FIBERED LINKS AND UNKNOTTING OPERATIONS

Dedicated to Professor Kunio Murasugi on his sixtieth birthday

Tsuyoshi KOBAYASHI

(Received December 1, 1988)

1. Introduction

Let L be an oriented link in a 3-manifold M. A Seifert surface S for L is a compact oriented surface, without closed components, such that $\partial S=L$. $\chi(L)$ denotes the maximal Euler characterisic of all Seifert surfaces for $L . L$ is a fibered link if the exterior $E(L)$ of L is a surface bundle over S^{1} such that a Seifert surface represents a fiber. An oriented surface F in M is a fiber surface if ∂F is a fibered link, and $F \cap E(\partial F)$ is a fiber. Let D be a disk in M, which intersects L in two points of opposite orientations, L^{\prime} the image of L after ± 1 surgery along ∂D. We say that L^{\prime} is obtained from L by a crossing change, and D (∂D resp.) is called the crossing disk (crossing link resp.). For the links in the 3-sphere S^{3}, Scharlemann-Thompson [14] proved that if L^{\prime} is obtained from L by a single crossing change along a crossing disk D, and $\chi\left(L^{\prime}\right)>\chi(L)$, then there is a minimal genus Seifert surface S for L such that S is a plumbing of a surface F and a Hopf band A with $F \cap D=\phi$, and $A \cap D$ an essential arc in A. See Figure 1.1.

Fig. 1.1

[^0]In this paper, firstly, we show that a similar result holds for links in rational homology 3 -spheres if L is a fibered link.

Theorem 1. Let L be a fibered link in a rational homology 3-sphere M. Suppose that L^{\prime} is obtained from L by a single crossing change along a crossing disk D, and that $\chi\left(L^{\prime}\right)>\chi(L)$. Then there is a minimal genus Seifert surface S for L such that S is a plumbing of a surface F in M and a Hopf band A with $F \cap D=\phi$, and $A \cap D$ an essential arc in A.

Remark. We note that S and F are fiber surfaces (Lemma 2.2, [6, Theorem 7.4]).

Let S_{0} be the image of S in Theorem 1 after the ± 1 surgery along ∂D, and $S_{1}=c l(S-A)$. Then S_{0}, S_{1} are Seifert surfaces for L^{\prime} (Figure 1.2). In section 4, we study the surfaces S_{0}, S_{1}.

Theorem 2. Let S_{0}, S_{1} be as above. Then
(1) S_{0} is a pre-fiber surface,
(2) if $\chi\left(L^{\prime}\right)>\chi(L)+2$ (i.e. S_{1} is not a minimal genus Seifert surface), then S_{1} is also a pre-fiber surface.

Fig. 1.2
For the definition of pre-fiber surface, see section 4. We prove Theorem 2 in sections 4,5, and 6. In section 7, we give a characterization of a class of prefiber surfaces in case when they bound fibered links. For the statement of the result, we prepare some notations. Let Σ_{n} be the genus $n(\geq 1)$ Seifert surface for a trivial knot in S^{3} as in Figure 1.3. For the precise definition of Σ_{n}, see section 7. Then we have;

Theorem 3. Suppose that a surface S_{1} in a rational homology 3-sphere M is a pre-fiber surface of type 1 with $L=\partial S_{1}$ a fibered link. Then S_{1} is a connected sum of a fiber surface for L and Σ_{n}, where $n=\left(\chi(L)-\chi\left(S_{1}\right)\right) / 2$. Moreover a pair of canonical compressing disks for S_{1} corresponds to that of Σ_{n}.

Fig. 1.3
Theorem 2 shows that we can get a pre-fiber surface from a fiber surface S by adding a twist along a properly embedded arc in S, or by removing a band from S (Figure 1.2). In section 8, we study the converse to this. Namely, we give a characterization of the arcs in a pre-fiber surface S_{*} the twists along which produce fiber surfaces, and a characterization of the bands for S_{*} to produce fiber surfaces in case when the ambient manifold is a rational homology 3 -sphere. See the remarks of section 8.

We say that a knot in a 3-manifold M is trivial if it bounds a non-singular disk in M. Suppose that a knot K is contractible in M. Then it is easy to see that K is tranformed into a trivial knot by a finite number of crossing changes. The unknotting number $u(K)$ is the minimal number of crossing changes that are necessary to transform K into a trivial knot. Let $\Sigma_{n}, l_{+}, l_{-}\left(\subset \Sigma_{n}\right)$ be as in Figure 1.3. Then, as consequences of the above results, we have;

Corollary 1. A genus $g(\geq 1)$ surface S in S^{3} is a fiber surface with ∂S an unknotting number 1 knot if and only if S is obtained from Σ_{g} by adding a twist along an arc $a\left(\subset \Sigma_{g}\right)$ such that a intersects l_{+}and l_{-}transversely in one points.

Corollary 2. A genus $g(>1)$ surface S in S^{3} is a fiber surface with ∂S an unknotting number 1 knot if and only if S is obtained from Σ_{g-1} by adding a band satisfying the properties (1), (2) of Proposition 8.2, and then plumbing a Hopf band along b.

Remark. Quach [9] proved that if $A(t)(\neq 1)$ is an Alexander polynomial with leading coefficient ± 1, then there exists an unknotting number 1 , fibered knot K in S^{3} with $\Delta_{K}(t)=A(t)$, where $\Delta_{K}(t)$ denotes the Alexander polynomial of K. The result implies that, for each $g(>1)$, there are infinitely many unknotting number 1 , fibered knots of genus g.

In section 9, by using Theorem 2, we study the rational homology 3-spheres containing unknotting number 1 fibered knots. We say that a 3 -manifold is a lens space if it admits a Heegaard splitting of genus 1 [6]. Then we have;

Theorem 4. If a rational homology 3-sphere M contains an unknotting number 1 fibered knot, then M is a lens space.

Remark. Moreover we will show that, for each $g(>1)$, every lens space contains an unknotting unmber 1 fibered knot of genus g, and we will give the list of lens spaces containing genus 1 , unknotting number 1 , fibered knots. We note that there exist lens spaces which do not contain genus 1 fibered knots [7].

As an immediate consequence of Theorem 4, we have;
Corollary 3. If an integral homology 3-sphere Σ^{3} contains an unknotting number 1 fibered knot, then Σ^{3} is homeomorphic to S^{3}.

2. Preliminaries

Throughout this paper, we work in the piecewise linear category, all manifolds, including knots, links, and Seifert surfaces are oriented, and all submanifolds are in general position unless otherwise specified. For the definitions of standard terms of 3-dimensional topology, knot and link theory, see [6], and [10]. For a topological space $B, \# B$ denotes the number of the components of B. Let H be a subcomplex of a complex K. Then $N(H ; K)$ denotes a regular neighborhood of H in K. Let N be a manifold embedded in a manifold M with $\operatorname{dim} N=\operatorname{dim} M$. Then $\operatorname{Fr}_{M} N$ denotes the frontier of N in M. An arc a properly embedded in a surface S is inessential if it is rel ∂ isotopic to an arc in ∂S. If a is not inessential, then it is essential.

Let S be a surface properly embedded in a 3 -manifold M. A disk D in M is a compressing disk for S if $D \cap S=\partial D$, and ∂D is not contractible in S. If there does not exist a compressing disk for S, then S is incompressible.

Let S_{i} be a surface with boundary in a 3 -manifold $M_{i}(\mathrm{i}=1,2)$. Let B_{i} be a 3-ball in M_{i} such that $B_{i} \cap \partial S_{i}$ is an arc, and $B_{i} \cap S_{i}$ is a disk '(Figure 2.1). Let $h: \partial B_{1} \rightarrow \partial B_{2}$ be an orientation reversing homeomorphism such that $h\left(\partial B_{1} \cap S_{1}\right)=h\left(\partial B_{2} \cap S_{2}\right)$. Then $\left(M_{1}-\operatorname{Int} B_{1}\right) \cup_{h}\left(M_{2}-\operatorname{Int} B_{2}\right)$ is a connected sum of M_{1} and M_{2}, and is denoted by $M_{1} \# M_{2}$. The image of $S_{1} \cup S_{2}$ in $M_{1} \# M_{2}$ is called a connected sum of S_{1} and S_{2}.

A sutured manifold (M, γ) is a compact 3-manifold M together with a set

Fig. 2.1
$\gamma(\subset \partial M)$ of mutually disjoint annuli $A(\gamma)$ and tori $T(\gamma)$ [2]. In this paper, we mainly treat the case of $T(\gamma)=\phi$. The core curves of $A(\gamma), s(\gamma)$, are the sutures. Every component of $R(\gamma)=\partial M-\operatorname{Int} \gamma$ is oriented, and $R_{+}(\gamma)\left(R_{-}(\gamma)\right.$ resp. $)$ denotes the union of the components whose normal vector point of (into resp.) M. Moreover the orientation of $R(\gamma)$ must be coherent with respect to $s(\gamma)$. We say that a sutured manifold (M, γ) is a product sutured manifold if (M, γ) is homeomorphic to $(F \times I, \partial F \times I)$ with $R_{+}(\gamma)=F \times\{1\}$, where F is a surface, and I is the unit inierval $[0,1]$.

Let (M, γ) be a sutrued manifold. A properly embedded annulus A in M is a product annulus if one boundary component of A is contained in $R_{+}(\gamma)$, and the other is contained in $R_{-}(\gamma)$. A properly embedded disk D in M is a product disk if $\partial D \cap \gamma$ consists of two essential arcs in $A(\gamma)$. A product decomposition $(M, \gamma) \rightarrow\left(M^{\prime}, \gamma^{\prime}\right)$ is a sutured manifold decomposition [2] along a product disk. See Figure 2.2.

Fig. 2.2
Let L be a link in a 3-manifold M. The exterior $E(L)$ of L is the closure of the complement of $N(L ; M)$. A meridian loop for L is a non-contractible simple loop in $\partial E(L)$, which bounds a disk in $N(L ; M)$. Let S be a Seifert surface for L. Then we often abbreviate $S \cap E(L)$ to $S . \quad S$ is a minimal genus Seifert surface if $\chi(S)=\chi(L)$.

Let S be a Seifert surface for L. Then $(N, \delta)=(N(S ; E(L)), N(\partial S ; \partial E(L)))$ has a product sutured manifold structure $(S \times I, \partial S \times I)$. (N, δ) is called the sutured manifold obtained from S. Then the sutured manifold $\left(N^{c}, \delta^{c}\right)=$
$(c l(E(L)-N), c l(\partial E(L)-\delta))$ with $R_{+}\left(\delta^{c}\right)=R_{-}(\delta)$ is the complementary sutured manifold for S. We say that a surface S in a 3-manifold is a fiber surface, if ∂S is a fibered link with S a fiber. It is easy to see that S is a fiber surface if and only if the complementary sutured manifold for S is a product sutured manifold.

Then we easily see;

Lemma 2.1. Every fiber surface in a connected 3-manifold is connected.

Let L be a link with a Seifert surface in a rational homology 3-sphere. It is easy to see that Seifert surfaces for L determine a unique non trivial element of $H_{2}(E(L), \partial E(L))$, so that the cyclic covering space for L is well defined. Then the next lemma follows from the fact that the infinite cyclic covering space of a fibered link is homeomorphic to (surface) $\times R$, and details of the proof are left to the reader.

Lemma 2.2. For a surface S in a rational homology 3-sphere, with $L=\partial S$ a fibered link, the following three conditions are equivalent.
(1) S is a fiber surface.
(2) S is a minimal genus Seifert surface for L.
(3) S is incompressible.

Let S be a fiber surface. Then there is an orientation preserving homeomorphism φ of S such that $\left.\varphi\right|_{\partial S}=\mathrm{id}_{\partial s}$, and $E(L)$ is homeomorphic to $S \times I / \sim$, where $(x, 1) \sim(\varphi(x), 0)(x \in S) . \quad \varphi$ is called a monodromy map. $\partial S \times I$ has an I-bundle structure such that each fiber projects to a meridian loop of $\partial E(L)$. Let $p: S \times I \rightarrow E(L)$ be a natural map, $D(\subset S \times I)$ a product disk for the product sutured manifold $(S \times I, \partial S \times I)$ such that each component of $\partial D \cap(\partial S \times I)$ is a fiber. Then the 2-complex $\square=p(D)$ is called a projected product disk (or $p p$ disk for short). For the pp disk $\square, \partial_{-} \square, \partial_{+} \square$ denotes $p(D \cap(S \times\{0\})), p(D \cap(S \times\{1\}))$ respectively. Suppose that there is an ambient

Fig. 2.3
isotopy f_{t} for $S \times I$ such that $f_{0}=\mathrm{id}, f_{t}(D)$ is a product disk such that $\partial f_{t}(D) \cap$ $(\partial S \times I)$ consists of fibers of $\partial S \times I$. Then we say that the pp disk $\square^{\prime}=p\left(f_{1}(D)\right)$ is isotopic toby an isotopy as a pp disk.
Example 2.3. A Hopf band A is a ± 1 twisted unknotted annulus in S^{3} (Figure 2.3). A is a fiber surface, and a monodromy map for A is a right or left hand Dehn twist along the core curve of A.

Example 2.4. The genus 0 surface A^{*} of Figure 2.4 is a connected sum of two Hopf bands, and hence, by [3] or [13], is a fiber surface.

Fig. 2.4

3. Theorem 1

In this section, we prove Theorem 1 stated in section 1 . We assume that the reader is familiar with [5], and [14].

Let L, L^{\prime}, and D be as in Theorem 1. Let S be a minimal genus Seifert surface for L in M. Let L_{1} be the link obtained from L by splitting it as in Figure 3.1, D_{1} the disk as in Figure 3.1, and R_{1} a minimal genus Seifert surface for L_{1} in $E\left(\partial D_{1}\right)$. By the arguments of the proof of [14, 1.4 Theorem], we may suppose that R_{1} intersects D_{1} in an arc a_{1} (Figure 3.2 (i)). Let R be the Seifert surface for L obtained from R_{1} by plumbing a Hopf band as in Figure 3.2 (ii).

Claim 3.0. If $E\left(\partial D_{1} \cup L_{1}\right)$ is not irreducible, then the conclusion of Theorem 1 holds.

Fig. 3.1

Fig. 3.2
Proof. Let $P=D_{1} \cap E\left(\partial D_{1} \cup L_{1}\right)$. Then P is a disk with two holes, with two boundary components l_{1}, l_{2} are meridian loops of L_{1}, and the rest boundary component l_{3} is parallel to ∂D_{1} in D_{1}. Let S_{1} be an essential 2-sphere in $E\left(L_{1} \cup \partial D_{1}\right)$.

Subclaim 1. $\quad S_{1} \cap P \neq \phi$.
Proof. Assume that $S_{1} \cap P=\phi$. Then, by Figure 3.2, we may suppose that S_{1} is embedded in $E\left(\partial D_{1} \cup L\right)$, and $\partial D_{1} \cup L$ is contained in a component of $M-S_{1}$. Since $E(L)$ is irreducible, S_{1} bounds a 3-ball in $E\left(\partial D_{1} \cup L\right)$, so that S_{1} bounds a 3-ball in $E\left(\partial D_{1} \cup L_{1}\right)$, a contradiction.

