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1. Introduction

A holomorphic diffusion process on an w-dimensional complex manifold M
is a diffusion process {(Zt, ξ, P2): z^M} on M, ζ being the life time, such that
h(ZtΛτ) is a local martingale for each stopping time τ<ζ and AeHol(M), the
space of holomorphic functions on M. Such diffusion processes connect mar-
tingales with holomorphic functions. Thus, holomorphic diffusion processes
enable us to discuss topics of complex analysis in probabilistic terms. The

aim of this paper is to see that the conservativeness of holomorphic diffusion
processes is closely related to domains of holomorphy.

Several classes of holomorphic diffusion processes were studied by Debiard-
Gaveau [4], Fukushima-Okada [8], [9] and Kaneko-Taniguchi [16]. Especially,
Fukushima and Okada [8] showed that there is a one to one correspondence
between a family of symmetric holomorphic diffusion processes on M and the
totality of admissible pairs (θ, m) on M of closed positive current θ of bidegree
(n— 1, n— 1) and everywhere dense positive Radon measure m on M (for the
definition of admissible pairs, see Section 2). For a bounded domain D in Cw,
one can constract the admissible pairs (θb, mb) on D and (θφ

cy mφ

c) on DxC* =
Z)χ(Cn\{0}) from the Bergman kernel function K(z\D] and the Carathόodry

infinitesimal metric c(z, ξ',D), #eZ>, ξ^CJ, respectively. For details, see Sec-
tion 4. Let Mb (resp. Mφ

c] be the holomorphic diffusion process on D (resp.
Dx CJ) associated with (θb, mb) (resp. (0*?, mψ

c)). One of the main objects of the
present paper is to show that the conservativeness of either Mb or Mφ

c implies
that D is a domain of holomorphy under suitable assumptions on the boundary.

In fact, we will see that D is a domain of holomorphy if either (i) Mb is conserva-

tive and Caρ(t/\Z))>0 for any open U with t/ίΊ9Dφφ, where Cap stands for
the Newtonian (logarithmic if n=l) capacity, or (ii) Mψ

c is conservative and D°=
D. See Theorem 4.

It is well known ([2], [19]) that K(z\ D) and c(z, ξ\D) can be extended to
a holomorphic extension M of D and its holomorphic tangent bundle T!M, re-
spectively, and hence so are (θbj mb) and (θφ

c> mφ

c). Therefore, in the proof of
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the above assertion, a key role is played by the observation that if an admissible

pair (θ, m) on M satisfies the "ellipticity" condition, then the conservativeness

of the part on an open set G C M of the holomorphic diffusion process associated

with (θ, in) implies the smallness of M\G. For detailed statement, see The-
orem 2.

Before stating another object of this paper, let us consider an example.
Let D be an bounded strictly pseudoconvex domain in Cn. Then, the Bergman

metric β(D) of D is Kahlerian ([2], [18]). Denote by M(D) the Brownian

motion on the Kahler manifold (D, /?(£))), i.e. the minimal diffusion process

generated by Δ/2, where Δ is the Laplace-Beltrami operator (for the definition
of minimal diffusion processes, see [15]). As will be seen in Section 4, the
holomorphic diffusion process Mb discussed in the above paragraph coincides

with M(D) up to time change t-^-tβn. Since D is strictly pseudoconvex,

(D, β (D)) looks like a space of constant holomorphic sectional curvature near
the boundary ([17]). Hence the Ricci curvature is bounded from the below by

a constant. Therefore M(D) is conservative, i.e. the life time is infinity a.s.

([13]) and so is Mb.

On account of this example, it is natural to ask whether the contrary to
the first assertion holds, i.e. whether either Mb or Mφ

c is conservative if D is

a domain of holomorphy. In order to answer to this question, we will establish
that Mb (resp. Mφ

c) is conservative if there is a nice exceptional set EddD such

that

limsup* K(zk\ D)= + 00 (resp. limsup^ c(zky ξk\ D)= + °°)

for every *,-*#*e8D\E (resp. (zk, ξ„)-+(%*, f*)e(9D\£)xCJ). For details,
see Theorem 3. As will be seen in Examples 4.1 and 4.2, this assertion yields

that Mb and Mφ

c are conservative if D is a domain of holomorphy with nice
boundary.

This assertion follows essentially from more general criteria for conservative-
ness and explosion for symmetric holomorphic diffusion processes, see Theorem 1.
Since we can not expect the smoothness of admissible pairs (θ, m) in general

(this is the case when (θ, m)~(θφ

cί mφ

c))9 we have no nice expression of the

generator of the diffusion process. Therefore, the results due to Hasminskii

[12], Ichihara [13], [14] are not applicable in our situation. We will establish

our criteria by using the stochastic analysis for plurisubharmonic functions.

As will be seen at the end of Section 2, our criteria yields also a unified way

to test the explosion and conservativeness of these specific symmetric holomor-

phic diffusion processes already studied by Fukushima-Okada [8], [9], Debiard-

Gaveau [4] and Kaneko-Taniguchi [16] respectively.
The organization of this paper is as follows. We will begin Section 2

with giving a brief review on the symmetric holomorphic diffusion processes.

We will then give the above mentioned general criteria for them. In Section 3,
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we will see that if the part on G of the holomorphic diffusion process on M
is conservative then M\G is small. Section 4 will be devoted to showing that
the conservativeness of either Mb or Mφ

c implies that D is a domain of holomorphy.
A criterion for Mb or Mφ

c to be cosnervative will be also given in the same sec-
tion. Several examples will be presented at the end of the section to illustrate
our results.

