Kawata, S. Osaka J. Math. 27 (1990), 265-269

THE MODULES INDUCED FROM A NORMAL SUBGROUP AND THE AUSLANDER-REITEN QUIVER

Dedicated to Professor Manabu Harada on his 60th birthday

SHIGETO KAWATA

(Received May 25, 1989)

1. Introduction

Let G be a finite group and k a field of characteristic p>0. Let N be a normal subgroup of G. Let Θ be a connected component of the stable Auslander-Reiten quiver $\Gamma_s(kG)$ of the group algebra kG. We assume that there exist indecomposable N-projective kG-modules in Θ throughout this paper.

Choose an indecomposable N-projective kG-module L_0 in Θ . Let S_0 be an indecomposable kN-module such that $L_0 | S_0 \uparrow^G$, and Ξ be a connected component of $\Gamma_s(kN)$ containing S_0 . Set $T(\Xi) := \{g \in G \mid \Xi^g = \Xi\} = \{g \in G \mid S_0^g \in \Xi\}$, the inertia group of Ξ in G. Suppose that $S_0 \uparrow^{T(\Xi)} = U_0 \oplus U_1 \oplus \cdots \oplus U_n$, where U_i is indecomposable and $L_0 \simeq U_0 \uparrow^G$. (Note that $T(\Xi) \supset T(S_0) = \{g \in G \mid S_0^g \simeq S_0\}$. Hence each $U_i \uparrow^G$ is indecomposable by [7], VII, 9.6 Theorem.) Let Λ be the connected component of $\Gamma_s(kT(\Xi))$ containing U_0 . Now the purpose of this paper is to show the following theorem.

Theorem. With the same notation and assumption as above, let U be an indecomposable $kT(\Xi)$ -module in Λ . Then;

(1) The induced module $U \uparrow^G$ is indecomposable,

(2) The inducing from $T(\Xi)$ to G gives a graph isomorphism from Λ onto Θ which preserves edge-multiplicity and direction.

The notation is almost standard. All the modules considered here are finite dimensional over k. We write W | W' for kG-modules W and W' if W is isomorphic to a direct summand of W'. For an indecomposable non-projective kG-module M, we write $\mathcal{A}(M)$ to denote the Auslander-Reiten sequence (ARsequence) $0 \rightarrow \Omega^2 M \rightarrow \mathfrak{m}(M) \rightarrow M \rightarrow 0$ terminating at M, and also we write $\mathfrak{m}(M)$ to denote the middle term of $\mathcal{A}(M)$. Here Ω denotes the Heller operator. A sequence $L_0 - L_1 - \cdots - L_t$ of indecomposable modules $L_i(0 \le i \le t)$ is said to be a walk if there exists an irreducible map either from L_i to L_{i+1} or from L_{i+1} to L_i for $0 \le i \le t-1$. Concerning some basic facts and terminologies used here, we refer to [1], [4] and [5].

The author would like to thank Dr. T. Okuyama for his helpful advice.

2. Preliminaries

Here we recall some basic results on AR-sequences of the group algebra kG.

Lemma 2.1 ([1], Proposition 2.17.10). Let M be an indecomposable nonprojective kG-module and H be a subgroup of G. Then the AR-sequence $\mathcal{A}(M)$ splits on restriction to H if and only if M is not H-projective.

Lemma 2.2 ([3], Lemma 1.5 and [6], Theorem 7.5). Let H be a subgroup of G. Let L and U be indecomposable non-projective modules for G and H respectively. Assume that U is a direct summand of $(U\uparrow^G)\downarrow_H$ with multiplicity one, and that L is an indecomposable direct summand of $U\uparrow^G$ such that $U|L\downarrow_H$. Then $\mathcal{A}(U)\uparrow^G \simeq \mathcal{A}(L)\oplus \mathcal{E}$, where \mathcal{E} is a split sequence.

Let (,) denote the inner product on the Green ring a(kG) induced by $\dim_k \operatorname{Hom}_{kG}(,)$ [2]. For an exact sequence of kG-modules $\mathcal{S}: 0 \to A \to B \to C \to 0$, let $[\mathcal{S}] \in a(kG)$ be the element B-A-C.

Lemma 2.3. Let H be a normal subgroup of G. Let M be an indecomposable H-projective (but non-projective) kG-module and S be an indecomposable kH-module such that $M | S \uparrow^G$. Then $[\mathcal{A}(M) \downarrow_H] = n(\sum_{g \in X} [\mathcal{A}(S^g)])$, where X is a right transversal of T(S) in G and n is the multiplicity of M as a summand of $S \uparrow^G$.