Then we suppose that \# $\left(S_{1} \cap P\right)$ is minimal among all essential 2-spheres in $E\left(\partial D_{1} \cup L_{1}\right)$. Let $V\left(\subset S_{1}\right)$ be an innermost disk, i.e. $V \cap P=\partial V$. By the minimality of $\#\left(S_{1} \cap P\right)$, we see that ∂V is not contractible in P.

Subclaim 2. ∂V is parallel to l_{3} in P.

Proof. Assume not. Then ∂V is parallel to l_{1} or l_{2}. Let D^{*} be the disk in D_{1} such that $\partial D^{*}=\partial V$, and $S_{2}=V \cup D^{*} . \quad S_{2}$ is a 2 -sphere, and intersects L_{1} in one point. Then, by plumbing a Hopf band to R_{1} in the right or left side of D_{1} in Figure 3.2, we may suppose that $S_{2} \cap L$ consists of one point. This shows that a meridian loop for L is contractible in $E(L)$, contradicting the fact that L is a fibered link.

Subclaim 3. R_{1} is of minimal genus in M.
Proof. Let D^{*} be the disk in D_{1} such that $\partial D^{*}=\partial V$, and $S_{2}=D^{*} \cup V$. By Subclaim 2, S_{2} is a 2 -sphere in M which intersects in L_{1} in two points. Let R_{1}^{*} be a minimal genus Seifert surface for L_{1} in M. Since $S_{2} \cap L_{1}$ consists of two points, by applying cut and paste arguments on S_{2}, we may suppose that $S_{2} \cap R_{1}^{*}=D_{1} \cap R_{1}^{*}$ consists of an arc whose endpoints are $S_{2} \cap L_{1}$. This shows that $\chi\left(R_{1}\right) \geq \chi\left(R_{1}^{*}\right)$. Clearly $\chi\left(R_{1}^{*}\right) \geq \chi\left(R_{1}\right)$. Hence $\chi\left(R_{1}\right)=\left(R_{1}^{*}\right)$, so that R_{1} is of minimal genus in M.

Subclaim 4. $E\left(L_{1}\right)$ is irreducible.
Proof. Assume not. Let S_{3} be an essential 2-sphere in $E\left(L_{1}\right)$. Since R_{1} is incompressible (Subclaim 3), by using standard innermost disk arguments, we may suppose that $S_{3} \cap R_{1}=\phi$. Hence we may suppose that $S_{3} \cap L=\phi$. It is easy to see that S_{3} is an essential 2-sphere in $E(L)$, contradicting the irreducibility of $E(L)$.

By Subclaims 3 and 4, we see that R_{1} is taut in terms of [2]. Hence, by [2, Theorem 5.5] and the argument of the proof of [3, Theorem 1.1], we see that $E(L)$ posseses a taut foliation such that R is a leaf of the foliation. Hence R is a minimal genus Seifert surface for L in M, and this completes the proof of Claim 3.0.

By Claim 3.0, hereafter, we suppose that $E\left(\partial D_{1} \cup L_{1}\right)$ is irreducible. Then, by the argument in the last paragraph of the proof of Claim 3.0, we see that $E\left(\partial D_{1} \cup L\right)$ posseses a taut foliation such that R is a leaf of the foliation, so that $E\left(\partial D_{1} \cup L\right)$ is irreducible, and R is a minimal genus Seifert sufrace for L in $E\left(\partial D_{1}\right)$. Then we have the following two cases.

Case 1. $E(L)$ is $R_{\partial D_{1}}$-atoroidal.
If R is a minimal genus Seifert surface for L in M, then we have the conclusion of Theorem 1. Suppose that R is not of minimal genus in M. Then by [5, Theorem 1.8] or [$12,5.1$ Theorem], and by the arguments of the proof of [14, 1.14 Theorem], we see that the surface R^{*} obtained from R by cutting along a_{1} is of minimal genus in M (Figure 3.3 (i)). Hence we see that the Seifert surface S^{\prime} for L^{\prime} obtained from R^{*} by removing the Hopf band is of minimal genus in M (Figure 3.3 (ii)). We note that $\chi\left(S^{\prime}\right)\left(=\chi\left(L^{\prime}\right)\right)=\chi(R)+2$. Since $\chi\left(L^{\prime}\right)>\chi(L)$ (i.e. $\chi\left(L^{\prime}\right) \geq \chi(L)+2$), this shows that R is a minimal genus Seifert surface for L in M, a contradiction.

Fig. 3.3
Case 2. $E(L)$ is not $R_{\partial D_{1}}$-atoroidal.
Since $E(L)$ is not $R_{\partial D_{1}}$-atoroidal, there is an incompressible, non-boundary parallel torus T in $E\left(\partial D_{1} \cup L\right)$ with the following properties.
(3.1) T separates $E\left(\partial D_{1}\right)$ into V_{1} and V_{2} with $\partial E\left(\partial D_{1}\right) \subset V_{1}$, and $R \subset V_{2}$, and (3.2) $i_{*}: H_{1}(T) \rightarrow H_{1}\left(V_{1}\right)$ is injective.

Let T_{1}, T_{2} be incompressible, non-boundary parallel tori satisfying the above conditions (3.1), (3.2). We say that $T_{1} \leq T_{2}$ if T_{1} is isotopic to T_{1}^{\prime} such that $T_{1}^{\prime} \cap T_{2}=\phi$, and $V^{1} \subset V^{2}$, where V^{1} (V^{2} resp.) denotes the closure of the component of $E(L)-T_{1}^{\prime}\left(E(L)-T_{2}\right.$ resp.) which contains ∂D_{1}. Clearly \leq is an order on the tori with the above properties (3.1), (3.2). Then we suppose that T is maximal with respect to the order.

Claim 3.1. If T is incompressible in $E(L)$, then R is a minimal genus Seifert surface for L in M.

Proof. Since $E(L)$ is irreducible, and S is incompressible, by using standard innermost disk arguments, we may suppose that T intersects S in essential loops, so that each component of $T \cap N^{c}$ is an annulus, where (N^{c}, γ^{c}) is the complementary sutured manifold for S in M. Since $\left(N^{c}, \gamma^{c}\right)$ is a product sutured manifold, by [15, Corollary 3.2], we may suppose, by moving T by an ambient isotopy, that each component of $T \cap N^{c}$ is a product annulus.

Since T is incompressible, and $T \cap R=\phi$, we may suppose that T intersects D_{1} in essential loops in the annulus $\operatorname{cl}\left(D_{1}-N\left(a_{1} ; D_{1}\right)\right)$. Suppose that some component of $T \cap D_{1}$ is contractible in T. Then, by using cut and paste arguments, we see that ∂D_{1} bounds a disk in $E(L)$, contradicting the fact that $E\left(\partial D_{1} \cup L\right)$ is irreducible. Hence we see that ∂D_{1} is ambient isotopic to an essential loop l on T. Then, by the above, we may suppose that either l is ambient isotopic to a component of $T \cap S$ or each component of $l \cap N^{c}$ runs from $R_{-}\left(\gamma^{c}\right)$ to $R_{+}\left(\gamma^{c}\right)$. Then since $l k(l, L)=l k\left(\partial D_{1}, L\right)=0$, we see that l is ambient isotopic to a component of $T \cap S$. Hence we may suppose that $\partial D_{1} \cap S=\phi$. This shows that $\chi(S) \leq \chi(R)$. Clearly $\chi(S) \geq \chi(R)$. Hence $\chi(S)=\chi(R)$, and R is a minimal genus Seifert surface for L in M.

Claim 3.2. If T is compressible in $E(L)$, then T bounds a solid torus in $E(L)$.
Proof. Since $E(L)$ is irreducible and T separates $E(L)$, we see that T bounds either a solid torus or a 3-manifold homeomorphic to the exterior of a non-trivial knot in S^{3} such that the boundary of the compressing disk is a meridian loop. Assume that T bounds the exterior E of a non-trivial knot with a compressing disk C for T such that ∂C is a meridian loop for E. Then $\partial D_{1} \subset E$. Then $B=E \cup N(C ; E(L))$ is a 3-ball such that $\partial D_{1} \subset B$, contradicting the irreducibility of $E\left(\partial D_{1} \cup L\right)$.

Claim 3.3. If T is compressible in $E(L)$, then R is a minimal genus Seifert surface for L in M.

Proof. Assume that R is not a minimal genus Seifert surface for L in M.

By Claim 3.2, T bonuds a solid torus τ such that $\partial D_{1} \subset \tau$. Since $E\left(\partial D_{1} \cup L\right)$ is irreducible, and T is incompressible in $E\left(\partial D_{1} \cup L\right)$, we may suppose that T intersects D_{1} in essential loops in the annulus $D_{1}-N\left(a_{1} ; D_{1}\right)$. By the argument of the second paragraph of the proof of Claim 3.1, we see that every component of $T \cap D_{1}$ is an essential loop in T. Then ∂D_{1} is ambient isotopic to an essential loop l on T.

Let m be an essential simple loop on T. Then $M(m)$ denotes the manifold obtained from $D^{2} \times S^{1}$ and M - Int τ by identifying their boundaries by a homeomorphism which takes $\partial\left(D^{2} \times p t\right.$.) to m. Clearly $M(m)$ is obtained from N by doing a Dehn surgery along the core curve c of τ. Then $R(m)$ denotes the image of R in $M(m)$. Let m_{0} be a simple loop on T such that $M\left(m_{0}\right)=M$, and $R\left(m_{0}\right)=R$.

Subclaim 1. The absolute value of the intersection number of m_{0} and l in T is greater than one.

Proof. Assume that m_{0} does not intersect l, i.e. m_{0} and l are parallel. Then l bounds a disk in τ, contradicting the fact that $E\left(\partial D_{1} \cup L\right)$ is irreducible. Assume that m_{0} intersects l in one point. Then l is isotopic to c in τ, contradicting the fact that T is not boundary parallel in $E\left(\partial D_{1} \cup L\right)$.

Let l^{*} be a simple loop in T intersecting l in one point. By Subclaim 1, we see that M is homeomorphic to the connected sum of $M\left(l^{*}\right)$ and a non-trivial lens space L_{n} (Figure 3.4).

Since T is incompressible, and $E\left(\partial D_{1} \cup L\right)$ is irreducible, $E(c \cup L)$ ($\cong E(L)-\operatorname{Int} \tau)$ is irreducible. By the maximality of T, it is easy to see that $E(L)$ is R_{c}-actoroidal. By Subcalim $1, l$ is not ambient isotopic to m_{0}. Since $R\left(n_{0}\right)$ is not of minimal genus, by [5, Theorem 1.8] or [12, 5.1 Theorem], we see that $R(l)$ is taut, so that of minimal genus.

Let \bar{R}^{*} be the image of R^{*} (Figure 3.3 (i)) in $M\left(l^{*}\right)$. Then;
Subclaim 2. $\quad \bar{R}^{*}$ is a minimal genus Seifert surface in $M\left(l^{*}\right)$.
Proof. The idea of the following proof can be found in [14]. Let $\left(N^{0}, \delta^{0}\right)$, $\left(N^{l}, \delta^{l}\right),\left(N^{*}, \delta^{*}\right)$ be the complementary sutured manifolds for $R\left(=R\left(m_{0}\right)\right), R(l)$, $R\left(l^{*}\right)$ respectively. Let S^{2} be a 2 -sphere in $M(l)$ such that $S^{2} \cap(M$-Int $\tau)$ is a disk whose boundary is l, and intersecting $R(l)$ in an essential arc (Figure 3.4 (i)). Then the image of S^{2} in N^{l} is a product disk \mathscr{D} in $\left(N^{l}, \delta^{l}\right)$, and, by doing the product decomposition along \mathscr{D}, we get a sutured manifold $(\bar{N}, \bar{\delta})$, which is homeomorphic to the complementary sutured manifold for \bar{R}^{*}. Since $R(l)$ is taut, $\left(N^{l}, \delta^{l}\right)$ is taut. Hence, by [2, Lemma 3.12] or [12, 4.2 Lemma], (\bar{N}, δ) is taut, so that \bar{R}^{*} is of minimal genus.

Since $M=M\left(l^{*}\right) \# L_{n}\left(\right.$ Figure 3.4 (ii)), Subclaim 2 shows that R^{*} of Figure

Fig. 3.4
3.3 (i) is of minimal genus. Hence S^{\prime} of Figure 3.3 (ii) is of minimal genus. We note that $\chi\left(L^{\prime}\right)\left(=\chi\left(S^{\prime}\right)\right)=\chi(R)+2$, and $\chi(L)<\chi\left(L^{\prime}\right)$, i.e. $\chi(L)+2 \leq \chi\left(L^{\prime}\right)$. This shows that R is a minimal genus Seifert surface for L in M, a contradiction.

This completes the proof of Theorem 1.

4. Fiber surfaces and pre-fiber surfaces

In this seation, we give the definition of pre-fiber surfaces, and show that if there is a fiber surface F whose monodromy has a certain property, then we can get a pre-fiber surface by removing a band from F (Proposition 4.5). And, by using the result, we prove Theorem 2 (1).

Let S be a connected surface in a 3 -manifold, and $\left(N^{c}, \delta^{c}\right)$ the complementary sutured manifold for $S . \quad S$ is a pre-fiber surface, if there are pairwise disjoint compressing disks D^{+}, D^{-}for $R_{+}\left(\delta^{c}\right), R_{-}\left(\delta^{c}\right)$ respectively in N^{c} such that (\bar{N}, δ^{c}) is homeomorphic to the product sutured manifold, where \bar{N} is obtained from N^{c} by doing a surgery along $D^{+} \cup D^{-}$. Then S has two compressing disks \bar{D}^{+}, \bar{D}^{-}such that Int $\bar{D}^{+} \cap \operatorname{Int} \bar{D}^{-}=\phi, \bar{D}^{+} \cap N^{c}=D^{+}, \bar{D}^{-} \cap N^{c}=D^{-}$. We say that \bar{D}^{+}, \bar{D}^{-}is a pair of canonical compressing disks for a pre-fiber surface S.

Remark. We note that $N\left(\partial \bar{D}^{+} ; \bar{D}^{+}\right)$lies in the - side of S.
We say that a pre-fiber surface S is of type 1 (type 2 resp.) if ∂D^{+}is nonseparating (separating resp.) in $R_{+}\left(\delta^{c}\right)$. It is easy to see that if S is of type 1 , then (N^{c}, δ^{c}) is homeomorphic to ($\left.D^{2} \times S^{1} \natural_{d_{+}}\left(S^{\prime} \times I\right) \mathfrak{\natural}_{d_{-}} D^{2} \times S^{1}, \partial S^{\prime} \times I\right)$, where S^{\prime} is a connected surface, 4 denotes a boundary connected sum, and d_{+}(d_{-}resp.) denotes a disk in $S^{\prime} \times\{1\}\left(S^{\prime} \times\{0\}\right.$ resp.).