2. Conservativeness

In this section, we will discuss the conservativeness of symmetric holomor-
phic diffusion processes. We first give a brief review on symmetric holomor-

phic diffusion processes, following Fukushima and Okada [8], [9]. Let M be
a σ-compact connected complex manifold of complex dimension n. A pair
(0, m) of closed positive current θ of bidegree (n— 1, n— 1) and everywhere
dense positive Radon measure m on M is said to be admissible if the symmetric

form

&(u, ϋ)=
M

is closable on L2(M: m), the space of w-square integrable functions, where d—
8+5 is the exterior derivative and dc=i(d— 9). We denote by ^(M) the total-
lity of admissible pairs on M. For (θ, nί)^ci](M}^ the minimal closed extension
g(β,mϊ Of ρβ ^h the domain 3?(θ>m) is a CJΓ-regular local Dirichlet form on

L2(M: m). Then, every h e Hoi (M) is £(β'w)-harmonic. As usual, the associated
capacity for compact set Kd.M is defined by

Cap'*'"0 (K) = inf {( u2dm+6(9^ (u, u): u<ΞC*(M\ u>l on K}
J M

and is extended to the capacity for any set as a Choquet capacity, which we call
the <?(β'w)-l -capacity. Throughout this paper, by "£(β w)-q.e." we mean "except
for a set of £(β»w)-l -capacity zero". By virtue of the theory of Dirichlet spaces
[5], we obtain a diffusion process M(θ m)={(Zt, ξ, P^ w)): z^M} associated with
this £(θ'm\ up to equivalence, where ζ is the life time. Then, each A(ZίΛτ), h^
Hol(M), is a local martingale for every stopping time τ<f under P¥'m\ <5(β w)-
q.e. #€ΞΛf. We call M(β>fw) the holomorphic diffusion process associated with
(θ, m)^cU(M). Moreover, we say that M (θ'm) is conservative if P^ w) [ζ= + oo]
= 1, £(β w)-q.e. z<=M and that it explodes if Pi' w) [f < + oo]=l, £<*'*>-q.e.

A function u: M->[— ooy +°°) is called plurisubharmonic (abbreviated to
psh) if u is upper semicontinuous and the derivative ddc u in the distribution
sense is a positive current. A subset N of M is said to be pluripolar if there
is a psh function φ such that N<Σ.φ~\—<χ>). Finally, for locally bounded psh
u and closed positive (n — 1, n — l)-current θ on M, we define a positive Radon
measure ddcu/\θ on M by
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fddcuΛθ=\ uddcf/\θ,
M J M

For details, see [21]. We are now ready to state our result on conservativeness
and explosion:

Theorem 1. Let D be a bounded domain in Cn and (0, m)^cϋ(D). Denote
by M(9'm) the associared holomorphic diffusion.

(i) Assume that there exists a locally bounded psh function p such that m>
ddcp/\θ. Then, M(θ'm} is conservative, if either of the following conditions is
satisfied :

(i.a) there is a sequence {Aj} of analytic sets in Cn such that AjΓ\D=φ and

for every zk-^z* e QD\ { U ~=ι Aj} , it holds that

(2.1) limsupkp(zk) = + 00 and liming ̂ >(^)> — °° ,

(i.b) m is equivalent to the Lebesgue measure V on D and there is a pluripolar
set N in C" such that NddD and (2.1) holds for any zk-*z*<=dD\N.

(ίi) Assume that there exists a locally bounded psh function q such that m<
ddc q/\θ. Then, M(θ>tn) explodes if either of the following conditions is fulfilled:

(ϋ.a) there is a sequence {Aj} of analytic sets in Cn such that Aj Γl D=φ and

for every ay->**e9D\{ U 7.1 A }, it holds that

(2.2) limsupaί (*,)< + oo ,

(ii.b) m is equivalent to V and there is a pluripolar set N in Cn such that
Nc:dD and (2.2) holds for any zk->z*(ΞdD\N.

For the proof of Theorem 1, we prepare two lemmas. We first recall
that locally bounded psh u is locally in ^F(Θ'M\ the domain of β(θ>m\ See [8].
Moreover, there exist a continuous local martingale additive functional M^
and a continuous positive additive functional N^, [̂0, ζ) such that

(i) the Revuz measure of NL

t

u~* is ddc u/\θ and

(ii) the semimartingale u(Zt] has a decomposition

(2.3) u(Zt)-u(*) = MP+NF , t<ζy

under P? "°, £(θ'm)-q.e. *eM(cf. [8], [9]). We now proceed to the first lemma.

Lemma 1. Let us consider an n-dίmensional complex manifold M. Let
(θ,m)^cϋ(M) and M(θ w)={(Zt , f, Piθ'w)): z^M} be the associated symmetric
holomorphic diffsuion process. For R-valued function f on M, we denote by 7(/)

and 5(/) the random variables given by

= liminf,κ/(Z,) , S"> = lmsupnζf(Zt) .
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For every locally bounded psh function u on My it holds that

(2.4) P?'"0 [{NL

ζ

u2< + °°,IM>-oo}AiSM< + oo}] = 0,

where AAB=(A\B) U (B\A). If m>ddcpAθ for some locally bounded psh p on
M, then it holds

(2.5) Py *> [{ζ-< + oo and /(^>-oo}\{5(^< + oo}] = 0, β^^-

Finally, if m<ddc q/\θ for some locally bounded psh q on M, then

(2.6) P?'"0 [{S(i)< + °o}\{f< + oo}] = 0, £<••«>-?.*. z<=M.

Proof. By using a standard time change argument (cf. [15]), it follows

from (2.3) that

(2.7) u(Zt)-u(z) = 5(<MM>,)+tfM , t<ζ ,

under P^ w), where B(ΐ) is an ^-valued Brownian motion with J9(0)=0. Since
N^ is a nonnegative increasing process, this implies that

KmsupίK

liminfίK

Recalling that limsup, t oo B(t) = + °o and liming tco B(t)= — oo, we deduce from
these inequarities that <M^>^_ is finite P^m) a.s. on {5(M)< + oo} U {MM_]<
-f-oo^ /(")> — 00} . Plugging this into (2.7), we obtain that (2.4) holds because
jB(ί), ££:[0, oo), is continuous.

