C), and let F(u)=Ku+f with / e Ve and
K<=£B{X{L),EX): If KL'l^X(Ve) has norm suitably small, then (1) is uniquely
solvable in such a way that Lu^Vθ.

Note that, if KL~ι commutes with B (that is, for every u^3){B), KL'1 we
3)(B) and KL'1 Bu=BKL~1 u) then KL'ι^X{VB) by interpolation.

1.1. First of all, let us write down the linear problem we shall be concerned with:

ί I(M(t)u(t))+L(t)u(t) =/(ί), ίe[0, T]

I (M(t)u(t))t=0=w0

(LP) dt
(A
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and record for future reference some assumptions about it:
{L(t), *e[0, T]}, i[M(t), *e[0, τ]> are two families of closed linear operators
from Y into X (X, Y complex Banach spaces) such that:

(i) L(t) is invertible for every *e[0, r ] ;
(ii) 0(L(t))Z&(M(t)) for every f e[0, r]
(iii) t->M(t) (L(ί))"1 = T(t) is a continuous mapping [0, τ]->X(X);
(iv) £—>(L(ί))~1 is continuous as a mapping [0, τ]-*-C(X} Y);
(v) ||(^Γ(0+/)-1; J?(X)|| = \\L{t){zM{t)+L{t))-ι;X{X)\\<C

VZZΞC with Re * > 0 , Vfe[0, τj;
(vi) ί-*M(ί) (L(ί))-1 = Γ(ί) is a C(1) mapping [0, τ]

with Re#>0

^ | ^ | ) 1 - p , P e ] 0 , l ] ;

(vii) \\T'(t)-T'(s);-C(X)\\ζC\t-s\', fie]0,l].

Presently, let us keep /, a;0 undefined.

1.2. Lemma. Under (i)—(vii), the estimate

^ ^ 1; X(X)\\<C\t-s\\ί+\z\γ-"
OS

holds for every t, ί 6 [0, T], Z^C with Re z>0 with exponents 6, p, as in (vi) —(vii).

Proof. We simply work out the calculations:

= zi(zT(s)+I)-ιT\s)(zT

Since

we obtain

\\(zT(t)+I)-1-(zT(s)+I)-1; X(X)\\<C\t-s\{l+\z\γ-p,

whence the lemma follows easily.

1.3. Let us now choose £Ί = C0[0,τ; X], W{B)={u^C(

0

l)[0iτ; X]; iι'(0)=0}
with Bu=u'; it is well known that (Eu SD(B))BtCO is Cjβ)[0,τ; X], the space of
continuous X-valued functions u on [0, T] s.t. #(0)=0 and

\\u\ Coβ)[O, τ; ̂ Y"]|| = max ||M(£); X | |+sup

to be written henceforth || \\u\\ ||β, is finite.
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Fix ωS]0, £]: for every κeCSω>[0, τ; X] and z e C with Re

[A (*Γ(f)+/Π « w - [ | (*Γ(*)+/Π «<*); -aril

by the lemma, so

I t-sI - II [A

^co+iίi
Hence, by (vi)

since now the commutator is a multiplication by —

After repeated interpolations ((JSi, F -)< Γ | β β=Fβ ( rVσG]0, 1[), we get

We therefore claim that an estimate like (C) holds in every V^(0<v<p6) if
p > σ > 0 . Note that at best, when p, £ equal 1, we may allow 0 < I / < 1 . So,
from Theorem 1, we deduced

Theorem 2. L*f 0<z;<p6J (i)-(vii) hold, and fix anyf<= C(v)[0, T X], w o e
X ί.ί. wo(=T(O) vo)e3l(T(0)) and (f(0)-vQ-T'(0)»0)e5l(Γ(0)). Γteii (LP)
Λαί o«^ α/w/ only one strict solution u s.t. L ( )M( ) G C ( V ) [ 0 , T ; X],

1.4. Theorem 2 has some interest even if (LP) is not truly degenerate:

EXAMPLE 1. Let Ω be a bounded C(m) domain (=oρen connected set) in
Rn. We assume that

A(t,x;D)= Σ aΛ{t)x)D*, xeΠ
1 * 1 ^ 2 *

is strongly elliptic, uniformly in tEί[0, r] and that for every t the aΛ's with | α |
=2m are continuous in Ω, while the lower degree terms aΛ with \a\ <2m are
only assumed to be L°°(Ω), all being C(1) in t, with

max max sup
* = 0,l \&\<,2m ϊ ε Q

\k

aJLt,x)-*-aJis,x)
dtk " w ' dt

~~s

for every t, ^ G [ 0 , T], A being a suitable exponent in ]0, 1].
Introduce next a normal system of boundary operators

Bj = Bj(t,y;D)= Σ bjtβ{t,y)& (yedClJ = 1, - , m),
lβ|^»O')
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and suppose that the assumptions in [28, p. 140] hold.
If we fix/), ί<p< + ooy and define

3){L{f)) = {u(Ξ W2m-p(Ω)y Bj(t, ;D)u( ) = 0 V f e [ 0 , r ] , Vj = 1,

L(t)u = iί(ί, •;£>)"(•)> Vίe[0,τ], iι

= the identity operator /,

it is known that (i)—(vii) are satisfied [28, pp. 140-144], so Theorem 2 applies
to the Lp realization of the problem

JJ- «t)+A{t, , D) u(t) = /(*), te[0, T]

if w0, / are ^good' data in the sense of Theorem 2.

P. Acquistapace and B. Terreni [2] have shown that under similar condi-
tions, it is possible to deduce all estimates (i)—(vii) when LP(Ω) is replaced by
C(Π), so our theorem applies within this framework as well, provided we choose
suitable/, zv0.

1.5. Kato and Tanabe in their basic work [15] gave a quite general example of
a family of operators {L(t); *e[0, T]} with time dependent domains for which
all the preceding conditions hold with p=l/2. They developed it in terms of
a sesquilinear form in a Hubert space; we give now another example which is
reminescent of Kato and Tanabe's one.

EXAMPLE 2. W, V, H are complex separable Hibert spaces with dense and
continuous inclusions V<Z>W<ZJΆ\ we identify H alone with its own antidual,
thus obtaining HC>W'C>Vf densely and continuously.

For every ίe[0, T], let sesquilinear forms ao(t; , •), ax{t\ , •) in V, W
respectively, be given; suppose that for every u, v, xyy, t

\ao{t u,v)\^C\\u;V\\\\v;V\\

aλ{t\xyx)>Q

As for the ί-dependence, assume that t->ao(t; u, v), t-+aγ(t\ x,y) are C(1) functions
for every x, y, u, v> and are s.t.

\aΌ(f,u,v)\<:C\\u;V\\\\vJV\\

\al(t;x,y)\gC\aι(t;x,y)\

\aί(t;u,v)-a'9(s;u,v)\<C\\u;V\\\\υ;V\\ \t-s\<
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\a[{t χ>y)-a[{s χ,y)\<C\\x; W\\ \\y; W\\ \t-s\*

with an exponent 6 in ]0, 1] and constants independent of time, for every x, y,
u, v, t, s. Here the primes denote differentiation with respect to time.

For any ίe[0, T], we define

V = 3){L{t)), <(L(t)) u, v>v = ai(t; u, v) and

W= 3){M{t)), <(M(t)) x,yyw = β l(ί; x,y) (Vu, v^ V,V

It is easy to check that (i)—(vii) hold with p = l note only that

-1)' = -Lit)'1 L'(t) Lit)-1, and

|^C|ί-ί|||/; V'\\

W).

since

it follows that

Quite similarly,

and

\[L{t)-L{s)]u;V'\\<C\t-s\\\u;V\\,

\\[Lf(t)-Lf(s)];X(VfV
r)\\<C\t-s\\

\\[M(t)-M(s)];Λ(V,V')\\<C\t-s\

\\[M'(t)-M'(s)]; X{Vy V')\\<C\t-sV .

We obtain information about variational solutions of (LP), when M, L are ses-
quilinear forms: in other terms, our solution to (LP) is also, in particular, a solu-
tion of

- K , υ(0))- Γ aλ(ty u(t\ v\tj) dt+ (T ao(t, u(t), v(t)) dt - [f(t) v(t) dt
Jo Jo Jo

for every 'test function' ^GC ( 1 )[0,τ; V] s.t. v(τ)=0, ( , •) being the duality bet-
ween V and V.

