Uchida, F.
Osaka J. Math
26 (1989), 775-787

ON SMOOTH SO ${ }_{0}(p, q)$-ACTIONS ON \boldsymbol{S}^{p+q-1}

Dedicated to Professor Shorô Araki on his 60th birthday

Fuichi UCHIDA*)

(Received January 12, 1989)

0. Introduction

Consider the standard $\boldsymbol{S O}(p) \times \boldsymbol{S O}(q)$-action on S^{p+q-1}. This action has codimension one principal orbits with $\mathbf{S O}(p-1) \times \boldsymbol{S O}(q-1)$ as principal isotropy group. Furthermore, the fixed point set of restricted $\mathbf{S O}(p-1) \times \mathbf{S O}(q-1)-$ action is diffeomorphic to S^{1}.

In this paper, we shall study smooth $\mathbf{S O}_{0}(p, q)$-actions on S^{p+q-1}, each of which is an extension of the above action, and we shall show that such an action is characterized by a pair (ϕ, f) satisfying certain conditions, where ϕ is a smooth one-parameter group on S^{1} and $f: S^{1} \rightarrow P_{1}(\boldsymbol{R})$ is a smooth function.

In his paper [1], T. Asoh has classified smooth $\boldsymbol{S} \boldsymbol{L}(2, \boldsymbol{C})$-actions on S^{3} topologically. In particular, he has introduced such a pair to study the case that the restricted $\boldsymbol{S} \boldsymbol{U}(2)$-action has codimension one orbits. We shall show that Asoh's method is useful to our problem.

1. Subgroups of $\operatorname{SO}(p, q)$

Let $\boldsymbol{S O}(p, q)$ denote the group of matrices in $\boldsymbol{S} \boldsymbol{L}(p+q, \boldsymbol{R})$ which leave invariant the quadratic form

$$
-x_{1}^{2}-\cdots-x_{p}^{2}+x_{p+1}^{2}+\cdots+x_{p+q}^{2} .
$$

In particular, $\boldsymbol{S} \boldsymbol{O}(p, q)$ contains $\boldsymbol{S}(\boldsymbol{O}(p) \times \boldsymbol{O}(q))$ as a maximal compact subgroup. Put

$$
I_{p, q}=\left[\begin{array}{cc}
-I_{p} & 0 \\
0 & I_{q}
\end{array}\right],
$$

where I_{n} denotes the unit matrix of order n. It is clear that for a real matrix g of order $p+q, g \in \boldsymbol{S O}(p, q)$ if and only if $t g I_{p, q} g=I_{p, q}$ and $\operatorname{det} g=1$.

[^0]Let $\mathfrak{s o}(p, q)$ denote the Lie algebra of $\boldsymbol{S O}(p, q)$. Then, for a real matrix X of order $p+q, X \in \mathfrak{g o}(p, q)$ if and only if

$$
\begin{equation*}
{ }^{t} X I_{p, q}+I_{p, q} X=0 \tag{1.1}
\end{equation*}
$$

Writing X in the form

$$
X=\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]
$$

where X_{1} is of order p and X_{4} is of order q, we see that the condition (1.1) is equivalent to $X_{3}={ }^{t} X_{2}$ and X_{1}, X_{4} are skew-symmetric.

Here we consider the standard representations of $\boldsymbol{S O}(p, q)$ and $\mathfrak{S o}(p, q)$ on \boldsymbol{R}^{p+q}. Let $\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{p+q}$ denote the standard basis of \boldsymbol{R}^{p+q}. Let $H(a: b)$ (resp. $\mathfrak{G}(a: b)$) denote the isotropy group (resp. the isotropy algebra) at $a \boldsymbol{e}_{1}+b \boldsymbol{e}_{p+1}$ for $(a, b) \neq(0,0)$. It is clear that $\mathfrak{G}(a: b)$ is the subalgebra of $\mathfrak{g o}(p, q)$ consisting of matrices in the form
$\left(\begin{array}{c|c|c|c}0 & -b^{t} U & 0 & b^{t} V \\ \hline b U & * & -a U & * \\ \hline 0 & -a^{t} U & 0 & a^{t} V \\ \hline b V & * & -a V & *\end{array}\right) ; \quad U \in \boldsymbol{R}^{p-1}, V \in \boldsymbol{R}^{q-1}$.

Moreover, we see $H(1: 0)=\mathbf{S O}(p-1, q)$ and $H(0: 1)=\mathbf{S O}(p, q-1)$. Put

$$
m(\theta)=\left(\begin{array}{l|l|l|l|l}
\cosh \theta & & \sinh \theta & \tag{1.3}\\
\hline & I_{p-1} & & \\
\hline \sinh \theta^{\prime} & & \cosh \theta & \\
\hline & & & I_{q-1}
\end{array}\right) ; \quad \theta \in \boldsymbol{R}
$$

It is clear that $m(\theta) \in \mathbf{S O}(p, q)$ and

$$
\begin{equation*}
m(\theta)\left(a \boldsymbol{e}_{1}+b \boldsymbol{e}_{p+1}\right)=a^{\prime} \boldsymbol{e}_{1}+b^{\prime} \boldsymbol{e}_{p+1} \tag{1.4}
\end{equation*}
$$

where $\quad a^{\prime}=a \cosh \theta+b \sinh \theta, b^{\prime}=a \sinh \theta+b \cosh \theta$. Let $M(p, q)$ denote the subgroup of $\boldsymbol{S O}(p, q)$ consisting of matrices $m(\theta), \theta \in \boldsymbol{R}$.

Lemma 1.5. $\quad \mathbf{S O}(p, q)=\boldsymbol{S}(\boldsymbol{O}(p) \times \boldsymbol{O}(q)) M(p, q) \mathbf{S O}(p-1, q)$

$$
=\mathbf{S}(\boldsymbol{O}(p) \times \boldsymbol{O}(q)) M(p, q) \mathbf{S} \boldsymbol{O}(p, q-1)
$$

The coset space $\mathbf{S O}(p, q) / \mathbf{S O}(p-1, q)($ resp. $\mathbf{S O}(p, q) / \mathbf{S O}(p, q-1))$ is homeomorphic

$$
\text { to } S^{p-1} \times \boldsymbol{R}^{q}\left(\text { resp. } \boldsymbol{R}^{p} \times S^{q-1}\right)
$$