Example 4.1. Let T be a genus 1 Heegaard surface for a lens space [6], and D^{2} a disk in T. Let $S=T$-Int D^{2}. Then S is a pre-fiber surface of type 1. In fact, the complementary sutured manifold for S is homeomorphic to ($D^{2} \times$ S^{1} Я $\left(D^{2} \times I\right)$ 氏 $\left.D^{2} \times S^{1}, \partial D^{2} \times I\right)$ 。

Let A be an unknotted, untwisted annulus in S^{3}. Then A is a pre-fiber
surface of type 2. In fact, the complementary sutured manifold for A is homeomorphic to ($D^{2} \times S^{1}, \gamma$), where $s(\gamma)$ consists of two essential loops in $\partial\left(D^{2} \times S^{1}\right)$ which are contractible in $D^{2} \times S^{1}$.

The next proposition shows that pairs of canonical compressing disks for a pre-fiber surface are unique.

Proposition 4.2. Let S be a pre-fiber surface, and $D^{+}, D^{-}, \bar{D}^{+}, \bar{D}^{-}$as above. Let $\bar{D}^{+\prime}, \bar{D}^{-\prime}$ be a pair of canonical compressing disks for S such that $N\left(\partial \bar{D}^{+\prime} ; \bar{D}^{+\prime}\right)$ $\left(N\left(\partial \bar{D}^{-\prime} ; \bar{D}^{-\prime}\right)\right.$ resp. $)$ lies in the - side $\left(+\right.$ side resp.) of S. Then $\bar{D}^{+\prime}\left(\bar{D}^{-\prime}\right.$ resp.) is isotopic to $\bar{D}^{+}\left(\bar{D}^{-}\right.$resp.) by an ambient isotopy of the 3-manifold respecting S.

For the proof of Proposition 4.2, we prepare two lemmas. Let (N, δ) be a connected sutured manifold such that N is obtained from a (possibly disconnected) product sutured manifold ($N^{\prime}, \delta^{\prime}$) with N^{\prime} irreducible by attaching a 1-handle along disks in $R_{+}\left(\delta^{\prime}\right)$, and δ is the image of δ^{\prime}. Let D be the dual core of the 1 -handle. Then;

Lemma 4.3. Suppose that N^{\prime} is disconnected. Let D_{1} be a compressing disk for $R_{+}\left(\delta_{1}\right)$. Then D_{1} is isotopic to D by an ambient isotopy of N respecting δ.

Proof. Since N^{\prime} is irreducible, N is irreducible. Hence, by using standard innermost disk arguments, we may suppose that no component of $D \cap D_{1}$ is a simple loop. Suppose that $D \cap D_{1}=\phi$. Then ∂D_{1} bounds a disk D^{\prime} in $R_{+}\left(\delta^{\prime}\right)$. Since D_{1} is a compressing disk, we see that D^{\prime} contains a component of $N^{\prime} \cap(1-h a n d l e)$, so that D_{1} is parallel to D. Suppose that $D \cap D_{1} \neq \phi$. Let $\Delta\left(\subset D_{1}\right)$ be an outermost disk, i.e. $\Delta \cap D=\partial \Delta \cap D=\alpha$ an arc, and $\Delta \cap \partial D_{1}=\beta$ an arc such that $\alpha \cup \beta=\partial \Delta$. Let Δ^{\prime} be the image of Δ in N^{\prime}. Then $\partial \Delta^{\prime} \subset$ $R_{+}\left(\delta^{\prime}\right)$, and $\partial \Delta^{\prime}$ bounds a disk D^{\prime} in $R_{+}\left(\delta^{\prime}\right)$ such that Δ^{\prime} is parallel to D^{\prime}. Hence we can remove α by moving D_{1} by an ambient isotopy of N respecting δ. Then by the induction on $\#\left(D \cap D_{1}\right)$, we have the conclusion.

Lemma 4.4. Let $(N, \delta),\left(N^{\prime}, \delta^{\prime}\right)$ be as above. Suppose that N^{\prime} is connected. Let D_{1} be a compressing disk for $R_{+}(\delta)$ such that ∂D_{1} is non separating in $R_{+}(\delta)$. Then D_{1} is isotopic to D by an ambient isotopy of N respecting δ.

Proof. Let D^{1}, D^{2} be the disks in $R_{+}\left(\delta^{\prime}\right)$ along which the 1 -handle is attached. We may suppose that no component of $D \cap D_{1}$ is a simple loop (see the proof of Lemma 4.3). We see that if $D \cap D_{1}=\phi$, then we have the conclusion (see the proof of Lemma 4.3). Suppose that $D \cap D_{1} \neq \phi$. Let $\Delta\left(\subset D_{1}\right)$ be an outermost disk, and $\alpha=\Delta \cap D, \beta=\Delta \cap \partial D_{1}$. Let Δ^{\prime} be the image of Δ in N^{\prime}. Without loss of generality, we may suppose that $\partial \Delta^{\prime} \cap D^{2}=\phi$, and $\partial \Delta^{\prime} \cap D^{1}$ consists of an arc α^{\prime} parallel to α in D_{1}. Let β^{\prime} be the image of β in N^{\prime}. Then $\partial \Delta^{\prime}=\alpha^{\prime} \cup \beta^{\prime}$, and $\partial \Delta^{\prime}$ bounds a disk D^{\prime} in $R_{+}\left(\delta^{\prime}\right)$ such that Δ^{\prime} is parallel
to D^{\prime}. If D^{\prime} does not contain D^{2} then we can move D_{1} by an isotopy to reduce $\#\left(D \cap D_{1}\right)$. Suppose that D^{\prime} contains D^{2}. Then trace the arc $\tilde{\alpha}=\partial D_{1}-\beta$ from one endpoint to the other. It is easy to see that there is a subarc α^{*} of $\tilde{\alpha}$ such that $\alpha^{*} \cap D=\partial \alpha^{*}$, the image of α^{*} in N^{\prime} is an arc contained in D^{\prime}, and the endpoints of the image of α^{*} is contained in ∂D^{2} (Figure 4.1). This shows that, by moving D_{1} by an isotopy, we can remove α^{*}. Hence, by the induction on \# $\left(D_{1} \cap D\right)$, we have the conclusion.

Fig. 4.1
Proof of Proposition 4.2. We prove Proposition 4.2 for \bar{D}^{+}and $\bar{D}^{+\prime}$. The other case is essentially the same. Let $\left(N^{c}, \delta^{c}\right),\left(\bar{N}, \delta^{c}\right)$ be as above. Then we may suppoe that $D^{+\prime}=\bar{D}^{+\prime} \cap N^{c}$ is a disk. Let $S_{1 / 2}$ be the surface in N^{c} corresponding to $S \times\{1 / 2\}\left(\subset\left(\bar{N}, \delta^{\prime}\right) \cong(S \times I, \partial S \times I)\right)$. Then by using standard innermost disk arguments, we may suppose that $D^{+\prime} \cap S_{1 / 2}=\phi$. Then, by Lemma 4.3 or Lemma 4.4, we see that $D^{+\prime}$ is ambient isotopic to D^{+}in N^{c}. This shows that $\bar{D}^{+\prime}$ is isotopic to \bar{D}^{+}by an ambient isotopy respecting S.

This completes the proof of Proposition 4.2.
Let F be a fiber surface in a 3-manifold M, and $\varphi: F \rightarrow F$ a monodromy map. Suppose that there is an arc $a(\subset S)$ such that;
(4.1) $a \cap \varphi(a)=\partial a=\partial \varphi(a)$, and
(4.2) the components of $N(\partial \varphi(a) ; \varphi(a))$ lie in one side of a (Figure 4.2).

The purpose of this section is to prove;
Proposition 4.5. Let F, φ, a be as above. If M is a rational homology

Fig. 4.2

3-sphere, and a does not separate F, then the surface obtained from F by cutting along a is a pre-fiber surface.

In case when a separates F, we have;
Proposition 4.6. Let F, φ, a be as above. If a separates F, then there is a separating 2-sphere S^{2} in M such that $S^{2} \cap F=a$,i.e. F is a connected sum of two fiber surfaces.

Proof of Proposition 4.6. Suppose that a separates F into F_{1} and F_{2}. Since $\left.\varphi\right|_{\partial F}=\mathrm{id}_{\partial F}$, and φ is a homeomorphism, we see that $\varphi\left(F_{i}\right)$ is rel ∂ isotopic to F_{i}. Hence, we may suppose that $\varphi(a)=a$. Take a pp disk \square such that $\partial_{-} \square=$ $\partial_{+} \square=a$. Then \square is topologically an annulus. Then, by adding two meridian disks to \square, we get a 2 -sphere S^{2} in M, which intersects F in a.

Assume that S^{2} does not separate M. Let M^{\prime} be the 3-manifold obtained from M by cutting along S^{2}, and then capping off the boundary by two 3-cells. We note that the complementary sutured manifold ($N^{\prime}, \delta^{\prime}$) for the disconnected surface $F_{1} \cup F_{2}$ in M^{\prime} is homeomorphic to the sutured manifold obtained from the complementary sutured manifold (N, δ) of F by decomposing along the product disk $\square \cap N$. Hence $F_{1} \cup F_{2}$ is a fiber surface in a connected 3-manifold M^{\prime}, contradicting Lemma 2.1.

Proof of Proposition 4.5. Let a_{1} and a_{2} be the components of $\operatorname{Fr}_{F} N(a ; F)$. We may suppose that $a_{1} \cap \varphi(a)$ consists of two points, and $a_{2} \cap \varphi(a)=\phi$. See Figure 4.2. Let α be the subarc of a_{1} such that $\partial \alpha=a_{1} \cap \varphi(a)$, and $l=(\varphi(a)-$ $N(a ; F)) \cup \alpha$. Then l is a simple loop on F.

Claim 4.1. There exists a disk D in M such that $\partial D=l$, and $(\operatorname{Int} D) \cap F=a$.
Proof. Let \square be a pp disk for F such that $\partial_{-} \square=a, \partial_{+} \square=\varphi(a)$. We note that $\square \cap \partial E(L)$ consists of two meridian loops. Let D_{1}, D_{2} be meridian disks for L such that $\partial D_{1} \cup \partial D_{2}=\square \cap \partial E(L)$, and $\bar{\square}=\square \cup D_{1} \cup D_{2}$. Then we identify $F \cap E(L)$ to F. Let B be the rectangle in F such that one edge is a, two edges are the components of $\varphi(a) \cap N(a ; F)$, and the last edge is α. Then $\bar{D}=\bar{\square} \cup B$ is topologically a disk such that $\partial \bar{D}=l$, and $\bar{D} \cap F=B \cup l$. Then, by deforming \bar{D} by pushing $B-(\alpha \cup a)$ slightly to the -side of F, we get a disk D satisfying the conclusion.

Let S_{1} be the surface obatined from F by cutting along a, and D as in Claim 4.1. Then $D \cap S_{1}=\partial D=l$, and we have;

Claim 4.2. No component of the surface obtained from S_{1} by doing a surgery along D, is closed.

Proof. If l is non-separating in S_{1}, then Claim 4.2 is clear. Hence assume that l separates S_{1} into S^{\prime} and $S^{\prime \prime}$ such that $S^{\prime} \cup D$ is a closed surface. Since
a is non-separating in F, there is a simple loop m on F such that $m \cap l=\phi$, and m intersects a in one point. Then m intersects the closed surface $S^{\prime} \cup D$ in one point, contradicting the fact that M is a rational homology 3 -sphere.

Let a^{\prime} be the component of $\operatorname{Fr}_{F} N(\varphi(a) ; F)$ such that $a^{\prime} \cap l=\phi$. Then we have;

Claim 4.3. There is a properly embedded arc $a^{\prime \prime}(\subset F)$ such that $a^{\prime \prime} \cap\left(a \cup a^{\prime}\right)$ $=\phi, a^{\prime \prime} \cap l=\phi$, and $a \cup a^{\prime} \cup a^{\prime \prime}$ cuts off an annulus \mathcal{A} from F such that l is a core of \mathcal{A}.

Proof. Let F^{\prime} be the component of the surface obtained from F by cutting along $a \cup a^{\prime}$ such that $l \subset F^{\prime}$. Then l is parallel to the component of ∂F^{\prime} which meets $a \cup a^{\prime}$. By Claim 4.2, there is a component l^{\prime} of ∂F such that $l^{\prime} \subset F^{\prime}$. Let β be an arc in F^{\prime} such that $\beta \cap l^{\prime}=\partial \beta \cap l^{\prime}$ consists of one point, the other endpoint of β is contained in l, and, Int $\beta \cap l=\phi$. Then $\mathrm{Fr}_{F^{\prime}} N\left(\beta \cup l ; F^{\prime}\right)$ consists of two components such that one is a simple loop parallel to l, and the other is an arc $a^{\prime \prime}$ properly embedded in F^{\prime}. It is easy to see that $a^{\prime \prime}$ satisfies the conclusion.

Claim 4.4. Let $a^{\prime}, a^{\prime \prime}, \mathcal{A}$ be as in Claim 4.3. Then there is a 3-ball B^{3} in M such that $B^{3} \cap F=\mathcal{A}$, and \mathcal{A} looks as in Figure 4.3 in B^{3}.

Fig. 4.3
Proof. Let \bar{D}, B be as in the proof of Claim 4.1. Then $N(\mathcal{A} \cup \bar{D} ; M)$ is a 3-ball, and \mathcal{A}, \bar{D} looks as in Figure 4.4 in the 3-ball. Since D is obtained from

Fig. 4.4
\bar{D} by pushing $B-(\alpha \cup a)$ to the-side of F, it is easy to see that the conclusion holds.

Let $D, a^{\prime}, a^{\prime \prime}, B^{3}$ be as in Claim 4.4. By Figure 4.3, we see that the complementary sutured manifold $\left(N_{F}^{c}, \delta_{F}^{c}\right)$ for F looks as in Figure 4.5 (i) in B^{3}. Let \square be a pp disk for F such that $\partial_{-} \square=a$. Then we may suppose that $\square \subset B^{3}$, and $\Delta=\square \cap N_{F}^{c}$ is a product disk for ($N_{F}^{c}, \delta_{F}^{c i}$) (Figure 4.5 (i)). Let $\left(\bar{N}_{1}, \delta_{1}\right)$ be the product sutured manifold obtained from ($N_{F}^{c}, \delta_{F}^{c}$) by a product decomposition along $\Delta, \bar{D}^{-}, \bar{D}^{+}$the disks properly embedded in $c l\left(E(L)-\bar{N}_{1}\right)$ as in Figure 4.5 (ii). Let S_{2} be the surface obtained from S_{1} by doing surgcry along D. See Figure 4.6. Finally, let $\left(N_{1}, \delta_{1}\right)\left(\left(N_{1}^{c}, \delta_{1}^{c}\right)\right.$ resp.) be the sutured manifold obtained from S_{1} (the complementary sutured manifold for S_{1} resp.).