Now, look for a bounded domain Ω in Rn with regular boundary 9Ω, and
put

alt; u, v) =Σ [at)(t, x) ' x ) M dx

where u}v^Hl(fϊ)=VCI>L2(Ω)==H. The coefficients are supposed to be con-
tinuous on [0, τ]xΠ with Lipschitz continuous time derivatives, and s.t. V(/, x)^
[0,τ]xΠ

i ] i j ( i ) i
i , y = i

cit,x)>0.
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As for flj, choose

ax{t3 u, v) — \ m(t, x) u(x) v(x) dx

with m continuous and nonnegative on [0, τ]xΩ. The key condition on m,

which allows an application of Theorem 2 is:

/ f)tn

there exists as a continuous function, and
dt

( 3 ) Γ Bm f
I 2ΞL (t, x) u(x) v(x) dx\<\\ m(t, x) u(x) ΰ(x) dx \

\ JQ dt JQ

Clearly, (3) holds if we may separate variables, i.e. m(t, χ)=k(t) m^x): in this

case we require mx continuous and nonnegative, k of class C(1) and nonnegative,

and moreover | k'{t) \ < Ck(t) for every ίe [0 , T]. Another possible choice for

aλ is

βl(ί, u, v) = j Ω ±ptίt, x) |^(*)|£<*)] dx

if Σ bij(t, x) Zi Zj > 0 V (t, x) e [0, T] X Ω and V zu • • •, zn e C: clearly, the ό,, 's and

their derivatives db^jdt must satisfy natural conditions.

We end the section with some remarks.

REMARKS. 1.5.1. If the M's have uniformly bounded inverses in X(W, W)

(i.e., C\\u; W\\<\\M{t)u; W'\\<C'\\u\ W\\ for every u in V=W), we obtain,

with our notations, ax{t\ u, u)>C\\u; W\\2; now, an assumption \a[(t\ u, v)\ <

C\\U\W\\\\Ό\W\\ implies readily

\\(zT(t)+iyi;j:(W')\\, ||A (zT(t)+iyι;Λ(W')\\<C.
at

Hence, if

(aι(t;u,u)>C\\u;W\\2

\a[{t;u,v)-a[{s;u,v)\<C\\u;W\\\\v;W\\ \t-s\<

[ for every uyv^W and for every t, s^[0y r]

Theorem 2 applies immediately: this fact allows us to handle Sobolev-type equa-

tions.

1.5.2. Let M^X(H) be a nonnegative (bounded) operator. If we put α1(w,z?) =

ζMu, vyH and a0 is as before at the beginning of Example 2, we get

u; V\\2 for every we V :
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using again Theorem 2, we may then study degenerate equations of the type

J- (Mu(t))+L(t) u(t) =f(t), ί<=[0, T] ,

when/isinC(v>[O,τ; V'].

1.6. Now, we turn to a problem of the form

d
(NLP) \ dt {M{t) W ( ί ) ) + L ( ί ) U{t) = f ( t ' u { t ) ) ' ί e [ 0 ' τ ]

((M(t)u(t))t=0 = w0

where the families {L(ή; ίe[0, T]}, {M(ή; ίe[0, T]} are as before.
We assume that there exists a continuously embedded Banach space

Y, η>0, exponents a, β in ]0, 1] s.t.

(H) \\L{tγι-L{s)-ι\£(X, FOII^CIf-ίΓ for every t,ιe[0,τ] ;

(K) (t,y)-^f(t,y) is a Cm mapping from [0, τ]xU into X, U being an
Fj-neighborhood of ω0 e Yx Π ̂ (L(0)) / satisfies

for every t,s&[0, r ] and Vx}

\\®L(Vι uΛ

(L) wo(= M(0) «o)e5l(M(O)) and

Part II (§4, Theorem 2) then allows us to state

Theorem 3. Let (i)-(vii) together with (H), (K), (L) AoW, am/ assume 0 <
v<ρS> v<a, β<l. If τ,η are sufficiently small, then (NLP) has a unique strict
solution u s.t. L{-)u, d\dt (Af(•)«(•)) are i n C ( v ) [O,τ;X] .

1.7. Let now see what Theorem 3 implies in an interesting linear case. Let
{L(t);t^[0yτ]} be a family of operators with time-independent domain D\
suppose moreover M is a closed time-independent operator from Y into X s.t.

(L'(ή<=C[0,τ;£(D,X)]
{ ' ( ||L(0) (zM+LiO))-1; -C{X)\\<C VseC, Re z>0 .

Note that no further condition is actually required on L(t), t>ΰ.
The linear problem

(LP1)
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may be seen as a particular case of (NLP) with L(0) instead of L(t); we put

f{t, u) = [L(0)-L(ή] u+h(i), ίetf), r], ueD.

Suppose D=Y1 (see (H), (K)): then (9//a«)(0,«0)=0 and (K) holds if Λe
C«[O,τ;JΓland

(5) \\$-(t,x)-3L(s,y);X{DpC)\\ = \\L(t)-L(s); X(D,X)\\<C\t-s\^

for every t, s e [0, T] , V x, y e D. Since

L(0) [L(tr-L{sΓ] = -L(0) L(tΓ[L{t)-L(s)] L(0)-\L(0) L ^ Π ,

(5) becomes the well-known Tanabe condition (see e.g. [28, p. 118])

||L(0) [ L t O " 1 - ^ ) - 1 ] J7(X)| |^CI ί - ί I <*

when there exist L{t)~ι together with constants a, b such that

a\\L{t)x\\^\\L{Q)x\\<:b\\L{t)x\\ Vx<=D, te[0,τ].

Statement (L) becomes the following compatibility condition at t=Q:

(6) A(0)-£(0) u,<ΞSl(ML(ϋ)-1).

So, we have shown

Theorem 3\ Let (4), (5), (6) hold: then for every AeC ( 1 ) [0, τ ; X], (LP1)
has a unique strict solution in [0, T], provided r is sufficiently small. In this case,
strict solution means: L( )w( ) is of class Cv with 0 θ < / 3 if β<l, 0 θ < l if

A crucial remark is that under (4), (5), (6) we can only hope to find a local
result, as one will understand by means of the following simple counterexample.

Let — A generate an analytic semigroup in X, and S be > 0 ; then consider

u\t)+SAu(t) = (t-26) Au(t), ί<Ξ]0,+°o[, u(0) = I*,

there is no strict solution on any [0, r] if τ>2£; nevertheless, our Theorem 3
applies, since

1.8. If it is possible to apply Proposition 1, we may weaken the assumptions
about regularity in Theorem 3'. If h^Cm [0, τ ; X] with 0<v^β<ί, v<\,
h(0)-vo=h(0)-L(0) M O =ML(O)- 1 ©„ and

l?(w) (ί) = [L(0)-L(ί)] L(O)-1 w(ί)+[L(0)-L(ί)] L(0)"1 [Ve+tVl]+h(t)-h(O)

-tv1 = K(w)(t)+v(t),
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it will suffice to observe that

ηf=CP[0,τ;X\ and {KL~ιw) (t) = [L(0)-L(t)] Lφy'wit) imply

\\{KL-ιw) (t); X\\<Cnw{t); X\\^C'r^\\w; C^[0, τ; X]\\, so

I t-sI "* \\(KL-1) w{t)-{KL-') w(s); X\\

= \t-s\"v \\(I-L(t)L(O)"1) [w(t)-w(s)]-(L(t)-L(s))L(0)->w(s);X\\

If we choose a suitably small T, we obtain

Corollary 1. Let 0<p<,β, v<l, and suppose that (4) holds, without
differentiability, together with (5) and (6). // λeC(v>[0, τ X], A(O)-L(O)MOS

^(ikf^O))""1), then, if τ > 0 is suitably small, there exists a unique strict solution
u of (LP1) on [0, T], such that L( )«( ) e C w [ 0 , τ ; ί ] ,

EXAMPLE 3. If we turn now to the pattern of Example 2, with the same
notations V, W, H, α0, au suppose ax independent of t, and

(E)

ao(t; u, υ)-<φ; », v)\<C\\u; V\\ \\v; V\\ \t-s\>

|βί(ί;«,»)-αί(ί;«,o)|^C||«;F||||β;F|| \t-s\'

for every x,y, u, v, t, s (xG W and so on) with suitable exponents a, /8e]0,1],
we see that conditions (4) and (5) are satisfied: see [28, pp. 144-145]; if uQy h
do satisfy (6) we may apply theorem 3' to (LP1). It is also easy to apply corol-
lary 1, under suitable conditions.

