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1. Introduction

In 1948 Frucht [2] proved that for any finite group G there is a connected
3-regular graph T" with AutT'=<G. Sabidussi [3] extended this result: For any
finite group G and any integer #=3 there are infinitely many connected #n-
regular graphs T" with AutI'=<G. Moreover Vogler [5] extended this one of
Sabidussi: For any finite group G and any link graph A (cf. [5]) with at least
one isolated vertex and at least three vertices there are infinitely many connected
graphs T" with constant link A and AutI'=<xG. We note that AutT' acts semi-
regularly (cf. [6]) on VT in every above result. In this paper we shall study
the following probelm: When can a given abstract finite group be represented
as the automorphism group of a cnnected regular graph in which some vertex
is left invariant by the automorphism group ?

First we remark

Lemma 1. Let p be a prime and T' be a connected n-regular graph. If
there is a subgroup G of AutT' with |G|=p such that some vertex v of T is fixed
by G, then n=p holds.

Proof. Let v, v, +++, v, be the vertices adjacent to v. Let us suppose #<<p.
Since G fixes {v;, v,, ***, v,} as a set, G must fix all v;’s (=1, 2, +++, n) (cf. Lemma
2). Similarly, all vertices adjacent to v; (1=7=<n) are fixed by G. Because of
the connectedness of I', G fixes all vertices of T" by continuing the above
argument. Hence we have G=1 (the identity group), a contradiction.

The following theorem is the main result of this paper and the condition
n= |G| is necessary by Lemma 1.

Theorem 1. Let G be a finite group and t be a positive integer. Then
for any integer n=max {|G|, 3} there exist infinitely many connected n-regular
graphs T' such that AutT’==G and T has t vertices o, Qy, *+*, &ty with AutI'=
(AutT)y, o, that is, AutT is isomorphic to G and fixes some t vertices oty Oy,
and o.

2. Preliminaries

First let us fix some conventions. By a graph we mean an undirected graph
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without loops and multiple edges. All graphs considered are finite in this paper
except Remark 1. VT and ET denote the set of vertices and edges of a graph
T respectively. If an edge e joins two vertices # and v, we write e=[u, v]=[v, ).
By AutT' we denote the automorphism group of I'. If AutI'=1, I' is called
asymmetric. For a vertex v in T', N(v) denotes the subgraph of T" induced by
the vertices adjacent to ». If T is connected and if for some vertex v the sub-
graph induced by V'T'— {v} is disconnected, then v is called a cut-vertex of T
For vertices u and v, (u, v) denotes the distance between u and v. We define
the distance between subsets 4 and B of VT by 8(4, B)=min {0(u, v): u€ 4,
veEB}.

Now we introduce a notion of the type (cf. [2]) (a, ay, *+, a,) (r=(';)) of
a vertex v of valency m in T". Let uy, u,, +--, u,, be the adjacent vertices of v.
We define the number «;; (7<<j) as follows:

a;; = the minimum length of circuits which contain the two edges [«;, v] and
[v, u;] if there exists such a circuit,
= cootherwise.

By ranging (';) numbers of @;;’s in increasing order, we get the type (a;, @, **-,
a,) of v, where r=('§), @ =a,<--=a, and {a,, ay, -+, a,} ={a;;: 1=i<j=m}.
We shall make substantial use of methods of Sabidussi [3,4]: For graphs
T, T, -+ and T, we define the product I_i =T, XTI, X+ xXT, by
V(iIfI1 )= ‘H:l V'T; (the cartesian p?éduct of the sets V'T),

k
E(I—Il Fz) = {[(ub uz: °ey uk)’ (vl) 'Uz; °ty vk)]: {l: ui:':.vi) 1§i§k} iS
one-element set {j} satisfying [u;, v;]JEET;}.
It is obvious that the product of connected graphs is connected. A graph T' is
called prime if T' is non-trivial and if I'=xA XII implies that A or IT is trivial,
where a trivial graph is a vertex-graph. Two graphs I" and A are called relative-
ly prime if I'=xI"" XII and A=<A’XII imply that II is a trivial graph. We say
that a connected graph T" can be decomposed into prime factors if there exist
connected prime graphs Ty, Ty, -+, T', satisfying I'=< I T;.
i=1

A graph T which is attached a graph isomorphic with a graph A to a
graph II so as to correspond vertices u;, %y, **+, %,, of A to vertices v,, v,, *++, v,, of
IT respectively is a following graph:

VD =VIOUVA, VIINVA = {v,,7,, ***, Up}

ET = FEIIUEA,

where A is a graph isomorphic with A such that there is an isomorphism f from
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A to A with f(v,)=u,(i=1, 2, .-+, m).

For groups H and G, H <G denotes that H is a subgroup of G. For a
subset T of a group G, {T) is a subgroup of G generated by T. Let G be a
permutation group on a set . For elements a;, @, *++, @; in Q, G, 4,...o, denotes
a subgroup {g=G: g(a))=a; (i=1,2,---,¢)} of G. G is said to act semiregul-
arly on Q if G,=1 holds for any Q.

Lemma 2 [6]. Let G be a permutation group on Q. Then for any a€Q,
|G|=1G,|-|G(a)| holds.

Lemma 3. Let u, v be vertices of graphs T, A respectively. Then the
valency of (u, v) in T'X A is the sum of the valencies of u and v.

Lemma 4 [3]. If in a connected graph T there is an edge which is not con-
tained in a 4-cycle, then T is prime.

Theorem 2 [4]. Let T, T,, «--, T, be connected relatively prime graphs.
Then

Aut (TI T;) = IT AutT,.
i=1 i=1

Theorem 3 [4], If a connected graph T has a prime factor decomposition,
then the prime factor decomposition of T' is unique up to isomorphisms.

Corollary 1. Any connected graph has the unique prime factor decomposition
up to isomorphisms.

ReMARK 1. The above corollary does not necessarily hold for infinite
graphs (cf. [4]).

Lemma 5. Let T, A be hamiltonian graphs with |VT| even. Then T'XA
is a hamilionian graph.

Proof. Let u,—u,—+++—u,—u, be a hamiltonian circuit of I" and v,—v,—
«=+—9v,—v, be that of A, where g is even. Then we get the following hamiltonian
CirCUit Of T A: (ul: vl)_(ub 7)2)_ ot _(uh 'vr)—(ub ‘vr)’(ub vr-—-l)_ o _(uZ) Az)1)—
(u3) ‘vl)_(u&‘ 'UZ)— o —-(l[3, ‘Z),)-—(u,,, 'v,)—(u4, ‘vr-l) -t (u4, vl)—(uS) 1)1)— T
(uﬁ—l) vr—l)_(uq—h vr)—(uq) ‘Z),.)—'(uq, ‘vr—l)— b ——(uq: z)1)——(1‘1’ vl)‘

We note the following as a particular case of Theorem 2.