Fig. 4.5

Fig. 4.6
Since S_{1} is obtained from F by cutting along a, and ($N_{F}^{c}, \delta_{F}^{c}$) is properly isotopic in $E(\partial F)$ to the sutured manifold obtained from F (note that F is a fiber surface), we see that $\left(\bar{N}_{1}, \delta_{1}\right)$ is ambient isotopic to $\left(N_{1}, \delta_{1}\right)$ in M. Hence, hereafter, we identify $\left(N_{1}, \delta_{1}\right)$ to ($\bar{N}_{1}, \bar{\delta}_{1}$), and we identify S_{1} to $S_{1} \times\{1 / 2\}$ ($\subset S_{1} \times I=\bar{N}_{1}$). Then \bar{D}^{+}, \bar{D}^{-}are compressing disks for $R_{+}\left(\delta_{1}^{c}\right), R_{-}\left(\delta_{1}^{c}\right)$ in $N_{1}^{c}\left(=\operatorname{cl}\left(E\left(\partial S_{1}\right)-\bar{N}_{1}\right)\right)$ respectively. Let N^{*} be the manifold obtained from N_{1}^{c} by doing surgery along $\bar{D}^{+} \cup \bar{D}^{-}$. Then $\left(N^{*}, \delta_{1}^{c}\right)$ is ambient isotopie to the sutured manifold obtained from S_{2} (see Figure 4.6). This shows that S_{1} is a
pre-fiber surface, and this completes the proof of Proposition 4.5.
As a consequence of Proposition 4.5, we have;
Proof of Theorem 2(1). Let D be the crossing disk for L. Then, by Theorem 1, we see that S looks as in Figure 1.1. Then S_{0} looks as in Figure 4.7 (i). Let S^{*} be the surface obtained from S_{0} by adding a band b as in Figure 4.7 (ii). We note that S_{0} is a plumbing of F and a fiber surface A^{*} in S^{3} (Example 2.4). Hence S^{*} is a fiber surface. Moreover, by Figure 4.7 (ii), it is directly observed that the arc α in Figure 4.7 (ii) satisfies the assumptions of Proposition 4.5 (cf. Figure 4.3). Hence, by Proposition 4.5, we see that S_{0} is a pre-fiber surface.

Let S_{0} be as in Theorem 2, a_{0} as in Figure 1.2, and D^{+}, D^{-}a pair of canonical compressing disks for the pre-fiber surface S_{0}. Then the next lemma will be used in section 6 to prove Proposition 6.1.

Lemma 4.7. Let S_{0}, a_{0}, D^{+}, and D^{-}be as above. Then ∂D^{+}, and ∂D^{-} are ambient isotopic in S_{0} to a loop intersecting a_{0} in one point.

Proof. Without loss of generality we may suppose that the Hopf band A is attached to the + side of F (Figure 1.1). Then there is a compressing disk \bar{D}^{-}for S_{0} such that $\partial \bar{D}^{-}$corresponds to the core curve of A, and $N\left(\partial \bar{D}^{-} ; \bar{D}^{-}\right)$lies in the + side of S_{0}. Then by the proof of Theorem 2 (1) (Figure 4.7), and the proof of Proposition 4.5 (Figures 4.5, 4.6), we see that \bar{D}^{-} is a component of a pair of canonical comporesing disks for S_{0}. Hence, by Proposition 4.2, we see that ∂D^{-}is ambient isotopic to a loop intersecting a_{0} in one point. Let $a(\subset S)$ be the arc correspondsing to a_{0} (Figure 4.8). Then it is directly observed from Figure 4.8 that there is a pp disk \square such that $\partial_{+} \square=a$, $\partial_{+} \square \cap \partial_{-} \square=\partial a$, and the components of $N\left(\partial a ; \partial_{-} \square\right)$ lie in pairwise different sides of a. Hence there is a monodromy map $\psi: S \rightarrow S$ such that $\psi^{-1}(a) \cap a=$ ∂a, and the components of $N\left(\partial \psi^{-1}(a) ; \psi^{-1}(a)\right)$ lie in pairwise different sides of a.

Fig. 4.8

Fig. 4.9
Let \square^{\prime} be pp a disk such that $\partial_{-} \square^{\prime}=a, \partial_{+} \square^{\prime}=\psi(a)$. Roughly speaking, $\square^{\prime}=\psi(\square)$. Then \square^{\prime} looks as in Figure 4.9 in the 3-ball $B=N(a ; M)$.

Let b_{0} be an unknotted band, and Δ_{0} a disk in a 3-ball B_{0} as in Figure 4.10. Let $h: \partial B \rightarrow \partial B_{0}$ be a homeomorphism such that $h(S \cap \partial B)=h\left(b_{0} \cap \partial B_{0}\right)$, and $h\left(\square^{\prime} \cap \partial B\right)=h\left(\Delta_{0} \cap \partial B_{0}\right)$. Then $(M-\operatorname{Int} B) \cup_{h} B_{0}=M$, and it is easy to see that $(S$-Int $B) \cup b_{0}=S_{0}$ and $\bar{D}^{+}=\left(\square^{\prime}-\operatorname{Int} B\right) \cup \Delta_{0}$ is a compressing disk for S_{0} such that $N\left(\partial \bar{D}^{+} ; \bar{D}^{+}\right)$lies in the-side of S_{0}.

Fig. 4.10
By definition, it is easy to see that $\partial \bar{D}^{+}$is ambient isotopic to a loop corresponding to $\psi($ the core curve of $A)$. Hence \bar{D}^{+}is a component of a pair of canonical compressing disks for S_{0}. Hence, by Proposition 4.2, ∂D^{+}is ambient isotopic to a loop intersecting a_{0} in one point.

5. Propositions

In this section, we prove some technical propositions. For the statement of the results, we give some definitions.

Let M be a compact 3-manifold, μ a subsurface of ∂M. For a connected surface S properly embedded in (M, μ), let

$$
\chi(S)=\max \{0,-\chi(S)\}
$$

When S is a union of connected surfaces S_{1}, \cdots, S_{n}, let

$$
\chi(S)=\sum_{i=1}^{n} \chi_{-}\left(S_{i}\right)
$$

Then, we define the function

$$
x: H_{2}(M, \mu) \rightarrow Z
$$

by

$$
x(a)=\min \left\{\chi_{-}(S) \mid S \text { is an embedded surface representing } a\right\}
$$

We say that S is norm minimizing if $\chi_{-}(S)=x([S])$, where [S] denotes the homology class in $H_{2}(M, \mu)$ represented by S.

Let S^{\prime} be a compact, connected surface with $\partial S^{\prime} \neq \phi, \tilde{l}_{0}, \tilde{l}_{1}$ non separating simple loops in S^{\prime}. Let $N=S^{\prime} \times I, \delta=\partial S^{\prime} \times I$, and $l_{0}=\tilde{l}_{0} \times\{0\}, l_{1}=\tilde{l}_{1} \times\{1\}$ $(\subset \partial N)$. Let \bar{N}_{0} be the manifold obtained from N by attaching a 2 -handle \mathscr{D}_{0} along l_{0}, \bar{N} the manifold obtained from N by attaching two 2 -handles along $l_{0} \cup l_{1}$. We may regard that \bar{N} is obtained from \bar{N}_{0} by attaching a 2 -handle \mathscr{D}_{1} along l_{1}. $\bar{\delta}_{0}, \delta$ denote the images of δ in \bar{N}_{0}, \bar{N} respectively. Then $(N, \delta),\left(\bar{N}_{0}, \delta_{0}\right),(\bar{N}, \bar{\delta})$, have mutually coherent sutured manifold structures. The purpose of this section is to prove Propositions 5.1 and 5.2 below.

Proposition 5.1. Suppose that $R_{ \pm}(\bar{\delta})$ are not norm minimizing in $H_{2}(\bar{N}, \bar{\delta})$. Then \tilde{l}_{0} is ambient isotopic to a loop disjoint from \tilde{l}_{1}.

Remark. It is easily observed that if \tilde{l}_{0} and \tilde{l}_{1} are disjoint, and not parallel then $R_{ \pm}(\delta)$ is not norm minimizing in $H_{2}(\bar{N}, \bar{\delta})$

Proposition 5.2. Suppose that $(\bar{N}, \bar{\delta})$ is a product sutured manifold. Then \tilde{l}_{0} is ambient isotopic to a loop intersecting \tilde{l}_{1} in one point.

As a consequence of Proposition 5.1, we have;
Corollary 5.4. Let S_{0} be a pre-fiber surface of type 1 in a rational homology 3-sphere M, D^{+}, D^{-}a pair of canonical compressing disks for S_{0}, and S_{1} the surface obtained from S_{0} by doing a surgery along D^{+}. Suppose that $\chi(L)>\chi\left(S_{0}\right)+2$, where $L=\partial S_{0}$. Then ∂D^{+}is ambient isotopic in S_{0} to a loop disjoint from ∂D^{-}, and S_{1} is a pre-fiber surface, where D^{-}is a component of a pair of canonical com-

pressing disks for S_{1}.

The proof of Proposition 5.1 is done by using the outermost fork argument of M. Scharlemann [11]. And the proof of Proposition 5.2 is done by using the Haken type argument of Casson-Gordon [1].

For the proof of the propositions, we prepare one lemma. Let (E, ε) be a connected sutured manifold. Suppose that there is a non separating compressing disk C for $R_{+}(\varepsilon)$ such that $(\bar{E}, \bar{\varepsilon})$ is a product sutured manifold, where E is obtained from E by cutting along C, and $\bar{\varepsilon}$ the image of ε in E. Let A be an incompressible product annulus in (E, ε). Then;

Lemma 5.3. A is ambient isotopic to an annulus disjoint from D by an ambient isotopy of E respecting ε.

The proof of Lemma 5.3 is done by using the same arguments as that of Lemma 4.4. Hence we omit it.

Proof of Proposition 5.1. Let F be a norm minimizing surface in $(\bar{N}, \bar{\delta})$ such that $[F]=\left[R_{+}(\delta)\right] \in H_{2}(\bar{N}, \bar{\delta})$. Since $[F]=\left[R_{+}(\bar{\delta})\right]$, by piping the boundary components of F, if necessary, we may suppose that $\partial F=s(\bar{\delta})$ (Figure 5.1).

Fig. 5.1
The next claim will be used in the proof of Corollary 5.4.
Claim 5.0. \bar{N} is irreducible.
Proof. Assume not. Let F be a surface in \bar{N} corresponding to $S^{\prime} \times\{1 / 2\}$, and V_{1}, V_{2} the closure of the components of $\bar{N}-F$. Then $\left(V_{1}, V_{7}\right)$ is a Heegaard splitting of \bar{N} in terms of [1]. Henee, by [1, Lemma 1.1], we see that there is an essential 2 -sphere S_{1} in \bar{N} such that $V_{i} \cap S_{1}$ consists of a disk. Then it is easy to see that \bar{N} is a connected sum of a lens space and a product sutured manifold. But this contradicts the fact that $R_{ \pm}(\delta)$ are not norm minimizing.

Claim 5.1. $\quad F \cap \mathscr{D}_{1} \neq \phi$.
Proof. Assume that $F \cap \mathscr{D}_{1}=\phi$. Then we can regard that $F \subset \bar{N}_{0}$. Let
D be the disk properly embedded in \bar{N}_{0} such that $D=\left(\tilde{l}_{0} \times I\right) \cup\left(\right.$ the core of $\left.\mathscr{D}_{0}\right)$. Then the manifold N_{0} obtained by cutting \bar{N}_{0} along D is homeomorphic to $R_{-}\left(\bar{\delta}_{0}\right) \times I$, where $R_{-}\left(\delta_{0}\right) \times\{0\}$ corresponds to $R_{-}\left(\delta_{0}\right)$. Since \bar{N}_{0} is irreducible, by using standard innermost disk arguments, we may suppose that $F \cap D=\phi$. Hence we may regard that $F \subset N_{0}$. Then, by [15, Corollary 3.2], we see that F is a parallel to $R_{-}\left(\delta_{0}\right)$. Hence $\chi(F)=\chi\left(S^{\prime}\right)+2\left(=\chi\left(R_{-}(\bar{\delta})\right)\right)$, a contradiction.

We may suppose that F intersects \mathscr{D}_{1} in horizontal disks E_{1}, \cdots, E_{n} in this order. Let $F_{0}=c l\left(F-\cup_{i=1}^{n} E_{i}\right)$, and $A_{i}(i=1, \cdots, n-1)$ the annulus in $\partial \bar{N}_{0}$ bounded by $\partial E_{i} \cup \partial E_{i+1}$. Let D be as in the proof of Claim 5.1. We suppose that $\#\left(\partial F_{0} \cap \partial D\right)$ is minimal among all disks ambient isotopic to D in \bar{N}_{0}. Let α be the dual core of the 2 -handle \mathscr{D}_{1}. Then α is an arc in \bar{N} such that $\alpha \cap \partial \bar{N}=\alpha \cap R_{+}(\bar{\delta})=\partial \alpha$. Since F is norm minimizing, by [12, 3.5 Lemma b)], we may suppose that F separates \bar{N} into two components M_{0}, M_{1} such that $M_{0} \supset R_{-}(\delta), M_{1} \supset R_{+}(\delta)$. This shows that α intersects F an even number of times and the signs of the intersections are alternately different on α. Hence we have;

Claim 5.2. n is an even number, and the orientations on $\partial E_{1}, \cdots, \partial E_{n}$ induced from F_{0} are alternately different in $\partial \bar{N}_{0}$.

Claim 5.3. If $n=2$, then \tilde{l}_{0} is ambient isotopic to a loop disjoint from \tilde{l}_{1}.
Proof. Let $F_{1}=\left(F-\left(E_{1} \cup E_{2}\right)\right) \cup A_{1}$. Then $\chi\left(F_{1}\right)=\chi(F)-2$. By the argument of the proof of Claim 5.1, we see that F_{1} is parallel to $R_{-}\left(\delta_{0}\right)$. Hence, there is a product annulus A in \bar{N}_{0} such that $A \cap R_{+}\left(\delta_{0}\right)=l_{1}$. Let $D\left(\subset \bar{N}_{0}\right)$ be as in the proof of Claim 5.1. Then D cuts $\left(\bar{N}_{0}, \bar{\delta}_{0}\right)$ into a product sutured manifold. Hence, by Lemmas 5.3, we may suppose that D and A are disjoint. We note that $A_{0}=D \cap N$ is the product annulus $\tilde{l}_{0} \times I$ in (N, δ). Hence $\tilde{l}_{0} \times\{1\}$ and l_{1} are disjoint, and we have the conclusion.

By Claim 5.3, hereafter, we suppose that $n \geq 4$. Let D be as above. Then, by using standard cut and paste arguments, we may suppose that $D \cap F_{0}$ consists of arcs. We suppose that $\#\left(\partial D \cap l_{1}\right)$ is minimal among all disks ambient isotopic to D in \bar{N}_{0}. Then;

Claim 5.4. No component of $D \cap F_{0}$ is an inessential arc in F_{0}.
Proof. Assume that a component β of $D \cap F_{0}$ is an inessential arc in F_{0}. Then there is a disk Δ_{0} in F_{0} such that $\mathrm{Fr}_{F_{0}} \Delta_{0}=\beta$. By doing ∂-compression on D along Δ_{0} in \bar{N}_{0}, we get two disks $D^{\prime}, D^{\prime \prime}$ whose boundaries lie in $R_{+}\left(\bar{\delta}_{0}\right)$. Since ∂D is non separating in $R_{+}\left(\bar{\delta}_{0}\right)$, at least one of the disks, say D^{\prime}, is non separating in \bar{N}_{0}. By Lemma 4.4, we see that D^{\prime} is ambient isotopic to D. On
the other hand, by moving D^{\prime} by an ambient isotopy, we have $\#\left(\partial D^{\prime} \cap l_{1}\right)<$ \# $\left(\partial D \cap l_{1}\right)$, a contradiction.