1.9. APPLICATION 1. (Integr©differential Equations). We turn now to the
study of degenerate integrodifferential equations (IDEs for short).

Let us see presently how to work with Proposition 1 and Corollary 1 to
Theorem 3' in the case of a problem

(LP2)
j-t (M(t) u(t))+L(t) u(t) = \ K(t-s) u(s) ds+f(t), te [0, T]

(M(t)u(t))t=0 = w0

concerning a degenerate but linear IDE.

For the sake of simplicity, we suppose that L, M, satisfy (i)—(vii) with

6=p=l, and that the operators K(t, s) L(s)~1 lie in -C(X) V(ί, t) in the triangle
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i(s,t)^R2; 0<s<t<τ}=A: a particular case might be K(tys)=k(t—s)L(s)
V(ί,ί)GΛ, with k(u)^X(X) Vw^]O, T]; moreover they must satisfy (o), the
following set of conditions:

(o): \\K(t,s)L(sy>;j;(X)\\<C\t-s\-\V(s,t)(=A, with <ye[0,l[,

\\K{t',t'-s)L{t'-s)-ι-Kit",t"-s)L{t"-s)-ι X(X)\\<C\t'-t"\^,

Vf', t" such that 0<α '<τ, 0 < ί " < τ , Q<s<t', Q<s<t"

with suitable or,, OKa^ί (such a kind of bounds are used e.g. in [20],

If

( 0 0 ) / ( 0 ) - ( 7 + r ( 0 ) ) ϊ . 0 e ^ ( 7 1 ( 0 ) ) ) ^ = L ( 0 ) « 0 and wo = M(0)u0

then (LP2) may be translated into

(LP3) I It
l

where h is defined by

Λ(<) = / ( * ) + ( ' K(t, s) Z-(ί)-1 [β o +wj ds-[I+r(t)] vo-[T(t)+tT'(t)+t] vγ,Jo

and

Let us choose / in C w [0, τ ; Z ] with 0e]O, 1[, (9<min {1—γ, aγ} : if we
look for an application of Proposition 1 we must only prove that
[0,τ;X] we get

for a suitably small conxtant C, where F is denned by

F(ω) (t) = (' K(t, s) L(ί)"1 α>(ί) ίfo ( = (' K{t, t-s) L{t-s)-χ ω(t-s) ds)
Jo Jo

We estimate F(ω) (t) by

<C" t1-1 (sup *- ||ω(ί)-ω(0)||) ί

Let us choose
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F{ω)(t')-F(ω)(t") =

[K(f, t'-s) Lit'-sy'-Kit", t"-s) L{t"-s)-1] ω(t'-s) ds

t", t"-s) L{t"-s)-1] [ω(t'-s)-ω(t"-s)] ds
Jo

+ [' [K(tr, t'-s) Lit'-s)-1] [ω(t'-s)] ds ,

so

\t'-t"\-o\\F(co)(t')-F(co)(t"); X\\<C(\'' | ί ' - * ' T i - β ώ ) τ β | | llωίl | |
Jo

s~yds)τθ\\ \\ω\\ ||<C"τι-i\\ \\ω\\ | | | ί ' - ^ | ^ - .

We have obtained the following theorem.

Theorem 3'/A. Let (i) through (vii) hold with S=ρ=ί; suppose (°) is true,
and let 0«9<l, 0<min{l—γ, α j . Then V / E C ( ( ! ) [ O , T ; I ] such that (00) holds,
(LP2) has a unique solution u defined on a suitably small interval [0, T] , such that

d\dt M(.) tt(.), L(.) u(.) are in C(β)[0, τ; Z].

Now, we want to apply, while solving (LP2), our Corollary 1 to Theorem 3';
so we assume presently that (4), (5), (6) hold, apart possibly from differentiabi-
lity of L(t). Moreover we stipulate that K(t,s)^X(D,X) for 0<s<t<τ and

(ooo) WK^^-s); J?(D,X)\\<C\s\-\

Vs,^ such that 0<^<ί 1<τ, with γ6[0, l[ ,

\\K(tlJt1-s)-K(t2>t2-s);X(DyX)\\<C\t1-t2riy

Vs, tu t2 such that 0<0<*,<τ, i = 1, 2, with OKa^l .

We rewrite the equation occurring in (LP2) as

-f Mu(t)+L(0) u(t) = -[L(t)-L(0)] «(ί)+Γ K(t, s) u(s) ds+f(t)
at Jo

as before, we change the unknown u into v=L(0)u and so, if we write To—
ML(0)~\ we are led to

J- To υ(t)+v(t) = [I-L(t) L(0Π v(t)+^ K(t, s) L(O)"1 v(s) ds+f(t).

If v(f)=v0-\-tv1-\-w(t), we obtain in turn

j - To w(t)+w(t) = [I-L(t) L(O)-1] w(t)-T0 v.-vo
at

+ [I-L(t)L(0)-1][vo+tv1]

+ {' K(t, s) L(O)"1 w(s) ds+f(t)+ [ K(t, s) Lφy^+svJ ds .
Jo Jo
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We are looking for a solution w^C(

0

Θ)[0, τ ; X]; so, assume 0<θ<β, #<min
{aly 1—γ} then, we need only to show the following:
if F is defined by

F(to)(t)=\'κ(t,s)L(0)-1w(s)dsί
Jo

then F G . Γ ( C ^ ) [ 0 , T; X]) with small norm. Then we may apply the machinery
developed in Corollary 1.

So, fix an arbitrary a;GCSfl)[0, τ; X] and estimate:

\\\tκ(t,s)L(oyiw(s)ds\\<Cτ°(\ts-yds)\\ INI n<cv+1-ηι IMI H ;

Jo Jo
note that, for * " < * '

Γ K(t', t'-s) L(O)"1 w{t'-s) ds- Γ K(t"y f'-s) L(O)-1 w(t"-s) ds
Jo Jo

= ('" [K{f, t'-s)-Kp', t"-s)] L(O)"1 to(t'-s) ds
Jo

+ [' K{t", tf'-s) L(0)-1[w(t'-s)-w(t"-s)] ds

Jo

+^K(t',t'-s)L(O)-1w(t'-s)ds,

so if we call A the X-norm of this vector, we get

A<{Cτ<"\\ INI ii |t'_ί"|"0+(c(V*£fr|| INI II \t'-t"\e)
Jo

and finally

I t'-t" I " A< C'( I t'-t" Γi"β τ + 1 +τ + 1+τ1-*+

We have proved the following statement:

Theorem 3'/B. Let (4), (5), (6) hold, except the differentiability of L(t):
suppose further K(t} S)SΞX{D} X) V(ί, t)eA, and (00°). Let 0<θ<β, (9<min
{aly 1—7}. Then, if τ is small enough, for any / G C f [ 0 , τ ; X] there exists a
unique strict solution u of (LP2) with d/dt (Λfκ(.)), L(.) u(.) in C(β)[0, τ ; X].

