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1. Introduction

Kallaher [3] proposed the following conjecture.

Conjecture. Let = be a finite affine plane of order m with a collineation
group G which is transitive on the affine points of . If G has two orbits on the
line at infinity, then one of the following statements holds :

(1) The plane = is a translation plane, and the group G contains the group
of translations of r. .

(ii) The plane = is a dual translation plane, and the group G contains the
group of dual translations of .

The purpose of this paper is to study this conjecture. When G, has two
orbits of length 1 and 7 on the line at infinity, where 4 is an affine point of 7,
some work has been done on this conjecture. (See Johnson and Kallaher [2].)

Our notation is largely standard and taken from [3]. Let L=z U/, be the
projective extention of an affine plane 7z, and G a collineation group of P. If P
is a point of & and /is a line of P, then G(P, /) is the subgroup of G consisting
of all perspectivities in G with center P and axis /. If » is a line of P, then
G(m, m) is the subgroup consisting of all elations in G with axis .

In § 2 we prove the following theorem.

Theorem 1. Let = be a finite affine plane of order n with a collineation group
G and let A be a subset of L., such that |A|=t>2, (n, t)=1 and (n, t—1)=1. If
there is an integer k,>1 such that |G(P, L.)| =k, for all PEA and there is an
integer k,>1 sucht that |G(Q, l.)| =k, for all QL. —A, then = is a translation
plane, and G contains the group T of translations of r.

In § 3 and § 4, we prove the following theorem by using Theorem 1.

Theorem 2. Let n be a finite affine plane of order n with a collineation
group G which is transitive on the affine points of =. If G has two orbits of length
2 and n—1 on /.., then one of the following statements holds :
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(1) The plane r is a translation plane, and the group G contains the group
T of translations of .

(i) |G, Lo)|=n=2" for some m>1, GP,Ll.)=GP,l)=1 and
|G(P, L.)| =2 for all P& {,— {P,, P,}.

The planes which are not André planes, satisfying the hypothesis of
Theorem 2, include a class of translation planes of ‘order ¢*, where ¢ is an odd
prime power. (See Suetake [4] and Hiramine [1].)

2. The proof of Theorem 1
In this section, we prove Theorem 1.

Let = be a finite affine plane of order » with a collineation group G,
satisfying the hypothesis of Theorem 1. By Theorem 4.5 of [3], G(£., 4.) is an
elementary abelian 7-group for some prime r dividing #. Hence there exist
positive integers m and s such that k,=7" and k,=7*. Let P be a point of = such
that PEA. Let{ be an affine line of z such that /S P. Since G(P, ,,) is semi-
regular on {—{P}, " |n. Similarly, 7*|n. By definition, G(/, lm):P UZG(P’ )

€lo,

and G(P, £.) N G(Q, {.)=1 for distinct points P, Q&€/.. Thus
|Gy L) | = 1+ 2 (IG(P, L) [ =1+ 35 (1G(Q, L)1)
Pea O€ln—A
= 14+¢r"—D)+m+1—1)(r—1).

Since 7" | | G(4w, £.) |, it follows 0=1—t4(1—t)r"—1+¢ (mod#™). Therefore
(t—1)*=0 (mod #™). Since (t—1, r)=1, this imples 7"|r*. Thus m<s. On
the other hand, since 7°||G(4, £.)|, it follows 0=1-+#("—1)—1+4¢ (mod r°).
Therefore #™ =0 (mod °). Since (¢, r)=1, this imples 7°|#". Thus m>s.
Therefore m=s and k,=k,. By a result of Gleason (See Theorem 5.2 of [3].),
the theorem holds.

3. The proof of Theorem 2 when n is odd

In this section, we prove Theorem 2 when 7 is odd.

Let 7z be a finite affine plane of odd order # with a collineation group G
which is transitive on the affine points of 7, satisfying the hypothesis of Theo-
rem 2. Then G has an orbit A= {P,, P,} of length 2 on /.. Let A be an affine
point of #. Let @ be the set of the affine points of 7, and let Q=® U{.. Then
G induces a permutation group on Q. @, A and /.—A are orbits of G. Since
(I®l, |Al)=(#? 2)=1 and (|®|, |la—A|)=(n? n—1)=1, by Theorem 3.3 of
[3] A and £.—A are orbits of G,.