We get a planar tree T by corresponding each component of $D-F_{0}$ to a vertex, and each component of $D \cap F_{0}$ to an edge. We regard that T is embedded in D and each edge of T intersects $D \cap F_{0}$ in one point which is contained in the corresponding component of $D \cap F_{0}$. See Figure 5.2. Let γ be a component of $D \cap F_{0}$, and e_{γ} the edge of T corresponding to γ. Then $\gamma \cap e_{\gamma}$ consists of a point, which separates γ into two arcs γ_{1} and γ_{2}. One endpoint of $\boldsymbol{\gamma}_{i}$ lies in $\cup_{j=1}^{n} \partial E_{j}$. Labell the corresponding side of e_{γ} by k if the endpoint lies in ∂E_{k}. Then we can labell the each side of the edges of T by $\{1, \cdots, n\}$.

Fig. 5.2
In general, for a tree \mathscr{I}, an outermost vertex is a vertex with valency 1 . An edge adjacent to an outermost vertex is called an outermost edge. A fork is a vertex with valency ≥ 3. Let \mathscr{F} be the collection of the forks of \mathscr{I}. Let \mathscr{I}^{\prime} be the tree obtained by removing all components of $\mathscr{I}-\mathscr{F}$ which contains an outermost vertex. An outermost vertex for \mathscr{I}^{\prime} is an outermost fork of \mathfrak{I}. If $\mathscr{F}=\phi$, then \mathscr{I} does not contain an outermost fork. If v is an outermost fork, then the components of $\mathcal{I}-v$ which contain no forks are called outermost lines of v. If v_{0} (e_{0} resp.) is a vertex (an edge resp.) which is contained in an outermost line of v, then we say that v_{0} (e_{0} resp.) is dominated by v. Then we have;

Claim 5.5. If there is an outermost edge of T which is labelled by i and $i+1$ for some $i \in\{1, \cdots, n-1\}$, then there is a norm minimizing surface F^{\prime} in $(\bar{N}, \bar{\delta})$ such that $\left[F^{\prime}\right]=[F]$ and, $\#\left(F^{\prime} \cap \mathscr{D}_{1}\right)=\#\left(F \cap \mathscr{D}_{1}\right)-2$.

Proof. Let Δ be the closure of the component of $D-F_{0}$ corresponding to the outermost vertex adjacent to the outermost edge. Let $F_{1}=\left(F-\left(E_{i} \cup E_{i+1}\right)\right)$ $\cup A_{i}$. By Claim 5.2, we see that F_{1} is orientable. Then $\left[F_{1}\right]=[F] \in H_{2}(\bar{N}, \bar{\delta})$, and $\chi\left(F_{1}\right)=\chi(F)-2$. Since the core arc of A_{i} intersects $\partial \Delta$ in one point, $\partial \Delta$ is an essential loop in F_{1}. Hence Δ is a compressing disk. Let F^{\prime} be the surface obtained from F_{1} by doing a surgery along Δ. By moving F^{\prime} by a tiny
isotopy, we see that F^{\prime} satisfies the conclusion.
Claim 5.6. Suppose that there is a vertex v of T such that v is not an outermost vertex, and the adjacent edges of v are labelled alternately by i and $i+1$ (Figure 5.3). Then there is a norm minimizing surface F^{\prime} in $(\bar{N}, \bar{\delta})$ such that $\left[F^{\prime}\right]=\left[F^{\prime}\right]$, and $\#\left(F^{\prime} \cap \mathscr{D}_{1}\right)=\#\left(F \cap \mathscr{D}_{1}\right)-2$.

Fig. 5.3
Proof. Let Δ be the closure of the component of $D-F_{0}$ corresponding to v, and $F_{1}=\left(F-\left(E_{i} \cup E_{i+1}\right)\right) \cup A_{i}$. Then F_{1} is orientable (see the proof of Claim 5.5), $\left[F_{1}\right]=[F]$, and $\chi\left(F_{1}\right)=\chi(F)-2 . \Delta \cap F_{1}=\partial \Delta$, and the absolute value of the algebraic intersection number of $\partial \Delta$ with the core of A_{i} is the number of the edges adjacent to v. Hence Δ is a compressing disk for F_{1}. Let F^{\prime} be the surface obtained from F_{1} by doing surgery along Δ. By moving F^{\prime} by a tiny isotopy, we see that F^{\prime} satisfies the conclusion.

Claim 5.7. If there is an outermost line with the pattern as in Figure 5.4, then there is a norm minimizing surface F^{\prime} in $(\bar{N}, \bar{\delta})$ such that $\left[F^{\prime}\right]=[F]$, and $\#\left(F^{\prime} \cap \mathscr{D}_{1}\right)=\#\left(F \cap \mathscr{D}_{1}\right)-2$.

(i)

(ii)

Fig. 5.4
Proof. Suppose that there is a pattern of Figure 5.4 (i). The other case is essentially the same. Let Δ be the closure of the component of $D-F_{0}$ corresponding to v (Figure 5.4), and $F_{1}=\left(F-\left(E_{1} \cup E_{2}\right)\right) \cup A_{1}$. Then $\Delta \cap F_{1}=\partial \Delta$. Hence if $\partial \Delta$ is not contractible in F_{1}, then, by compressing F_{1} along Δ, we have a surface F^{\prime} satisfying the conclusions. Hence, in the rest of the proof, we suppose that $\partial \Delta$ is contractible in F_{1}. Then $\Delta \cap c l\left(F-\left(E_{1} \cup E_{2}\right)\right)$ consists of two

Fig. 5.5
inessential arcs β_{1}, β_{2} in $c l\left(F-\left(E_{1} \cup E_{2}\right)\right)$ such that $\partial \beta_{i} \subset \partial E_{i}(i=1,2)$. Hence there are two planar surfaces P_{1}, P_{2} in F_{0} such that $\mathrm{Fr}_{F_{0}} P_{i}=\beta_{i}$ (Figure 5.5). By Claim 5.4, we see that P_{i} is not a disk.

Sublcaim 1. T contains a fork.

Proof. Assume that T does not contain a fork. Then, by tracing the edges of T from v_{1} (Figure 5.4), we see that there are n components $\beta_{1}, \beta_{2}, \beta_{3}, \cdots$, β_{n} of $D \cap F_{0}$ such that $\partial \beta_{i} \subset \partial E_{i}(i=1, \cdots, n)$, where β_{1}, β_{2} are as above. Then it is easy to see that some β_{j} contained in P_{1} is an inessential arc in F_{0}, contradicting Claim 5.4.

Let v_{0} be the outermost fork which dominates v_{1}, v_{2} an outermost vertex dominated by v_{0}, and located next to v_{1}. By using the argument of the proof of Subclaim 1, we have;

Subclaim 2. The outermost line between v_{0} and v_{1} contains at most $n-1$ edges.

Subclaim 3. Either the conclusions of Claim 5.7 holds or the outermost edge adjacent to v_{2} is labelled by 1 and n.

Proof. Suppose that the outermost edge is not labelled by 1 and n. Then, by Claim 5.5, we see that either the conclusions of Claim 5.7 hold or the edge is labelled by two 1 's or two n 's. Suppose that the second case occurs. If the outermost line between v_{0} and v_{2} contains more than $n-1$ edges, then we have a contradiction as in the proof of Subclaim 1. Hence the outermost line contains at most $n-1$ edges, and this fact together with Subclaim 2 show that there are exactly n edges between v_{1} and v_{2} in T, and the outermost edge adjacent to v_{2} is labelled by two n 's (Figure 5.6). Then, by tracing the edges in T from v_{1} to v_{2}, we again have a contradiction as in the proof of Subclaim 1.

Suppose that the second conclusion of Subclaim 3 holds. If the outermost line between v_{0} and v_{2} contains more than $n / 2$ edges, then we have a pattern of Figure 5.3 in the outermost line, so that we have the conclusion of Claim 5.7

Fig. 5.6
by Claim 5.6. Assume that the outermost line contains $j(\leq n / 2)$ edges. By Subclaim 2, we see that there are exactly n edges between v_{1} and v_{2} in T (Figure 5.7).

Fig. 5.7
Let $\beta_{1}, \beta_{2}, \beta_{3}, \cdots, \beta_{n}$ be the components of $D \cap F_{0}$ corresponding to the edges between v_{1} and v_{2} in T. Then, for $i \leq n-j, \partial \beta_{i} \subset \partial E_{i}$. Then fix some $\beta_{k}(k \leq n-j)$ suc such that $\beta_{k} \subset P_{1}$, and β_{k} is innermost, i.e. β_{k} cuts off a planar surface P_{k} from F_{0} such that no component of $\partial E_{1} \cup \partial E_{2} \cup \cdots \cup \partial E_{n-j}$ is contained in P_{k} (Figure 5.8).

Fig. 5.8
By Claim 5.4, we see that some $\partial E_{m}(m \geq n-j+1)$ is contained in ∂P_{k}. Since $j \leq n / 2$ and β_{k} is innermost, we see that β_{m} joins ∂E_{k} and ∂E_{m}. This shows that $m=n+1-k$, so that P_{k} is an annulus. Then, by Claim 5.4 , we see that every
component of $D \cap F_{0}$ which meets ∂E_{m} joins ∂E_{m} and ∂E_{k}. But this contradicts the fact that $\#\left(\partial D \cap \partial E_{m}\right)=\#\left(\partial D \cap \partial E_{k}\right)$, and this completes the proof of Claim 5.7.

Completion of the proof of Proposition 5.1. We suppose that \# $\left(F \cap \mathscr{D}_{1}\right)$ is minimal among all norm minimizing surfaces representing $\left[R_{+}(\bar{\delta})\right]$. If $\#\left(F \cap \mathscr{D}_{1}\right)=2$, then, by Claim 5.3, we have the conclusion. Assume that $n>2$. By Claim 5.5, we see that each outermost edge is labelled by either two 1 's, two n's or 1 and n.

Suppose that T does not have a fork. If an outermost edge is labelled by two 1's or two n 's, then we have a contradiction by Claim 5.7. If an outermost edge is labelled by 1 and n, then we have a pattern of Figure 5.3 in T, so that we have a contradiction by Claim 5.6. Hence T has a fork.

Let v be an outermost fork for T. If all the outermost edges dominated by v are labelled by 1 and n, then by Claim 5.6 , we see that each outermost line contains at most $n / 2$ edges. Hence the adjacent edges of v are labelled alternately by $n / 2$ and $n / 2+1$, contradicting Claim 5.6. Hence we may suppose that some outermost edge dominated by v is labelled by two 1's. Then, by Claim 5.7, we see that v is adjacent to the edge. Let v_{1} be an outermost vertex which is dominated by v and next to the outermost edge. By Claim 5.5 , we see that there are at least $n-1$ edges in the outermost line between v and v_{1}. Then, by Claims 5.5 and 5.7 , we see that the edge adjacent to v_{1} is labelled by 1 and n. Hence we have a pattern of Figure 5.3 in the outermost line, contradicting Claim 5.6, and this completes the proof.

Proof of Corollary 5.4. Let $\left(N_{i}, \delta_{i}\right)\left(\left(N_{i}^{c}, \delta_{i}^{c}\right)\right.$ resp.) be the sutured manifold obtained from S_{i} (the complementary sutured manifold for S_{i} resp.) ($i=0,1$). Then we may suppose that $D_{0}^{ \pm}=D^{ \pm} \cap N_{0}^{c}$ are disks properly embedded in N_{0}^{c}, and $\left(c l\left(N_{0}^{c}-N\left(D_{0}^{+} \cup D_{0}^{-} ; N_{0}^{c}\right), \delta_{0}^{c}\right)\right.$ is properly isotopic to $\left(N_{1}, \delta_{1}\right)$ in $E(L)$. Hence, hereafter, we identify $\left(N_{1}, \delta_{1}\right)$ to $\left(c l\left(N_{0}^{c}-N\left(D_{0}^{+} \cup D_{0}^{-} ; N_{0}^{c}\right), \delta_{0}^{c}\right)\right.$. Then $\left(N_{1}^{c}, \delta_{1}^{c}\right)$ is obtained from $\left(N_{0}, \delta_{0}\right)$ by attaching two 2-handles $N\left(D_{0}^{+} ; N_{0}^{c}\right), N\left(D_{0}^{-} ; N_{0}^{c}\right)$ along the simple loops $\partial D^{+} \times\{1\}, \partial D^{-} \times\{0\}$ in $\left(N_{0}, \delta_{0}\right)\left(\cong\left(S_{0} \times I, \partial S_{0} \times I\right)\right.$).

Case 1. $\quad \chi_{-}\left(S_{1}\right)>0$.
In this case, S_{1} is not norm minimizing. Hence, by Claim 5.0, and [5, Lemma 0.4] or [12, section 3], we see that $R_{+}\left(\delta_{1}^{c}\right)$ is not norm minimizing in $H_{2}\left(N_{1}^{c}, \delta_{1}^{c}\right)$. Then, by Proposition 5.1, we may suppose that ∂D^{+}and ∂D^{-}are disjoint. Moreover since M is a rational homology 3-sphere, they are not parallel. Let $D_{1}^{ \pm}=D_{0}^{ \pm} \cup \mathcal{A}^{ \pm}$, where $\mathcal{A}^{+}, \mathcal{A}^{-}$are the product annuli $\partial D^{+} \times I$, $\partial D^{-} \times I$ in $\left(N_{0}, \delta_{0}\right)$. Then D_{1}^{+}, D_{1}^{-}are mutually disjoint disks properly embedded in N_{1}^{c} such that $D_{1}^{+} \cup D_{1}^{-}$cuts $\left(N_{1}^{c}, \delta_{1}^{c}\right)$ into a product sutured manifold. Hence S_{1} is a pre-fiber surface and clearly D^{-}corresponds to D_{1}^{-}.

Case 2. $\quad \chi_{-}\left(S_{1}\right)=0$.
Since $\chi_{-}\left(S_{1}\right)=0, \chi_{-}\left(S_{0}\right)$ is either 0,1 or 2 . Since S_{0} is a pre-fiber surface of type $1, S_{0}$ contains a non separating loop. Hence it is easy to see that S_{0} is either a torus with one hole, or a torus with two holes. If S_{0} is a torus with one hole, then S_{1} is a disk so that $\chi(L)=1=\chi\left(S_{0}\right)+2$, a contradiction. Suppose that S_{0} is a torus with two holes, so that S_{1} is an annulus. Then

Claim. There are mutually disjoint disks E_{1}, E_{2} in M such that $\left(E_{1} \cup E_{2}\right) \cap$ $S_{1}=\partial\left(E_{1} \cup E_{2}\right)=L$.

Proof. Since $\chi(L)>\chi\left(S_{0}\right)+2$, we see that there is a Seifert surface ε for L such that $\chi(\varepsilon)=2$, so that ε is a union of two disks. Then, by using standard innermost disk, outermost arc arguments, we see that either ε satisfies the conclusion of Claim, or ε intersects S_{1} in essential loops in S_{1}, so that S_{1} is compressible. Suppose that the second conclusion holds. Then by doing a surgery along a compressing disk for S_{1}, and moving the resulting surface by a tiny isotopy, we get a pair of disks satisfying the conclusion.