Of course, it is worth observing that, in fact,

K(t,s)L(O)-\vo+sv1)ds
Jo

belongs to C(β)[0, τ ; X], as a consequence of the results already obtained, be-
cause t->(vQ-\-tv^) lies in the same space.
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REMARKS. 1.9.1. In the case L, M are ^-independent, assume that M'1 exists
and that —LM'1 generates an analytic semigroup in X; some sufficient condi-
tions are given in [10]. If K(s)^X(3)(L)y X), one may change the initial
value problem

(I) J ί (
1 (Mu(t))t=0 =

0 = \[ K(t-s) u(s) ds+f(t), te [0, T]

into

(Π)

i A.
dt

-1 v(t) = (' K(t-s) M~lv(s) ds+f{t)
Jo

= \ K(t-s)L-\LM-1)v(s)ds+f(t), ίe[O,τ]

(V(t))t=o = WQ

It is now possible to apply many classical results obtained by Da Prato and
his school to (II), thus obtaining global solutions on [0, T] and maximal regularity.
For example, let us assume, following [6, p. 364], that

(i) 3){K{s)) = 3){L) V,

(ii) s->K(s)x (strongly) measurable Vx^3)(L)

(iii) j - * \\K(s); X{S)(L\ X)\\ bounded in [0, r]

since K(t—s) M~ι=(K(t—s) L~ι) LM~\ it is an easy matter to infer that for any
/eC ( β ) [0, T X] and WO€Ξ£>(LM-1) such that

(A) f(0)-LM~l w^Wi-LM-1)^

there is a (unique) v satisfying (II) and such that v\ L i l ί ^ e C ^ ^ r ; X]. But
now WQ^.3){LM~1) reads wQ=MuOy uo^3)(L)y so (A) becomes in turn (/(0)—

-ι)B^ that is, (see [2])

(III) f(O)-Luo=y, sup {*\\L{tM+Lyly\

It has been proved

Theorem 3'/C. Assume that —LM~ι generates an analytic semigroup-of
course, 3){L)^g){M)y and K satisfies (i)-(ii)-(iii). / / e C w [ 0 , T; X], wo=MuOy

), and finally

sup(1*\\L(tM+L)-1{f(0)--Lu0);
/>1

then (LP2) has a unique global strict solution u such that djdt (Mu('))> Lu( ) are

«ιC ( >[0,τ;X].

Notice that, if y e iR (ML'1), y=ML~1x, then (as t>l is not restrictive)
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tθ L(tM+L)-ιy = f~ι L(tM+L)-\tM+L-L) L~ιx

= tB-ι[x-L(tM+Lγιx],

and hence y satisfies (III).

1.10. Finally, we give a general condition entailing formula (4) in a complex
Hubert space X (with related inner product < ,.>χ) in the case of time-inde-
pendent operators L(t)=L, M(t)=M, and then an example of a concrete nonli-
nearity satisfying (K).

Assume therefore that M is a nonnegative self-adjoint operator in X, L is
a positive self-adjoint operator in X s.t.

i) M is L-bounded with L-bound 0 (according to [13]);

ii) <Lu,Muyx>0 VUG3)(L).

i) ensures that zM-\-L is closed for every complex z; moreover, by ii)

W(zM+L) u; X\\2>\\Lu; X\\2 Vu<=W(L), VseC, s.t. Re s>0 .

Hence, zM+L has a closed range. On the other hand, in [31] it is shown that
in this case

(zM+L)* = zM+L, V^eC, s.t. Re s>0

thus, if /e(Λ(*Λf+Zr))"L-that is, <(zM+L)u,f>x=0 Vz/e^)(L)-then /
4)((zM+L)*)=4)(L) and

<u, (zM+L)f>x = 0

So we get 0HI(zM+L)/; X||>||L/; X\\, that is,/=0; hence,

|| V / G I ,

II^Γ+7)-1; J?(X)||<constant (T = ML-1)

in a sector of the complex plane containing the half-plane Re z>0.
Let us give now the example of nonlinearity we spoke about: let then

F: [0, l]x[0, l ]χΛ^Λ, and assume the same as in [23, pp. 204, 205], namely,
ft 7? ffi "R ?fi 1R

F—F(s, t, u) is continuous together with its derivatives , —-, with | —-1
bounded on [0,1] χ [ 0 , l ] χ Λ . 9 " du d u

Then define for x(ΞX=L2Q0, l[)

T(x)(s)=[F(s,t,x(t))dt;

Jo

T turns out to be an everywhere differentiable operator X-^X, s.t.

T'(*)Φ)=\1ψ-(;t, χ(ή) h(t) dt Wx,
Jo du
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([23, pp. 204-206]). An easy evaluation of T\x) (h)-T'(y) (h) yields the Lips-
chitz estimate

\\T'(x)(h)-T'(y)(h);X\\<M\\x-y;X\\\\h;X\\ Vx.j.ΛeX,

since l/°(]0, 1[)QX. Finally, choose a closed operator K from X into X, s.t.
3){L)^a){K): then, if f(u)=F{6Ku) (with a real 6, \€\ small) we may see that
assumption (K) is satisfied.

2. Nonlinear Problems: Preliminaries

2.1. Now, let us show how to reduce conveniently into the pattern (NLP)
some problems which, at first glance, might seem a bit more general.

Let us write down the problem

( N L p i ) I j t (M(t) u(ή) = g(t, 11(0), ί e [0, T]

\

Here, as usual, we introduce two Banach spaces X, Yίy a family {M(t)\ t^[Qy r]}
of linear bounded operators from Yx into Xy a map g: [0, T] X U-+X, where
U is an yrneighborhood of u0. We assume that g is of class C(1) and that
dg/du (t, uo)=—A(t)<=Λ(Ylf X) for every fe[0, T].
We rewrite the equation in (NLP1) as

j~t{M{t)u{t)) = -A(t)u(t)+ig(tyu(t))+A(t)u(t)}y fe[0,τ] .

If Y(t) is a subspace of Y1 s.t. for every ίe[0, T] the restriction of A(t)
to it, to be written henceforth L(t)y satisfies (i)-(vii), then Theorem 3 allows us
to solve it in the form

jt{M(t)u{t))= -L(t)u(t)+{g(t,u{t))+A(t) «(<)}, <e[0,τ],

.(M(f) «(*)),_, = «o,

at least if

' w0 = M(0) «o, uo(=g)(L(O)) = 7(0)

L(ί) satisfies (H)

(N)

for every ί, se [0, T] and Vt^, u2^U

Note that, if one introduces F(t, u)=g(t, u)—(dgjdu) (t, u0) u, one gets
(dF/du) (0, tto)=O; consequently we obtain
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Theorem 4. Let (i)-(vii) and (N) hold. If 0<v<p£, v<ay /3<1, and r

is sufficiently small, then (NLP1) has a unique strict solution u s.t. L(-)u is in

C«[0,τ;<X].

2.2. If M(t)=M, S){(Qgjdu){t,u))=D are independent of t and u, we may
weaken (or, at least, simplify) assumptions in Theorem 4. If we set

L = —§£- (0, Ho): Z> -* X, F(t, u) = g(t, u)+Lu ,

we get

—— (ty uj— (s, u2) = —£- (t, u^)——^- (s, u2), for every t, se[0, T]

and Vw1?

so, under the preceding assumptions, the following extension of Theorem 3'
holds.

Theorem 5. Let the operators M, L satisfy

\\L{zM+L)~ι\ X(X)\\<C V ^ G C , R e ^ > 0 ;

as for g, suppose it to be a C(1) map [0, T] X U-+X, where U is a neighborhood of
u0 in D=ίD(L): assume further that, for every t, *e[0, T] and V^, u

w0 = Mu0, g(0, u0) ( = F(09 uo)-(I+T'(O) L{U»)))SΞSI{ML-') = M(D)

then the conclusions of Theorem 4 hold as well.

2.3. A simple example will clarify the method. Let us look for regular u,υ:
[0, τ]-+R (or C) s.t.

t) = -u(t)+(v(t))2

0 = -v(t)+l-(u(t))2 for every ίe[0,τ]

u(0)+v(0) = 0

Put uo=u(O), vo=v(O): then one gets easily υo—l—ul, ul—u0—1=0: here arise
the compatibility conditions, as in Theorem 5. We write down the problem
in matrix form and use the notations of that theorem; the jacobian matrix of g is

Γ - l , 2*0 Ί Γ l ,

L-2MO, — 1J L2«
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which is nonsingular. The condition ^(0, uo)^3l(ML~ι) now becomes

•]

341

π ηr*-| r*+y
Lo oJLvJ L o .

for suitable x,y in R, that is, the very condition vo=l—u\. If these conditions
do hold, we may apply Theorem 5 of course, the problem could be explicitly sol-
ved in u by trivial tricks and separation of variables.