Proof. Let $g \in \boldsymbol{S O}(p, q)$ and $g \boldsymbol{e}_{1}=\boldsymbol{u} \oplus \boldsymbol{v} \in \boldsymbol{R}^{p} \oplus \boldsymbol{R}^{q}$. There exist $k \in \boldsymbol{S}(\boldsymbol{O}(p)$ $\times \boldsymbol{O}(q))$ and $\varepsilon= \pm 1$ such that

$$
k^{-1} g \boldsymbol{e}_{1}=\|\boldsymbol{u}\| \boldsymbol{e}_{1}+\varepsilon\|\boldsymbol{v}\| \boldsymbol{e}_{\boldsymbol{p}+1} .
$$

Since $\|\boldsymbol{u}\|^{2}-\|\boldsymbol{v}\|^{2}=1$, there exists $\theta \in \boldsymbol{R}$ such that

$$
\|\boldsymbol{u}\|=\cosh \theta, \quad \varepsilon\|\boldsymbol{v}\|=\sinh \theta
$$

Then we see that $m(-\theta) k^{-1} g \in \boldsymbol{S O}(p-1, q)$, and hence we obtain the first equation. The correspondence $g \boldsymbol{S O}(p-1, q) \rightarrow\left(\|\boldsymbol{u}\|^{-1} \boldsymbol{u}, \boldsymbol{v}\right)$ gives a homeomorphism from $\boldsymbol{S O}(p, q) / \boldsymbol{S O}(p-1, q)$ onto $S^{p-1} \times \boldsymbol{R}^{q}$. The second half can be proved similarly by considering the orbit of \boldsymbol{e}_{p+1}.
q.e.d.

Let $\boldsymbol{S} \boldsymbol{O}_{0}(p, q)$ denote the identity component of $\boldsymbol{S O}(p, q)$. By the above lemma, we see that $\boldsymbol{S} \boldsymbol{O}(p, q)$ has two connected components for $p, q \geqq 1$. Writing $g \in \boldsymbol{S O}(p, q)$ in the form

$$
g=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right],
$$

where A is of order p and D is of order q, we see that $g \in \boldsymbol{S} \boldsymbol{O}_{0}(p, q)$ if and only if $\operatorname{det} A>0$.

Considering the orbit of $a \boldsymbol{e}_{1}+b \boldsymbol{e}_{p+1}$, we obtain

$$
\begin{equation*}
\mathbf{S O}(p, q)=\mathbf{S}(\boldsymbol{O}(p) \times \boldsymbol{O}(q)) M(p, q) H(a: b) \tag{1.6}
\end{equation*}
$$

for each $(a, b) \neq(0,0)$. It is clear that

$$
\cap_{(a, b)} H(a: b)=\boldsymbol{S O}(p-1, q-1)
$$

where the intersection is taken over all $(a, b) \neq(0,0)$.
Lemma 1.7. Suppose $p, q \geqq 3$. Let \mathfrak{g} be a proper subalgebra of $\mathfrak{E D}(p, q)$ which contains $\mathfrak{g o}(p-1) \oplus \mathfrak{g o}(q-1)$. If

$$
\begin{equation*}
\operatorname{dim} \mathfrak{S o}(p, q)-\operatorname{dim} \mathfrak{g} \leqq p+q-1 \tag{}
\end{equation*}
$$

then $\mathfrak{g}=\mathfrak{h}(a: b)$ for some $(a, b) \neq(0,0)$ or $\mathfrak{g}=\mathfrak{h}(1: \varepsilon) \oplus \theta^{1}$ for $\varepsilon= \pm 1$, where the onedimensional space θ^{1} is generated by a matrix $E_{1, p+1}+E_{p+1,1}$.

Proof. By considering the adjoint representation of $\boldsymbol{S O}(p-1) \times \boldsymbol{S O}(q-1)$ on $\mathfrak{s o}(p, q)$, we see first that g contains $\mathfrak{s o}(p-1, q-1)$ under the condition (*). Next, we obtain the desired result by considering the bracket operations on $\boldsymbol{S O}(p-1) \times \boldsymbol{S O}(q-1)$-invariant subspaces. We omit the detail (cf. [4], §2).
q.e.d.

2. Smooth $\mathbf{S O}_{0}(p, q)$ actions on \mathbf{S}^{p+q-1}

Let $\Phi_{0}: \boldsymbol{S} \boldsymbol{O}_{0}(p, q) \times S^{p+q-1} \rightarrow S^{p+q-1}$ denote the standard action defined by

$$
\begin{equation*}
\Phi_{0}(g, u)=\|g u\|^{-1} g u \tag{2.1}
\end{equation*}
$$

Its restricted $\boldsymbol{S O}(p) \times \boldsymbol{S O}(q)$-action ψ is of orthogonal transformations and has codimension one principal orbits with $\mathbf{S O}(p-1) \times \boldsymbol{S O}(q-1)$ as principal isotropy group. Moreover, the fixed point set of its restricted $\boldsymbol{S O}(p-1) \times \boldsymbol{S O}(q-1)$ action is one-dimensional. Put

$$
\begin{align*}
& \boldsymbol{G}=\boldsymbol{S} \boldsymbol{O}_{0}(p, q), K=\boldsymbol{S} \boldsymbol{O}(p) \times \boldsymbol{S} \boldsymbol{O}(q), H=\mathbf{S} \boldsymbol{O}(p-1) \times \boldsymbol{S} \boldsymbol{O}(q-1), \tag{2.2}\\
& \psi=\Phi_{0} \mid K \times S^{p+q-1}, F(H)=\left\{x \boldsymbol{e}_{1}+y \boldsymbol{e}_{p+1} \mid x^{2}+y^{2}=1\right\}
\end{align*}
$$

where $F(H)$ is the fixed point set of the restricted H-action. In the following, we shall identify $F(H)$ with the circle S^{1} by the natural diffeomorphism $h: S^{1} \rightarrow$ $F(H)$ defined by $h(x, y)=x \boldsymbol{e}_{1}+y \boldsymbol{e}_{p+1}$.

Let $\Phi: G \times S^{p+q-1} \rightarrow S^{p+q-1}$ be a smooth G-action on $S^{p+q-1}(p, q \geqq 3)$ such that its restricted K-action coincides with the action ψ, i.e. $\Phi \mid K \times S^{p+q-1}=\psi$.

First, we shall show that there exists a smooth function $f: F(H) \rightarrow P_{1}(\boldsymbol{R})$ uniquely determined by the condition

$$
\begin{equation*}
\mathfrak{G}(f(z)) \subset g_{z} ; \quad z \in F(H), \tag{2.3}
\end{equation*}
$$

where $P_{1}(\boldsymbol{R})$ is the real projective line, g_{z} is the isotropy algebra at z with respect to the given G-action Φ, and $\mathfrak{h}(f(z))$ is a subalgebra of $\mathfrak{g b}(p, q)$ defined by (1.2).