Lemma 3.1. G, includes an involutory homology of r.
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Proof. G, induces a permutation group on Z.,—{P,, P,}. Since 7 is odd,
|le—A{Py, P} |=n—1is even. Let S be a Sylow 2-subgroup of G,. As G, is
transitive on £.—{P,, P,}, n—1||G,|. Hence S=+1. There exists an involu-
tion ¢ in the center of S. Suppose that ¢ is a Baer involution. If Poc =P,
then P,o=P, and so |[{PE{.—A|Po=P}|=+/n —1. This contradicts a result
of Liineburg. (See Corollary 3.6.1 of [3].) If P,o+P,, then P,o=%P, and so
| {Pl,—A|Poc=P}|=+/n +1. This is again a contradiction by Corollary
3.6.1 of [3]. Therefore & is an involutory homology.

Lemma 3.2. Let o be an involutory homology of = such that oG, If
P,o=P,, then n is a translation plane, and G contains the group T of translations

of .

Proof. Since Pio=P,, P,o=P,. Assume that /., is the axis of . Then
c€G(4,{.). By a result of André (See Corollary 10.1.3 of [3].), the lemma
holds. Assume that Z, is not the axis of . We a may assume that AP, is the
axis of . Then c=G(P, AP)). There exists r€G, such that P, =P,
Clearly P,r=P,. Since P;r=>P, and (AP))r=AP,, v 'er=G(P,, AP,). There-
fore o(r7'or)EG(4, L..)— {1}, by a result of Ostrom. (See Lemma 4.13 of [3].)
Thus the lemma holds by Corollary 10.1.3 of [3].

Lemma 3.3. If G, includes an involutory homology of m which does not
fix Py, then the following statements hold :

(1) If Pel.—{P, P}, then there exist Q €/l.—{P,, P,, P} and o€
G(Q, AP) such that |o|=2.

(i) If Qelo—{P, P,}, then there exist Pcl,—{P, P,,Q} and 7€
G(Q, AP) such that |7|=2.

Proof. By assumption, there exists an involutory homology ¢ of z such
that oG, and P,o+P,. Clearly P,o+P, There exists Py l.—{P;, P3}
such that 4P, is the axis of o. Let @, be the center of . Then Q,E4.—
{P, P,, P}}. Let Pe/{.,—{P, P,}. Then there exists p=G, such that P=
Pyp. Set Q=Q,p. Clearly Qe {P,, P)}. Since o € G(Q,, AP,) and (AP,)p=
AP, p7lope=G(Q, AP). This yields the statement (i). Similarly, we have the
statement (ii).

Lemma 3.4. If G, includes an involutory homology of = which does not
fix Py, then one of the following statements holds :

(i) The plane = is a translation plane and G contains the group T of trans-
lations of .

(i) If Pl —{P, Py}, then G(P, AP)=%1.
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Proof. Let Pe/,—{P, P;}. By Lemma 3.3 (i), there exist Q€. —
{P,, P,, P} and s=G(Q, AP) such that |¢|=2. On the other hand, by Lemma
3.3 (ii) there exist Rel,—{P,, P,, Q} and 7€ G(R, AQ) such that |o|=2.
Assume that R=P. Then c=G(Q, 4P) and T G(P, AQ). By Lemma 4.13
of [3], ereG(4, L.)—{1}. Thus the statement (i) holds by Corollary 10.1.3 of
[3]. Assume that R+P. Then since r€G(R, AQ) and (4Q)o=A4Q, ¢ 'r0E
G(Ro, AQ). As R+Ro, (e '76)eG(Q, AQ)—{1} by aresult of Baer. (See
Lemma 4.12 of [3].) Thus G(@, AQ)=1. On the other hand, since G, acts
transitively on Z,— {P,, P,}, the statement (ii) holds.

Lemma 3.5. If G(P, AP)+1 for all P&l.—{P,, P;}, then there is an
integer k>1 such that |G(P, ..)| =k for all P&l.—{P,, P,}.

Proof. Let Pe/.—{P,, P,}}. Let/be an affine line of = such that /SP.
By a result of Ostrom and Wagner (See Theorem 4.3 of [3].), there exists T€Gp
such that (AP)r={ Since G(P, AP)=*1, +'G(P, AP)r=G(Pt, (AP)r)=
G(P, {)=*1. Therefore by the dual of Corollary 4.6.1 of [3], G(P, Z.)#+1. On
the other hand, since G, acts transitively on Z.— {P,, P}, the lemma holds.

