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Let D be a conjugacy class of a finite group G, and H a (finite) central
extension of G. In the first section of the paper, we investigate how D is ex-
tended in H. Let ¢ be the homomorphism of H to G. Then, there exist a
group H, and epimorphisms ¢,: H—>H, and ¢,: Hi—G such that ¢=a, ¢,,
that ¢3'(D)=E, U -+ UE, with conjugacy classes E; of H, with |E;|=|D] (i.e.,
D splits completely in H,), and that ¢7'(E;)=C; with a conjugacy class C; of H
with |C;|=e|D| for every i. e is called the (covering) multiplicity of D in H.
Especially, when H is a representation group of G, we can show that e is equal
to |M|/|M,| where M is the Schur multiplier of G and M, is a subgroup of
M consisting of all cohomology classes that split over D. In the second section
of the paper, we investigate the structure of a group or of a conjugacy class
of a group with respect to inner automorphisms. An algebraic system which is
the abstraction of a group with inner automorphisms as operations is called a
p.s. set (or, a pseudosymmetric set). We show that all representation groups
of G are isomorphic with respect to inner automorphisms, i.e., as p.s. sets, that
every conjugacy class of a central extension of G is a homomorphic image of a
conjugacy class of a representation group of G, and that the multiplicity e given
in the above divides the order of the Schur multiplier of G. As an application,
we obtain a criterion for a p.s. set to be a conjugacy class of a group, using which
we can find a class of exceptional transitive p.s. sets of orders n(n—1)(n—2)/2,
(n=>5).

1. Central extensions of conjugacy classes

Proposition 1. Let H be a group, Z a subgroup of H contained in the center
of H, and C a conjugacy class of H. Let Zy={2Z|2C=C}. Then,Z,=[a, H]
NZ for any element a in ZC. If {2;} is a representative system of Z|Z,, then ZC
is a union of conjugacy classes C; where C;=2,;C and C;=C; if i+j. Thus, ZC is a
union of conjugacy classes of the same order.

Proof. In the following, we denote y~'xy by xoy. So, C=coH with ¢ in
C. An element z of Z belongs to Z, if and only if 2c=cox for some element
x in H, which implies that =[¢, x]. Hence, Z,=[c, H{NZ. On the other
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hand, Z,={2&Z|2C=C}={2Z|2(2;C)==z;C} for every i. Therefore, by
the first argument where we use 2;C in place of C, we have Z,=[a, H]N Z for
any element a in 2;C, ie., in ZC. The remaining part of Proposition 1 is al-
most clear.

Let G be a finite group, and H a central extension of G with the homomor-
phism ¢. Let Z be the kernel of ¢. Z is contained in the center of H. Fora
conjugacy class D of G, let C be a conjugacy class of H such that ¢(C)=D.
Then, ¢~Y(D)=ZC. By Proposition 1, ¢~ (D)= U C; where |C;|=|C]| for all
i. Moreover, we can show that | D| divides |C|. For, let d and d’ be elements
of D. Then, {xeC|¢(x)=d} and {y=C|¢p(y)=d’} have the same order, since
{yeC|¢(y)=d'} ={x=C|p(x)=d} ot where t is an element of H such that
dop(t)=d’.

Theorem 1. Let H be a central extension of a finite group G with the
homomorphism ¢. If D is a conjugacy class of G, then ¢p~*(D)=C,U - UC, with
conjugacy classes C; of H where |C,|=-+=|C,|. Furthermore, there exist a group
H, and epimorphisms ¢,: H—>H, and ¢,: Hi—G such that ¢=ao, ¢,, that ¢3'(D)
=FE U UE, with conjugacy classes E; of H, where |E;|=|D| for every i, and
that ¢7'(E;)=C;.

Proof. 'The first part was explained in the above. For the second part,
let Z be the kernel of ¢ and Z;={zZ|2C=C} where C=C,. If we let H,=
H|Z, and ¢, and ¢, the natural homomorphisms of H to H, and of H, to G,
respectively, then the second part of Theorem 1 follows easily.