To see the second and the third assertions, it suffices to mention that f >
Nγ2 (resp. <Nγ2) if m>ddc p/\θ (resp. <ddc q/\θ}. The proof is complete.

Lemma 2. Let us consider a boundes domain D in Cn. Let (θ, m)
and M(θ'm)={(Zt, f, Piθ>m)): z^D} be the associated holomorphίc diffusion process.
Then,

(2.8) Pf "° [limίt£ Zt exists] = 1 , 6(e^-q.e. z€ΞD .

If A is an analytic set in Cn such that A Γ! D=φy then

(2.9) P^ [lim,κ Zt£ΞA] = 0 , e<* "»-q.e.

Finally, if m is equivalent to the Lebesgue measure V on D and N is a plurίpolar
set in Cn such that NddD, then

(2.10) P^ [limnζ Zt^N] - 0 , G^^-q.e.

Proof. Since D is bounded, each component of Zt is a bounded martingale
on [0, ζ) under P?>wι), S(θ>m}-q.e. Thus, the martingale convergence theorem
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implies that limnζ Zt exists P^'^-a.s.

To see the second assertion, let w^A Γ) dD. By the definition of analytic
sets, there are an open set U in Cn and wl, w2, •••, wk^Hol(U) such that wQ^U

and t/Π^ί^ίzϋ^ ^zϋ*— 0}. By shrinking C7 if necessary, we may and will
assume that wirs are all bounded on U. Put

τ = inf {t>Q:Zt$UΓ(D} .

Then, w\Zt) is a (^-valued continuous martingale on [0, ξΆr) such that

<V'(Z.), α ̂ Z.^ΞO. By a standard time change argument (cf.flSJ), we have

w\Zt) = ιti*(*)+B*«fD<(Z.), w\Z.)yt\ t<ξΛr ,

under P(* m\ <£<••"•>-?.*., where B*(t) is a C2-valued Brownian motion with B'(0)=

0. By the argument similar to that in the proof of Lemma 1, we see that

<w'(Z,.), wi(Z.)><ζM-< + °° a.s. Since -4nD=φ, w '^ΦO for some l<i=
i(z)<k for every #e U f ] D . Moreover, Cx-valued Brownian motion never hits

— w'(z). Hence

Zt(=UΓ}A, ξ<τ] = 0 ,

Therefore, by [5: Theorem 4.2.1], there exists a Borel set 7V"cD such that

(2.11) Cap» «> (ft) = 0 ,

(2.12) P?

(2.13)

Let

Λ — {lim^^Z^C/n^ and Z,<ΞΞt/n£> for

Then, (2.12) implies

(2.14) P?-"" (4,) = 0 for z£ΞUΓ}(D\N).

Combining (2.11), (2.13) and (2.14) with the Markov property, we have

(2.15) P^ (A,) = E^ [P^ (Λ); {Z,c=UnD, r<ζ}] = 0 ,

for <S(θ'm)—q.e. z^D, where E(/ m) stands for the expectation with respect to
pw. o. Note that

where the union is taken over all nonneagtive rational numbers r. Thus, (2.15)

yields

(2.16) P?
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Covering AΓ\dD with countably many U's as above, we can conclude from
(2.16) that (2.9) holds.

We finally verify the third assertion. For this purpose, we modify the
argument in the proof of [7: Theorem 1]. For a bounded domain ΩcCΛ, the
extremal function v$(z\ Ω) of a set E"cΩ is defined by

UE(Z\ Ω) = sup {v(z): v is a nonpositive psh function on Ω with

v< — l onE}

uH(z-y Ω) = limsup^ UE(W\ Ω) .

We set

; Ω) - - uί(z\ Ω) V(dz) .
Q

It is known ([1], [9]) that

(i) Ct(£; Ω) - inf {Cf(O; Ω): O is open, O~DE} ,

(ii) CfCE Ω^C^tf Ω') if ΩcΩ' .

Let NddD be a plurpolar set in Cn and Ω be a bounded domain such that
Z?CΩ. Then, Cf(JV; Ω) = 0 ([!]). Hence there exists a sequence {Ok} of open
sets in C" such that NdOkdOk-ly k>2 and

Since TW is equivalent to the Lebesgue measure V, by [8: Lemma 4], we have

where <rΛ— inf {t> 0 : Z# e D Π OΛ} . Letting fc-» oo , we have

(2.17) P?'w )[nΓ

for F-β.β. z^D. Since m is equivalent to V, (2.17) holds for m-a.e.
Note that ί/(2r)=P2[nΓ=ι{σ"A< + oo}] is excessive (for the definition of excessive

functions, see [5: p. 99]). Due to [5: Lemma 4.2.5], we see that (2.17) holds
for <5(θ'm)-q.e. z^D. Thus, (2.10) holds. The proof of Lemma 2 completes.

We now proceed to the proof of Thoerem 1.

Proof of Theorem 1. We first assume the existence of locally bounded psh
function^) with m>ddcp/\θ. Since M(θ>m^ has no killing inside, due to (2.8),
we have

= 0 ,

Combining this with (2.1) and Lemmas 1 and 2, we have



938 S. TANIGUCHI

] = 0,

Hence the first assertion of Theorem 1 has been seen.
To see the second assertion, assume that there is a locally bounded psh fun

ction q on D such that m<dd° q/\θ. Since q is upper semicontinuous
oo on {limnζZt^D}. It follows from (2.6) and (2.8) that

P< «> [{lim,κ Z,ei>}] - P? »> [#< + <*>} Π

for S(θ'm^-q.e. z€ΞD. Thus, since Λf(θ>wί) has no killing inside, we obtain

P? "> [lim,κ Z,e8D] = 1 , e<* *»-q.e.