Lemma 6. Let T', A be connected relatively prime graphs with AutT'=1 and

Aut A=1. Then Aut A=Aut(T' X A)={$: p=Aut A} holds, where b is a per-
mutation on VI' XV A defined by ¢(u, v)=(u, $(v)) for u VT and vEV A.

Theorem 4 [1]. Let T be a connected 3-regular graph which is not isomor-
phic to K,. Then there exists a hamiltonian 3-regular graph T such that Aut T
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=AutT', |VT'|=6|VT|, the girth of T'=4 and that T has an edge which is
not contained in a 4-cycle.

Lemma 7. Let m be an even integer with m=12. Then there exists a con-
nected 3-regular asymmetric graph T with |V T | =m.

Proof. Let I" be a graph defined by
VT = {1) 2) Yy m} )

ET = {[1, 2], [1,m], [1, m—1], [2, 3], [2, 6], [3,4], [3, 5], [4,5], [4, 6]} U
{[l, l+2]$ [1’+1yl+3]! [l+2’ l+3] i= 5, 7’ y **% m—3} .

Then I is a connected 3-regular graph with |VT'|=m. Let ¢ be an automor-
phism of I We want to show o=1. Now the types of vertices 1, 2, 3, 4, 5,
6,7,8, m—1, and m are (3, m/2, m/2+1), (4, m/2, m]2+1), (3,4,5), (3,4, 5),
(3,5,6), (4,5,6), (4,5,7), (4,5,7), (3,4,5) and (3,4, 5) respectively and the
type of every other vertex 7 (=9, 10, .-, m—2) is (4,4, 6). Hence o fixes 1,2, 5
and 6. Since V(N(2))NV(N(5)={3} and V(N(5))N V(N (6))={4}, o fixes 3
and 4. By noticing N(5) and N(6), we find that ¢ fixes 7 and 8 respectively.
So by noticing N(7) and N(8), we find that o fixes 9 and 10 respectively. Simi-
larly, o fixes every other vertex of T.

Lemma 8. Let m be a positive integer. Then there exist infinitely many
connected 3-regular graphs T which are asymmetric, hamiltonian and prime such
that |VT| is divisible by m and the girth of T'=4.

Proof. Let m; be an even multiple of m with m; =12, where there are
infinitely many choices of m,. By Lemma 7 there is a connected 3-regular
asymmetric graph T, with |VT,|=m,;. Then by Theorem 4 there exists a
hamiltonian 3-regular asymmetric graph I"” such that | V'T'|=6|V'T,| and the
girth of I'"=4 and that T has an edge which is not contained in a 4-cycle. By
Lemma 4 T" is also prime,

Lemma 9. There is a connected asymmetric graph 3, such that some vertex
of 3, has valency 1 and every other vertex has valency 5.

Proof. Let 3 be a graph defined by
Vs = {19 27 °tty 14} ’
Es = {[1,5], [1,7], [1, 10], [1, 12], [1, 13], [2, 3], [2, 5], [2, 6], [2, 9],
[2,13], [3, 5], [3, 7, [3, 81, [3, 13], [4, 7], [4, 8], [4, 11], [4, 12],
[4, 13], [5, 6], [5, 11], [6, 71, [6, 9], [6, 101, [7, 9], [8, 10], [8, 11],
[8,12], [9, 10], [9, 12], [10, 11], [11, 12], [13, 14]}.
Then 3 is a connected graph in which the vertex 14 has valency one and every
other vertex has valency five. Let o be an automorphism of %. Then o fixes
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and (4,2). Since (3, g) is the unique vertex which is adjacent to (2, g) and (1, g),
it is fixed by 7. By noticing N((3, g)) and N((4, g)), we find that = fixes (6, g)
and (2s+5, g) respectively. By our choice of S, the circuit (2s+75, g)—(4, g)—
(1,8)—(3,8)—(6, 8)—(7, 8)— - —(2s+4, g)—(2s+5, g) is the unique shortest one
which contains a path (25+5, 2)—(4, £)—(1, 8)—(3, g)— (6, g) but does not con-
tain a vertex of type (3, *, *) except (1, g) and (3,g). Hence  fixes all vertices
of the circuit, and 7(v)=v holds for any vertex v of A(g). Therefore = fixes
(2145, x; g) (i=1, 2, -+, 5). Hence we have 7 (5, x; 2)=(5, x; g) (1=1, 2, -+, 5),
because if 7(5, x; g)=(5, y), then by the similar argument to the above we have
T (2/+5, x; 8)=0(:; »-1,(2/+5, x; £)=(2j+5,y). Thus again by the similar ar-
gument we have that r(v)=v holds for any vertex v of A(x;g)i=1,2, ,s).
Hence we have =1 because of {x,, x,, **-, x,>=G.

Lemma 11. The following graph T, is a connected prime graph satisfying
that AutT, is isomorphic to G and acts semiregularly on VT, and that just |G|
vertices have valency 3 with type (4,4, 4), just |G| vertices have valency 3 with
type (4, 4, 6) and every other vertex has valency 4:

VI, =VT,U{(,g):i=2,3,--,2s+5, gG} ,
ET, = ET,U{[(: ), (7", £)]: 2=i<2s+5, geG} U{[(1, 9), (5", &)
[(2.8), 3, 9)] [(2', % 8), 3, 8)], [(2", &), (5", 8)],
(3", 8), (6", 2)], [(4', 8), (5", )], [+, 8), (25+5)', 8)]: s G}
VAL, 8), (+1), )] 6=i=25+-4, g2 G} U
{[((Zi+4), 8), (245), x: 9)): 1=i=s, gEG},

where T'; is the graph defined in Lemma 10.

Proof. Since the proof is similar to that of Lemma 10, we describe it briefly.
Let g be any element in G and A(g) be a subgraph of T, induced by {(z, g),
(J' 8): 1=<i<2s+5,2<j<2s-}5}. Since A(g) is connected and {x,, x,, ***, %>
=G, T, is connected. Since [(1, g), (3,£)] is not contained in a 4-cycle, T, is
prime by Lemma 4. Itis obvious that (5, g) has valency 3 with type (4, 4, 4),
(4", g) has valency 3 with type (4, 4, 6), and any (¢, g) (%5) and any (j', 8) (j=*4)
have valency 4. Now for any A= G, let us define a bijection o,: VT',— VT, by
ou(, 8)=(7, gh) and o,(i’, g)=(i’, gh). 'Then o, is an automorphism of T',, and we
have Aut T',= {o,: heG} =G.