Because g_{z} is a proper subalgebra of $\mathfrak{\mathfrak { g }}(p, q)$ which contains Lie $H=\mathfrak{g o}(p-1)$ $\oplus \mathfrak{g o}(q-1)$, there exists uniquely $(a: b) \in P_{1}(\boldsymbol{R})$ such that

$$
\begin{equation*}
\mathfrak{h}(a: b) \subset \mathfrak{g}_{z} \tag{2.4}
\end{equation*}
$$

by Lemma 1.7. It remains only to show the smoothness of $f . \quad B y(1.2),(2.4)$, we obtain

$$
\begin{aligned}
& b\left(E_{i 1}-E_{1 i}\right)-a\left(E_{i, p+1}+E_{p+1, i}\right) \in \mathrm{g}_{z} \quad(2 \leqq i \leqq p), \\
& b\left(E_{1, p+j}+E_{p+j, 1}\right)+a\left(E_{p+1, p+j}-E_{p+j, p+1}\right) \in \mathrm{g}_{z} \quad(2 \leqq j \leqq q),
\end{aligned}
$$

and hence

$$
\begin{aligned}
& b\left\|E_{i 1}-E_{1 i}\right\|_{z}^{2}-a\left\langle E_{i, p+1}+E_{p+1, i}, E_{i 1}-E_{1 i}\right\rangle_{z}=0 \\
& b\left\langle E_{1, p+j}+E_{p+j, 1}, E_{p+1, p+j}-E_{p+j, p+1}\right\rangle_{2}+a\left\|E_{p+1, p+j}-E_{p+j, p+1}\right\|_{z}^{2}=0,
\end{aligned}
$$

where \langle,$\rangle denotes the standard Riemannian metric on S^{p+q-1}$ and each element of $\mathfrak{g o}(p, q)$ can be considered naturally as a smooth vector field on S^{p+q-1} (cf. [3], ch. II, Th. II). These equations assure the smoothness of f.

Comparing $\mathfrak{h}(a: b)$ with isotropy algebras of the restricted K-action, we obtain

$$
\begin{align*}
& f(z)=(1: 0) \Leftrightarrow z= \pm \boldsymbol{e}_{1} \tag{2.5}\\
& f(z)=(0: 1) \Leftrightarrow z= \pm \boldsymbol{e}_{p+1}
\end{align*}
$$

Let $m(\theta)$ be the matrix defined by (1.3). Then, the set $F(H)$ is invariant under the transformation $\Phi(m(\theta),-)$, because $m(\theta)$ commutes with each element of H. Let $\phi: \boldsymbol{R} \times F(H) \rightarrow F(H)$ denote the smooth \boldsymbol{R}-action on $F(H)$ defined by $\phi(\theta, z)=\Phi(m(\theta), z)$. Then, we obtain

$$
\begin{equation*}
f(z)=(a: b) \Rightarrow f(\phi(\theta, z))=\left(a^{\prime}: b^{\prime}\right) \tag{2.6}
\end{equation*}
$$

where $a^{\prime}=a \cosh \theta+b \sinh \theta, b^{\prime}=a \sinh \theta+b \cosh \theta$. This follows from (1.4), (2.3) and the definition of $\mathfrak{b}(a: b)$.

Let $J_{i}: F(H) \rightarrow F(H)(i=1,2)$ denote involutions defined by $J_{1}(x, y)=(-x, y)$ and $J_{2}(x, y)=(x,-y)$. Then, we obtain

$$
\begin{equation*}
f(z)=(a: b) \Rightarrow f\left(J_{1}(z)\right)=f\left(J_{2}(z)\right)=(a:-b) \tag{2.7}
\end{equation*}
$$

This follows from the fact $J_{i}(z)=\psi\left(j_{i}, z\right)(i=1,2)$, where

$$
j_{1}=\left[\begin{array}{lll}
-I_{2} & & \tag{2.8}\\
& I_{p+q-2}
\end{array}\right], \quad j_{2}=\left[\begin{array}{lll}
I_{p} & & \\
& -I_{2} & \\
& & I_{q-2}
\end{array}\right]
$$

There is a following relation of the involution J_{i} with the transformation $\phi(\theta,-)=\Phi(m(\theta),-):$

$$
\begin{equation*}
J_{i}(\phi(\theta, z))=\phi\left(-\theta, J_{i}(z)\right) \quad(i=1,2) \tag{2.9}
\end{equation*}
$$

This follows from the fact: $j_{i} m(\theta)=m(-\theta) j_{i}$.
Let $\sigma: \boldsymbol{S O}_{0}(p, q) \rightarrow \boldsymbol{S} \boldsymbol{O}_{0}(p, q)$ denote an automorphism defined by $\sigma(g)=$ ${ }^{t} g^{-1}=I_{p, q} g I_{p, q} . \quad$ We may give a new G-action Φ^{σ} defined by $\Phi^{\sigma}(g, u)=\Phi(\sigma(g), u)$. It is clear that

$$
\Phi^{\sigma}\left|K \times S^{p+q-1}=\Phi\right| K \times S^{p+q-1}
$$

Let $f^{\sigma}, \phi^{\sigma}$ denote the smooth function $f: F(H) \rightarrow P_{1}(\boldsymbol{R})$ and the smooth \boldsymbol{R}-action $\phi: \boldsymbol{R} \times F(H) \rightarrow F(H)$, respectively, with respect to the G-action Φ^{σ}. Then we see that

$$
\begin{align*}
& \phi^{\sigma}(\theta, z)=\phi(-\theta, z) \\
& f(z)=(a: b) \Rightarrow f^{\sigma}(z)=(a:-b) \tag{2.10}
\end{align*}
$$

3. Properties of (ϕ, f)

Let P be a symmetric matrix of order $p+q$, and let $U(P)$ denote a closed
subgroup of $\boldsymbol{G}=\boldsymbol{S} \boldsymbol{O}_{0}(p, q)$ defined by

$$
U(P)=\left\{g \in G \mid g P^{t} g=P\right\}
$$

Let $f: F(H) \rightarrow P_{1}(\boldsymbol{R})$ be a smooth function. Let $P(z)$ denote a symmetric matrix defined by

$$
\begin{equation*}
P(z)=\left(a^{2}+b^{2}\right)^{-1}\left(a \boldsymbol{e}_{1}+b \boldsymbol{e}_{p+1}\right)^{t}\left(a \boldsymbol{e}_{1}+b \boldsymbol{e}_{p+1}\right) \tag{3.1}
\end{equation*}
$$

for $f(z)=(a: b)$, and let $U(z)$ denote the identity component of $U(P(z))$. Then, it is clear that (see §1)

$$
\begin{equation*}
U(z)=\text { the identity component of } H(a: b) . \tag{3.2}
\end{equation*}
$$