Combining this with (2.2) and Lemmas 1 and 2, we obatin

1 - P? «> [S<«>< + oo]^P? o [f < + oo] , e<* »-q.e.

The second assertion of Theorem 1 has been verfied. The proof is completed.

REMARK 2.1. Let & be a locally bounded psh function on D. By the
same reasoning as at the end of the proof of Lemma 1, M(θ'm^ is conservative
(resp. explodes) if ddc u/\θ<m (resp. >m) and P<θ'w) [Λ/£3< + oo]=0 (resp.
= 1). Let A be a locally bounded upper semicontinuous function with ddc /z=0.
Note that ddc u=ddc(u-\-K) and hence ddc (u-\-K) /\θ enjoys the same inequality
as ddc u/\θ does. Moreover, N[u^=N^ u+h^. Therefore, as far as we discuss the
conservativeness and explosion problem after evaluating P? w> [jV^< + °°],
there is no defference between choosing u or u+h. However, Lemma 1 gives
a way to estimate P? m> [ΛΓp< + oo] in terms of 7(ίί) and S(κ). Thus, to esti-
mate P<,β m> [Λ/"f"J< + oo], a particular w will be much easier to handle than others.

In the remainder of this seation, we will apply Theorem 1 to some known
examples. In what follows, D is a bounded domain in Cn and M(θ>m) is a holo-
morphic diffusion process associated with (θίm)^cU(D). Moreover, for local-
ly bounded plurisubharmonic ul9 " ,un on D, we will use ddc UίΛ /\ddc uk to
denote the (k, &)-closed positive currents defined inductively by

fΛddcu1Λ /\ddcuk={
J D

for every C°° (n—k, n—k) form/ with compact support.
Case(l). Fukushima and Okada [8] showed that M(θ m) explodes if

θ = (ddeρ) -1 and m = dde\x\2Λθ,

where/) is a bounded psh function on D such that m(dz)>g(z) V(dz) for some
positive continuous g. In this case, Assumption (it. a) in Theorem 1 is satisfied

with ?(#)= |#|2. Hence, Theorem 1 also implies that M(θ'm) explodes.
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Case(2). In [9], Fukushima and Okada showed that M(θ'm) explodes if
m(D)<-{-oo and the Poincarό type inequality holds:

f φ2 dm<C&θ m>(φ,φ) for every <p<=C%(D))
J D

for some constant C>0. Suppose that there exists a bounded psh function u

on D such that m<ddc u/\θ. Then, the Poincarέ type inequality holds:

φ2dm<S\\u\\00β^^(φίφ) for every φ<=Cΐ(D)

where ||w||e.=suρ{| u(z) \ : z^D} (see [9], [21]). In this case, Assumption (u. a)
is fulfilled with q= u. Thus, even if m(D) = -}-ooί M(θttn) expoldes.

Case(3). Debiard-Gaveau [4] and Kaneko-Taniguchi [16] treated the case

when

θ = {ddc ΣΪ(-log(-^))}Λ-1 and m = {ddc Σί(- log (-<?,•))}"

for some bounded plurisub harmonic negative functions 9?, with Π?βι φ^z)— >0 as
Z-+QD. Then, it was seen that M(θtW^ is conservative. In this case, Assumption

(i. a) is satisfied with p=— Σ?=ι log(— φi). Thus, Theorem 1 also yields that
,m) js conservative.

Case(4). Finally we consider an example. Let

\zl\<l, |

and m = ddc\z

Then, Assumption (iί. a) is fulfilled with q(z) = \z\2. Thus, by virtue of

Theorem 1, M(θ>m) explodes. Furthermore, it is straightforward to see that

P^[Z2

t=z2 for ί>0]=l. Hence the α-order Green measures GΛ(z, •)==

500
e~ΛiP(tyZ) )dt,P(t,z, •) being the transition probalility of M(θ>m\ are not

o
equivalent. Thus, the criteria due to Ichihara [14] for explosion are not appli-

cable directly. However, it should be noted that if we restrict ourselves to the
submanifold Dw~ {(z,w): z^C1 and |#|<1}, then the criteria by Ichihara are

applicable and yield in the end that M(θ'm) explodes.

3. Smallness of sets

Let G be an open subset of a σ-compact connected ^-dimensional complex

manifold M and (θ, m)^cU(M). The part M^ of M(θ m>={(Zt, f, P^):
on G is by definition the holomorphic diffusion process on G given by

(3.1)

where σ— inf {t>0: Zt^M\G} . Our aim of this section is to see that the
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conservativeness of M(g m) implies the smallness of M\G. To state our result,
we prepare some notions. We say that AdM is of measure zero (resp. of ca-
pacity zero) if, for every coordinate neighbourhood U and diffeomorphism
φ: t/-><p( £7) CC", φ(AΓ\ U) is of Lebesgue measure zero (resp. of Newtonian
(logarithmic if n=l) capacity zero). For (k, &)-currents u, v, we mean by "u>
v" that u— v is a positive current. Our goal of this section will be

Theorem 2. Let G be an open set in a σ-compact connected n-dinensional
complex manifold M and (0, m)€=cU(M). Assume that

(3.2) 0>C([/)(^f SLiM2)*-1 and

on each relatively compact coordinate neighbourhood U with a coordinate system
zl

y • •• , zn for some C(U)>0. If the part M(£tm} of M(9'm} on G is conservative,
then M\G is of measure zero. If, furthermore, m(A)~0 for any AdM of measure
zero, then M\G is of capacity zero.

Proof. Let M(β m>={(Zt,ξ,P<f m>): z^M} be the holomorphic diffusion
process associated with (0, m). By (3.1), the conservativeness of M(S'm) implies
that

(3.3) py ») [σ< + oo] = 0 & m)-q.

because AdG is of 8(G'm} — 1-caρacity zero if and only if it is of £<*'«> — 1 -capa-
city zero (see [5: Theorem 4.4.2]). Recall that

(3.4) /*/•*> [σ=0] = 1 &' m>-q.e.