Let o be any automorphism of T',. From now on we are to show o=0, for
some A& G. For an element g in G there is an element g’ in G with o (5, g)=
(5,£"). Let us set h=g~'g’ and =07 o, then we have o4(5, g)=(5,¢") and
TE(Aut )5 ). If 7=1is shown, then AutT',={cs,: h&G} holds, and Aut T,
acts semiregularly on V'T,. First we can easily find that 7 fixes (1, 2), (2, 2),
(3,8), 4,2), (5,2), (6,8), (25+5,2), (2,8), (3',8), 4, ), (5',8), (6', g) and (25-+
5)’, g) because of (5, g)=(5, g). Next by our choice of S, the circuit (2545, g)—
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14, and so o fixes 13 which is adjacent to 14. Since the adjacent vertices of 13
are 1, 2, 3, 4 and 14 and since N(1), N(2), N(3) and N(4) have just zero, four,
two and three edges respectively, o fixes 1, 2, 3 and 4. Therefore V(IN(1))N
V(N(2))=15, 13} follows o (5)=5 and so V(N(1))NV(N(3))={5, 7, 13} fol-
lows o(7)=7. Hence o fixes 8 and 12, because V(N(3))N V(N (4))={7, 8, 13}
and V(N(1))NV(N(4))={7, 12, 13} respectively. By noticing N(1) and N(4),
we find that o fixes 10 and 11 respectively. Then V(N (5))={l, 2, 3, 6, 11}
follows o(6)=6, and so o fixes the rest 9. Thus we have o=1.

RemaRk 2. In §3 we often use similar arguments to those in Lemmas 7
and 9.

3. Proof of Theorem 1

Let G be a finite group. If G=1, Theorem 1 holds obivously by [2] or [3].
Hence hereafter we assume G>1, and we are to complete the proof of Theorem
1 by Propositions 1, 2, -+« and 8. Let S={x,, x,, -**, #,} be a subset of G whose
number of elements is minimum in all subsets which generate G.

Lemma 10. The following graph T; is a connected prime graph satisfying
that Aut T's is isomorphic to G and acts semiregularly on VT'y and that just |G|
vertices have valency 2 with type (4) and every other vertex has valency 3:

VT = {(,g):i=1,2, -, 2545, g G} ,

ETs={I(1,8), (2] [(1,2), 3, &), [(1,8), (4, &), [(2, 8), 3, &),
[(2,8), (5, ), [3, 2), (6, 8)], [(+,8), (5, 8)], [+ 2), (2545, &)]:
g€GIUA[(%8), (i+1,9)]: 6=i<2s+4, g&G} U
{[(2i+4, g), (2+5, %, 8)]: 1Si<s,g=G} .

Proof. Let g be any element in G and A(g) be a subgraph of I'; induced
by (7, 8): 1=i<2s+5}. Then A(g) is connected. Since <{x;, &y, +**, x,>=G and
since there exists an edge of which one end is in A(g) and the other end is in
A(x; g) for i=1, 2, .-+, 5, Ty is connected. Since [(1, ), (3, £)] is not contained in
a 4-cycle, T'; is prime by Lemma 4. It is obvious that (5, ) has valency 2 with
type (4) and (j, 2) (j==5) has valency 3. Now for any A& G, let us define a bijec-
tion ot VIs—VT; by o,(, £)=(, gh). Then o, is an automorphism of T';, and
we have AutI',= {o,: heG} =G.

Let o be any automorphism of I';, From now on we are to show o=g, for
some k€ G. For an element g in G there is an element g’ in G with o (5, g)=
(5,8"). Letusset ==g™'g’ and =070, then we have o,(5, g)=(5,2’) and r&
(Aut T)s,,- If 7=1is shown, then Aut I';={o,: &G} holds, and Aut T} acts
semiregularly on ¥'T;. Now the adjacent vertices of (5, 2) are (2, g) and (4, g)
which have types (3, *, ) and (4, *, %) respectively. Hence 7 fixes both of them.
Therefore r fixes (1, g), because it is the unique vertex which is adjacent to (2, g)
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“4.8)—1,8)—(3,8)—(6,8)—(7,8)—(8,8) — - — (2s+4, g)—(25+5,¢) is the
unique shortest one which contains a path (2545, g)—(4, 2)—(1, 2)—(3, 8)—(6, 8)
but contains neither a vertex of valency 3 nor a vertex of type (3, %, *, *, %, *)
except (1,g) and (3,g2). Hence 7 fixes all vertices of the circuit, and 7(v)=v
holds for any vertex v of A(g). Therefore since r fixes (7, x, ), (9, x,2),
(11, x5 2), ... and (25s+35, x, g), 7(v)=v holds for any vertex v of A (x; g) (/=1, 2,
+++, §) by the similar argument to the above. Hence we have 7=1 because of
<xl) X2, %) x:>:G'

Lemma 12. The following graph T is a connected prime graph satisfying
that Aut T is isomorphic to G and acts semiregularly on VT and that just |G|
vertices have valency 4 with type (4,4, 4, 4, 4, 5) and every other vertex has valency
5:

VTs=VIT,U{Ge), @, 8):i=2,3,+,25+5,g=G},

ET, = ET,U{[G:9). G )l, [, &), .8, [G: 8), (. 2)]:

25i=25+5,2€GU{[(Lg), 5,9) [2,8), 3, 9] [2,8), #,2)),
[(2» &), (-5_,_8)], [(Ta &) (3_7’ 8l [(2_” %1 8), (57’ 2)),
(7.9, T8 [G.2), G2, [3.9). 6.2 [3.8), 6, 0],
[(;9 &), (g) F418 [(Z" &) (m’ )l [(:1'77 8), (5, g)]) [(4—"’ £) (5_,1 g)]r
[(47’ &) (m» glru {[(Z_a &) (H"——l» 2l [({;’ &) ((H‘—l)’s gl:
6=<i<2s5-+4, geG} U {[(2i+4, g), (2i+5, x; g)],
[((2+4), 8), (245, : 9)]: 1=i=s,8€G},

where T, is the graph defined in Lemma 11.