2.4. As another example, consider

(NLP2)
j- (Mu(ή) = -L(t) u(t)+f(t, u(t)), /e[0, r]
at
(Mu(t))t=0 = wB

when D=ίD(L(t)) is time-independent: we may put it into the form

J- (Mu(t))+L(0) u(t) = [L(0)-L(ή] u(t)+f(t, u(t))y

(Mu(t))t=0 = w0

, T]

Hence, if (4), (5) hold (the assumptions on L'(t) may be dropped, if we invoke
theorem 1 directly), /: [0, τ]xU-+X is C(1) (here, Z7—a neighborhood of u0

in D) and moreover

dii
s,u2); X(D,X)\\<C(\t-s\^+\\u1-u2; D\\)

for every ί , je[0,τ] and V uu u2 e U

| | - | t (0, «„); -αz>, A-)||iβ sπudl
ou

then (NLP2) has a unique strict local solution.
On the other hand, write

~L(t)u(t)+f(t,u(t))

(0, no) u

We see that, if (4) holds with L replaced by [L(0)—(9//3w) (0, u0)]-ρerturbation
results are in order, of course-(5) is true, {dfjdu) satisfies the second assumption
in (7) and

/(0, «b)-L(0) uo<=&(M[L(O) -M- (0, Mo)]"1),
OU
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we may prove existence, uniqueness and regularity of solutions for (NLP2),

without any assumption about the smallness of ||(3//9w) (0, u0); X(Ώy Jf)||.

3. Semilinear and Nonlinear Parabolic Problems

3.1. In the following, we will look for real-valued solutions under the assump-
tion that the linearized problem does have real-valued solutions for real data.

APPLICATION 2. (Semilinear Equations). Let Ω be a bounded domain in Rn

with regular boundary 9Ω; Ay Bj are formal differential operators as in Example
1.

We want to study

I - (t, x) = -A(ty x; D) u(ty x)+f(ty u(ty x)y - , D 2 * " 1 u(ty x))y
at

(SLP)

tyyyD)u(tyy) = 0yt(Ξ[0yτl

u(0yx) = uo(x)y

So fix/eC ( 2 ),/=/(*, Xly •••, X2m) with arguments *e[0, T], XJ a real vector
with n'~ι coordinates and call F the related substitution operator

F(ty u) (x) =f(ty u(x)y Du(x) "yD
2m~ι u(x))y *e[0, r], Λ e Π

to be defined on W2nttp(Ωl): Dku is the vector containing the nk partial deriva-
tives of u of order ky l<Λ<2m-l.

Formally, in matricial notations,

Ά (t, u)v) (x) = JL (t, «(*), Du(x) - , D2™-1 «(*)) v(x)

(t, u(x), Du(x), .-., Z)--1 «

(ί, u(x), Du(x) . - , Z)2--1 ιι(Λ)) Z)2--1 v(x),

where df/dXj ( j = l , ••-, 2m) is the partial differential of / with respect to the
(j+l)th variable.

We wish to apply Theorem 3 with X=Y=LP(Ω)9 l<p< + °oy Yχ=
W2m'p{CL). Let p>ny uly u2(Ξ W2m>p{CΪ) with norm <R\ for small τ 's we get, by

Sobolev Embedding Theorem [22, p. 208]

3L (ty Uι(x)y Dux{x)y , D 2 - 1

 Uι{x))-^L (,, u2(x)y Du2(x)y , D^ u2{x)) \
όJί

Now, the same theorem implies that F is differentiable in u in fact,
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[F(t,u+k)-F(t,u)](x)

f(t, u(x)+θh(x), -, D2™-1 uW+ΘD2"-1 h(x)) dθ
o dσ

x), -,iy-1u(x)+ΘD2 »-ιh(x))h(x)+
o dj

(ί, u(x)+θh(x), •••, D2m~ι u(x)+ΘD2m-1 h(x)) D2^1 h(x)] dθ ,
dx2m

so we get

^CVIt-ίH-lk-tt,; F,||)Σ I^ΦOI
y=o

for every t, s e [0, T] if ^ w2 have y r n o r m s less than R.

Then (same t,s, uly u2's)

. ι9F

ou
(t, Uι)-ψ- (s, u2);

ou

if T is small. Further, [28, Lemma 5.3.4, p. 142] implies that (H) holds with

α = l .

Hence, if

uo^:S)(L{Q)y the partial derivatives —I— (0, uo(x)f •••) satisfy

sup I—ί— (0, wo(x), •••) I <k, k being a small constant,

(8) if L(t) is the //-realization of A(t),

x^ [/(0, uo(x)y - ) - ( / + ( | - WO)'Vo) ^oW] is in

with ©0(Λ) = (L(0) fio) (Λ) - i ί (0, Λ ; Z)) fio(Λ),

which implies regularity for/, z/0>
 w e a r e done.

As a Dirichlet problem, (2){L{tj)=W2m>p(Ω,)Γ\ Wl™'^)), (8) implies that

* - Γ/(0, uo(x\ - , Z)2--1 iίo(*))-L(O, Λ:; D) ^ ) ]

vanishes on 3Ω, together with its derivatives of order <tn— 1: we must look

(0,A, •• ,/>2J.
For the sake of clearness, take m = l we want

x - [/(0, «,,(*), Z^ 0 (^))-L(0, Λ ; Z)) uo(x)]ζΞ W2-^)

, αo(jc), Dw 0 W)-L(0, x; D) uo(x) - 0,
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Since woe Wof*(Ω), it vanishes on 9Ω; if, moreover, L(0, x; D)uo(x)=O on 3Ω,
our assumption reads:

/, u0 regular, /(0, 0, p) = 0 for every p(ΞRn.

Such equations have been thoroughly studied by Pazy, Kielhϋfer, Sinestrari-
Vernole [22, 16, 24], but within ί-independent domains: here we add time re-
gularity results; moreover, the equations hold at t=0> too, which forces further
compatibility and regularity conditions. The case of ^-dependent domains
has been deeply studied by Amann in many interesting papers with different
techniques, also under more general assumptions: here we refer to [5], which
deals with nonlinear boundary conditions, and [4], which studies the semilinear
case.

A few final remarks are in order:

REMARKS. 3.1.1. As remarked after Theorem 5, the assumption about smal-
Iness of the derivatives (dfjdXj) (0, uo(•)>•") may be dropped if 3){L(t)) is time
independent and — [L(0)—(dF/dii) (0, u0)] generates, for instance, an analytic
semigroup in Z/(Ω): L(t), (dF/du) (t, u) must however depend upon time as in
(4), (5), (7):

3.1.2. We could even define a substitution operator F built up with highest-
order derivatives:

F(t, u) (x) =/(ί, u(x), Duixy- iy-1 u(x))

+ Σg*(t,-,D*-1u(x))D"u(x)
\<*\=2m

with suitably regular ^/s, since then dF/du may be evaluated using Sobolev's
theory. We must require smallness of

| | | LS U P | | | | L ( O , M O ( X ) ) ,Z)2»'-1«O(X))| |

for every a and every j : assumptions about the smallness of the partial derivatives
j can be avoided by a perturbation argument.

3.2. (EXAMPLE 2 Again). Let us return into the framework of Example 2, as
in 1.8. Two sesquilinear forms ao(ty u, v)> aλ{u,v) are given, uyυ^VQH, 0<
t<τ.

Consider

ί J- (Mu(t))+L(t) u(t) = F(u(t)), ί e [0, r]

((M«(0),_0 = wo
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where L(t), M are linear operators connected to ao(t> , •), ax respectively, as
explained before.

We assume that F E C ( 1 ) ( F , H) and

u. VW if ||u,.; V\\<ry i = 1, 2

, fl)|| is suitably small,

and

We want to clarify the kind of assumptions needed by means of a concrete
particular case. Fix a bounded open domain Ω in Rn with regular boundary
9Ω (or else put Ω=i?Λ). Let V be the space £Γ?(Ω) (w>l), and flF an inter-
mediate space, so that VQ WQL2(fl) ao~ao(t, u> v), a1=a1(xy y) (te [0, T], w, z e
H™(Ω), xyy^L W) will be the related sesquilinear forms, satisfying (E) in 1.8 with
β=l: as before, call L(t)y M the operators (from V into F*, from W into ϊF*,
respectively) associated with ao(t, , •), ΛX.