By the above claim, we see that E_{1}, E_{2} are embedded in $\left(N_{1}^{c}, \delta_{1}^{c}\right)$, so that, by regarding $E_{1} \cup E_{2}$ as F, the proof of Proposition 5.1 shows that ∂D^{+}is ambient isotopic in S_{0} to a loop disjoint from ∂D^{-}. Hence, by the argument of Case 1 , we see that the conclusion holds.

Proof of Proposition 5.2. Let $\left\{D_{1}, \cdots, D_{n}\right\}$ be a system of mutually disjoint product disks in $(\bar{N}, \bar{\delta})$ such that $\cup D_{i}$ decomposes $(\bar{N}, \bar{\delta})$ to the product sutured manifold $\left(D^{2} \times I, \partial D^{2} \times I\right)$. Let \bar{S} be the surface corresponding to $S^{\prime} \times\{1 / 2\}$ in $\bar{N} . \bar{S}$ is a Heegaard surface of $(\bar{N}, \bar{\delta})$ [1]. Then, by the arguments of the proof of [1, Lemma 1.1], and the distinguished circle argument of Ochiai [8, Lemma], we may suppose that each D_{i} intersects \bar{S} in an arc. We note that the arguments in [1, Lemma 1.1] and [8] work for product disks. Hence the image of \bar{S} in $D^{2} \times I$ is a torus with one hole T with $\partial T=\partial D^{2} \times\{1 / 2\}$. Moreover, by using the core disks of the 2 -handles, we see that T has two compress-

Fig. 5.9
ing disks D_{0}, D_{1} such that ∂D_{i} corresponds to \tilde{l}_{i} in $S^{\prime}, N\left(\partial D_{0} ; D_{0}\right)$ lies in the + side of T, and $N\left(\partial D_{1} ; D_{1}\right)$ lies in the - side of T. This fact together with Lemma 4.4 shows that \tilde{l}_{0} is isotopic to a loop intersecting \tilde{l}_{1} in one point. See Figure 5.9.

6. Monodromy maps

Let $L, L^{\prime}, S, F, A, S_{0}, S_{1}$, and M be as in Theorem 2, and b as in Figure 1.1. Let $\varphi: F \rightarrow F$ be a monodromy map, and $a(\subset F)$ a component of $\mathrm{Fr}_{F} N(b ; F)$ (Figure 1.1). The purpose of this section is to prove the following proposition.

Proposition 6.1. If $\chi\left(L^{\prime}\right)>\chi(L)+2$, then, by deforming φ by a rel ∂ ambient isotopy, if necessary, we may suppose that $a \cap \varphi(a)=\partial a=\partial \varphi(a)$, and the components of $N(\partial \varphi(a) ; \varphi(a))$ lie in one side of a (Figure 4.2).

Remark. Proposition 6.1 together with Proposition 4.6 shows that if $\chi\left(L^{\prime}\right)>\chi(L)+2$, then a is non separating in F.

Then we give a proof of Theorem 2 (2). As a consequence of Proposition 6.1, we have;

Corollary 6.2. Let S be as in Theorem 2 (2), and $\psi: S \rightarrow S$ a monodromy map of S. Then there is a non separating simple loop l in S such that $\psi(l)$ is ambient isotopic in S to a loop disjoint from l.

Proof of Proposition 6.1. Let $(N, \delta),\left(N_{0}, \delta_{0}\right),\left(N_{1}, \delta_{1}\right)$ be the sutured manifolds obtained from S, S_{0}, S_{1} respectively, and $\left(N^{c}, \delta^{c}\right),\left(N_{0}^{c}, \delta_{0}^{c}\right)$, $\left(N_{1}^{c}, \delta_{1}^{c}\right)$ the complementary sutured manifolds for S, S_{0}, S_{1} respectively. By Theorem 2 (1) (section 4), S_{0} is a pre-fiber surface. Let D_{0}^{+}, D_{0}^{-}be a pair of canonical compressing disks for S_{0}. Then we may suppose that D_{0}^{-}looks as in Figure 6.1.

Fig. 6.1
By Lemma 4.7, we may suppose that ∂D_{0}^{+}intersects a_{0} of Figure 1.1 in one point. By Corollary 5.4 , we may suppose that ∂D_{0}^{+}and ∂D_{0}^{-}are pairwise disjoint. Hence ∂D_{0}^{+}looks as in Figure 6.2.

Claim 6.1. There is a disk D in M such that $D \cap S_{1}=D \cap \operatorname{Int} S_{1}=\partial D$, and D intersects the band b in an essential arc a_{1}.

Fig. 6.2
Proof. We identify S_{1} to the surface obtained from S_{0} by doing a surgery along D_{0}^{-}. Let $D=D_{0}^{+}$. By Figure 6.3, it is directly observed that D satisfies the conclusions.

Fig. 6.3
Let \square be a pp disk for F such that $\partial_{-} \square=a, \partial_{+} \square=\varphi(a)$. Suppose that $\varphi(a)$ does not run through b. Then it is easy to see that we have the conclusion of Proposition 6.1. Hence suppose that $\varphi(a)$ runs through b. Then, by deforming \square by an isotopy as a pp disk, we may suppose;
(6.1) $\partial_{+} \square \cap b$ consists of arcs joining the components of $\mathrm{Fr}_{F} b$, and $\#\left\{\left(\partial_{+} \square \cap b\right) \cap a_{1}\right\}$ is minimal among the rel ∂ isotopy class in b, and
(6.2) If α is a component of $\partial_{+} \square \cap(F-b)$ such that $\partial \alpha \subset \mathrm{Fr}_{F} b$, then α is not rel ∂ isotopic in $c l(F-b)$ to a subarc of $\mathrm{Fr}_{F} b$.

Since $\partial_{-} \square \cap D=a \cap D=\phi$, we see that each component of $\square \cap D$ is either an arc whose endpoints lie in $\partial_{+} \square$, or a simple loop. Then;

Claim 6.2. If necessary, by applying cut and paste on D, we may suppose that $\square \cap D$ consists of arcs.

Proof. Let $\left(N_{F}^{c}, \delta_{F}^{c}\right)$ be the complementary sutured manifold for F. Then we may suppose that $\square \cap N_{F}^{c}$ is a product disk. Suppose that a component l of $\square \cap D$ is a simple loop. We may suppose that $l \subset\left(\square \cap N_{F}^{c}\right)$. Then l bounds a disk in \square. Hence, we can apply a cut and paste on D, by using the disk, to remove l. Do the same untill all the simple loops are removed.

Let $p: F \times I \rightarrow E(\partial F)$ be a natural map (section 2), and \mathscr{D} the product disk
in $(F \times I, \partial F \times I)$ such that $p(\mathscr{D})=\square$. Then, by Claim 6.2 , we see that $p^{-1}(D)$ consists of arcs whose endpoints lie in $\mathscr{D} \cap(F \times\{1\})$. Then let Δ be the closure of an outermost component of $\mathscr{D}-p^{-1}(D)$ which does not intersect $\mathscr{D} \cap(F \times\{0\})$ (Figure 6.4). Then $\beta=p(\Delta) \cap D(=p(\operatorname{Fr} \mathscr{D} \Delta))$ is an arc with $\beta \cap a_{1}=\partial \beta$. Let α be the subarc of a_{1} such that $\partial \alpha=\partial \beta$. Then $\alpha \cup \beta$ bounds a disk D^{*} in D. If D^{*} does not contain ∂a_{1} (Figure 6.5 (i)), then, by (6.2), $p(\Delta) \cup D^{*}$ is a compressing disk for F, a contradiction. Hence $\partial a_{1} \subset D^{*}$ (Figure 6.5 (ii)). Then $\square^{*}=D^{*} \cup p(\Delta)$ is a pp disk for F such that $\partial_{-} \square^{*}=a_{1}$. Since $\partial_{+} \square^{*}=\left(a_{1}-\alpha\right) \cup$ $(p(\Delta) \cap F)$, by moving \square^{*} by a tiny isotopy as a pp disk, we get a pp disk $\square^{* *}$ such that $\partial_{-} \square^{* *}$ is properly isotopic to a in F (in fact, it moves through b), and $\partial_{+} \square^{* *}$ does not go through b. Since $\partial_{-} \square^{* *}$ is ambient isotopic to a_{1}, we have the conclusion of Proposition 6.1.

Fig. 6.4

(i)

(ii)

Fig. 6.5
Proof of Theorem 2 (2). By the remark of Proposition 6.1, we see that S_{0} is a type 1 pre-fiber surface. Hence, by Corollary 5.4 , we see that S_{1} is a pre-fiber surface.

Proof of Corollary 6.2. Let l be a non separating simple loop in S corresponding to ∂D_{0}^{-}of Figure 6.1. By [3], we see that $\psi=\psi_{2} \circ \psi_{1}$, where $\psi_{1}: S \rightarrow S$ is an orientation preserving homeomorphism such that $\left.\psi_{1}\right|_{A}$ is a Dehn twist along $l,\left.\psi_{1}\right|_{c l(S-A)}=\mathrm{id}$., $\left.\psi_{2}\right|_{F}=\varphi$, and $\left.\psi_{2}\right|_{c l(S-F)}=\mathrm{id}$. Then, by Proposition 6.1, it is easy to see that $\psi(l)$ is ambient isotopic to a loop disjoint from l.

7. Proof of Theorem 3

In this section, we prove Theorem 3 stated in section 1.
Firstly, we prepare some notations. Let S be a surface in a 3-manifold M, and $a(\subset M)$ an arc such that $a \cap S=\partial a(\subset \operatorname{Int} S)$, and the components of $N(\partial a ; a)$ lie in one side of S. Let A be the component of $\partial N(a ; M)-S$ which is an open annulus. Then $S_{a}=(S-\operatorname{Int} N(a ; M)) \cup A$ is a surface, and has the orientation coherent to S. See Figure 7.1. We say that S_{a} is obtained from S by adding a pipe along a.

Fig. 7.1
Let S, a, S_{a} be as above, and $\left(N^{c}, \delta^{c}\right)$ the complementary sutured manifold for S. Then we may suppose that $a^{\prime}=a \cap N^{c}$ is an arc such that $\partial a^{\prime} \subset R_{+}\left(\delta^{c}\right)$ or $\partial a^{\prime} \subset R_{-}\left(\delta^{c}\right)$. We suppose that $\partial a^{\prime} \subset R_{-}\left(\delta^{c}\right)$. The other case is essentially the same. Let $\left(N_{a}^{c}, \delta_{a}^{c}\right)$ be the complementary sutured manifold for S_{a}. Then, by Figure 7.2, we immediately have;

Lemma 7.1. $\left(N_{a}^{c}, \delta_{a}^{c}\right)$ is homeomorphic to $\left(N^{\prime}, \delta^{\prime}\right)$, where N^{\prime} is obtained from $c l\left(N_{a}^{c}-N\left(a^{\prime} ; N_{a}^{c}\right)\right)$ by adding a 1-handle along disks in $R_{+}(\delta)$, and δ^{\prime} is the image of δ^{c} in N^{\prime}.

Fig. 7.2
Then we give the definition of the surface Σ_{n} in S^{3} (see section 1). Let D be a disk in S^{3}. Fix a D^{2}-boundle structure with D a fiber on $E(\partial D)$. Then we define a sequence of arcs a_{1}, a_{2}, \cdots as follows.

Let a_{1} be an arc in S^{3} such that $N\left(\partial a_{1} ; a_{1}\right)$ lies in the - side of $D, a_{1} \cap D=$
$\partial a_{1}(\subset$ Int $D)$, and there is a disk Δ such that $a_{1} \subset \partial \Delta, \Delta \cap \operatorname{Int} D=\partial \Delta-\operatorname{Int} a_{1}=\beta$ an arc in D. Clcarly a_{1} is unique up to ambient isotopy of S^{3} respecting D.

Fig. 7.3

Fig. 7.4
Suppose that a_{k} has defined. Then let a_{k+1} be an arc such that $N\left(\partial a_{k+1} ; a_{k+1}\right)$ lies in the - side of $D, \alpha_{k+1} \cap \operatorname{Int} \Delta=\phi, a_{k} \subset \operatorname{Int} a_{k+1}$ (so that $c l\left(a_{k+1}-a_{k}\right)$ consists of two arcs), $c l\left(a_{k+1}-a_{k}\right) \cap D=\partial\left(a_{k+1}-a_{k}\right)$, and each component of $a_{k+1}-a_{k}$ is transverse to the fibration on $E(\partial D)$. By the induction on i, it is not hard to see that a_{i} is unique up to the ambient isotopy of S^{3} respecting D.

Let Σ_{1} be the surface obtained from D by adding a pipe along a_{1}. Then $a_{2} \cap \Sigma_{1}=\partial a_{2}$ and we let Σ_{2} be the surface obtained from Σ_{1} by adding a pipe along a_{2}, and so on. We note that each Σ_{n} has two compressing disks D_{n}^{-}, D_{n}^{+}corresponding to a meridian of a_{n}, and Δ respectively. Then ∂D_{n}^{\mp} are $l^{ \pm}$of Figure 1.3. Then we have;

Proposition 7.2. Σ_{n} is a pre-fiber surface of type 1 , and D_{n}^{+}, D_{n}^{-}is a pair of canonical compressing disks for Σ_{n}.

Proof. The proof is done by the induction on n. By the observation in Example 4.1, we see that Σ_{1} is a pre-fiber surface of type 1 , and D_{1}^{+}, D_{1}^{-}is a pair of canonical compressing disks for Σ_{1}.

Suppose, by induction, that Σ_{n} satisfies the conclusion of Proposition 7.2. Let $\left(N_{n}, \delta_{n}\right)\left(\left(N_{n}^{c}, \delta_{n}^{c}\right)\right.$ resp.) be the sutured manifold obtained from Σ_{n} (the complementary sutured manifold for Σ_{n} resp.) Let $\bar{D}_{n}^{ \pm}=D_{n}^{ \pm} \cap N_{n}^{c}, \mathscr{D}_{n}^{ \pm}=N\left(\bar{D}_{n}^{ \pm} ; N_{n}^{c}\right)$, and $N_{n-1}=c l\left(N_{n}^{c}-\left(\mathscr{D}_{n}^{+} \cup \mathscr{D}_{n}^{-}\right)\right)$. Then $\left(N_{n-1}, \delta_{n}^{c}\right)$ is ambient siotopic to the product surtured manifold obtained from Σ_{n-1}. Hence N_{n-1} has a Σ_{n-1}-bundle
structure such that each fiber corresponds to $\Sigma_{n-1} \times\{x\}(x \in I)$. We regard $\mathscr{D}_{n}^{ \pm}$ are 1-handles attached to N_{n-1}. By defintion we may suppose that $\alpha=a_{n+1} \cap N_{n}^{c}$ is an arc such that $\alpha \cap \mathscr{D}_{n}^{+}=\phi$, and $\alpha \cap \mathscr{D}_{n}^{-}$is a vertical arc in $\mathscr{D}_{n}^{-}\left(\cong D^{2} \times I\right)$. Hence $\alpha \cap N_{n-1}$ consists of two arcs α_{1}, α_{2}.

Fig. 7.5
Claim. By moving a_{n+1} by an ambient isotopy of S^{3} respecting Σ_{n}, if necessary, we may suppose that α_{1}, α_{2} are transverse to the fibration on N_{n-1} (Figure 7.5).