Proof. Since the proof is similar to that of Lemma 10, we describe it briefly.
Let g be any element in G and A(g) be a subgraph of T's induced by {(7, g), (§', &),
(G, &), (j, 8): 1=<i<2s+5,2<j=<2s+5}. Since A(g) is connected and <x,, x,,
-+, 2,>=G, T is connected. Since [(1, g), (3, £)] is not contained in a 4-cycle,
Ts is prime by Lemma4. It is clear that (5, g) has valency 4 with type
(4,4, 4,4, 4, 5) and that any (4, g), any (¢, g), any (Z, £) and any (', 8) (j%5) have
valency 5. Now for any 2 G, let us define a bijection o,: VI's—>V T by o4(7, g)
=(i, gh), o4(i’, ©)=(, gh), o4(i, £)=(, gh) and o(", g)=(", gh). Then o, is an
automorphism of I';, and we have Aut I';= {o,: k€ G} =G.

Let o be any automorphism of I';. From now on we are to show o=q, for
some 2€G. For an element g in G there is an element g’ in G with (5, g)=
(5',8"). Letusset h=g™'g’ and r=c}'s, then we have o4(5, g)=(5", ') and
T7E(Aut Is)7,,. If 7=1 is shown, then Aut Ts;={o,: A€ G} holds, and Aut T
acts semiregularly on V'T;. Let 4 be the set of vertices of valency 4, B be the
set of vertices of type (3, %, *, -, %) and C be the set of vertices which are
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adjacent to some vertex in B. Then A={(5, 2): g&G}, B={(1, ), (2, 8), 3,9):

gEG} and C={(1,8), (2,2), (2,8), (2, 8), (3, 2): (3, 8), (3, 8), (4, 8), (5, 2), (5, &),
(5%, 8), (6,2): g=G} hold. Now the adjacent vertices of (5, g) are (2/, 2), (4, ),
(5, ) and (5', g) which are at distances two, three, one and one from B respec-
tively. Moreover the types of (5, g) and (5, g) are (4, 4, -+, 4)and (4,4, -, 4, 5)
respectively. Hence we can easily find that = fixes (1, g), (2, g), (', &), (, &) and
(i_'-, g)(=2,3,4,5,6,25+5). Next by our choice of S, the circuit (2545, g)—
(4 ©)—(1, )~ (3, £)—(6, £)—(7, £)— (8, &) — -+ — (25+4, ) — (2545, g) is the
unique shortest one which contains a path (2s+35, g)—(4, 2)—(1, £)—(3, 2)—(6, &)
but contains neither a vertex in 4 nor a vertex in B except (1, g) and (3, g) nor a
vertex in C except (6, 2) and (4, g). Hence 7 fixes all vertices of the circuit, and
7(v)=v holds for any vertex v of A(g). Therefore since = fixes (7, x, £), (9, %, 8),
(11, x5 2), -+ and (254-5, x, g), 7(v)=wv holds for any vertex v of A(x; g) (=1, 2, -+,
s) by the similar argument to the above. Hence we have 7=1 because of {x, x,,

v, 25=G.

Lemma 13. Let m, be max {|G|, 3} and i, be an integer with 0=1,<2.
Suppose that Theorem 1 holds for n=my+i,. Then Theorem 1 holds for n=m,-

Proof. Let M be any positive integer. Then there exist different connected
(my+1iy)-regular graphs T}, T, -+, T';, each of which has ¢ vertices a,, a,, ***, &;
with Aut T;=(Aut I'),,4,.4,=G. By Lemma 8 and Corollary 1 there exists a
connected 3-regular graph T, which is asymmetric and prime and which is not a
prime factor of I';(i=1,2, .-, M). Hence by Lemma 6 we get different con-
nected (m,+1,-+3)-regular graphs IT,, IT,, ---, II,, each of which has t vertices
ay, Qy, +++, Ay With Aut IT;=(AutIl,), 4,4, =G, where IL,=T X T;(1=i=M). If
we continue the above argument, then for each j=2, 3, 4, --- we get different con-
nected (m,+1,-3j)-regular graphs A, A,, ---, A), each of which has ¢ vertices
Qy, Oy, +++, @y With Aut A;=(AutA,), ,,.,,=G. Since M is any positive integer,
we complete the proof.

Proposition 1. Theorem 1 holds in the case where |G| =4 and n=0 (mod 3).

Proof. Let m be an integer with |G|<m=<|G|+2 and m=0 (mod 3).
By Lemma 13 in order to prove Proposition 1, it is sufficient to prove it for
n=m. Let us set d=m[3. By Lemma 8 there exist non-isomorphic connected
3-regular graphs T}, Ty, ++, T';_, such that they are asymmetric, hamiltonian and
prime and the girth of every T; is at least 4 and |V T,_,| is divisible by (2m—1),
where the number of choices of {I'}, T, -*», Ty_,} is infinite. Let us set I'j=
T, XT,X++XTy_;. Then by Lemmas 3, 5 and Theorem 2, T, is a hamiltonian
(m—3)-regular asymmetric graph with the girth of I'y=4 and 2(m——1)“ VTyl.
Let us denote V'T,={1, 2, -+, ¢}, and we may assume that 1 —2—3—... —g—1
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is a hamiltonian circuit of T',.

On the other hand by Lemma 10, there exists a connected prime graph
T'; satisfying that AutT', is isomorphic to G and acts semiregularly on VT,
and that just |G| vertices have valency 2 with type (4) and every other vertex
has valency 3. Let f be a bijection from G to the set of vertices of valency 2 in
VT;. We define a graph II, as follows:

VI = V(ToXTa) Udoy:i = 1,2, -, gf(m—1), g€ G} U
{ay, ay, - Ag/im-1}>

ETl, = E(TyXT) U {[oig, (G, f(2))]: 1Sisq/(m—1),
(i—1) (m—1)+15 j<i(m—1), gG, (j, f(&) €V (TeX T}
U {[C{,-, vig]: 1§Z§Q/(m——1), gEG}

Now we divide our argument into three cases: m=|G|, m=|G|+1 and m=
|G| +2.

First let us suppose m=|G|. Obviously II, is a connected m-regular
graph. We show that AutIl, is isomorphic to G and fixes a;, &, ***, Qgym-1)-
By Lemma 6,

Aut(TyxTy) = {$: p€Aut I';} =Aut I';=G,

where ¢ is a permutation on V (T, xT';) with ¢(w, y)=(w, $(y)). Now we ex-
tend ¢ to a permutation ¢ on VI, as follows:

$(v) = d(v) for vEV(THXTY),
$(03) = v (1SiSql(m—1),8€G), where == fgf,
$(a)) = a(l=j=q/(m—1)).