(see [5: p. 94)]. Thus, (3.3) and (3.4) imply the identity

(3.5)

for every /eC<Γ(Λf), where XA(z)=l or 0 accordingly as z^A or not and E(f m>
stands for the expectation with respect to P(

z

θ>m\ By virtue of [5 : Theorem 4.4.1],
we can conclude from (3.5) that

(3.6) fXM\G^&(θ'm) for every nonnegative /e

where 2Γ(tf w) is the domain of £(β m).
Let z^G and ^r1, ~,zn be a local coordinate system on a relatively com-

pact coordinate neighbourhood U of z, where G is the closure of G in M. Then,
UΓiGφφ. By identifying U with a bounded open set in Cn through the co-
odinate system, we can construct the absorbing barrier Brownian motion on U.
We denote by (£?', 6') the corresponding Dirichlet space. Then, combined with
Assupption (3.2), (3.6) yields that

(3.7) f%u\G^3' for every nonnegative
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and hence

(3.8) XU\G is locally in 3" .

Recall that (£?', £') is irreducible, i.e., either A or U\A is of Lebesgue measure

zero if XA is locally in £F' ([6]). Thus, either t/ΠG or U\G is of Lebesgue
measure zero. Because the open set UΓ\G is not empty, U\G is of Lebesgue

measure zero. In particular, U\G=φ and [7cG. This implies that G is open

and closed and hence G— M, for M is connected. Therefore, M\G is of measure

zero.

We next assume, moreover, that m(A)=Q for every AdM of measure zero.

By the above observation, we have

(3.9) m(M\G) = 0 .

This and (3.3) imply that M\G is of S(θ'm} — l -capacity zero ([5]). Therefore,

by Assumption (3.2), we see that U\G=U (Ί {M\G} is of £'-l-capacity zero,
where (£?', <?') is the Dirichlet space of the absorbing barrier Brownian motion
on U as in the proceding paragraph. Recall that A C U is of capacity zero if

and only if it is of Q1 — 1 -capacity zero. Hence M\G is of capacity zero. The
proof is completed.

REMARK 3.1. The generator <JL of M(θ'm) is expressed formally as

Jl ddcφ/\θ ^ eC~(M)

dm

(cf. [21]). Let U be a coordinate neighbourhood with a coordinate system

zl, •••, zn. We denote by V the Lebesgue measure on U induced through this
coordinate system. Suppose that it holds for some aij, δeC°°(ϊ7) that

dm = bdV and

Then, we have

Moreover, Assumption (3.1) is equivlaent to that

(«'v)ι<;ί,/<;«> C(δ'v)ι<^, <;« and b> C on U for some C>0 .

Thus, Assumption (3.1) can be thought of as an assumption on the ellipticity

of the generator <JL.
Without the ' 'ellipticity" assumption (3.2), the assertion of Theorem 2 does

not hold in general. For example, let M= C2 and G= {z^C2: \ % | > 1} . Then,

M\G is not of measure zero. Take φ^C%(Rl) such that 90 >0, supp [<p]d[l, 2]
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S
+oo f x f y

φ(x)dx~\. Define ty(x}— I dy I φ(w) dw, p(z)=^(\z\2} and 0 —
-oo J l Jl

ddc p. Then, (θ, F), V being the Lebesgue measure on C2, is an admissible pair
and the associated holomorphic diffusion process is generated by

oϊ = 16

where

Since

sup {ĵ Mi , -1*% *>l}< + oo, *=0, 1,
|#— 1|* \x— l\k

^'(x) = 1 and φ(x) — 0 for Λ?e[2, +00) ,

it is straightforward to see that

for every z^G and Γ>0. Thus, we see that the part of M(θ'm) on G is con-

servative.

4. Domains of holomorphy

This section is devoted to the study of domains of holomorphy as an ap-

plication of Theorems 1 and 2. Let Z)cCn be a bounded domain. The Berg-
man kernel function K(z\ D) of D is defined by

K(*;D) = sup {|/(*)|2/||/||2:/eL!φ)} ,

where Ll(D) is the space of holomorphic functions on D with ||/||2Ξ

We set

;D), θb = (ddcpbγ-ί and mb = (dde p>)Λ .

As we will see later, (θb, mb)^cU(D). Therefore, a holomorphic diffusion process
associated with (Θb9 mb) is defined. In what follows, for the sake of simplicity,
we write Mb= {(Zty ξ, Pb

z): ztΞD} instead of M(θ* m*>= {(Zt, ζ, P<** m*>): z(=D}.

Now let us show that (θb, mb) e ̂ (D). To do this, recall that pb is C°° and strict-

ly psh on D ([2], [18]). Hence, θb is a closed positive current on D of bidegree

(n—ly n— 1) and mb is an everywhere dense positive radon measure on D. Thus,
it suffices to show that <Sθb is closable. To this end, take a sequence {un} in
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Cϊ(Z>) such that I ul dmb-+Q as n-*oo. Let φ^C%(D). Since pb is strictly
psh, we have

dmb < ddc φ Λ θb < CX^ppφ dmb on D

for some OO. This implies that

(4.1) ί unddcφ/\θb->0 a s w - » o o .
JD

On the other hand, the closedness of θb implies that

δθb(un,φ)=-{ Unddcφ/\θb.
J D

Therefore,

&b(un, φ) -> 0 as n -» oo for every

and hence <?** is closable on L2(D: m) (cf. [5]).
An important property of Mb is that it coincides with the Brownian motion

associated with a Kahler metric on D. To state more precisely, let us introduce
the Bergman metric β(D} on D defined by

It is known ([2], [18]) that β(D) is Kahlerian. We observe that the time chang-

ed process Mb={(Z2nt, ζ/2n, P*): z^D} is the Brownian motion on the Kahler
manifold (D, β(D)). In fact, it is easy to see that

ddcφ/\θb = 2«-20-l) iΔφdv

dmb = 2nn\dv ,

where Δ is the Laplace-Beltrami operator and v is the volume element on
(D, β(D)). Thus the generator A of Mb is expressed as

Aφ = Δ^)/4^ for 90 e Csr(ΰ) .