Since we wish to apply Theorem 3, it is easy to see that (i)-(vii) and (H) are
fulfilled in the case X=V*, Y^Y^V, p=\, S=a. Note that

\\L(t)-L(s); X(V, V*)\\<k\t-s\ for every ί,s€=[0,τ]

implies that (H) holds with a=l [28].
As for the nonlinear right-hand side, we put, with the same meaning as

in 3.1 for/)':

F(u) (x) = a(φ), Du(x) " ., D* u(x)) :

k is a nonnegative integer, <m> so F makes sense for every u in H$(Ω), and
α is a real valued C(2) function. We shall see in a moment that we need the
condition

(9) |

= [J-a(u(x)+vv(x),-,D*u(x
Jo an

where daldXj+1 is evaluated at (&(#)+9?τ;(#), •••, Dk u(x)+ηDk υ(x)) f o r y = 0 , •••,/?.

Suppose now that the norms in V of u, v are bounded by r: t h e n
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i[F(u+υ)-F(u)] (x)~ Σ [-^- &υ(x)]}2 dxΫ
y=o oXj+1 /

< M(r\ ί ( ΓV IIΌ'W*?MI2ΊII 7;f^ll2 dxY/2

I JQ y=o

ψt\\D'v(x)\\t\\\I»υ(x)\\*dx)w}

r)||t;; F | | 2 .

(By (9), we may apply Sobolev Embedding Theorem [22, pp. 208, 222] and de-
duce the last estimate). So, F is differentiable as an application from V into
Hy and a fortiori, from V into V*.

A new application of Sobolev Embedding Theorem yields also that F' is
locally Lipschitz.

To summarize: we may apply Theorem 3 to abstract problems arising from

{Mix, D) u(t, x))+L(t, x; D) u(t, x) = a(u(x), - , Dk u(x)),
ot

, r],

Λ?, D ) W(0, X) =

if we are looking for u=u(t, •) in H*(Ω), (9) holds, and u0 is regular. Besides
trivial assumptions, we need

^ tobesmall
y=o Q dXj+1

and, with the intended meaning for T,

[β(κo, •-., Z>*tto)-(/+r(O))L(O, .

When Λ = 1 , Λ can reach the value m— 1; if L(t) = L for simplicity, the last con-
dition becomes

with ()

3.3. APPLICATION 3. (Nonlinear Parabolic Equations). Let us apply Theorem
3 in the framework of spaces of continuous functions.

Put C=C[0, 1 C] (or C=C[0, 1 Λ] as well); as usual | |/; C | | = sup | f(x) \.
Set now COtO=iφζ=C; φ(0)=φ(l)=0}> and define A by * e [ M 3

— φ / r for every φ

It is well-known [21, p. 312] that —A is the infinitesimal gneerator of an analytic
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semigroup in C M . Note [13, p. 172] that for every

n-\-2

We are ready to develop an abstract version

— u(t, x) = —— (t, x)-^rΛ]r(t, u(t, x), — u(t, x), —

ίe[0,τ],*e]0,l[

u(t, 0) = u(t, 1) = - 0 (ί, 0) = -g- (ί, 1) = 0, f e[0, T] ,

once we have fixed the nonlinearity ΛJT. We take it a C(2) function [0, T] X
R3-*R, and denote by F the related substitution operator, acting on u
EC ( 2 )[O,1;Λ]:

F(t, u) (x) = ψ(ί, φ ) , M'(Λ), ^ ( Λ ) ) , ίe= [0, r], ^ e [0,1].

We perform the same tricks as before and we see easily that F is differentiable
in M, with

[f
the partial derivatives of ψ being evaluated at (ί, φ ) , u'(x), u"{x)).

So, if we wish to apply Theorem 3, we need assume that

sup I —^- (0, uo(x)y •••) I is small enough , and

(*) # , 0 , ί , 0 ) = ̂ - ( ί , 0 , ί , 0 ) = 0 for every j>e=Λ, Vf€=[0,τ] ,

«beC«[0, 1 C], ιιi*>(y) - 0, Vj - 0, 1 and k - 0, 1, 2, 3, 4 .

REMARKS. 3.3.1. Thoerem 5 allows us to study more general problems.
For instance, given the equation

(10) A U(t, x) = g(t, u{t, x), ψ- (t, x), g (ί, x)), te[0, T], xe [0,1],
Ot OX Ox

with an initial value u0 at ί—0 and limit conditions, denote by G the substitu-
tion operator arising from g; if the latter is C(2), then the former is differentiable
and, as before,

[J*L ( ί, U) v](x) = - ^ v(x)+ -^vf(x) + -^- v"(x),

with partial derivatives evaluated at (t> u(x), u'(x), u"(x)); so the previous remark
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applies if e.g.

inf ^ ( 0 , « 0 ( Λ : ) , ^ ) , ^ / W ) > 0 , and
] QXZ

ft °> A °) = *ft °> A °) = ° identically on [0, r],

« 0 eCW[0,l;C],»i l ) O')=0,Vj = 0,l and A = 0,1, 2, 3, 4.

3.3.2. We can even study equation (10) in the space C [0, 1] by means of semi-
group generators with non dense domain [8]. In this case, the assumptions
about g and w0 can be relaxed in fact, they turn out to be (compare Theorem 5)

inf J ^ - (0, uo(x), u'0(x), «$'(*))>0 , and

«,eC<«[0, 1], wo(j) = uP(j) = 0, V; = 0, 1 .

3.3.3. We could improve a bit on the operator A too. We could introduce
A09 with (formally)

Aou(x) = - * ( * ) u"(*)+6(*) i * ' ( * ) + φ ) u(x)

(a, b} c regular enough), and then apply well-known perturbation results to

As for the functions a, by c, there are natural assumptions which work. We
wish to discuss briefly some of them: we shall restrict to the case of continuous
functions: so, we choose as ambient space either C(in which case Ao is not den-
sely defined), or C o o : moreover, we assume a>0 in [0,1]. There are many
ways to prove generation properties in this case: see [13], [26], [27], [20], [7].

A very handy method is to note that M-» — au" equipped with limit con-
ditions does generate an analytic semigroup, and then apply Kato's perturbation
theorem for analytic semigroups related to homogeneous limit conditions: this
is possible in view of the estimate in [13, p. 172]: but if we choose C0>0 as the
ambient space, we have to assume b(O)=b(l)=O: we refer to [7, p. 378].

3.4. APPLICATION 4. (Degenerate Parabolic Equations). Consider now the
problem (k>0 is a parameter)

if ( έ + 0 u { t > x) = &u{t' x)~ku{t> x)+Ht'u{t'x)} ~ku(t> x)' έ M ( ί > x)

te[0,τ], *«=[<>,*],

u(t, 0) = u(t, *) = -^ u(t, 0) = Jji «(ί, π) = 0, Vίe[0, r],
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where :

a) the ambient space is C = { / G C [ 0 , π; C];/(0) =f(π) = 0}
92

realization of with domain

, ^ ; C]; II"(0) = u"(π) = n(0) = u(π) = 0}

92

b) L is defined as the realization of with domain

32

c) M is — r + l > plus the boundary conditions;
dxrd) w0 = u'o'+w0, with

e) the nonlinearity ψ is a C(2) function [0, τ]xR3->R which satisfies

sup I—^-(0 uo(x) •••)! is small enough,

t, 0,p, 0) = 0 for every p&R, V*e[0, T] ,

f) the boundary value provlem

has a solution.

Note that, in particular, these conditions imply

ψ(0, 0, nί(0), 0) = ψ(0, 0, iiSOr), 0) - 0 ;

our third condition in e) is not necessary if we use the space C[0, π; C] instead
of C.

Since we wish to apply Theorem 3, we need just observe that # = 0 is a polar
singularity for the resolvent z->(zI-\-M)'1y and that the preceeding problem is
of the abstract type

J- ((K+I) u(t)) = (K-kl) u(t)+f(t, u(t)), te [0, T]

The point ^r=0 is in fact a polar singularity for M=KJ

rIi that is, there exists
(M+zI)'1 for 0 < | * | <^, and for such #'s and a suitable α > 0 ,

the change of variable

w(t) = exρ(—(β+l) t) u(t)> β>0 a suitable positive number,

changes the equation into the equivalent form

A ((K+I) w(ή) = -(K+I) ((ί+β) w(t))+g(t, w{t)), ίe[0, T]
at
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and now the sought for estimate for L{zM-\-L)~ι does hold in the half-plane
Re*>0, if L=k+l+β(K+I).

Theorem 3 then applies under assumptions on the nonlinearity ψ, which
are quite similar to the ones discussed in 3.3.