Then ¢ is an automorphism of IT;, and we have
AutIl,= {$: p=Aut T} <Aut T,=G.

Let o be any automorphism of IT,, We want to show o=¢ for some ¢ = Aut T',.
For any v;,(1=i=q/(m—1), g€G) there exist just m—1 incident edges e such
that e is contained in a 3-cycle, because (1, f(g))—(2, f(2)—(@3, f(g)—-—
(¢, f(2))—(1, f(g)) is 2 hamiltonian circuit of the subgraph induced by {(j, f(g)):
1=<j=<g} and «; is not contained in a 3-cycle. Conversely any vertex other than
2;(1=i=¢q/(m—1), g€G) has not the same property, because the girth of T, is
at least 4 and the type of f(g) (¢€G)is (4) in Ty. Hence o fixes {v;,: 1=i=¢q/
(m—1),g=G} as aset. Therefore since o fixes V(TyxT) as a set, the restric-
tion of o to V(I'yXTy) is an automorphism of T’y X T, that is, ¢ for some p&
AutT,;. Hence we find o=d easily. So Aut IT,={$: p €Aut I';} holds. Thus
I1, is a connected m-regular graph of which the automorphism group is isomorphic
to G and fixes a;, @, ***, Agyim-1)-
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Next when m=|G|+1, |G|+2, we define graphs IT,, IT, respectively as
follows:

VH] = VHO )
ET, = ETLU {[aty-y, aty]: 1<i<q/2(m—1)},
VHz == Vno >

ETL, = EIL U {[ati-;, &]: 2=i=q/(m—1)} U {[@q/tm-1» @1} -

Then by the similar argument to that for IT,, we have that II; is a connected
m-regular graph of which the automorphism group is isomorphic to G and fixes
Oy, Oy o0y Oy pim—1) (i=1, 2).

Since the number of choices of {I',, I, -+, I';_,} is infinite, the one of
choices of T, is infinite. In particular for an arbitrary positive integer ¢, the
number of choices of g(=|VT,|) with g/(m—1)=t is also infinite. Hence
Theorem 1 holds in the case where |G| =4 and n=0 (mod 3).

Proposition 2. Theorem 1 holds in the case where |G| =5 and n=1 (mod 3).

Proof. Since the proof is similar to that of Proposition 1, we describe it
briefly. Let m be an integer with |G| <m=<|G|+2 and m=1 (mod 3). By
Lemma 13 in order to prove Proposition 2, it is sufficient to prove it for n=m.
Let us set d=(m—1)/3. By the same argument to the first part of the proof of
Proposition 1, we get infinitely many hamiltonian (m—4)-regular asymmetric
graphs Ty with the girth of I'y=4 and 2(m——1)|| VT,|. Let us denote VI\=
{1,2,+,q}, and we may assume that 1—2—3—...—¢g—1 is a hamiltonian
circuit of T',.

On the other hand by Lemma 11, there exists a connected prime graph
T'; satisfying that AutT; is isomorphic to G and acts semiregularly on VT,
and that just |G| vertices have valency 3 with type (4, 4, 4), just |G| vertices
have valency 3 with type (4,4, 6) and every other vertex has valency 4. Let
/1 and f, be bijections from G to the set of vertices of type (4,4, 4) and to the
set of vertices of type (4, 4, 6) respectively. We define a graph I, as follows:

VIl = V(ToXTy) U {v, 4,1 1=1, 2, -+, g/(m—1), geG} U
{ai) ﬂi: 1§1§Q/(m—1)},

ETl, = E(ToXTa) U {[vig, (> fi(&)], [wi, (4, o &))]:
1<i<q/(m—1), (i—1) (m—1)+1=<j<i(m—1), g&G} U
{[ai: vig]) [Bi: uig]: 1§1§q/(m_1)’ gEG}’

Now we divide our argument into three cases: m=|G|, m=|G|+1 and m=
|G| +2.

First let us suppose m=|G|. Obviously II, is a connected m-regular
graph. By Lemma 6,



GrarHs WiTH GIVEN GRoUP 799

Aut(TyxT,) = {¢: pSAut T';} =<Aut ;=G

where ¢ is a permutation on V(T'yxT';) with ¢ (w, y)=(w, ¢(y)). Now we ex-
tended ¢ to a permutation ¢ on VI, as follows:

$(@) = P(v) for vV (IyXTy),
§i’(vx'g) = Ve (1Si=q/(m—1),gEG), where ==f7'¢f,
b (i) = tintp (1Si=q/(m—1), gEG), where p=fi'¢f,
$(@)) = a; (1= j=g/(m—1)),
$(8;) = B; (1= j=g/(m—1)).
By the similar argument to that in the proof of Proposition 1, we have Aut IT,=

{$: p=Aut T';} ==AutTy=G. ThusII, is a connected m-regular graph of which
the automorphism group is isomorphic to G and fixes @;, a3, ***, Xgym-1 L1y Ba»

s Basim-p-
Next when m=|G|+1, |G|+2, we define graphs II,, II, respectively as

follows:
VIl = VII,,
ETI, = ETL U {[@zi-1, @3], [Bai-1» Bail: 1=1=¢/2(m—1))},
Vi, = VII,
ETL, = ETLU {[a;y, ai), [Bioy, Bi]: 25i<g)(m—1)} U
{[2gim-1> @1]s [Basom-1s Bik-

Then by the similar argument to that for IT,, we have that II; is a connected
m-regular graph of which the automorphism group is isomorphic to G and fixes
Qs Ay ***y Ag)(m-1)» By By, ++, leql(m—l) (i=1: 2)

By the similar argument to that in the last part of the proof of Proposition
1, we complete the one of Proposition 2.

Proposition 3. Theorem 1 holds in the case where |G| =6 and n=2 (mod
3).

Proof. Since the proof is almost same as that of Proposition 1 except using
Lemma 12 in place of Lemma 10, we omit it.

Remark 3. The following Propositions 4, 5, 6, 7 and 8 show that The-
orem 1 holds for the cases (i) |G| =35, (ii) G is a cyclic group with |G| =4, (iii)
G is an abelian group of type (2,2), (iv) |G|=3 and (v) |G|=2 respectively.
Though in each proof of the propositions we show for an arbitrary integer
t that the existence of a connected z-regular graph T" satisfying AutI'=
(AutT),,,,.=<G for some t vertices a;, o, **+, a; of T', the existence of an
infinite number of such graphs is found by the argument of each proof.