This implies that Mb is the Brownian motion on (D, β(D)).
To define symmetric holomorphic diffusion processes corresponding to the

Caratheodory infinitesimal metric, we introduce some more notations. The
Caratheodory infinitesimal metric c ( z , ξ ] D ) j z^D, ξ^C* is given by

c(x, ξ y D ) = sup { I ΣLi - (*) ξ'\ f D-»Δis holomorphic and f ( z ) = 0>
oz

where Δ={jareC1: |*|<1}. It is well known ([19]) that c( , D) is a non-
negative continuous psh function on Dx C*. Let Ext(D) be the totality of pairs
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(X, π) of σ-compact connected ^-dimensional complex manifold X and local

biholomorphism π: X-*Cn such that

(i) DdX and D is open in X,

(ii) π(z)=z, z^D

(iii) every /e Hoi (D) has a g e Hoi (X) such that /=£ on D.

For a complex manifold M, we set

SP(M) = {p: M-^R: (1) ^> is locally bounded and psh

(2) on each relatively compact coordinate

neighbourhood with coordinate system #—

(z\ •••, zn},p— δ|* | 2 is psh for some S>0}.

It is straightforward to show that, for p<= SP(M), (ddc p)n~l and (ddc p)n satisfy As-
sumption (3.2) in Theorem 2. We use E(D) to denote the totality of nonnegative

such that there is a φ<=SP(TX*) so that φ= φ on DxCn*=

for every (X, τr)eExt(D), where jΓX* is an open subset of the
holomorphic tangent bundle TX over .XT consisting of nonzero tangent vectors.

It is easyly seen that f(\z\2)+g(\ξ\2)<=E(D) for any C2-functions /, g on [0, oo)
with positive first and nonnegative second derivatives. For φ£zE(D), let

pφc(*,ξ) = c(*,ξiD)+φ(*,ξ),θφ

e = (ddcp*γ*^ and m* = (<Mctf)2" .

By the same argument as we saw that (Θ6, mb)^cϋ(D)ί we can see that (θφ

c, m
φ

c)&

^(DxCί). We denote by Λf?={(Z/f f,), ?,P^})- (*,f)eZ)xCJ} the holo-
morphic diffusion process on Dx CJ. associated with (θφ

c, mφ

c).
We will establish the criteria for conservativeness of Mb and Mφ

c as follows.

Theorem 3
(i) Mb is conservative if there is a pluripolar set N in Cn such that NddD

and limsupfc K(zk\ D}— + 00 for every zk-+z*^QD\N.

(ii) Mφ

c is conservative if , for every α>0, there exists a c>0 such that

and there exist analytic sets Aj in Cn such that Aj Π D=φ and limsup^ c(zk, ξk\ D)

= + oo for every (zky &)->(«*, ξ*)ς=(dD\{ U y A,})X CJ.

Combining Theorem 2 with the well known fact that K( D) (resp.

c( , D)) can be extended to X (resp. TX), (X, ar)eExt(D), we will have the

following theorem, which is a generalized version of the result announced in [23].

Theorem 4. A bounded domain D in Cn is a domain of holomorphy if either

of the fallowings is satisfied :

(i) Mb is conservative and U\D is of positive Newtonian (logarithmic for
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n— 1) capacity for every open U with

(ii) Mψ

c is cosnervative for some φ^E(D) and &=D.

The difference between the assumptions on the boundary in (i) and (ii) of
Theorem 4 comes from that K(z\ D) is C°° but c(z, ξ\ D) is only continuous in

general. Before proceeding to the proofs of Theorems 3 and 4, we remark an

immediate consequence of these theorems.

Corollary. A bounded domain DdCn is a domain of holomorphy if either of
the fallowings holds :

(i) for each open U with t/ίΊθ-Dφφ, U\D is of positive Newtonian (log-
arithmic for fl— 1) capacity and there is a pluripolar set N in Cn such that NddD
and limsupA K(zk D)= + oo far every zk-*z* e dD\N,

(ii) DQ=D and there is a sequence {A}} of analytic sets in Cn such that Aj Π D

=φ and limsup, *(*,,&; D)= + oo far every (zk, ξ „)-»(**, f*)e(9Z)\{Uy Aj)

XCJ.

Proof. The first assetion is an immediate consequence of Theorems 3 and 4.

To see the second one, it suffices to take φ(z>ξ)=\z\2jτ\ξ\2.

We now proceed to the proofs of Theorems 3 and 4.

Proof of Theorem 3. Suppose that the assumption in the first assertion of
Theorem 3 is satisfied. Because pb^SP(D)Γ\C°°(D), mb is equivalent to the

Lebesgue measure V on D. Moreover, since leLl(D), it follows from the
definition that

Thus, Assumption (i.b) in Theorem 1 is satisfied with p~p6. Hence, by The-
orem 1, we see that Mb is conservative.

We next suppose that the assumption in the second assertion is fulfilled.

Since {φ<a}C.{\ξ \ <c} and pφ

c>0, by (2.5) in Lemma 1, it suffices to show
that

(4.2) PI& [#< + oo> Π {limsup/κ(<:(Z,, ξt D)+ \ξt | )< + -}] = 0 .