3.5. APPLICATION 5. (Higher-Dimensional Parabolic Problems). Para-
bolic problems of the same kind as in 3.3 are clumsier and much more difficult
to handle in more than one space dimension (this topic has been extensively stu-
died by Da Prato and his school; see also [26], [27]).

However, let Ω be a bounded domain in Rn (n>ί) with regular boundary
3Ω: we replace the second derivative in 3.4 with a uniformly elliptic second-
order operator on Ω, with coefficients as in [26]:

~(Au)(x) = ± «„(*) χ - ~ (*)+ Σ a,.(x) J^+«(x) u(x)
* i OX OX " i OX

Choose now as the ambient space X=C(Ω) equipped with the sup-norm,
define A on £)(A)=iφ<ΞW2>p(Ω)) ^ φ e C ( Ω ) , φ=0 on 8Ω}, and make the key
assumption thatp>n: from Stewart's results [26] it follows that —A generates
an analytic semigroup, which is not however strongly continuous at the origin,
since 3)(A)=CQ(Π)^F X (in this connection, see also [25]). Let / be of class
C(2)(R, R). We state formally the problem as

— u(t, x) = — Au(t, x)+f(Au(t, x))f ίe[0, T],
dt

u(t, )^3){A) for every t e [0, T]

u(0, x) = uo(x), ^ G Ω .

Without loss of generality, suppose A has bounded inverse; the problem
may be abstractly translated into

IJ- (L-1 v{ή) = -v(t)+f(v(ή), ίe[0, T]

1
Call F the substitution operator relative to /: F(v) (x)=f(v(x)),

Then for every AeC(Ω), as usual,

F(v+h) (x)-F(v) (x)-f'(v(x)) h(x)

= \lU'(v(x)+vHx))-f'(v(x))]h(x)dvJo

so, if vo=Luo^C(Π) and \\υ—vo; C(Π)||, \\h; C(Π)\\<ry we may find a positive
constant C, depending upon r, s.t.

\\F(v+h)-F(υ)-\J'(v('))h(')]; C(Π)||^C||A; C(Ω)||2.
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So F turns out to be differentiable, and

(F'(v) (A)) (x) = /'(»(*)) h(x), for every υ, AGΞC(Ώ), xEίΠ

moreover, since

(F'(Vl) (h)) (x)-(F'(v2) (Λ)) (*) = [ / ' ( ^ ( Λ ) ) - / ' ^ * ) ) ] h(x),

we may find also C'=C'(r) s.t. for every vly v2^C(Ώ) with norm <r

WF'ivJ-FXvJ; X(C(Π))W<Cf\\ ^-v2; C(Π)|| ,

and Theorem 3 applies with X= Y— Yι=Cφ)\ we must assume that

sup I f'(vo(x)) I is suitably small,

in particular, if v0 vanishes on dΩ we must assume /(0)=0.
A final remark: it is possible to generalize a bit, and introduce the equation

^ u(ty x) = -Au(ty x)+f(Bu(t, x))9 ί e [0, r], XΪΞΩ, ;

here B=B(x,D) is a differential operator of order < 2 : now we must assume
that the abstract operator arising from BA~ι is in -Γ(C(Π)), i.e. for every u^
3){A), UΪΞΦ{B) too, and

a formally simple condition which is however difficult to work out explicitly.

3.6. Let us define

X - C°o(Rn) - {/eC ( 0 ) (ir); lim/(*) = 0}

with the sup norm. It has been shown in [17, p. 309] that the operator Δ, the
(distributional) laplacian with domain ί ) ( Δ ) = { / 6 l ; Δ / G l } generates a
bounded, strongly continuous, analytic semigroup in X. Analogously, if Φ 6
CW\Rn), with O<0<l/2, satisfies

then the operator K defined by

Φ(K) = W(A), (Kf) (x) = Φ(x

is the infinitesimal generator of an analytic semigroup in X ([17, p. 310]: see
also [26]).

Let us now discuss how to apply our Theorem 3 to (an abstract form of) the
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problem ( fe[0, T] , X(=R")

I 9

(11)

((Δ.-Λ) «(ί, *)) = (Φ(x)Ax-k') (A-k") u{t, x)
ot

+φ(t, u(t, x), Ax u(ty x), A2

X u(t, x))

x -» u(t> x) x —> A2

X u(ty x) are in Xy

(Ax u{ty x))t=Q = wQ(x) = Auo(x)

where k, kf>0 and k"^R are parameters, uo^<D(A2): as for u, its properties
should appear through the choice of functional spaces in (11).

First of all, with our usual notations, HλΛί(λMH-L)"1; X(X)\\ is uniformly
bounded on Re λ > 0 : thence, the assumptions on L, M in Theorem 3 hold true.
Let us now turn to the regularity we need for φ: [0, T] X R3->R if such a map-
ping is C ( 2 ), then the substitution operator

F(t, u) {x) = φ(t, u(x\ Au(x), A2u(x)) (ί<Ξ[0, r ] , *<Ξ/T, w

satisfies

(12) F(t,u+h)(x)-F(t,u)(x)

Ah{x)+M- A*h(x)} da ,
8?Jo dξx ξ2 ?3

the space derivatives of φ being evaluated at

(ί, u{x)+σh(x)y Au(x)+σAh(x), A2u(x)+σA2h(x))

moreover, we know that

i= 1,2,3

Vί', ί7 /e[0, r], if u—(ux,u2, u3) and ^=(^1,^2)^3) are in a fixed closed ball of
radius R>0.

Choose ul9u2 in the space .Φ(Δ2), with ||(Δ—7)2(w, —w0); X\\<R, z=l , 2;
then, for ί = l , 2, 3

*, (ί', «,(*), ΔM l(x), Δ 2 « i ( * ) ) - | * - ( Λ «ί(*), Δ«2(*), Δ 2 i/2(x)) I
&, oξi

< C\R) [I t'-t" I +1«!(*)-«,(*) I + 1 Δ ( M I ( * ) - M 2 ( * ) ) I + I Δ 2 ( M I ( * ) - M 2 ( * ) ) I ]

< CX{R) [ I t'-t" I + I Uι(x)-u2(x) I + I ( Δ - 7 ) {Ul{x)-u2{x)) |

since then | | (M,—M 0 ) ; X\\ζaR, | |Δ(ω,—M0); X\\^aR, i=l, 2.
We see now that, up to a change of C^R) to another bound C"(R), we can

obtain, with the same notations and integral representation as in (12),
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\F(t, u+h) (x)-F(t, u) (*)-•{|£ *(*)+!£• ΔA(*)+|£ Δ2 h(x)} \
Oξl Vζ2 OζZ

< C'\R)) {I h(x) 12+ I Ah(x) 12+ IΔ2 h{x) \2}

for every h^S){A2) with ||(Δ—I)2h\ X\\<Ry the space derivatives of φ being
evaluated at (ty u(x)y Au(x)y A2 u{x)). So the partial differential dF/du has the
required regularity; hence, a standard perturbation argument shows that if

sup |—±- (0, uo(x)y Auo(x)y A2 uo(x)) | is small enough,

and the compatibility condition

*-* {φ(0, uo(x)y Auo(x)y A2 uo(x))+(Φ(x) Ax-k') (Ax-k") uo(x)} ^Sl{ML~l)

holds that is, that function is in 3){A)y then problem (11) can be solved by
means of Theorem 3. For small τ we obtain solutions u s.t. ί-»(ΔΛ—k) u(ty )y

{Φ{-)Ax-k'){A-k")u(ty •) are of class CP[0yτyX]y 0<*/<l.

4. Navier-Stokes and Other Equations

4.1. APPLICATION 5. (Abstract Navier-Stokes Equation). Let us now con-
sider the Navier-Stokes equation in Rn

y n>2y

— u(ty x)J

rζu(ty x)y V*> u(ty x)—Axu(ty x) = k(ty x)—Vxq(ty x)y
ot

(NSPO)

<yχy u(ty x)> = 0 for every t<Ξ [0, T ] , ,

w(0, x) — uo(x)y

as considered e.g. in [14].
Here the unknown q is a scalar function, k and the unknown u are w-tuples

of functious [0, r] X Rn->Ry u0 is a given rc-tuple of real-valued functions de-
fined on Rn: the data are supposed to be continuous functions (something less
could work too).