Proposition 4. If |G|=5, Theorem 1 holds.
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Proof. First let us suppose n=5. Let {4} be a sequence defined by @,=
(k+1)k/2 and m be an integer with 2m=max {4,2t}. Let us set

A= {ay_,: 1=k=m} U {a,,}, B= {ay: 1=k=m—1} .
Let IT be a graph defined by
VII = {a,: he Ay U {(5,)): 1€{1,2,3, -+, ap} —A4,j= 1,2, .-+, 5} ,
ETI = {[at, (2, )]: 1S =5} U {[ot, (h—1,j): hE A—{1}, 1< <5} U
{[(@::7), (@—1, )], (@3 j)s (@41, )]s (@ f)s (@1 +1, 7)),
(@i ), (@ j+D]: a,€B, 1S j<5} (putj+1=1 if j+1=6)

U {[(%4), (¢—1,7): both 7 and /—1 are elements in
{(1) 2) 3) ) aZm}_(AUB)i 1§]§5}.

Then II is a connected graph in which every a,(he4) and every (,j) (E€RB,
1< j<5) have valency 5 and every other vertex has valency 2. Let us denote
X=A{a,: hed}, Y={(1,5): i€{1,2,3, -, a,,} — A4, 1=j <5}, Y,={(5,j): i
B,1=<j<5} and Y,=Y—-Y,.

Let A be a graph defined by

VA = '{vm U1y Upy ***y vm}a

EA = {[vy, v1], [0 ¥2], [01, ¥a], [0, 03], [01, 0]y [0, 01), [225 6],
['Uz’ 7’7]’ ['Uz’ 7)8]’ [7)3’ '04]’ [‘2’3’ v?]’ [7)3’ 'va]: [z’aa 7’9]» [7)4, 1)5],
[7)4’ '06]) [‘1)4, 7)7]) [2)5) 'UG]; ['05, 7)7]: ['05) 'vs]» [7)57 7)9]) [Wm 'va];
(6 ], [7’8’ V), ['09: ‘vlo]}-

Then A is a connected graph in which v,, has valency 1, v, has valency 2 and
every other vertex has valency 5. We remark that 8 (v, v0)=4 and that any
vertex of A other than v, is contained in a 3-cycle. Furthermore we can easily
find Aut A=1.

Let T be a graph which is attached for each i1, 2, 3, -*-, 4,,,} —(4AUB)
and each j=1, 2, -+, 5 a graph isomorphic with A to II so as to correspond the
vertex v, of A to the vertex (z, §) of IT and the vertex v;, of A to the vertex (7, j+1)
of II (put j+1=1 if j+1=6). Then T" is a connected 5-regular graph, and we
are to show that Aut T" has order 5 and fixes all o, X. Let us denote Z=VT
—(XUY). Now let 7 be an automorphism of IT defined by

(o) =, for a,eX,
(1, 7) = (4, j+1) (put j+1=1if j4+1=6) for (i,j)eY.
Then 7 has order 5 and is uniquely extended to an automorphism 7 of I". Of
course |7| =5 and Aut T'=<{7> hold.
Let o be any automorphism of I".  Since in T" the type of o, X is (5, 5, 5,
5,5, %, %, %, %, %) (h=1) or (6, 6, 6,6, 6, *, x, %, %, *) (h==1) and the type of any
vertex in ZU Y, is (3, , %, .-+, ) and the type of any vertex in Y, is different
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from the above types, o fixes X, Z U Y, and Y, as a set respectively. Therefore
o fixes all @, X, because 9(a;, Y;)+0(ay, Y;) necessarily holds for A=k 4.
Hence foreachie {1, 2, 3, -, a,,} — A4, o fixes {(, j): 1= j <5} asaset. Hence
we can find 0 €<{7). Thus Proposition 4 holds for n=5.

On the other hand, Proposition 4 holds for =6, 7 by Propositions 1, 2
respectively. Hence we complete the proof by Lemma 13.

Proposition 5. If G is a cyclic group with |G| =4, Theorem 1 holds.

Proof. First let us suppose n=4. Let {a,} be a sequence defined by a,=
(k+1) k/2 and m be an integer with 3m+2=max {5, 2t}. Let us set

A = {ay_y, ag: 1Sk=m} U {a3541, Gamiz}, B = {ag_,: 1SkZm} .
Let IT be a graph defined by
VIl = {a,: ke A} U {(5,]):i€{1,2,3, -, agusa} —A4,j = 1, 2,3, 4},
ENl = {[ay, (2,))]: 1= j =4} UA[ew, (h—1,))]: he A—{1}, 1= j=4} U
{[(@:, ), (=1, )], (@ j): (@ +1, )], (@, ), (@a+1, )],

[(ais7) (@ise+1,7)]: @ €B, 1= j <4} UA{[( )), (:—1,7): both
7 and 7—1 are elements in {1, 2, 3, -+, a3,4,} —(AUB), 1< j <4}.

Then II is a connected graph in which every «, (h€A) and every (4, j) ({€ B,
1< j <4) have valency 4 and every other vertex has valency 2. Let us denote
X={a,: hed}, Y=A(,j): i€{1, 2, 3, -+, aguso} —4, 1= =4}, YVi={( j):
ieB,1<j<4} and Y,=Y-Y,.

Let A be a graph defined by

VA = {‘Uo, U1y Uy **°y 7)12})

EA = {[v, v1], [21, v2), [0, v3], [0 Vao]s [92 ©3]s [25 0], [©25 6],
[v3, ws], [©3 ©7], [Vs Us)s [45 ) [Ve5 o5 (55 ¥ [, ©a)s
[©s, oul; [%6 ©7], [Ves Vs (275 Vs], [Vs 5], [Vss V10]s [V V]
[¥10, D1y [P11, V1a]} -

Then A is a connected graph in which v, and v,, have valency 1 and every
other vertex has valency 4. We remark that 9(v,, v;,)=4 and that any vertex
of A other than v, and v,, is contained in a 3-cycle. Furthermore we can
easily find Aut A=1.

Let T be a graph which is attached for each 1€ {1, 2, 3, -+, as,,.,} —(4AU B)
and each j=1, 2, 3, 4 a graph isomorphic with A to IT so as to correspond the
vertex v, of A to the vertex (z,§) of IT and the vertex v,, of A to the vertex
(¢, j+1) of IT (put j41=11if j4-1=5). Then T is a connected 4-regular graph,
and we are to show that Aut T" is a cyclic group of order 4 and fixes all ¢, €X.
Let us denote Z=VT'—(X U Y). Now let 7 be an automorphism of IT defined
by
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T(ay)=a, for aqeX,
7(,§) = (5, j+1) (put j+1=1 if j4+1=5) for (5, j)€Y.