Proof. By Figure 7.6, we may suppose that each component of $a_{n+1}-a_{n}$ is close to a meridian loop in $\partial E\left(\partial \Sigma_{n}\right)$. Since the fibration on $\partial E\left(\partial \Sigma_{n}\right)$ induced from the fibration on N_{n-1} is a fibration by longitudes, we see that the components of $a_{n+1}-a_{n}$ are transverse to the fibration. Hence α_{1}, α_{2} are transverse to the fibration on N_{n-1}.

Fig. 7.6
The complementray sutured manifold ($N_{n+1}^{c}, \delta_{n+1}^{c}$) for Σ_{n+1} is obtained from ($N_{n}^{c}, \delta_{n}^{c}$), and α as in Lemma 7.1. Hence, by Figure 7.5 , we easily see that Σ_{n+1} is a pre-fiber surface, and D_{n+1}^{+}, D_{n+1}^{-}is a pair of canonical compressing disks.

This completes the proof of Proposition 7.2.
Proof of Theorem 3. The proof is done by the induction on $n=(\chi(L)-$ $\left.\chi\left(S_{1}\right)\right) / 2$. Let D^{+}, D^{-}be a pair of canonical compressing disks for S_{1} and S_{2} the surface obtained from S_{1} by doing a surgery along $D^{+},\left(N_{i}, \delta_{i}\right)\left(\left(N_{i}^{c}, \delta_{i}^{c}\right)\right.$ resp. $)$ the sutured manifold obtained from S_{i} (the complementary sutured manifold for S_{i} resp.) $(i=1,2)$.

Claim 7.1. If $\chi\left(S_{1}\right)=\chi(L)-2$, then S_{1} is a connected sum of S_{2} and Σ_{1}.

Proof. By Proposition 5.2, we may suppose that ∂D^{+}intersects ∂D^{-}in one point. Let α be an arc in S_{1} such that one endpoint of α lies in ∂S_{1}, the other endpoint is $\partial D^{+} \cap \partial D^{-}$, and Int $\alpha \cap\left(\partial D^{+} \cup \partial D^{-}\right)=\phi$. Then the regular neighborhood B of $\alpha \cup D^{+} \cup D^{-}$in M is a 3-ball such that $B \cap S_{1}$ is a regular neighborhood of $\alpha \cup \partial D^{+} \cup \partial D^{-}$in $S_{1} . \quad \partial B$ desums S_{1} into S_{2} and Σ_{1}.

Claim 7.2. If $\chi\left(S_{1}\right)<\chi(L)-2$, then S_{2} is a pre-fiber surface of type 1 .
Proof. By Corollary 5.4, we see that S_{2} is a pre-fiber surface. Assume that S_{2} is of type 2. Then, by Corollary 5.4 , we may suppose that $D^{+} \cap D^{-}=\phi$, and ∂D^{-}is a separating loop in S_{2}, i.e. $\partial D^{+} \cup \partial D^{-}$separates S_{1}. Let S_{3} be the surface obtained from S_{1} by doing surgery along $D^{+} \cup D^{-}$.

Subclaim. No component of S_{3} is closed.
Proof. Assume that a component \bar{S} of S_{3} is closed. Let $l\left(\subset S_{1}\right)$ be a simple loop which interects ∂D^{+}in one point. Then, by pushing l to the - side of S_{1}, we get a simple loop intersecting \bar{S} in one point, contradicting the fact thet M is a rational homology 3-shpere.

By Subcalim, we see that S_{3} is a disconnected Seifert surface for L. Then, by doing compressions on S_{3} as much as possible, we get a disconnected, incompressible Seifert surface S^{*} for L. By Lemma 2.2, we see that S^{*} is a fiber surface, contradicting Lemma 2.1.

Completion of the proof. Claim 7.1 shows that if $n=1$, then the conclusion holds. Suppose that $n>1$. By Claim 7.2 and the induction, we see that S_{2} is a connected sum of a fiber surface and Σ_{n-1} (Figure 7.7). Let S_{3} be as in the proof of Subclaim.

Fig. 7.7
$\left(N_{1}^{c}, \delta_{1}^{c}\right)$ is homeomorphic to ($D^{2} \times S^{1}$ 乌 $\left(S_{2} \times I\right)$ দ $\left.D^{2} \times S^{1}, \partial S_{2} \times I\right)$. Let $D_{1}^{ \pm}=D^{ \pm} \cap N_{1}^{c}$, and $\mathscr{D}_{1}^{ \pm}=N\left(D_{1}^{ \pm} ; N_{1}^{c}\right)$. Then, we may identify $\left(c l\left(N_{1}^{c}-\left(\mathscr{D}_{1}^{+} U\right.\right.\right.$ $\left.\mathscr{D}_{1}^{-}\right)$), δ_{1}^{c}) to $\left(N_{2}, \delta_{2}\right)$, where $S_{2} \times\{1 / 2\}$ corresponds to S_{2}. We regard $\mathscr{G}_{1}^{+}, \mathscr{D}_{1}^{-}$
are 2-handles attached to $\left(N_{1}, \delta_{1}\right)$. Then $\left(N_{1} \cup \mathscr{D}_{1}^{+} \cup \mathscr{D}_{1}^{-}, \delta_{1}\right)$ is properly isotopic to $\left(N_{2}^{c}, \delta_{2}^{c}\right)$ in $E(L)$. Hence we identify $\left(N_{2}^{c}, \delta_{2}^{c}\right)$ to $\left(N_{1} \cup \mathscr{D}_{1}^{+} \cup \mathscr{D}_{1}^{-}, \delta_{1}\right)$. Let A^{+}, A^{-}be pairwise disjoint product annuli in $\left(N_{1}, \delta_{1}\right)\left(\subset\left(N_{2}^{c}, \delta_{2}^{c}\right)\right)$, such that $A^{+} \cap$ $R_{-}\left(\delta_{1}\right)=\partial D_{1}^{+}, A^{-} \cap R_{+}\left(\delta_{1}\right)=\partial D_{1}^{-}$. Let $D_{2}^{+}=A^{+} \cup D_{1}^{+}, D_{2}^{-}=A^{-} \cup D_{1}^{-}$, and $\mathscr{D}_{2}^{ \pm}=$ $N\left(D_{2}^{ \pm} ; N_{2}^{c}\right)$ (Figure 7.8). Then D_{2}^{+}, D_{2}^{-}represents a pair of canonical compressing disks for S_{2}, and $\left(c l\left(N_{2}^{c}-\left(\mathscr{D}_{2}^{+} \cup \mathscr{D}_{2}^{-}\right)\right)\right.$, $\left.\delta_{2}^{c}\right)$ is ambient isotopic the sutured manifold $\left(N_{3}, \delta_{3}\right)$ obtained from S_{3}. Hence we may regard that N_{2}^{c} is obtained from N_{3} by a attaching two 1 -handles $\mathscr{D}_{2}^{+}, \mathscr{D}_{2}^{-}$. Then fix a D^{2}-bundle structure on $\mathscr{G}_{2}^{-} \cong D^{2} \times I$, and S_{3}-bundle structure on $N_{3}=S_{3} \times I$. Let α be an arc in N_{2}^{c} such that $\alpha \cap \partial N_{2}^{c}=\alpha \cap R_{+}\left(\delta_{2}^{c}\right)=\partial \alpha, \alpha \cap \mathscr{D}_{2}^{+}=\phi, \alpha \cap \mathscr{D}_{2}^{-}$is an arc transverse to the fibers, and $\alpha \cap N_{3}$ consists of two arcs transverse to the fibers. It is easy to see that the arcs with the above properties are unique up to the ambient isotopies of N_{2}^{c} respecting the fibers. Let α_{1} be an arc as in Figure 7.7. Then, by the arguments of the proof of Proposition 7.2 (see Figure 7.6), we see that the $\operatorname{arc} \alpha_{1} \cap N_{2}^{c}$ has the above properties. Moreover, by Figure 7.8, we see that S_{1} is obtained from S_{2} by adding a pipe along α_{1}. This shows that S_{1} is a connected sum of a fiber surface and Σ_{n}, and it is easy to see that a pair of canonical compressing disks for S_{1} corresponds to that of Σ_{n}.

This completes the proof of Theorem 3.

Fig. 7.8

8. Arcs and bands for pre-fiber surfaces

In this section, we study the converse to Theorem 2. For the statement of the result, we prepare some notations. Let \mathcal{S} be a surface in a 3 -manifold such that $\partial \mathcal{S} \neq \phi$. Let α be an arc properly embedded in \mathcal{S}, D a disk such that $D \cap \mathcal{S}=\alpha$, and \mathcal{S}^{\prime} the image of \mathcal{S} after ± 1 surgery along ∂D. We say that \mathcal{S}^{\prime} is obtained from \mathcal{S} by adding a twist along α. Let $\beta: I \times I \rightarrow N$ be an embedding such that $\beta^{-1}(S)=\beta^{-1}(\partial S)=(\{0\} \times I) \cup(\{1\} \times I)$, and the orientation on $I \times\{0,1\}$ is coherent with that of ∂S. Then we say that the surface $\mathcal{S} \cup \beta(I \times I)$ is obtained from \mathcal{S} by adding a band $k=\beta(I \times I)$. The arc $\beta(I \times\{1 / 2\})$ is called the core arc of the band b.

Let T be a pre-fiber surface in a closed 3-manifold M, possibly $\operatorname{dim} H_{1}(M ; Q)>0$, and D^{+}, D^{-}a pair of canonical compressing disks for T.

Then we have the following two propositions.
Proposition 8.1. Suppose that a properly embedded arc a $(\subset T)$ intersects $\partial D^{+}, \partial D^{-}$in one points. Then the surface T^{\prime} obtained from T by adding a twist along a is a fiber surface.

Remark. Let S be a fiber surface in a rational homology 3-sphere. Lemma 4.7 shows that if we get a pre-fiber surface S^{\prime} from S by adding a twist along an arc a, then the arc on S^{\prime} corresponding to a satisfies the assumptions of Proposition 8.1.

Let $\left(N^{c}, \delta^{c}\right)$ be the complementary sutured manifold for T. Then we may suppose that $\alpha \cap N^{c}$ is an arc α^{\prime} such that $\partial \alpha^{\prime} \subset$ Int δ^{c} for a core $\operatorname{arc} \alpha$.

Proposition 8.2. Let b be a band attached to T with the following properties.
(1) The core arc α of b intersects D^{+}, D^{-}in one points.
(2) There is a disk Δ in N^{c} such that $\alpha^{\prime} \subset \partial \Delta, \Delta \cap \partial N^{c}=\partial \Delta \cap \partial N^{c}=$ $c l\left(\partial \Delta-\alpha^{\prime}\right)$, and $\partial \Delta \cap R_{+}\left(\delta^{c}\right)\left(\partial \Delta \cap R_{-}\left(\delta^{c}\right)\right.$ resp.) consists of an arc. Then the surface T^{\prime} obtained from T by adding the band b is a fiber surface.

Remark. Let S_{1} be a pre-fiber surface in a rational homology 3 -sphere as in Theorem 2 (2), and b a band for S_{1} as in Figure 1.2. Proposition 6.1, Figures 4.5 , and 8.1 shows that the core arc of b has the properties (1), (2) of Propostion 8.2.

Remark. We note that if F is fibered and the band b satisfies the above conditions (1), (2), then the twists on the band is not essential. In fact, by doing Stallings twists [13] along ∂D^{+}, we see that the bands obtained from b by adding twists also produce fiber surfaces.

Fig. 8.1
Let $D_{c}^{+}=D^{+} \cap N^{c}, D_{c}^{-}=D^{-} \cap N^{c}$.
Proof of Proposition 8.1. Let D be a disk in M such that $D \cap T=a$. Then the image of D in N^{c} is an annulus A such that one boundary component l of A
is contained in Int N^{c} and the other is a simple loop in ∂N^{c} intersecting $s\left(\delta^{c}\right)$ in two points (Figure 8.2). Then, by the assumption, we may suppose that l intersects D_{c}^{+}, D_{c}^{-}in one points. Moreover, by taking sufficiently small D, if necessary, we may suppose that $\left(D_{c}^{+} \cup D_{c}^{-}\right) \cap A$ consists of two essential arcs in A.

Fig. 8.2
Let $\bar{N}=c l\left(N^{c}-N\left(D_{c}^{+} \cup D_{c}^{-} ; N^{c}\right)\right)$, and $\bar{\delta}$ the image of δ^{c} in $\partial \bar{N}$. Then $(\bar{N}, \bar{\delta})$ is a product sutured manifold. Let $\mathscr{D}^{++}, \mathscr{D}^{+-}$be the disks in $R_{+}(\bar{\delta})$ corresponding to $\mathrm{Fr}_{N^{c}} N\left(D_{c}^{+} ; N^{c}\right), \mathscr{D}^{-+}, \mathscr{D}^{--}$the disks in $R_{-}(\delta)$ corresponding to $\operatorname{Fr}_{N^{c}} N\left(D_{c}^{-} ; N^{c}\right)$. Then, by the above, we may suppose that $A \cap \bar{N}$ consists of two disks Δ_{1}, Δ_{2} (Figure 8.2) such that $\Delta_{1} \cap\left(\mathscr{D}^{+-} \cup \mathscr{D}^{--}\right)=\phi, \Delta_{2} \cap\left(\mathscr{D}^{++} \cup \mathscr{D}^{-+}\right)$ $=\phi$. The we may suppose that Δ_{1}, Δ_{2} have the following properties with respect to the I-bundle structure on ($\bar{N}, \bar{\delta}$).
(8.1) Δ_{i} is a union of fibers.
(8.2) $N\left(\Delta_{1} ; \bar{N}\right) \supset\left(\mathscr{D}^{++} \cup \mathscr{D}^{-+}\right), N\left(\Delta_{2} ; \bar{N}\right) \supset\left(\mathscr{D}^{+-} \cup \mathscr{D}^{--}\right)$.

Let $P_{1}=\mathrm{Fr}_{\bar{N}} N\left(\Delta_{1} ; \bar{N}\right), P_{2}=\mathrm{Fr}_{\bar{N}} N\left(\Delta_{2} ; \bar{N}\right)$. Then, by (8.1), and (8.2), P_{1}, P_{2} are regarded as product disks in in $\left(N^{c}, \delta^{c}\right)$, and $P_{1} \cup P_{2}$ decomposes $\left(N^{c}, \delta^{c}\right)$ into the union of a product sutured manifold ($\bar{N}^{\prime}, \bar{\delta}^{\prime}$) homeomorphic to ($\bar{N}, \bar{\delta}$) and $\left(D^{2} \times S^{1}, \gamma\right)$, where $s(\gamma)$ consists of two essential loops in $\partial\left(D^{2} \times S^{1}\right)$ which are contractible in $D^{2} \times S^{1}$. We note that l is a core curve of $D^{2} \times S^{1}$ and if we do ± 1 surgery on ($\left.D^{2} \times S^{1}, \gamma\right)$ along l then we get product sutured manifold

Fig. 8.3
($D^{2} \times S^{1}, \gamma^{\prime}$) (Figure 8.3). Since the complementary sutured manifold for T^{\prime} is obtained from $\left(\bar{N}^{c}, \delta^{c}\right)$ and $\left(D^{2} \times S^{1}, \gamma^{\prime}\right)$ by summing them along product disks corresponding to P_{1}, P_{2}, it is a product sutured manifold. Hence T^{\prime} is a fiber surface.