Theorem 1 implies that D splits completely in H, and each component E;
does not split at all in H. We call e=|C;|/|D| (which is common to all 7) the
(covering) multiplicity of D in H. Note also that e=|H |/|H,|=|Z,|.

Next, we determine the condition of the splitting of a conjugacy class D of
G in H in terms of cohomologies. Let C=C, as above. By Proposition 1,
Zy={2€Z|2C=C}=[c, HIN Z for an element ¢ of C. In the following, we fix
¢. For xeH, [¢, x]€Z if and only if cx=xc mod Z. The latter condition is
equivalent with ¢(c) p(x)=e¢(x) ¢(c). In the following, we denote ¢(c) by d so
that D=doG. Thus, Zy={[c, x]|d ¢(x)=¢(x)d, xH}. Denote elements of
G by u, v, etc, and let {t,|u= G} be a representative system of H/Z. It is clear
that if ¢(x)=u then [c¢, ¥]=][c, 2,]. So, Z,={[c, t,]|du=ud, uG}. Now, let
2(u, v) be a cocycle corresponding to the extension H/Z, i.e., t,t,=2(u, v) t,
where z(u,v)eZ. Since [c, t,]=2(u, d)™" 2(d, u) as we can easily verify, we
obtain that Z,= {2 (4, d)™* 2(d, u) |du=ud, ucG}. We can conclude that D splits
completely in H if and only if Zy=1 or 2(u, d)=2(d, ) for all u such that du=ud.

Now, we consider, as H, the standard representation group of G. The
standard representation group is defined to be Q=33 M t,, uG, where M—
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Hom (M, K*), M being the Schur multiplier of G and K the complex number
field. (For this part, see [1].) Here, ¢, t,=2(u, v) t,, with an element z(u, v)
in M such that 2(u, v) (@)=a(u, v) where « is an element of M. Let d be a
fixed element of D. We say that a splits over D if a(u, d)™ a(d,u)=1 for
every # such that ud=du. It follows that « splits over D if and only if « is
mapped to 1 by every element of Z,, We obtained

Theorem 2. Let Q be the standard representation group of G, and let D
be a conjugacy class of G. If M, denotes the subgroup of M consisting of cohomology
classes that split over D, then | M ||| M,| =e=the multiplicity of D in Q

In the following section, we show that all representation groups of G are
isomorphic with each other as p.s. sets. Therefore, Theorem 2 holds for any
representation groups of G.

2. TUnions of conjugacy classes

Let U be a union of conjugacy classes of a group. It is closed under the
operation o where aocb=>5b"'ab. The binary system (U, o) satisfies

(1) The right multiplication of an element @ of U is a permutation on U.
(2) aca=a for every element a of U.

(3) (acb)oc = (aoc)o(boc) for a,bd, ccU.

Generally, a binary system which satisfies (1), (2) and (3) is called a pseudosym-
metric set, or briefly, a p.s. set. (When especially it satisfies (4) (xoa)oa=x for
any x and @ of U, we say it is a symmetric set.) Any group is a p.s. set in the
above sense. A p.s. subset of a group is called a special p.s. set. Thus, a union
of conjugacy classes of a group is a special p.s. set. A p.s. set which is not
special is said to be exceptional.

Proposition 2. Let ¢ be an epimorphism of a group H to a group G. If
¢ induces an isomorphism of the commutator subgroup H' of H onto the commu-
tator subgroup G' of G, then every conjugacy class of H is mapped to a conjugacy
class of G bijectively. More generally, if U=C,U -+ UC, is a union of conjugacy
classes C; of H and if ¢(C,)= p(C;) whenever i= j, then U is mapped isomorphically
(as a p.s. set) onto a union of conjugacy classes of G by .

Proof. It is sufficient to show that ¢ is injective on a conjugacy class C of
H. Since C=coH, it is sufficient to show that ¢ (coa)=¢ (cod) implies coa=cob.
Assume ¢ (coa)=¢(cob). Then, ¢ ([c, a])=¢ ([c, b]) as [¢, a]=c"(coa) and ¢ is
a (group) homomorphism. Now, the assumption in Proposition 2 implies that
[¢, al=][c, b], from which we can easily conclude that coa=cob.