Then 7 has order 4 and is uniquely extended to an automorphism 7 of I'.  Of
course |7| =4 and Aut I'=<{7> holds.

Let o be any automorphism of I". Since in T the type of any o,EX is
(6, 6, 6, 6, *, x) and the type of any vertex in Y, is not (6, 6, 6, 6, *, *) and since
{ucsVT: 8(u, C)=2 holds for any 3-cycle C} =X U Y; holds, o fixes X, Y, and
Z UY, as a set respectively. Therefore o fixes all @, X, because 9(a;, Y;)=+
d(ay, Y,) necessarily holds for h=k=A4. Hence for each i€ {l, 2, 3, -*+, @342}
—A, o fixes {(3,7): 1=<j=<4} as a set. Hence we can find c=<{7>. Thus
Proposition 5 holds for n=4.

Next let us suppose n=>5. Let T’ be a graph which is attached for each
vertex u of the above I' a graph isomorphic with 3 in Lemma 9 to I" so as to
correspond the vertex of valency one of X to # of I'. So we remark that the
set of cut-vertices of T' is V'T. Hence any automorphism of T' induces an
automorphism of I". Conversely any automorphism of I' is uniquely extended
to an automorphism of I'. Hence AutT is a cyclic group of order 4 and fixes
all ¢,X. Thus Proposition 5 holds for n=?5.

On the other hand, Proposition 5 holds for =6 by Proposition 1. Hence
we complete the proof by Lemma 13.

Proposition 6. If G is an abelian group of type (2,2), Theorem 1 holds.

Proof. First let us suppose n=4. Let {a}, m, 4, B, I1, X, Y, Y, and
Y, be the same as in Proposition 5. Let A be a garph defined by
VA= {'vl: Uz ***y 7)9}:
EA = {[7)1’ ‘05], [7)57 7)6]) [7)61 'vz]’ [2’21 04]» [‘04, 778]’ [7)8: '07]’ [7)7 17)3]’
[7)3’ vy], [7)5’ '07]’ [v6> ©s), ['05’ 7)9]’ [‘vs» 1’9] ’ [7)1: Ws]s [‘vs» 2)9]}' .
Then A is a connected graph in which v,, v,, 75 and v, have valency 2 and every
other vertex has valency 4. We can easily find that Aut A is an abelian group

{up X<y of type (2,2), where

# = (v3, v3) (s, V1) (Vs> V) (V25 V4)
7 = (V1 03) (v3, 04) (s, Ug) (01, Vg)
Let T be a graph which is attached for each i€ {1, 2, 3, -+, 3,42} — (4 U B)
a graph isomorphic with A to IT so as to correspond vertices v;, v,, v3 and v, of A
to vertices (2, 1), (7, 2), (¢, 3) and (¢, 4) of II respectively. Then I'is a connected
4-regular graph. Let us denote Z=VT—(XUY). Now g and » uniquely
determine automorphisms % and 7 of I" respectively, where

wlay) = oy, 5(ay) = a, for a,eX,
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B61)=03),m0G3)==01)802)==064804=(02),
761)=02,7(02)=001,763)=04, 7649 =(3)

for ie{l, 2, 3, *-+, a3nis} —A. We want to show that AutT' is equal to an
abelian group <z, %) of type (2, 2). Let o be any automorphism of I". Since in
T {ucsVT: the type of uis (3,3, 5,5, 6,6)} =X and {uVT': the type of « is
(6, *, *, *, %, %)} =Y, hold, o fixes X, Y, and Z U Y, as a set respectively. There-
fore o fixes all @, € X, because 9(a;, Y,)+0(a;, Y,) necessarily holds for z+ke
A. Hence for each 1€{1, 2, 3, -+, g4} — A, o fixes {(7,7): 1= =<4} as a set.
Hence we can find 0 <7, 7). Thus Proposition 6 holds for n=4.

Now Proposition 6 holds for =5 by the similar argument to that in the
rear part of the proof of Proposition 5. Furthermore Proposition 6 holds for
n=6 by Proposition 1. Hence we complete the proof by Lemma 13.

Proposition 7. If |G| =3, theorem 1 holds.

Proof. First let us suppose n=3. Let {a,}, m, A and B be the same as
in Proposition 4. Let II be a graph defined by

VII = {a,: he Ay U {(,5):i€{1,2,3, -+, ap,,} —A4,j = 1,2, 3},
ETl = {[a), (2,/)]: 1= =3} U{[as, (h—1,/)]: he A—{1}, 1< <3} U
{[(ai»j)’ (ai_l’j)]) [(airj)’ (ai+17j)]r [(ai’j)’ (ai+1+1»j)]:
B, 1<7=<3} U{[()), (—1,7)]: both 7 and i—1 are elements
in{1,2,3, -+, a4,,} —(AUB), 1= <3}.

Then IT is a connected graph in which every a; (k€ A) and every (,5) (€ B,
1<j<3) have valency 3 and every other vertex has valency 2. Let us denote
X={ay: h€d}, Y={(1,j):1€{1, 2,3, -+, apu} —A4, 1= j<3}, Yi={(5,j): i
B,1<j<3} and V,=Y—-Y,.

Let A be a graph defined by

VA = {v,, 0, v3 **, Vig},

EA = {[v1466) Vzsor)s [Var6ts Vsrorls [Varstr Vsnerls [Vas6n> Usaerls
[Vster> Usierls [Varers Vorar)s [Usens Vsser]: B =10,1,2} U
{[7)5; V), [V12 1’15], [v1) 113]} .
Then A is a connected graph in which v,, v, and v;; have valency 1 and every

other vertex has valency 3. We can easily find that Aut A is a cyclic group
<> of order 3, where

5
n = E) (V1tks V74> V13 4k) -

Let T be a graph which is attached for each 1 {1, 2, 3, -*+, a,,} —(AUB) a
graph isomorphic with A to II so as to correspond vertices v,, v; and 9,53 of A to
vertices (7, 1), (¢, 2) and (7, 3) of II respectively. Then I'is a connected 3-regular
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graph. Let us denote Z=VT—(XUY). Now 5 uniquely determines an auto-
morphism 7 of T', where

ﬁ(a,,) = for a,,EX,

73, 1)=(¢, 2), 5(z, 2)=(z, 3), 5(%, 3)=(1, 1) for i€ {1, 2,3, -+, ap,} —A. We
want to show that Aut I" is equal to a cyclic group <7) of order 3. Let o be any
automorphism of I.  Since in T" {u VT 8(», C)=3 holds for any 3-cycle C}
=XUY, and {uVT: the type of u is (8, 8, 8)} =X hold, ¢ fixes X, Y, and
ZUY, as a set respectively. Therefore o fixes all a, X, because 8(at;, Y;)+
0(a, Y)) necessarily holds for 2=k A. Hence for each i€ {1,2, 3, -+, a,,} —
A, o fixes {(z, 1), (i, 2), (, 3)} as a set. Hence we can find c={5>. Thus Pro-
position 7 holds for n=3.