Proof. By [2], Theorem 3.4, it suffices to show that $(V, [\mathcal{A}(M)\downarrow_H] - n(\sum_{g \in X} [\mathcal{A}(S^g)])) = 0$ for any indecomposable kH-module V. Using the Frobenius reciprocity, we have

$$(V, [\mathcal{A}(M)\downarrow_{H}] - n(\sum_{g \in X} [\mathcal{A}(S^{g})])) = (V, [\mathcal{A}(M)\downarrow_{H}]) - (V, n(\sum_{g \in X} [\mathcal{A}(S^{g})])) = (V\uparrow^{G}, [\mathcal{A}(M)]) - n(V, (\sum_{g \in X} [\mathcal{A}(S^{g})])).$$

Now $M | V \uparrow^G$ if and only if V is isomorphic to S^g for some $g \in G$ since $M \downarrow_H | \bigoplus_{g \in G/H} S^g$ and $(V \uparrow^G) \downarrow_H \simeq \bigoplus_{g \in G/H} V^g$ by the Mackey decomposition. If $V \simeq S^g$ for some $g \in G$, then M is a direct summand of $V \uparrow^G$ with multiplicity n. Hence we get $(V, [\mathcal{A}(M) \downarrow_H] - n(\sum_{g \in X} [\mathcal{A}(S^g)])) = 0$ as desired.

3. Indecomposable modules

In this section, we shall give a proof of the main theorem. Returning to the situation of the Introduction, we assume that N is a normal subgroup of

266

G. Let $T = T(\Xi)$ be the inertia group of Ξ in G.

Lemma 3.1. Let L be an indecomposable kG-module in Θ . Then every direct summand of $L \downarrow_N$ lies in $\bigcup_{g \in G} \Xi^g$. In particular, some summand lies in Ξ .

Proof. Let $L_0 - L_1 - \dots - L_t = L$ be a walk in Θ . We prove the assertion by induction on t.

If t=0, then $L_0 \downarrow_N | (S_0 \uparrow^c) \downarrow_N \simeq \bigoplus_{g \in G/N} S_0^g$ and each S_0^g lies in Ξ^g . Hence the assertion follows for t=0.

Suppose the assertion holds for L_{t-1} . We distinguish the following two cases.

Case 1. L_{t-1} is N-projective. Let S_{t-1} be an indecomposable kN-module such that $L_{t-1}|S_{t-1}\uparrow^G$. Since every direct summand of $L_{t-1}\downarrow_N$ lies in $\bigcup_{g\in G} \Xi^g$, we may assume that S_{t-1} lies in Ξ . From Lemma 2.3, we have $[\mathcal{A}(L_{t-1})\downarrow_N] =$ $n(\sum_{g\in X} [\mathcal{A}(S_{t-1}^g)])$, where X is a right transversal of $T(S_{t-1})$ in G and n is the multiplicity of L_{t-1} as a summand of $S_{t-1}\uparrow^G$. This implies that $m(L_{t-1})\downarrow_N|$ $\bigoplus_{g\in X} m(S_{t-1}^g) \oplus (L_{t-1} \oplus \Omega^2 L_{t-1})\downarrow_N$ and every direct summand of $m(L_{t-1})\downarrow_N$ lies in $\bigcup_{g\in G} \Xi^g$ (Recall that the Auslander-Reiten translation τ is Ω^2 here). Since $L_t|m(L_{t-1})$ or $L_t|m(\Omega^{-2} L_{t-1})$, we have $L_t\downarrow_N|(m(L_{t-1}) \oplus m(\Omega^{-2} L_{t-1}))\downarrow_N$. Therefore every direct summand of $L_t\downarrow_N$ lies in $\bigcup_{g\in G} \Xi^g$.

Case 2. L_{t-1} is not N-projective. Then AR-sequences $\mathcal{A}(L_{t-1})$ and $\mathcal{A}(\Omega^{-2}L_{t-1})$ split on restriction to N by Lemma 2.1. Hence we have $\mathfrak{m}(L_{t-1})\downarrow_N \simeq (L_{t-1}\oplus\Omega^2 L_{t-1})\downarrow_N$ and $\mathfrak{m}(\Omega^{-2}L_{t-1})\downarrow_N \simeq (\Omega^{-2}L_{t-1}\oplus L_{t-1})\downarrow_N$. Since $L_t|\mathfrak{m}(L_{t-1})$ or $L_t|\mathfrak{m}(\Omega^{-2}L_{t-1})$, we have $L_t\downarrow_N|(\Omega^2 L_{t-1}\oplus \Omega^{-2}L_{t-1})\downarrow_N$ and so every direct summand of $L_t\downarrow_N$ lies in $\bigcup_{g\in G} \Xi^g$.

The following is immediate from Lemma 3.1.

Corollary 3.2. Let U be an indecomposable kT-module in Λ . Then every direct summand of $U \downarrow_N$ lies in Ξ .

Lemma 3.3. Let U be an indecomposable kT-module in Λ . Let $(U\uparrow^c)\downarrow_T \simeq U\oplus Z$. Then $Z\downarrow_N$ has no indecomposable direct summand which lies in Ξ . In particular U is a direct summand of $(U\uparrow^c)\downarrow_T$ with multiplicity one.