In the following, U denotes a special or exceptional p.s. set. A subset N
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of U is called a normal p.s. subset of U if NoUZN. A union of conjugacy
classes of a group is a normal p.s. subset of the group. Let N be a normal
p.s. subset of U, and N’ a copy of N. Denote elements of N’ by a’ which
are the copies of a of N. Consider the set-theoretic union V=UUN’. We
define a binary operation on V' which is an extension of o on U as follows.
Let u denotes an element of U, and a and b elements of N. We define: uoa’=
uoa, a’ou=(aou)’ and a’cb’=(acb)’. It can be verified that V is a p.s. set with
this operation. Naturally, U is a normal p.s. subset of V. We call V' an aug-
mentation of U (by N). For example, let U be a union of conjugacy classes
of a group, and let C be a conjugacy class contained in U. Suppose that 2 is
an element of the center of the group and that the conjugacy class 2C is not
contained in U. Then, UU=2C is (isomorphic with) an augmentation of U by
C. A p.s. set which is obtained from U by several augmentations is called an
expansion of U by augmentations. Let Z be a subgroup of the center of a
finite group H, and let ¢ be the natural homomorphism of H to H/Z=G.
Let G=D,U---UD, be the conjugacy class decomposition of G. For each i,
we take a conjugacy class C; of H such that ¢(C;)=D;. Let K=C;U:--UC,.
Then, we can see that H is (isomorphic with) an expansion of K by augmenta-
tions. Here, K is uniquely (up to within isomorphisms) determined by H and
Z. We call K a G-core of H. C; is called a component of K, and the number
of augmentations we need to obtain H for each C; is called the (augmentation)
multiplicity of C;. It is the number of different conjugacy classes 2C; for all
zeZ. Thus, we can conclude that the multiplicity of C;=|Z|/|Z,|, where Z,
is as given in 1, taking C=C;. Therefore, the multiplicity of C; is equal to
|Z]1D;]1C;l.

Theorem 3. All representation groups of a finite group are isomorphic with
each other as p.s. sets.

Proof. Let R be a representation group of a finite group G. First, we
determine the G-core of R. Let F be a free central extension of G with the
homomorphism «Jr of F to G. There exist homomorphisms ,: F—R and +r,:
R—G such that yr=n)r Jr, and that s, induces an isomorphism of F' to R’.
(See [3].) Let G=D,U .- UD, be the conjugacy class decomposition of G, and
let W=X,U .-+ UX, be a G-core of F, where X; is a conjugacy class of F and
Y (X;)=D;. By Proposition 2, 1Jr, maps W isomorphically to Jr(W)=K, where
K=C,U -+ UC, with conjugacy classes C; of R such that ¥ (X;)=C; and r,(C;)
=D;. Thus, K is a G-core of R. This shows that G-cores of all representation
groups are isomorphic with I and hence are isomorphic with each other. Now,
let K be as above, and C=C;. As we noted before, the augmentation multiplic-
ity of C'is equal to |Z||D|/|C| where D=D,. It depends only on the orders
of Z, of C and of D. It is well known that the order of Z is equal to the order of
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M=the Schur multiplier of G. Thus, it does not depend on the choice of a
representation group. Now, we can see that Theorem 3 holds.

Theorem 4. Let R be a representation group of a finite group G, and H
a central extension of G. Then, a G-core of H is a homomorphic image of a G-
core of R. Especially, a conjugacy class of H is a homomorphic image of a con-
Jugacy class of R (as a p.s. set).

Proof. We use the same notation as in the proof of Theorem 3. Let ¢ be
the homomorphism of H to G. Since F is a free central extension of G, there
exists a homomorphism @ of F to H such that y»=60¢. Let J=60 (W), where W
is a G-core of F as given before. It is easy to see that J is a G-core of H and
is a homomorphic image of W, the latter being isomorphic with a G-core of R.
This proves the first part. The second part is almost clear.