Next let us suppose n=4. Let {a;}, m, A and B be the same things as in
Proposition 5. Let IT be a graph defined by

VII = {a,: ke Ay U{(5,)):i€{1,2,3, +, agnia} —A4,j = 1,2,3} U
{(#,4): i€B},

ENl = {[a,, (2, 1], [a;, (2, 2)], [y, (2, 3)]; [etss (3, D]} U {[ets, (A—1, 1)],
[aw (A—1,2)], [as, (h—1, 3)], [, (s, D)]: hEA—{1}, by =
max {b€B: b<<h}} U {[(4), 4), (a;-5 4)]: both a; and a;_; are
elements in B} U {[(a;, ), (@;i—1, /)], [(@:, ) (@:+1,7)],

[(@: 1), (@i +1,7)), [ ), (42 +1,)]: a;€B, 1= =3} U
{[(z,7), (¢—1,7)]: both 7 and i—1 are elements in
{1,2,3,, 43n12} —(AUB), 1= <3}

Then IT is a connected graph in which every a,(k<A) and every (4,j) (B,
1<j<4) have valency 4 and every other vertex has valency 2. Let us denote
X={a,: he A}, Y,={(,j): i€B,1<j<3}, YV,={(t, 4): i€B}, Y;={(,j): i
{1,2,3, -+, @3pio} —(AUB), 1=j=<3} and Y=Y, U Y,U Y,

Let A be the same as in Proposition 5. Let T" be a graph which is attached
for each 1€ {1, 2, 3, +*+, @342} —(AU B) and each j=1, 2,3 a graph isomorphic
with A to IT so as to correspond the vertex v, of A to the vertex (7, §) of IT and
the vertex ), of A to the vertex (z, j+1) of I (put j+1=1if j+1=4). Then T
is a connected 4-regular graph, and we are to show that Aut I’ has order 3 and
fixes all ,€X. Let us denote Z=VIT'—(XUY). Now let + be an automo-
rphism of IT defined by

() =a, for q,eX,
(1, 4) = (,4) for (i, 4)eEY,,
() = (& j+1) (putj+1=11if j+1=4) for (,j)e€Y,UY;.

Then 7 has order 3 and is uniquely extended to an automorphism 7 of I'. Of
course |7|=3 and Aut I'=<{7> holds.
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Let o be any automorphism of T". Since in T’

{ucsVT': 8(u, C)=3 holds for any 3-cycle C} = Y,

{usVT: 3(u, C) = 0 holds for some 3-cycle C} = Z,

{ucsVT: d(u, C) = 1 holds for some 3-cycle C and 9(u, C')=1
holds for any 3-cycle C'} = Y,,

{usVT: 3(u, C) = 2 holds for some 3-cycle C and 9(x, C’)=2
holds for any 3-cycle C'} =X U Y, and

{ucsVT: 0(u, C) = 2 holds for some 3-cycle C, 9(», C’)=2 holds

for any 3-cycle C’ and any we V(N (u)) is adjacent to a vertex
on some 3-cycle} =Y,

o fixes X, Y}, Y,, Y;and Z as a set respectively. Let II’ be a subgraph induced
by XU Y,UY, TheninIl’ 9(a;, Y;)*0(as, Y;) necessarily holds for A=ke
A. Therefore in T o fixes all ¢, € X, and o fixes all (1, 4)€Y,. Hence for each
i€{1,2,3, -, @yuiat — 4, o fixes {(z, 1), (z, 2), (, 3)} asaset. Hence we can find
a&<{7>. Thus Proposition 7 holds for n=4.

Now Proposition 7 holds for #=5 by the similar argument to that in the
rear part of the proof of Proposition 5. Hence we complete the proof by
Lemma 13.

Proposition 8. If |G|=2, Theorem 1 holds.

Proof. First let us suppose #=3. Let m be an odd integer with m=max
{5, t+1}. Let T be a graph defined by

VT ={{1,1), (m, 1), (m—1,1), (m—1,2)} U{(%,j):i= 2,3, -+, m—2,
j=1,2,3},

ET = {[(1, 1), (m, )], [(1, 1), 2, D], [(1, 1), (2, )], [(m, 1), (m—1, 1)],
[(m, 1), (m—1,2)], [(m—1,1), (m—1,2)], [(m—2, 1), (m—1, 1)},
[(m—2,2), (m—1, 2]} U{[G; j), G+1, )]: 2<i<m—3,j=1,2} U

{6, 1), G, 3], [, 2), G, 3]z 2sism—2} UG, 3)+1, 3)]:
i=2,46,,m—1,m—3}.

Then T is a connected 3-regular graph. Furthermore we can find that Aut T is

{1, where  is a tranposition ;ﬁl ((k, 1), (k, 2)). Thus Proposition 8 holds for
n=3. -

Next let us suppose z=4. In this case we modify the proof with the case
n=4 of Proposition 6, that is, we alter A in the place as follows:

VA= {7)1) Uy **y '07})

EA = {[v,, v5), [05, v3], [v2, v4], [v7, V], [V V3], [©s, V6], [Ves V1,
[7)57 7)6]) [7)5) 7)7]) ['06: '07]} .
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Then A is a connected graph in which v,, v,, v; and v, have valency 2 and every
other vertex has valency 4. Furthermore we have Aut A={3), where n=
(91, 3) (3, ¥s) (Ve v7).  So by the similar argument to that in the place, we can
easily find that Aut T" has order 2 and fixes all o, € X.

Now Proposition 8 holds for #=5 by the similar argument to that in the
rear part of the proof of Proposition 5. Hence we complete the proof by
Lemma 13.

ReEMARK 4. By the proofs of the propositions, we may add “‘Aut T" is semi-
regular on VI'—I(AutT')” to the conclusion of Theorem 1, where I(AutT) is
the set of vertices v satisfying Aut I"(v)=wv.
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