Proof of Proposition 8.2. We may suppose that $\Delta \cap D_{c}^{+}$($\Delta \cap D_{c}^{-}$resp.) consists of an arc with one endpoint lies in ∂D_{c}^{+}(∂D_{c}^{-}resp.). Let $\bar{N}=$ $c l\left(N^{c}-N\left(D_{c}^{+} \cup D_{c}^{-} ; N^{c}\right)\right.$, and $\bar{\delta}$ the image of δ^{c} in $\partial \bar{N}$. (\bar{N}, δ) is a product sutured manifold. Then, by the above, $\Delta \cap \bar{N}$ consists of three disks $\Delta_{1}, \Delta_{2}, \Delta_{3}$ such that $\Delta_{1} \cap R_{-}(\mathcal{\delta})=\phi, \Delta_{3} \cap R_{+}(\bar{\delta})=\phi$ (Figure 8.4). Let $\mathscr{D}^{++}, \mathscr{D}^{+-}$be the disks in $R_{+}(\delta)$ corresponding to $\mathrm{Fr}_{N^{c}} N\left(D_{c}^{+} ; N^{c}\right), \mathscr{D}^{-+}, \mathscr{D}^{--}$the disks in $R_{-}(\delta)$ corresponding to $\mathrm{Fr}_{N^{c}} N\left(D_{c}^{-} ; N^{c}\right)$ such that $\mathscr{D}^{++} \cap \Delta_{1} \neq \phi, \mathscr{D}^{+-} \cap \Delta_{2} \neq \phi, \mathscr{D}^{-+} \cap \Delta_{2} \neq \phi$, $\mathscr{D}^{--} \cap \Delta_{3} \neq \phi$. Then we may suppose that $\Delta_{1}, \Delta_{2}, \Delta_{3}$ have the following properties with respect to the product structures on $(\bar{N}, \bar{\delta})$.

Fig. 8.4
(8.3) There are mutually disjoint disks D_{1}, D_{2}, D_{3} in \bar{N} such that D_{i} is a union of fibers $(i=1,2,3), D_{j} \supset \Delta_{j}(j=1,3), D_{2}=\Delta_{2}, D_{1} \cap R_{+}(\mathbb{\delta})=\Delta_{1} \cap R_{+}(\bar{\delta})$, $D_{3} \cap R_{-}(\bar{\delta})=\Delta_{3} \cap R_{-}(\bar{\delta})$.
(8.4) $\quad N\left(D_{1} ; \bar{N}\right) \supset \mathscr{D}^{++}, N\left(D_{2} ; \bar{N}\right) \supset\left(\mathscr{D}^{+-} \cup \mathscr{D}^{-+}\right), N\left(D_{3} ; \bar{N}\right) \supset \mathscr{D}^{--}$.

Let $P_{i}=\mathrm{Fr}_{\bar{N}^{c}} N\left(D_{i} ; \bar{N}\right)(i=1,2,3)$. Then, by (8.4), P_{1}, P_{2}, P_{3} are regarded as product disks in $\left(N^{c}, \delta^{c}\right)$, and $P_{1} \cup P_{2} \cup P_{3}$ decomposes (N^{c}, δ^{c}) into a union of a sutured manifold ($\bar{N}^{\prime}, \bar{\delta}^{\prime}$) homeomorphic to $(\bar{N}, \bar{\delta})$ and a sutured manifold ($B, \gamma_{1} \cup \gamma_{2} \cup \gamma_{3}$), where B is a 3-ball, and $s\left(\gamma_{1}\right), s\left(\gamma_{2}\right), s\left(\gamma_{3}\right)$ are sutures as in Figure 8.5.

Fig. 8.5
Let $\left(N^{c \prime}, \delta^{c \prime}\right)$ be the complementary sutured manifold for T^{\prime}. Then $N^{c \prime}$ is obtained from N^{c} by removing Int $N\left(b ; N^{c}\right)$, and $s\left(\delta^{c \prime}\right)$ is obtained from $s\left(\delta^{c}\right)-N\left(b ; N^{c}\right)$ by adding two arcs in $\mathrm{Fr}_{N^{c}} N\left(b ; N^{c}\right)$ corresponding to $\partial b \cap \partial T^{\prime}$. See Figure 8.6. Hence P_{1}, P_{2}, P_{3} are regarded as product disks for $\left(N^{c \prime}, \delta^{c \prime}\right)$, and $P_{1} \cup P_{2} \cup P_{3}$ decomposes $\left(N^{c \prime}, \delta^{c \prime}\right)$ into a union of a product sutured manifold homeomorphic to ($\bar{N}, \bar{\delta}$) and ($D^{2} \times S^{1}, \gamma$), where ($D^{2} \times S^{1}, \gamma$) is obtained from ($B, \gamma_{1} \cup \gamma_{2} \cup \gamma_{3}$) by using b. Then, by Figures 8.5 and 8.6 , it is directly observed that $\left(D^{2} \times S^{1}, \gamma\right)$ is a product sutured manifold. Hence $\left(N^{c \prime}, \delta^{c \prime}\right)$ is a product sutured manifold, so that T^{\prime} is a fiber surface.

Fig. 8.6

9. Unknotting number 1 fibered knots

In this section, we study unknotting number 1 fibered knots in rational homology 3 -spheres. Firstly, we prove Theorem 4 stated in section 1. Then we show that, for each $g>1$, every lens space contains an unknotting number 1 fibered knot of genus g (Proposition 9.2). In Proposition 9.1 we show that a rational homology 3 -sphere M contains an unknotting number 1 fibered knot of genus 1 if and only if M is a lens space of type $L_{m, 1}$.

Proof of Theorem 4. Suppose that M contains an unknotting number 1 fibered knot of genus g. Then, by Theorem 2(1), we see that M contains a prefiber surface S_{0} of genus g such that ∂S_{0} is a trivial knot. Let D^{+}, D^{-}be a pair of canonical compressing disks for S_{0}.

Claim 9.1. S_{0} is a type 1 pre-fibere surface.
Proof. By Figure 6.1, we see that there is a properly embedded arc in S_{0} which intersects ∂D^{+}in one point. Since S_{0} has one boundary component, this shows that ∂D^{+}is non separating in S_{0}. Hence S_{0} is of type 1 .

Claim 9.2. If M contains a type 1 pre-fiber surface S_{*} of genus 1 , then M is a lens space.

Proof. The complementary sutured manifold $\left(N_{*}^{c}, \delta_{*}^{c}\right)$ for S_{*} is homeomorphic to ($D^{2} \times S^{1} \natural\left(D^{2} \times I\right) \nmid D^{2} \times S^{1}, \partial D^{2} \times I$) (cf. Example 4.1). Since $\left(N_{*}^{c}, \delta_{*}^{c}\right)$ is the complementary sutured manifold, there is a homeomorphism $f: R_{+}\left(\delta_{*}^{c}\right) \rightarrow R_{-}\left(\delta_{*}^{c}\right)$ such that the manifold obtained from N_{*}^{c} by identifying the points in $R\left(\delta_{*}^{c}\right)$ by f is homeomorphic to $E\left(\partial S_{*}\right)$. Let D be a disk in N_{*}^{c} corresponding to $D^{2} \times\{1 / 2\}$. Then D cuts N_{*}^{c} into two components N^{+}, N^{-}such that N^{+}, N^{-}are solid tori, and $R_{+}\left(\delta_{*}^{c}\right) \subset \partial N^{+}, R_{-}\left(\delta_{*}^{c}\right) \subset \partial N^{-}$. There is a homeomorphism $h: \partial N^{+} \rightarrow \partial N^{-}$such that h is an extension of f and $N^{+} U_{h} N^{-}$ is homeomorphic to M. Hence M admits a Heegaard splitting of genus 1 .

By Claims 9.1, and 9.2, we see that if $g=1$, then M is a lens space. Hereafter we suppose that $g>1$. Then, by Claim 9.1 and Corollary 5.4, we may suppose that ∂D^{+}and ∂D^{-}are disjoint.

Claim 9.3. $\partial D^{+} \cup \partial D^{-}$does not separate S_{0}.
Proof. Assume that $\partial D^{+} \cup \partial D^{-}$separates S_{0}. Let S_{*} be the component of $S_{0}-\left(\partial D^{+} \cup \partial D^{-}\right)$which does not contain ∂S_{0}. Then $\bar{S}=S_{*} \cup D^{+} \cup D^{-}$is a closed surface in M. By Claim 9.1, there is a simple loop l in S_{0} which intersects ∂D^{+}in one point. Then, by pushing l slightly to the - side, we see that there is a simple loop in M which intersects \bar{S} in one point, contradicting the fact that M is a rational homology 3-sphere.

Let S_{1} be the surface obtained from S_{0} by doing surgery along D^{+}. By Corollary 5.4, we see that S_{1} is a pre-fiber surface. Then;

Claim 9.4. S_{1} is a type 1 pre-fiber surface.
Proof. By Claim 9.3, we see that ∂D^{-}is non separating in S_{1}. Hence, by Corollary 5.4 , we see that S_{1} is of type 1 .

By Claim 9.4, and the induction on g, we see that M contains a pre-fiber
surface of type 1 and of genus 1 . Then, by Claim 9.2 , we see that M admits a Heegaard splitting of genus 1.

Proposition 9.1. A rational homology 3-sphere M contains an unknotting number 1 , genus 1 fibered knot if and only if M is a lens space of type $L_{m, 1}$ for some $m \in \boldsymbol{Z}-\{0\}$.

For the notation of the lens spaces, see [6].
Proof. Suppose that M contains an unknotting number 1, genus 1 fibered knot K. Then, by Theorem 1, we see that there is a minimal genus Seifert surface S for K such that S is a plumbing of a surface F in M and a Hopf band. Since genus $(S)=1, F$ is an annulus, so that $E(\partial F)$ is homeomorphic to $T^{2} \times I$, where T^{2} is a 2 -dimensional torus. Hence M is obtained from $T^{2} \times I$ and two solid tori T_{1}, T_{2} by identifying their boundaries. Let A be the annulus in $E(\partial F)$ corresponding to the fiber F, and $l_{0}=A \cap\left(T^{2} \times\{0\}\right), l_{1}=A \cap\left(T^{2} \times\{1\}\right)$. Then meridian loop of T_{i} intersects l_{i} in one point $(i=1,2)$. Hence it is easy to see that M is a lens space of type $L_{m, 1}$.

Suppose that M is a lens space of type $L_{m, 1}$. Then it is observed in [7] that the knots K_{1}, K_{2} of Figure 9.1 are fibered. It is easy to see that both K_{1} and K_{2} have unknotting number 1.

This completes the proof of Proposition 9.1.

Fig. 9.1
Proposition 9.2. If M is a lens space, possibly $\operatorname{dim} H_{1}(M ; Q)>0$, then, for each $g>1$, there is an unknotting number 1 fibered knot of genus g in M.

Remark. If M is a lens space with $\operatorname{dim} H_{1}(M ; Q)>0$, then M is homeomorphic to $S^{2} \times S^{1}$.

Proof. By Example 4.1, there is a genus 1 pre-fiber surface T in M such that ∂T is a trivial knot. Let D^{+}, D^{-}be a pair of canonical compressing disks for $T, \tilde{l}^{+}, \tilde{l}^{-}$a pair of properly embedded arcs in T such that $\tilde{l}^{+} \cap \partial D^{+}$consists of one point, $\tilde{l}^{-} \cap \partial D^{-}$consists of one point, and $\partial \tilde{l}^{+} \cap \partial \tilde{l}^{-}$consists of one
point p. Let $l^{+}\left(l^{-}\right.$resp.) be the arc obtained from $\tilde{l}^{+}\left(\tilde{l}^{-}\right.$resp.) by pushing Int \tilde{l}^{+}(Int \tilde{l}^{-}resp.) slightly to the - side (+ side resp.) of $T . \quad l=l^{+} \cup l^{-}$is an embedded arc in M such that $l \cap T=\partial l \cup p$. Then deform l by an ambient isotopy in a small neighborhood of p so that $l \cap T=\partial l$. Clearly l satisfies the conditions (1), (2) of Proposition 8.2. Hence there is a band b for T such that the surface F obtained from T by attaching b is a fiber surface. Then, by a plumbing of F and a Hopf band along b, we have a genus 2, fiber surface which bounds an unknotting number 1 fibered knot (Figure 9.2).

Fig. 9.2
Suppose that $g>2$. Let F_{n} be the surface in S^{3} as in Figure 9.3. It is observed in [9] that F_{n} is a fiber surface. In fact, F_{n} is obtained from one Hopf band and n copies of the fiber surface of Figure 9.4. Then, by a plumbing of the above F and F_{g-2} along b and E of Figure 9.3, we get a genus g fiber surface \mathcal{S}_{g} [4]. It is directly observed from Figure 9.3 that if we apply a crossing change on $\partial \mathcal{S}_{g}$ along the crossing disk D of Figure 9.3, then we get a trivial knot. Hence $u\left(\partial \mathcal{S}_{g}\right)=1$.

Fig. 9.3

Fig. 9.4

This completes the proof of Proposition 9.2.

References

[1] A. Casson, C. Gordon: Reducing Heegaard splittings, Topology and its Appl. 27 (1987), 275-283.
[2] D. Gabai: Foliations and the topology of 3-manifolds, J. Diff. Geom. 18 (1983), 445-503.
[3] D. Gabai: The Murasugi sum is a natural geometric operation II, Contemp. Math. 44 (1985), 93-100.
[4] D. Gabai: Detecting fibered links in S^{3}, Comm. Math. Helb. 61 (1986), 519-555.
[5] D. Gabai: Foliations and the topology of 3-manifolds II, J. Diff. Geom. 26 (1987), 461-478.
[6] J. Hempel: 3-manifolds, Ann. of Math. Studies No. 86, Princeton University Press, Princeton N.J., 1976.
[7] K. Morimoto: Genus one fibered knots in lens spaces, J. Math. Soc. Japan 41 (1989), 81-96.
[8] M. Ochiai: On Haken's theorem and its extension, Osaka J. Math. 20 (1983), 461-468.
[9] C.V. Quach: Invariants des noeuds classiques fibres, thesis, Universite de Genéve 1981.
[10] D. Rolfsen: Knots and links, Mathematical Lecture Series 7, Publish or Perish Inc., Berkeley Ca., 1976.
[11] M. Scharlemann: Outermost forks and a theorem of Jaco, Contemp. Math. 44 (1985), 189-193.
[12] M. Scharlemann: Sutured manifolds and generalized Thurston norms, J. Diff. Geom. 29 (1989), 557-614.
[13] J. Stallings: Constructions of fibered knots and links, Proc. Symp. Pure Math. AMS 27 (1975), 315-319.
[14] M. Scharlemann, A. Thompson: Link genus and Conway moves (expanded version), preprint
[15] F. Waldhausen: On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56-88.

Department of Mathematics, Osaka University Toyonaka, Osaka 560, Japan

[^0]: This work was supported by Grant-in Aid for Scientific Research, The Ministry of Education, Science and Culture.