Lemma 3.6. If G(P, AP)=1 for all P&/, —{P,, P}, then |G(P, L.)|=
|G(P, L) | >1.

Proof. Since the order # of 7 is odd, by Lemma 3.5 |G(P, 4.)| >3 for
all Pe/,—{P, P,}. Therefore

I U G, L))
Pel.—{P,P,}

=1+ 3 (IG&L)-1)
PE/a—{P,P;}

> 14-2(n—1)

=2n—1

>n.
Thus |G({, {.)| >n. Hence by a result of Ostrom (See Theorem 4.6 of [3].),
G(P, l.)*#1 for all Pe{.. In particular G(P,, 4.)%1. There exists 7€G,
such that P,r=P,. Thus |G(P,, L.)|=|77'G(P,, )| =|G(Py, L) | >1. Hence
the lemma holds.

Proof of Theorem 2 when 7 is odd: By Lemmas 3.2, 3.4, 3.5, 3.6 and
Theorem 1, the theorem holds.

4. The proof of Theorem 2 when n is even

In this section, we prove Theorem 2 when # is even.
Let z be a finite affine plane of even order n with a collineation group G
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which is transitive on the affine points of 7 satisfying the hypothesis of The-
orem 2. Then G has an orbit A= {P,, P,} of length 2 on ..

Lemma 4.1. G includes a translation of order 2 of x.

Proof. Since #*| |G|, 2||G|. Let S be a Sylow 2-subgroup of G. Then
there exists an involution o in the center of S. By Corollary 3.6.1 of [3] the
involution o is neither a Baer involution, nor an affine elation. It follows that
o is a translation of .

Lemma 4.2. G({., ..) is an elementary abelian 2-group and |G({wy )| =2.

Proof. If n=2, then the lemma holds. Let n=2. Considering the
action of G on /., by Lemma 4.1 there exist distinct points ,, @,E /.. such
that G(Q,, )1 and G(@,, ,.)%1. By Theorem 4.5 of [3], the lemma holds.

Lemma 4.3. If G(P,, L.)*1, then the plane = is a translation plane, and
the group G contains the group T of translations of 7.

Proof. There exists an involution o; such that o;€ G(P;, ,.) for i€ {1, 2}.
Then o¢,0,€G(¢., t.) and |o,0,|=2. Let @ be the centeriof o,0,. Then
Qel.—{P, P;}. Since G acts transitively on Z.— {P,, P,}, there exists r >1
such that |G(P, £.)|=2" for all P&/, —{P,, P,}. There exists s>1 such that
|G(P,, L.)| = |G(Py L..)| =2°. Let |G({.., L.)|=2'. Then t>r-+s. Since

|G(ley L) | = 1+ 2] (16, L) =)+ >3 (16@, L)1),
Pe/.—{P,P;} Qe{P,P;}
2 = 1+ (-2 —1)4+2(2°—1). (%)

By the same argument as in the proof of Theorem 1, 2’=0 (mod 2°) and 2°"'=0
(mod 27). Thus s<r<s+1.

Suppose that r=s+1. From (%), 2'=1-+(n—1)(2°*'—1)+2(2°—1) follows.
Therefore n=2' (2°*'—1)7%. As 7 is an integer, this is a contradiction. Hence
r=s. By Theorem 5.2 of [3], the lemma holds.

Lemma 44. If G(P,!l.)=1, then |G(l.,l.)|=n=2" for some m>1,
G(P,, L.)=1 and |G(P, L.)| =2 for all P!, —{P,, P}.

Proof. By assumption, G(P,, 4.)=1 follows. If Pe&/.—{P,, P;}, then
G(P, ..)*1. Therefore there exists an integer r>1 such that |G(Q, 4.)|=2"
for all Qe/..—{P,, P,}. Suppose that r>2. Then

| G(ley L)

= G(Q, L) | —1)+1
oc 1,,.,;{1:1,102}(' (@, )| —1)+

= @ —1)(n—1)+1
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> 3(n—1)+1

= 3n—2

>n.
By Theorem 4.6 of [3], it follows that G(Q, £.)=*1 for all Q&/.. In particular
G(P, {.)*1, a contradiction. Hence r=1. Therefore |G(l., )| =(2—1)-

(n—1)+1=n. Therefore there exists an integer m>1 such that n=2". Thus
the lemma holds.

Proof of Theorem 2 when # is even: By Lemmas 4.3 and 4.4, the theorem
holds.
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