In the framework of X=(Lp(Rn))n

y n<p< + oo, the key fact used classically
in the solution of (NSPO) is the following (see again [14], where further related
literature is quoted). If we define

Xp is the closure of {we(Cjoo)(/ίn))>I; <V, w> = 0} in X

P is the projection of X onto Xp

A is - Δ with domain Φ(A)={W2>p{Rn))n,

then PV=0 and P, Δ commute in some sense.
In this section, we want to traduce abstractly the special features of the

operators entering in (NSPO) which make successful such an approach, thus
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discussing an abstract version of (NSPO), to which it is possible to apply our

general results. While doing so, we shall obtain cretain ^-regularity results

that are new to our knowledge.

First of all, we note that in (NSPO), by a standard trick, we could seek u, V*?

instead of u, q. This remark allows us to set (NSPO) into the following abstract

framework.

Let X, Y be Banach spaces, A, C linear closed operators (from X into itself,

from X into Y, respectively); if Yγ is an intermediate Banach space between

S){A) and X (that is, Φ(A)C> YxC>X)y we introduce continuous functions

F: [0, τ]χ Y1->X, h: [0, τ]-»X, and uo<=<D(A): these notations held fixed, we

want to study the abstract problem of Navier-Stokes type

= p(t)+F(t)U(.))+h(t)y ίe[O,τ],
( N S P ) Ku(t) = O for every ίE[0,τ] ,

ιι(0) = u0.

We call a pair (κ,/>) a solution of (NSP) if W<ΞC[0, T; 5)(iί)] Π C(1)[0, τ ; X],

u{t)(=g){K) for every /G[0,τ], j)GC[0,τ;I] and they do satisfy (NSP).

We then assume:

(*) —A generates an analytic semigroup in X> X being reflexive;

(**) there exists an operator A, such that its opposite generates an analytic

semigroup in -C(Y), and moreover KAu=AKu if u^3){KA)\

(***) if « G C « [ 0 , T X] and uf(t)eΞ&(K) We[0, r], then J&' - (Xii)'

if P is the projection operator from X onto N(K) along the closure of 3l(A),

(****) u^3)(A) Π iV(i£), so that 0 = KAu0 =

||w0; y j | is suitably small,

«i = -iί«o+P{F(O, uo)+h(O)} tΞ4)(A);

(*****) (t,y)->F(t,y) is a C(1) mapping [0, r] X

and there exists η > 0 such that

ί, * G [ 0 , T] and V^, w2e yx with norms <97, — (0, 0) = 0;
du

; I ] , and

Now, we can apply the machinery developed so far to the Cauchy problem

(NSPl) { ίt W ^ + ^ W = P^f' «(0)+A(0]. te[0, r]

1 (u(t))t=o = «o •

We claim that the pair (u,p) is a solution of (NSP) if M satisfies (NSPl) and

p =p(t) = ( P - J ) [F(ί, «(ί))+A(*)] 5
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in fact this follows from two remarks:
(I) If (NSP1) has a solution u, then Vf <=[0, r],

J- (u(t))+Au(t) = F(t, u(t))+h(t)+p(t)

this is the very definition of p.
(II) Vfe[0, T], we get j£n(f)=θ.

To see this, let us define v(t)=u(t)—uo—ΐuu V*e[0, T ] : we have only to
prove that i & = 0 . Now, v satisfies

-f (v(t))+Av(t) = P[F(ί, ϋ( ί )+tto+^i)+A(ί)]-^«o- M i -^ M i >

Vf e[0, T]. If we call g{v) (t) the right-hand side, we can write v as a contour
integral. If B is the time derivative with domain W(B)={u^Ci1)[09 τ ; -Y];

dz ,

with a trivial meaning for Γ (see (C) in § 1).
Since

) (0 = -KlAuo+u^-tKAu, = 0 Vfe[0, r ] ,

we see that

Kv(t) = -i- ( S-^SZ+JI)-1 B{B-ziyι Kg{v) dz = 0 ,
2zri Jr

being the time derivative defined in a similar manner as B, but in C0[0, τ ; Y].

It follows Kuφ^Kvφ+tKu^—tAKuo^Q. As a summary of the pre-
ceding discussion, we can then state

Theorem 6. Let (*)_(*****) hold. Then (NSP) has a solution (u,p) such

that —, Au are in C(θ)[0, τ ; X], O<0<1.
έfo

A final remark: if (dF/du) (0, ̂ G ^ ί F j , X) is a good perturbation of —A,
in the sense that — (A—{dFjdu) (0, u0)) still generates an analytic semigroup in
X, we need not suppose that \\u0; YJI is small, which implies that \\(dFjdu)
(0, ί/0); ^ ( y ^ X)| | is small too.

4.2. Let us return now to our Navier-Stokes problem (NSPO). We consider
it as an abstract one in the framework of X=(Lp(Rn))n

f n<p< + oo, and set

F(w) = = -<w, VΛ>

We need now check the regularity of G(w)=P(w, V*)> w. In fact, we assumed
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n<p mainly to secure that W^R") is a Banach algebra [3, p. 115] so that

\\G(u+h)~G(u)-P<h, V> u-P<u, V> h; {L\R"))n\\

; W\\ \\h; (W^RYWKCW h; {W> \Rn))"\\2 = C\\ h; Ytf .

For notational ease, W is here the space of bounded continuous functions
g: Rn-+Rn with the sup norm; in this connection, recall that if Ω c Λ " has the
cone property [3, p. 66], Wltp(Ω,) is continuously embedded in the space of
bounded continuous functions Ω->/2.

If u1}u2E: Yι it is easy to see that

G'(ut) h = P<A, V> tt,-P<«,, V> h , i = 1, 2 .

We note the bound

whence

Finally, if we(fF3^(i2Λ))M and Δx is the Laplace operator in Lp{Rn) with
domain W2>P(R\ then <V, (Auly •••, Δw^^ΔXV, u>. Moreover, - ( ^ 4 -
^'(^o)) generates an analytic semigroup if woe F1 ? and we are done. All crucial
assumptions of Theorem 6 are easily verifiable, in view of the remark following
it.

4.3. APPLICATION 6. We conclude with a brief sketch of discussion about
equations in the form u'=F(—Au). In [30] W. von Wahl studied the global
solvability of

oΐ
u(t, x) = 0 on 9Ω ,

The main assumption was the strict positivity of/': we shall show how
such a condition arises rather naturally within the framework built so far.

Let fί be -as above- a bounded domain in Rn(n>ί) with regular boundary
3Ω. Define second-order time dependent differential operators and boundary
ones as in Example 1 (1.4)

(ί,^)E[O,τ]xΠ
n ft

B(t,y; D) = Σ ftf.(ί, j;) -^~ ), (ί,y)e[0,τ]x8Ω
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We assume that the coefficients fulfill all assumptions labeled in [2] as
(Al, 2), (Bl, 2), (AB2, 3); we define then A=A(t) by

3){A(t)) = { M G C ( Π ) Π W2'%S1); A(t,-; D) ι ι e C ( Π ) , B(t9 D) u = 0 on 3Ω} ,

A(t) u = A(t, D) u; we fix henceforth j>w .

Let φeC ( 1 ) (Λ, Λ): on C(Π) we define also the substitution operator F
arising from φ in the usual manner: F(v) (x)=φ(v(x)) for every ΛIGΠ and
C(Π).

Hence we translate the problem

"^ = φ(-A(t, x; D)u(t, x)) (t, χ)e[0, r]xί5
Ot

B(t,x; D) u(t, x) = 0 (*, x)e[0, r] x 9Ω

t/(0, x) = uo(x)

into the abstract form

(NLP3, m
l

which is equivalent, under the change A(t) u{t)=v(t), to

±(A(trv(t)) = F(-v{ή), ίe[0,τ]

F is trivially differentiable, and

for every ^

The condition φ'(*)>() for every t^R implies that F'(—A(0) u0) A(t) enjoys
the very same relevant properties as A(t), so the problem discussed in [30] may
be attacked, inasmuch local solvability is concerned, as a particular case of
(NLP3).

Besides other condition easy to guess, we obtain existence if
F(-Ό0)-SΌ0fΞ4)(A(0)): v0 is A(0)u0 and S equals ((d/di) (A(t)-%=0. If
3){A{t))=D does not depend upon time this condition becomes simpler:
F(—vo)&D, since then
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