Let (ϕ, f) be a pair of a smooth \boldsymbol{R}-action ϕ on $F(H)$ and a smooth function $f: F(H) \rightarrow P_{1}(\boldsymbol{R})$ satisfying the following conditions:
(i) $J_{i}(\phi(\theta, z))=\phi\left(-\theta, J_{i}(z)\right)$,
(ii) $f(z)=(a: b) \Rightarrow f\left(J_{i}(z)\right)=(a:-b)$,
where J_{1}, J_{2} are involutions on $F(H)$ defined in $\S 2$,
(iii) $f(z)=(a: b) \Rightarrow f(\phi(\theta, z))=\left(a^{\prime}: b^{\prime}\right)$,
where $a^{\prime}=a \cosh \theta+b \sinh \theta, b^{\prime}=a \sinh \theta+b \cosh \theta$,
(iv) $f(z)=(1: 0) \Leftrightarrow z= \pm e_{1} ; f(z)=(0: 1) \Leftrightarrow z= \pm e_{q+1}$.

By (1.4), (3.1) and the condition (iii), we obtain

$$
\begin{equation*}
m(\theta) P(z) m(\theta)=\lambda(\theta, z) P(\phi(\theta, z)) \tag{3.3}
\end{equation*}
$$

where $\lambda(\theta, z)$ is a positive real number defined by

$$
\lambda(\theta, z)=\left(a^{2}+b^{2}\right)^{-1}\left\{(a \cosh \theta+b \sinh \theta)^{2}+(a \sinh \theta+b \cosh \theta)^{2}\right\}
$$

for $f(z)=(a: b)$. By the conditinon (iv), we obtain

$$
\begin{equation*}
K \cap U(z)=K_{z} \tag{3.4}
\end{equation*}
$$

where K_{z} denotes the isotropy group at $z \in F(H)$ with respect to the K-action ψ.

Lemma 3.5. Suppose $k P(z)^{t} k=P(w)$ for some $k \in K$ and $z, w \in F(H)$. Put $f(z)=(a: b)$.
(1) If $a b \neq 0$, then $f(z)=f(w)$ and $k \in H \cup j_{1} j_{2} H$, or $f(z)=f\left(J_{i}(w)\right)$ and $k \in j_{1} H \cup j_{2} H$.
(2) If $a b=0$, then $f(z)=f(w)$ and $k \in U(z) \cup j_{1} j_{2} U(z)$.

Proof. The result follows by a routine work from the fact that $X^{t} X=$ $Y^{t} Y$ implies $X= \pm Y$ for column vectors X, Y. So we omit the detail. q.e.d.

Lemma 3.6. Put $f(z)=(a: b)$. If $f(\phi(\theta, z))=f\left(J_{i}(z)\right)$, then $|a| \neq|b|$,
$\phi(\theta, z)=J_{1}(z)$ for $|a|<|b|$, and $\phi(\theta, z)=J_{2}(z)$ for $|a|>|b|$.
Proof. $f\left(J_{i}(z)\right)=(a:-b)$ by the condition (ii). On the other hand, if $|a|=|b|$, then $f(\phi(\theta, z))=f(z)=(a: b) \neq(a:-b)$ by the condition (iii). Hence we obtain $|a| \neq|b|$. Suppose $|a|<|b|$. Then $z=\phi\left(\tau, \varepsilon e_{p+1}\right)$ for some $\tau \in \boldsymbol{R}$ and $\varepsilon= \pm 1$ by the conditions (iii), (iv). Hence we obtain

$$
\begin{aligned}
& J_{1}(z)=\phi\left(-\tau, \varepsilon e_{p+1}\right), \quad J_{2}(z)=\phi\left(-\tau,-\varepsilon e_{p+1}\right) \\
& f\left(J_{i}(z)\right)=(-\tanh \tau: 1), \quad \phi(\theta, z)=\phi\left(\theta+\tau, \varepsilon e_{p+1}\right), \\
& f(\phi(\theta, z))=(\tanh (\theta+\tau): 1)
\end{aligned}
$$

Therefore, $\tau=-\theta / 2$ and $\phi(\theta, z)=J_{1}(z)$. The remaining case is similarly proved.
q.e.d.

Lemma 3.7. Put $f(z)=(a: b)$. If $j_{i} m(\theta) \in U(z)$, then $|a| \neq|b|, i=1$ for $|a|<|b|$, and $i=2$ for $|a|>|b|$.

Proof. By (3.2) and our assumption, we obtain

$$
\left[\begin{array}{lc}
\cosh \theta & \sinh \theta \\
\sinh \theta & \cosh \theta
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=(-1)^{i}\left[\begin{array}{r}
a \\
-b
\end{array}\right] .
$$

This implies $(-1)^{i}\left(a^{2}+b^{2}\right)=\left(a^{2}-b^{2}\right) \cosh \theta$. Hence we obtain the desired result.

4. Construction of $\boldsymbol{S O}_{0}(\boldsymbol{p}, \boldsymbol{q})$-actions

4.1. Let (ϕ, f) be a pair of a smooth \boldsymbol{R}-action ϕ on $F(H)$ and a smooth function $f: F(H) \rightarrow P_{1}(\boldsymbol{R})$ satisfying the four conditions in $\S 3$. We shall show how to construct a smooth $G=\mathbf{S \boldsymbol { O } _ { 0 }}(p, q)$-action on S^{p+q-1} from the pair (ϕ, f). We use the notations (2.2), (2.8).

By (1.6), (3.2), we obtain

$$
\begin{equation*}
G=K M(p, q) U(z) \tag{4.1}
\end{equation*}
$$

for each $z \in F(H)$. Take $(g, p) \in G \times S^{p+q-1}$. Let us choose

$$
\begin{align*}
& k \in K, z \in F(H): p=\psi(k, z) \\
& k^{\prime} \in K, \theta \in \boldsymbol{R}, u \in U(z): g k=k^{\prime} m(\theta) u \tag{4.2}
\end{align*}
$$

and put

$$
\begin{equation*}
\Phi(g, p)=\psi\left(k^{\prime}, \phi(\theta, z)\right) \in S^{p+q-1} \tag{4.3}
\end{equation*}
$$

We shall show that Φ is a smooth G-action on S^{p+q-1}. To show this, we prepare the followings.

Lemma 4.4. Suppose $k m(\theta) u=k^{\prime} m\left(\theta^{\prime}\right) u^{\prime}$ for $k, k^{\prime} \in K$ and $u, u^{\prime} \in U(z)$.