Notice that the z'-th component ξ\ of ξt is a continuous local martingale on
[0, ζ) with values in C1. Then, by a standard time change argument (cf. [15]),

we have

for some Cx-valued Brownian motion B*(i) with B* (0)=0. Since
! = + oo, we obtain that

ι i= 1> " > Λ I a s on
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Recall that B\t) never hit — £'. Hence it holds

4 3 P<Ή> [flimsup^ffl < + ~>]
- P?Λ> [{limsup f t£|f,|< + oo} Π {lim ί t f f£, exists in CJ>]

Furthermore, since Λί? has no killing inside, lim ί t£ Zt exists in 3Z), P^f^-a.s. on
{f < + °° , limsup, t £ I f / 1 < + °°} . Moreover, the argument similar to that in the
proof of Lemma 2 implies that

(4.4) Plfa [HπifK Z, exists in U ~-ι Aj] = 0 .

Therefore, we have

From this and the assumption, (4.2) follows and hence the proof of the second
assertion is complete.

Proof of Theorem 4. It suffices to show that
(i) if D is not a domain of holomorphy and Mb is conservative, then there

is an open set U such that C/Γ) 3DΦφ but U\D is of Newtonian (logarithmic)
capacity zero and

(ii) if D is not a domain of holomorphy and Mφ

c is conservative, then J9°Φ
D.

To do this, in the remainder of this proof, we assume that D is not a
domain of holomorphy. Then, there are a connected open set UdCn and a
connected component V of UΓ\D such that t/ΓI-Dφφ, t/VDφφ and each/e
Hol(D) has a £eHol(t/) with /=£ on V. By attaching C7 and D at F, we
obtain (X, π) e Ext(D) such that ?r (Jϊ) - 17 U A TT ( J£\Z)) - C/\ F and ̂  : J?\(D\ V)
—> U is biholomorphic.

Assume that M$ is conservative. It was seen by Bremermann [2] that there
is a q<=SP(X)r}C°°(X) such that q=pb on D. We put θ=(ddc q)n~l and m—
(ddc q)n. Then, since q^SP(X), the argument similar to that used to see that
(θb,mb)^cU(D) implies that (θ,m)^cϋ(X). Obviously, θb=θ\D and mb=m\D.
Thus, by [9: Proposition 9.1], we see that Mb is the part of M(θ'm) on D. More-
over, θ and m satisfy Assumption (3.2), and m(A)=0 if AdX is of measure zero
because q^C°°(X). Hence, by Theorem 2, we have that X\D is of capacity
zero. Because π: X\(D\V)—>U is biholomorphic, this implies that C7\D is of
Newtonian (logarithmic if n— 1) capacity zero. Moreover, the connectedness of
U and the assumption that £/Π.Dφφ and [7\Dφφ imply UΓidD^φ. Thus,
the first assertion has been verified.

Next assume that Mψ

c is conservative. Let c(z, ξ) be the Caratheodory in-
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finitesimal metric of X:

c(*> ξ) = *upi\\(f*)gξ\\:f*ΞΪlol(X) taking values in Δ} ,

Z X, where (/*), is the differential of / at #, || || is the norm asso-

ciated with the Poincarό metric on Δ={#eC1: |#|<1} and TZX denotes the
space of holomorphic tanegnt vectors at z. It is well known ([19]) that c(zy ξ)

is a non-negative continuous psh function on TX. Let

where φ^SP(TX#) is the function appearing in the definition of E(D). We

set

θ = (ddcq)2"-1 and m = (ddcq)2n .

Then (θ, m) is an admissible pair on TX* and satisfies Assumption (3.2) in

Theorem 2. We observe that, by identifying TD*(Σ.TX* with Z>xC#, the

following identities hold:

(4.5) θφ

c = θ\DxCn and mφ

c = m\Dxcn .

Indeed, since φ(z)=φ(z), z^D, (4.5) follows immediately from the well known
fact ([19]) that

(4.6) c(z, £;/>) = c(z, ξ) for (*, f)eZ)χ CJ = TD*dTX* .

Thus, Mψ

c is the part of M(θ m) on TD* ([9]). By Theorem 2, we conclude that

TX*\TD* is of zero measure. In particular, X\D=φ and hence U\D=φ.

This implies that [7cZ> and which implies that Z5°ΦZ>, for E7\Z)Φφ. There-
fore, the second assertion has been seen.

In the remainder, we will give five examples to illustrate our result.

EXAMPLE 4.1. We say that the generalized conic condition is satisfied at
#* e 3D if there are a sequence {wk} C Cn\D, a>ί and 0<r < 1 such that wk Φ #*,

etfA— >#* and Dfl {^^CM: |^~^| <r\z*— wk\*}= φ for every k. It was shown
in [22] that limsup^ K(zk\ D) = + c>o for every zk->z* if D is a domain of hol-

omorphy and the generalized conic condition is satisfied at #*. Therefore, by

virtue of Theorem 3, we conclude that Mb is conservative if D is a domain of

holomorphy and there is a pluripolar set N in Cn such that NddD and the
generalized conic condition is satisfied at every z* e dD\N.

EXAMPLE 4.2. If D is a strictly pseudoconvex bounded domain in CΛ, then

c(z, ξ)>C\ξ \ld(z)l/2 for every (z, ξ)(ΞDxCn for some OO, where d(z) =

inf { I z— w I : w^dD} (see [10]). Thus, Mφ

e is conservative if {φ<a} C { | ξ \ <r}

for some c for each a>0. Next, let r e C°°(C2) be psh and D— {̂ =(3 ,̂ ̂ ) e C2 :
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r<0} be bounded. Obviously, D is a bounded domain of holomorphy in C2.