Proof. By the Mackey decomposition, we have

$$Z \simeq \bigoplus_{\substack{g \in T \setminus G/T \\ g \notin T}} (U^g \downarrow_{T^g \cap T}) \uparrow^T$$

and

$$Z\downarrow_N \simeq \bigoplus_{\substack{g \in T \setminus G/T \\ g \notin T}} \left(\bigoplus_{h \in (T^g \cap T) \setminus T/N} U^{gh} \downarrow_N \right).$$

Now each indecomposable direct summand of $U\downarrow_N$ lies in Ξ by Corollary 3.2.

For $g \notin T = T(\Xi)$ and $h \in T$, $(U \downarrow_N)^{gh}$ does not have an indecomposable direct summand which lies in Ξ , and thus $Z \downarrow_N$ does not, either. This implies that Z has no indecomposable direct summand which lies in Λ by Corollary 3.2.

Lemma 3.4. Let U and U' be indecomposable kT-modules in Λ . Then $U \uparrow^{G} \simeq U' \uparrow^{G}$ if and only if $U \simeq U'$.

Proof. If $U \simeq U'$, then $U \uparrow^{c} \simeq U' \uparrow^{c}$ clearly. To show the converse, assume by way of contradiction that $U \uparrow^{c} \simeq U' \uparrow^{c}$ but $U \not\simeq U'$. Then $U' | (U' \uparrow^{c}) \downarrow_{T} \simeq (U \uparrow^{c}) \downarrow_{T}$ and hence we have $U \oplus U' | (U \uparrow^{c}) \downarrow_{T}$. Lemma 3.3 implies that $U' \downarrow_{N}$ has no direct summand contained in Ξ , which contradicts Corollary 3.2.

We are now ready to prove the theorem stated in the Introduction.

Proof of Theorem. (1) Let $U_0 - U_1 - \cdots - U_t = U$ be a walk in Λ . If t=0, i.e., $U \simeq U_0$, then $U_0 \uparrow^c \simeq L_0$ as we have seen in the Introduction. Suppose then that $U_{t-1} \uparrow^c$ is indecomposable. We shall derive a contradiction assuming that $U_t \uparrow^c$ is decomposable. Let $U_t \uparrow^c = L \oplus M$ and $(U_t \uparrow^c) \downarrow_T = U_t \oplus Z_t$.

We may assume that $U_t | L \downarrow_T$. Hence $M \downarrow_T | Z_t$, and Lemma 3.3 implies that any direct summand of $M \downarrow_N$ does not lie in Ξ . On the other hand, by Lemmas 2.2 and 3.3, we have $\mathcal{A}(U_{t-1})\uparrow^C \simeq \mathcal{A}(U_{t-1}\uparrow^C)$ and $\mathcal{A}(\Omega^{-2}U_{t-1})\uparrow^C \simeq$ $\mathcal{A}(\Omega^{-2}U_{t-1}\uparrow^C)$ since $U_{t-1}\uparrow^C$ is indecomposable. Since $U_t | m(U_{t-1})$ or $U_t | m(\Omega^{-2}U_{t-1}), U_t\uparrow^C$ is a direct summand of $(m(U_{t-1}) \oplus m(\Omega^{-2}U_{t-1}))\uparrow^C \simeq$ $m(U_{t-1}\uparrow^C) \oplus m(\Omega^{-2}U_{t-1}\uparrow^C)$. This means that every indecomposable direct summand of $U_t\uparrow^C$ lies in Θ . In particular, each direct summand of M lies in Θ , and hence Lemma 3.1 implies that $M\downarrow_N$ has an indecomposable direct summand contained in Ξ , which is a desired contradiction.

(2) From Lemmas 2.2, 3.3 and (1), we have $\mathcal{A}(U)\uparrow^{G} = \mathcal{A}(U\uparrow^{G})$ for an indecomposable kT-module U in Λ . This and an inductive argument yield that the inducing from T to G gives an epimorphism from Λ onto Θ . Also, it must be a graph epimorphism. On the other hand, Lemma 3.4 implies that it is a monomorphism.

References

- D.J. Benson: Modular Representation Theory: New Trends and Methods, Lecture Notes in Mathematics Vol. 1081, Springer-Verlag, New York/Berlin, 1984.
- [2] D.J. Benson and R.A. Parker: The Green ring of a finite group, J. Algebra 87 (1984), 290-331.
- K. Erdmann: Algebras and dihedral defect groups, Proc. London Math. Soc. (3) 54 (1987), 88-114.
- [4] W. Feit: The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.

- [5] P. Gabriel: Auslander-Reiten sequences and representation-finite algebras, Lecture Notes in Mathematics, Vol. 831, Springer-Verlag, New York/Verlin, 1980, 1-71.
- [6] J.A. Green: Functors on categories of finite group representations, J. Pure Appl. Algebra 37 (1985), 265-298.
- [7] B. Huppert and N. Blackburn: Finite Groups II, Springer-Verlag, 1982, Grundlehren der mathematischen Wissenschaften Band 242.

Department of Mathematics Osaka City University 558 Osaka, Japan