Then, $\psi(k, \phi(\theta, z))=\psi\left(k^{\prime}, \phi\left(\theta^{\prime}, z\right)\right)$.
Proof. We obtain

$$
k m(\theta) P(z) m(\theta)^{t} k=k^{\prime} m\left(\theta^{\prime}\right) P(z) m\left(\theta^{\prime}\right)^{t} k^{\prime}
$$

Then, by (3.3)

$$
\lambda(\theta, z) k P(\phi(\theta, z))^{t} k=\lambda\left(\theta^{\prime}, z\right) k^{\prime} P\left(\phi\left(\theta^{\prime}, z\right)\right)^{t} k^{\prime}
$$

Comparing traces of both sides, we obtain

$$
\begin{aligned}
& \lambda(\theta, z)=\lambda\left(\theta^{\prime}, z\right) \\
& k P(\phi(\theta, z))^{t} k=k^{\prime} P\left(\phi\left(\theta^{\prime}, z\right)\right)^{t} k^{\prime}
\end{aligned}
$$

By the second equation, Lemma 3.5 and the conditions (i), (iii), we obtain the following possibilities:
(b)

$$
\begin{align*}
& f\left(\phi\left(\theta-\theta^{\prime}, z\right)\right)=f(z), \quad \text { or } \tag{a}\\
& f\left(\phi\left(\theta+\theta^{\prime}, z\right)\right)=f\left(J_{i}(z)\right)
\end{align*}
$$

(b)

Put $f(z)=(a: b)$. We see that if $|a|=|b|$ (resp. $|a| \neq|b|$), then the equation $\lambda(\theta, z)=\lambda\left(\theta^{\prime}, z\right)$ (resp. $\left.f\left(\phi\left(\theta-\theta^{\prime}, z\right)\right)=f(z)\right)$ implies $\theta=\theta^{\prime}$. Suppose $\theta=\theta^{\prime}$. Then

$$
k^{-1} k^{\prime}=m(\theta) u u^{\prime-1} m(\theta)^{-1} \in m(\theta) U(z) m(\theta)^{-1}=U(\phi(\theta, z))
$$

by (3.3), and hence $\psi\left(k^{-1} k^{\prime}, \phi(\theta, z)\right)=\phi(\theta, z)$ by (3.4). Therefore, if $\theta=\theta^{\prime}$ then $\psi(k, \phi(\theta, z))=\psi\left(k^{\prime}, \phi\left(\theta^{\prime}, z\right)\right)$.

Finally, we consider the case (b). Then $k^{-1} k^{\prime} \in j_{1} H \cup j_{2} H$ by Lemma 3.5, and hence $k^{\prime}=k j_{i} h$ for some i and $h \in H$. Then

$$
m(\theta) u=j_{i} h m\left(\theta^{\prime}\right) u^{\prime}=j_{i} m\left(\theta^{\prime}\right) h u^{\prime}=m\left(-\theta^{\prime}\right) j_{i} h u^{\prime}
$$

and hence $j_{i} m\left(\theta+\theta^{\prime}\right)=h u^{\prime} u^{-1} \in U(z)$. Therefore, we obtain $|a| \neq|b|, i=1$ for $|a|<|b|$, and $i=2$ for $|a|>|b|$ by Lemma 3.7. On the other hand, the equation (b) implies $\phi\left(\theta+\theta^{\prime}, z\right)=J_{1}(z)$ for $|a|<|b|$ and $\phi\left(\theta+\theta^{\prime}, z\right)=J_{2}(z)$ for $|a|>|b|$ by Lemma 3.6. Therefore, we obtain $k^{\prime}=k j_{i} h$ and $\phi\left(\theta+\theta^{\prime}, z\right)=J_{i}(z)$ for some i and $h \in H$. Then

$$
\begin{align*}
& \psi\left(k^{\prime}, \phi\left(\theta^{\prime}, z\right)\right)=\psi\left(k j_{i} h, \phi\left(\theta^{\prime}, z\right)\right) \\
= & \psi\left(k, J_{i} \phi\left(\theta^{\prime}, z\right)\right)=\psi\left(k, \phi\left(-\theta^{\prime}, J_{i}(z)\right)\right) \\
= & \psi\left(k, \phi\left(-\theta^{\prime}, \phi\left(\theta+\theta^{\prime}, z\right)\right)\right)=\psi(k, \phi(\theta, z)) .
\end{align*}
$$

Proposition 4.5. Φ of (4.3) defines an abstract G-action on S^{p+q-1} such that $\Phi \mid K \times S^{p+q-1}=\psi$.

Proof. For $(g, p) \in G \times S^{p+q-1}$, let us choose as in (4.2);

$$
\begin{aligned}
& p=\psi\left(k_{1}, z_{1}\right)=\psi\left(k_{2}, z_{2}\right), \\
& g k_{i}=k_{i}^{\prime} m\left(\theta_{i}\right) u_{i}, u_{i} \in U\left(z_{i}\right) .
\end{aligned}
$$

By the first equation, we obtain $z_{1}=J_{1}^{s} J_{2}^{t}\left(z_{2}\right)$ for some integers s, t. Then, $k_{2}^{-1} k_{1} j_{i}^{s} j_{2}^{t} \in K_{z_{2}} \subset U\left(z_{2}\right)$ by (3.4). Therefore, $k_{2}=k_{1} j_{1}^{s} j_{2}^{t} u_{2}^{\prime}$ for some $u_{2}^{\prime} \in U\left(z_{2}\right)$. Then, we obtain

$$
\begin{aligned}
k_{2}^{\prime} m\left(\theta_{2}\right) u_{2} & =g k_{2}=g k_{1} j_{1}^{s} j_{2}^{t} u_{2}^{\prime}=k_{1}^{\prime} m\left(\theta_{1}\right) u_{1} j_{1}^{s} j_{2}^{t} u_{2}^{\prime} \\
& =\left(k_{1}^{\prime} j_{1}^{s} j_{2}^{t}\right) m\left((-1)^{s+t} \theta_{1}\right)\left(j_{1}^{s} j_{2}^{t} u_{1} j_{j}^{s} j_{2}^{t}\right) u_{2}^{\prime}
\end{aligned}
$$