Theorem 5. Let H be a central extension of G with the homomorphism ¢.
If C is a conjugacy class of H, then |C| divides | ¢ (C)| | M |, where M is the Schur
multiplier of G. Thus, the covering multiplicity e of the conjugacy class ¢ (C)
divides | M |.

Proof. Let 4y, Yy, 6, D; and X; be as before. Suppose ¢(C)=D,;. We
may assume that C=6(X;). Let {r(X;)=E;=a conjugacy class of R. Then,
|E;| divides [vz'(D;)|=|D;||M|=|¢(C)||M|. On the other hand, |C|
divides | X;| which is equal to | E;].

Let a be an element of a p.s. set U, and denote by a, the right multiplica-
tion of a. Let Ug={azlacU}. Uy is a subset of the permutation group of
U. In fact, it is a p.s. subset of the permutation group of U. Let G(U) be
the subgroup of the permutation group of U generated by Up. When G(U)
is a transitive permutation group of U, we say that U is transitive. Next, let
U be transitive and special. U is a p.s. subset of a group H. Without losing
generalities, we may assume that U generates H (as a group). In this case, an
inner automorphism of H is uniquely determined by its effect on elements of
U, and we can conclude that G(U) is isomorphic with the inner automorphism
group of H, the isomorphism being induced by the mapping: ap—é@ (=the
inner automorphism by a). Let G be the inner automorphism group of H,
and we identify G with G(U) through the above isomorphism. We can also
conclude that in the above case, the transitivity of U implies U is a conjugacy
class of H. Now, let ¢ be the natural homomorphism of H to G, i.e., ¢:
a—>d(=ay if acU). Since ¢(U)= Uy, we have the following by Theorem 5.

Corollary. If U is a special transitive p.s. set, then |U | divides |Ug| | M|,
where M is the Schur multiplier of G(U).
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Lastly, we apply Corollary to obtain a class of exceptional transitive p.s.
sets of orders n(n—1)(n—2)/2. Let N={1,2, ---, n}, and S=the symmetric
group of degree n operating on N. Let NXS={(7, s)|iEN,c=S}. We de-
fine a binary operation on NX S by

(G, 0) o(j,7) = ("7, gor).

We can verify that (NX.S, o) is a p.s. set. (For a more theoretical approach of
the above p.s. set, see [2].) In the following, we assume that n>5. Let C
be the conjugacy class of S consisting of all transpositions (z, j), and consider
U={(%, (¢, j))) €N x C |k is different from 7 and j}. U is verified to be a normal
p.s. subset of NXS. We want to show that U is an exceptional transitive p.s.
set. Clearly, the order of U is n(n—1) (n—2)/2.

When (7, ) and (j, 7) are elements of U, it follows that (7, o) o (j, 7)=
(i7", oot). Hence, the mapping: az—7 where a=(j, 7) gives an isomorphism of
G(U)to S. Therefore, the Schur multiplier of G(U) has the order 2. (See [3].)
Next, we show that U is transitive. Let (Z, o) and (j, 7) be any elements of U.
From the above definition, it is easy to see that (7, ¢)°? contains (k, 7) for some
kin N. If k=j, we are done. So, assume kj. Let p=(j,k)C. For any
element (%, p) of U, we have (k, 7)o (h, p)=(j, ) since, if 7=(¢,j’), i’ and j’ are
different from j and 2. We have shown that U is transitive. Now, we can con-
clude that U is exceptional. For, if U is special, then by Corollary the order of
U must divide |Ug||M]|, i.e., n(n—1) (r—2)/2 must divide (n(n—1)/2) 2=n
(n—1), which is impossible as #>5.

In [2], we obtained an exceptional transitive p.s. set of order 90. In this
paper, we obtained two exceptional transitive p.s. sets of smaller orders, i.e., of
orders 30 and 60 corresponding to =5 and 6 in the above. So far, the above
p.s. set of order 30 seems to be of the smallest order of exceptional transitive
p.s. sets.
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