We define

and c**
where [L, L]=LL—LL. Assume that there are a sequence {Aj} of analytic sets

in C" and k: 9JO\{Uy^y}-Ml, 2, ••-} such that DΓ\Aj=φ, j'=l, 2, — ,
CA(w)(α;)Φθ and CΛ(w)=0, \<k<k(w). Then, for each α;e9D\-{U, A f r , there
is a constant OO such that φ, ξ\ D)>C\ξ\/d(z)1/2kM near w (see [3]). In
this case, Mφ

c is also conservative if {φ<a} C { | ξ\ <c} for some c for every

EXAMPLE 4.3. Without the assumption on the boundary, the assretion in

Theorem 4 does not holds in general. For example, let Z>0— {#eC2: |s| <!}

and Z>— D0\{0} . Then, not only Z)°ΦZ) but also U\D is of Newtonian capacity

zero, where U={z^C2: |*|<l/2}. Remark that every /eHol(D) can be

extended to a holomorphic function on D0 and hence D is not a domain of

holomorphy. Let us show that Mb and Mφ

c with φ(zy ξ)= |#|2+ \ξ\2 are both
conservative. By the above remark, it holds that K(z\ D)=K(z; DQ) and
c(z, ξ D)=c(z, ξ D0), #e D. It is known that K(zk D0)-> oo , ̂  (^Λ, |A D0)-> oo

for (̂ , ?*)->(#*, ?*)^9D0XCJ (for the former, see [2] and for the latter, see
[3]). Thus, due to Theorem 3, we see that Mb and Mφ

c are both conservative.

EXAMPLE 4.4. Theorem 4 is a stochastic analogy of the well known result

that D is a domain of holomorphy if β(D) is complete ([2]). In this example,

we see that there is a domain of holomorphy which is not complete with respect

to β(D) but Assumption (i) in Theorem 4 is satisfied.

Let D= {(z\ z2) e C2 : | z1 \ < \ z* \ < 1} . It is obvious that &= D and, espe-
cially, U\D is of positive Newtonian capacity for every open U with U Π 3Z)Φφ.

If we define D' = {(w\ w2) <EΞC2: 0<|w 1 |<l, I^Ί<1> and F: D'-*D by
F(w1

9 w2)=(wl w2, wl), then F is a biholomorphism. It is well known ([2]) that

(4.7) K((w\ w2)', D'} = !/{*(!- I a;1 12) (1- \w2\2)}2 ,

This yields that D' is not complete with respect β(Df) and hence D is not com-
plete with respect to β(D), for β(D) is the pullback of β(D') by F~l ([2]). To

see that Mb is conservative, recall that K(F(w) D)=K(w, D') \ det (—} \ ~2 ([2]).

Hence, due to (4.7), we have

(4.8)

Combining this with Theorem 3, we can conclude that Mb is conseravtive.

EXAMPLE 4.5. If a bounded domain D of holomorphy in C" has a C1 bound-

ary, then the Bergman metric β(D) is complete ([20]). Moreover, as mentioned
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in Example 4.1, then Mb is conservative. In this example, we consider the case
when D is not known a priori to be a domain of holomorphy but β(D) is com-
plete and Mb is conservative. In the remainder, for the sake of simplicity, we
write β for β(D).

Assume that D is simply connected and that there is a Kahler metric g on
D which makes D a complete Kahler manifold of non positive sectional curva-
ture. Assume, furthermore, that

(4.9) — B< sectional curvature <A on D for some A, B>0 .

Then, Greene and Wu [11] showed that

(4.10) β>Cg onD for some C>0.

Since g is complete on D, so is β. Especially, D is a domain of holomorphy.
In this case, we can also show that Mb is conservative.

The proof of the conservativeness of Mb will be completed once we show
the existence of a>0 and nonnegative u^C°*({r>a}) such that

(4.11) u(z)-*+°o as r(£)-»+oo,

(4.12) Δ0 u<Cu on {r>a} for some <?>0 ,

where Δ^ is the Laplace-Beltrami operator associated with β. In fact, as we saw

after the definition of Mby the time changed process Mb={(Zgnt, f/2w, Pb

2): z^D}

is the Brownian motion on (D, β). For the sake of simplicity, we denote Mb=
i(Xt, η, P2): #eZ)}. Let σ=inf {t>0: r(Xt)<a}. Then, (4.12) yields that,
for any stopping time τ<?7,

0<Ez[e~^r^ u(XτΛ<r)]<itι(z) for z with r(z)>ay

where Ez stands for the expectation with respect to Pg. Thus, by (4.11), we can

conclude

(4.13) Pz[σ = +00, 97< + oo] = 0 for z<={r>a} .

Let

TO = inf {t>0: r(Xt)>a+\} ,

= inf {t>σk: r(Xt)>a+l} .

By the strong Markov property of Mb and (4.13), we have

P,[<rn = +°°> rk<η< + oo] = Ez[PXτk[σ = +00^, q< + <*>]; τk<-η] = 0 .

Note that
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Thus, Pt[o7< + °°]=0. Therefore, Mb is conservative and so is Mb.
Let us see the existence of such a and w. Fix oeZ) and let r=r(z) be the

distance from o to z. It suffices to show that

(4.14) Δβ r < C" coth(£1/2 r) on {r>0} for some C">0 .

To do this, let (D', o'} be a real 2/z-dimensional model with the radial curvature

function k(s)=— B (for definition, see [11]). It was seen in [11] that Δ' r'=
(2n—l)B1/2 coth(S1/2r'), where Δ' is the Laplace-Beltrami operator on (D',of)
and r' is the distance from o' '. For normal geodesies j(t) and <γ'(t) starting

at o&D and o'eZ)', respectively, it follows from (4.9) that

each radial curvature of D at γ(t)

> — B = every radial curvature of D' at y f ( t ) .

By applying the Hessian comparison theorem ([11]), we have

(4.15) Δ, r(γ(ί))<Δ' r'(γ'(t)) = (2/z-l) Blί2 coth(£1/2 t) .

Since β>Cg and r is strictly psh on D ([11]), this implies

Δ0 r<C-\2n~l) Bl/2 coth(J51/2 r)

and which yields (4.14).
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