It is clear $k_{2}^{\prime \prime}=k_{1}^{\prime} j_{1}^{s} j_{2}^{t} \in K$, and we see

$$
\left(j_{1}^{s} j_{2}^{t} u_{1} j_{1}^{s} j_{2}^{t}\right) u_{2}^{\prime} \in U\left(z_{2}\right)
$$

by the equation $P\left(J_{i}(z)\right)=j_{i} P(z) j_{i}$. Then,

$$
\psi\left(k_{2}^{\prime}, \phi\left(\theta_{2}, z_{2}\right)\right)=\psi\left(k_{2}^{\prime \prime}, \phi\left((-1)^{s+t} \theta_{1}, z_{2}\right)\right)
$$

by Lemma 4.4. On the other hand,

$$
\begin{aligned}
\psi\left(k_{2}^{\prime \prime}, \phi\left((-1)^{s+t} \theta_{1}, z_{2}\right)\right) & =\psi\left(k_{1}^{\prime}, J_{1}^{s} J_{2}^{t} \phi\left((-1)^{s+t} \theta_{1}, z_{2}\right)\right) \\
& =\psi\left(k_{1}^{\prime}, \phi\left(\theta_{1}, J_{1}^{s} J_{2}^{t}\left(z_{2}\right)\right)\right)=\psi\left(k_{1}^{\prime}, \phi\left(\theta_{1}, z_{1}\right)\right)
\end{aligned}
$$

This shows that Φ of (4.3) is a well-defined mapping.
Take $g, g^{\prime} \in G$ and $p \in S^{p+q-1}$. Let us choose as in (4.2);

$$
p=\psi(k, z), \quad g k=k^{\prime} m(\theta) u, \quad g^{\prime} k^{\prime}=k^{\prime \prime} m\left(\theta^{\prime}\right) u^{\prime}
$$

where $u \in U(z)$ and $u^{\prime} \in U(\phi(\theta, z))$. Then,

$$
\begin{aligned}
\Phi\left(g^{\prime}, \Phi(g, p)\right) & =\Phi\left(g^{\prime}, \psi\left(k^{\prime}, \phi(\theta, z)\right)\right) \\
& =\psi\left(k^{\prime \prime}, \phi\left(\theta^{\prime}, \phi(\theta, z)\right)\right) \\
& =\psi\left(k^{\prime \prime}, \phi\left(\theta+\theta^{\prime}, z\right)\right)=\Phi\left(g^{\prime} g, p\right)
\end{aligned}
$$

Because

$$
\begin{aligned}
g^{\prime} g k & =g^{\prime} k^{\prime} m(\theta) u=k^{\prime \prime} m\left(\theta^{\prime}\right) u^{\prime} m(\theta) u \\
& =k^{\prime \prime} m\left(\theta+\theta^{\prime}\right)\left(m(-\theta) u^{\prime} m(\theta)\right) u
\end{aligned}
$$

and $m(-\theta) u^{\prime} m(\theta) \in U(z)$ by (3.3). This shows that Φ of (4.3) is an abstract G-action.

Finally, take $(k, p) \in K \times S^{p+q-1}$ and put $p=\psi\left(k^{\prime}, z\right)$ as in (4.2). Then,

$$
\Phi(k, p)=\psi\left(k k^{\prime}, z\right)=\psi\left(k, \psi\left(k^{\prime}, z\right)\right)=\psi(k, p) . \quad \text { q.e.d. }
$$

Notice that the continuity of Φ is unknown in this stage. In the remaining of this section, we shall show the smoothness of the G-action Φ.
4.2. Put $f(z)=(a: b)$ and $z=(x, y)$. It is clear that $a b \neq 0$ if and only if $x y \neq 0$ by the condition (iv). To simplify the following discussion, we add a condition on the pair (ϕ, f)
(v) $x y>0 \Rightarrow a b>0$.

Notice that the condition (v) is inessential, by (2.10).
Define

$$
S_{+}=\{z=(x, y) \in F(H) \mid x>0, y>0\}
$$

By the condition (v), there is a smooth positive valued function β on S_{+}such that $f(z)=(1: \beta(z))$.

Lemma 4.6. For $(\theta, z) \in \boldsymbol{R} \times S_{+}, \phi(\theta, z) \in S_{+}$if and only if

$$
\begin{equation*}
(1+\beta(z) \tanh \theta)(\beta(z)+\tanh \theta)>0 \tag{4.6}
\end{equation*}
$$

Proof. $f(\phi(\theta, z))=(1+\beta(z) \tanh \theta: \beta(z)+\tanh \theta)$ by the condition (iii). Then, only if part is clear. Suppose (4.6). Then,

$$
\phi(\theta, z) \in S_{+} \cup J_{1} J_{2}\left(S_{+}\right)
$$

and we see that $\phi(\theta, z) \notin J_{1} J_{2}\left(S_{+}\right)$by considering orbits of the \boldsymbol{R}-action ϕ.
q.e.d.

Define

$$
\begin{gathered}
D_{+}=\left\{(\theta, z) \in \boldsymbol{R} \times S_{+} \mid \phi(\theta, z) \in S_{+}\right\} \\
W_{+}=\left\{(g, z) \in G \times S_{+} \mid \pm \operatorname{trace}\left(g P(z)^{t} g\right) \neq\left(1-\beta(z)^{2}\right)\left(1+\beta(z)^{2}\right)^{-1}\right\}
\end{gathered}
$$

Lemma 4.7. For any $(g, z) \in W_{+}$, there exist uniquely $k H \in K / H$ and $\theta \in \boldsymbol{R}$ such that

$$
\begin{equation*}
g=k m(\theta) u ; u \in U(z),(\theta, z) \in D_{+} . \tag{4.7}
\end{equation*}
$$

Furthermore, the correspondence $\Delta: W_{+} \rightarrow K / H \times D_{+}$defined by $\Delta(g, z)=(k H,(\theta, z))$ is smooth.

Proof. First, we show the uniqueness of the decomposition (4.7). Suppose

$$
g=k m(\theta) u=k^{\prime} m\left(\theta^{\prime}\right) u^{\prime}
$$

for $k, k^{\prime} \in K, u, u^{\prime} \in U(z)$ and $(\theta, z),\left(\theta^{\prime}, z\right) \in D_{+}$. Then, $\psi(k, \phi(\theta, z))=$ $\psi\left(k^{\prime}, \phi\left(\theta^{\prime}, z\right)\right)$ by Lemma 4.4. Since $\phi(\theta, z)$ and $\phi\left(\theta^{\prime}, z\right)$ are contained in S_{+}, we see $\phi(\theta, z)=\phi\left(\theta^{\prime}, z\right)$. Then, $k^{-1} k^{\prime} \in K_{\phi(\theta, z)}=H$, and hence $k H=k^{\prime} H$. Furthermore, we obtain $\theta=\theta^{\prime}$ by the same argument as in the proof of Lemma 4.4.

Next, we show the existence of the decomposition (4.7). Choose $k \in K$,
$\theta \in \boldsymbol{R}$ and $u \in U(z)$ such that $g=k m(\theta) u$. Then,
$\left(^{*}\right) \quad \operatorname{trace}\left(g P(z)^{t} g\right)=\cosh 2 \theta+2 \beta(z)\left(1+\beta(z)^{2}\right)^{-1} \sinh 2 \theta$.
Suppose $(\theta, z) \notin D_{+}$. If $\beta(z)=1$, then $\phi(\theta, z) \in S_{+}$for any $\theta \in \boldsymbol{R}$. Hence we see $\beta(z) \neq 1$. (i) Suppose $0<\beta(z)<1$. We can find $\tau \in \boldsymbol{R}$ satisfying $z=\phi\left(\tau, \boldsymbol{e}_{1}\right)$ and $\beta(z)=\tanh \tau$. The assumption $\phi(\theta, z) \notin S_{+}$implies $\tanh (\theta+\tau) \leqq 0$ by Lemma 4.6, and hence $\theta+\tau \leqq 0$. If $\theta+\tau=0$, then we obtain

$$
\operatorname{trace}\left(g P(z)^{t} g\right)=\left(1+\beta(z)^{2}\right)^{-1}\left(1-\beta(z)^{2}\right)
$$

This is a contradiction to $(g, z) \in W_{+}$, and hence $\theta+\tau<0$. Then,

$$
\phi(-\theta-2 \tau, z)=\phi\left(-\theta-\tau, e_{1}\right)=J_{2} \phi\left(\theta+\tau, e_{1}\right)
$$

and $\phi(-\theta-2 \tau, z) \in S_{+}$by Lemma 4.6. Furthermore,

$$
j_{2} m(-2 \tau)=m(\tau) j_{2} m(-\tau) \in U(z)
$$

by $j_{2} \in U\left(e_{1}\right)$. Then

$$
g=k m(\theta) u=\left(k j_{2}\right) m(-\theta-2 \tau)\left(j_{2} m(-2 \tau) u\right)
$$

where $k j_{2} \in K, j_{2} m(-2 \tau) u \in U(z)$ and $(-\theta-2 \tau, z) \in D_{+}$. (ii) Suppose $\beta(z)>1$. We can find $\tau \in \boldsymbol{R}$ satisfying $z=\phi\left(\tau, \boldsymbol{e}_{p+1}\right)$ and $\beta(z)^{-1}=\tanh \tau$. Then we obtain similarly

$$
g=k m(\theta) u=\left(k j_{1}\right) m(-\theta-2 \tau)\left(j_{1} m(-2 \tau) u\right)
$$

where $k j_{1} \in K, j_{1} m(-2 \tau) u \in U(z)$ and $(-\theta-2 \tau, z) \in D_{+}$.
Finally, we shall show the smoothness of Δ. Put $\theta=\theta(g, z)$ and $k H=$ $\delta(g, z)$ for $\Delta(g, z)=(k H,(\theta, z))$, and we shall show the smoothness of $\theta(g, z)$ and $\delta(g, z)$.

Consider the smooth function γ on $W_{+} \times \boldsymbol{R}$ defined by

$$
\gamma(g, z, \theta)=\cosh 2 \theta+2 \beta(z)\left(1+\beta(z)^{2}\right)^{-1} \sinh 2 \theta-\operatorname{trace}\left(g P(z)^{t} g\right)
$$

Then, $\gamma(g, z, \theta(g, z))=0$ by (4.7) and (*). Furthermore, if $\gamma(g, z, \theta)=0$, then

$$
\frac{\partial \gamma}{\partial \theta}(g, z, \theta)=2 \cosh 2 \theta\left(\tanh 2 \theta+2 \beta(z)\left(1+\beta(z)^{2}\right)^{-1}\right) \neq 0
$$

by the definition of W_{+}. Then, we see that the function $\theta(g, z)$ is smooth by Lemma 4.6 and the implicit function theorem.

Consider the smooth function $\delta_{1}: W_{+} \rightarrow \boldsymbol{R}^{p+q}$ defined by

$$
\delta_{1}(g, z)=\left(1+\beta(z)^{2}\right)^{-1 / 2} g\left(e_{1}+\beta(z) e_{p+1}\right)
$$

Put $\Delta(g, z)=(k H,(\theta, z))$, and define

$$
\begin{aligned}
& x=\left(1+\beta(z)^{2}\right)^{-1 / 2}(\cosh \theta+\beta(z) \sinh \theta) \\
& y=\left(1+\beta(z)^{2}\right)^{-1 / 2}(\sinh \theta+\beta(z) \cosh \theta)
\end{aligned}
$$

Then, we see that $\delta_{1}(g, z)=k\left(x e_{1}+y e_{p+1}\right)$ and $x>0, y>0$ by Lemma 4.6. Since the correpsondence of $k H$ to $k\left(\boldsymbol{e}_{1}+\boldsymbol{e}_{p+1}\right)$ defines an embedding of K / H into $\boldsymbol{R}^{p+\boldsymbol{q}}$, we see that the function $\delta(g, z)$ is smooth, by considering a correspondence of $\boldsymbol{u} \oplus \boldsymbol{v}(\boldsymbol{u} \neq 0, \boldsymbol{v} \neq 0)$ to $\|\boldsymbol{u}\|^{-1} \boldsymbol{u} \oplus\|\boldsymbol{v}\|^{-1} \boldsymbol{v}$.
q.e.d.

4.3. Define

$$
S_{0}(\Phi)=\left\{\Phi\left(g, e_{1}\right) \mid g \in G\right\}, \quad S_{0}\left(\Phi_{0}\right)=\left\{\Phi_{0}\left(g, e_{1}\right) \mid g \in G\right\}
$$

for the G-action Φ of (4.3) and the standard G-action Φ_{0} of (2.1), respectively. By (4.3) and the conditions of (ϕ, f), there exists a positive real number $r<1$ such that

$$
S_{0}(\Phi)=\left\{\boldsymbol{u} \oplus \boldsymbol{v} \in S\left(\boldsymbol{R}^{p} \oplus \boldsymbol{R}^{q}\right) \mid\|\boldsymbol{v}\|<r\right\}
$$

On the other hand, it is clear that

$$
S_{0}\left(\Phi_{0}\right)=\left\{\boldsymbol{u} \oplus \boldsymbol{v} \in S\left(\boldsymbol{R}^{p} \oplus \boldsymbol{R}^{q}\right) \mid\|\boldsymbol{u}\|>\|\boldsymbol{v}\|\right\}
$$

Lemma 4.8. The restriction of Φ to $G \times S_{0}(\Phi)$ is smooth.
Proof. Put $D^{q}(\delta)=\left\{\boldsymbol{v} \in \boldsymbol{R}^{q} \mid\|\boldsymbol{v}\|<\delta\right\}$, and define a diffeomorphism $\alpha: S^{p-1} \times$ $D^{q}(1) \rightarrow S_{0}\left(\Phi_{0}\right)$ by

$$
\alpha(\boldsymbol{u}, \boldsymbol{v})=\left(1+\|\boldsymbol{v}\|^{2}\right)^{-1 / 2}(\boldsymbol{u} \oplus \boldsymbol{v})
$$

Let us define a diffeomorphism $F_{0}: S_{0}(\Phi) \rightarrow S_{0}\left(\Phi_{0}\right)$ by $F_{0}(\boldsymbol{u} \oplus \boldsymbol{v})=\alpha\left(\|\boldsymbol{u}\|^{-1} \boldsymbol{u}, F(\boldsymbol{v})\right)$, where $F: D^{q}(r) \rightarrow D^{q}(1)$ is a diffeomorphism not yet introduced.

There is a smooth real valued function h on $(-r, r)$ such that $f\left(\left(1-y^{2}\right)^{1 / 2}, y\right)=$ $(1: h(y))$. It is clear that $h(y)>0$ for $0<y<r$ by the condition (v). Furthermore, h is a diffeomorphism from ($-r, r$) onto $(-1,1)$ by the conditions (iii), (iv). Since

$$
(1: h(-y))=f\left(\left(1-y^{2}\right)^{1 / 2},-y\right)=f\left(J_{2}\left(\left(1-y^{2}\right)^{1 / 2}, y\right)\right)=(1:-h(y)),
$$

we obtain $h(-y)=-h(y)$, and hence $y \rightarrow y^{-1} h(y)$ is a smooth even function. Therefore, $\boldsymbol{v} \rightarrow\|\boldsymbol{v}\|^{-1} h(\|\boldsymbol{v}\|)$ is a smooth function on $D^{q}(r)(c f .[2]$, ch. VIII, §14, Problem 6-c). Then we can define $F(\boldsymbol{v})=\|\boldsymbol{v}\|^{-1}(h\|\boldsymbol{v}\|) \boldsymbol{v}$.

Now we shall show that the diffeomorphism $F_{0}: S_{0}(\Phi) \rightarrow S_{0}\left(\Phi_{0}\right)$ is G equivariant. It is clear that F_{0} is K-equivariant. By definition of h and the conditions (iii), (iv), we obtain

$$
F_{0}\left(\phi\left(\theta, \boldsymbol{e}_{1}\right)\right)=\Phi_{0}\left(m(\theta), \boldsymbol{e}_{1}\right) ; \theta \in \boldsymbol{R}
$$

Take $g \in G$ and put $g=k m(\theta) u$ for $k \in K, u \in U\left(\boldsymbol{e}_{1}\right)=\mathbf{S} \boldsymbol{O}_{0}(p-1, q)$. Then,

$$
\begin{aligned}
F_{0}\left(\Phi\left(g, \boldsymbol{e}_{1}\right)\right) & =F_{0}\left(\psi\left(k, \phi\left(\theta, \boldsymbol{e}_{1}\right)\right)\right)=\Phi_{0}\left(k, F_{0}\left(\phi\left(\theta, \boldsymbol{e}_{1}\right)\right)\right) \\
& =\Phi_{0}\left(k, \Phi_{0}\left(m(\theta), \boldsymbol{e}_{1}\right)\right)=\Phi_{0}\left(k m(\theta), \boldsymbol{e}_{1}\right)=\Phi_{0}\left(g, \boldsymbol{e}_{1}\right) .
\end{aligned}
$$

Therefore, the diffeomorphism F_{0} is G-equivariant, and hence the restriction $\Phi \mid G \times S_{0}(\Phi)$ is smooth.
q.e.d.

Now we can prove the smoothness of Φ. By Lemma 4.8 and a similar argument, we see that the restrictions of Φ to

$$
G \times\left\{\Phi\left(g, e_{1}\right) \mid g \in G\right\} \quad \text { and } \quad G \times\left\{\Phi\left(g, e_{p+1}\right) \mid g \in G\right\}
$$

are smooth. Define $W(\Phi)=\left\{(g, \psi(k, z)) \mid(g k, z) \in W_{+}\right\}$. Then, we see that $W(\Phi)$ is an open set of $G \times S^{p+q-1}$, since W_{+}is an open set of $G \times S_{+}$. Furthermore, we see that $\Phi \mid W(\Phi)$ is smooth, since Δ is smooth by Lemma 4.7. Consequently, we obtain the smoothness of Φ on $G \times S^{p+q-1}$, because three open sets $G \times\left\{\Phi\left(g, e_{1}\right) \mid g \in G\right\}, G \times\left\{\Phi\left(g, e_{p+1}\right) \mid g \in G\right\}$ and $W(\Phi)$ cover $G \times S^{p+q-1}$.

5. Conclusion

Theorem. Suppose $p \geqq 3, q \geqq 3$. Then, there is a one-to-one correspondence between the set of smooth $\boldsymbol{S O} \mathbf{O}_{0}(p, q)$-actions Φ on S^{p+q-1} whose restricted $\boldsymbol{S O}(p) \times$ $\mathbf{S O}(q)$-action is the standard orthogonal action and the set of pairs (ϕ, f) satisfying the conditions (i) to (iv) in §3, where ϕ is a smooth one-parameter group on S^{1} and $f: S^{1} \rightarrow P_{1}(\boldsymbol{R})$ is a smooth function.

Proof. The correspondence of Φ to (ϕ, f) is given in $\S 2$, and its reversed correspondence of (ϕ, f) to Φ is given in $\S 4$.
q.e.d.

By Asoh's consideration (cf. [1], §9-§11), we can show that there are infinitely many topologically distinct smooth $\mathbf{S O}_{0}(p, q)$-actions on S^{p+q-1} whose restricted $\boldsymbol{S O}(p) \times \boldsymbol{S O}(q)$-action is the standard orthogonal action. We omit the proof.

References

[1] T. Asoh: On smooth $S L(2, C)$ actions on 3-manifolds, Osaka J. Math. 24 (1987), 271-298.
[2] J. Dieudonné: Foundations of modern analysis, Pure and Applied Math. 10, Academic Press, 1960.
[3] R.S. Palais: A global formulation of the Lie theory of transformation groups, Memoirs of Amer. Math. Soc. 22 (1957).
[4] F. Uchida: Real analytic $S L(n, R)$ actions on spheres, Tôhoku Math. J. 33 (1981), 145-175.

[^0]: *) Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan.

