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1. Introduction

Let L be an oriented link in a 3-manifold M. A Seifert surface S for L is
a compact oriented surface, without closed components, such that 8S=L.
X(L) denotes the maximal Euler characteriscic of all Seifert surfaces for L. L
is a fibered link if the exterior E(L) of L is a surface bundle over S such that a
Seifert surface represents a fiber. An oriented surface F in M is a fiber surface
if OF is a fibered link, and F N E(AF) is a fiber. Let D be a disk in M, which
intersects L in two points of opposite orientations, L’ the image of L after 4-1
surgery along 8D. We say that L’ is obtained from L by a crossing change, and
D (0D resp.) is called the crossing disk (crossing link resp.). For the links in the
3-sphere 83, Scharlemann-Thompson [14] proved that if L’ is obtained from
L by a single crossing change along a crossing disk D, and X(L')>X(L), then
there is a minimal genus Seifert surface S for L such that S is a plumbing of a
surface F and a Hopf band 4 with F N D=¢, and AN D an essential arc in 4.
See Figure 1.1.

(i) (i)
Fig. 1.1
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In this paper, firstly, we show that a similar result holds for links in rational
homology 3-spheres if L is a fibered link.

Theorem 1. Let L be a fibered link in a rational homology 3-sphere M.
Suppose that L' is obtained from L by a single crossing change along a crossing
disk D, and that X(L')>X(L). Then there is a minimal genus Seifert surface
S for L such that S is a plumbing of a surface F in M and a Hopf band A with
FND=¢, and AN D an essential arc in A.

ReMARK. We note that S and F are fiber surfaces (Lemma 2.2, [6, Theorem
7.4]).

Let S, be the image of S in Theorem 1 after the 4-1 surgery along 9D, and
S,=cl(S—A). Then S,, S, are Seifert surfaces for L’ (Figure 1.2). In section
4, we study the surfaces S, S;.

Theorem 2. Lzt S,, S, be as above. Then

(1) S, is a pre-fiber surface,

(2) if X(L')>X(L)+2 (i.e. S, is not a minimal genus Seifert surface), then S,
is also a pre-fiber surface.

Fig. 1.2

For the definition of pre-fiber surface, see section 4. We prove Theorem
2 in sections 4,5, and 6. In section 7, we give a characterization of a class of pre-
fiber surfaces in case when they bound fibered links. For the statement of the
result, we prepare some notations. Let 3, be the genus n(>1) Seifert surface
for a trivial knot in S3 as in Figure 1.3. For the precise definition of =,, see
section 7. Then we have;

Theorem 3. Suppose that a surface S, in a rational homology 3-sphere M
is a pre-fiber surface of type 1 with L=9S, a fibered link. Then S, is a connected
sum of a fiber surface for L and =, where n=(X(L)—X(S,))/2. Moreover a
pair of canonical compressing disks for S, corresponds to that of 3.,
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—
Fig. 1.3

Theorem 2 shows that we can get a pre-fiber surface from a fiber surface S
by adding a twist along a properly embedded arc in S, or by removing a band
from S (Figure 1.2). In section 8, we study the converse to this. Namely,
we give a characterization of the arcs in a pre-fiber surface Sy the twists along
which produce fiber surfaces, and a characterization of the bands for Sy to
produce fiber surfaces in case when the ambient manifold is a rational homology
3-sphere. See the remarks of section 8.

We say that a knot in a 3-manifold M is trivial if it bounds a non-singular
disk in M. Suppose that a knot K is contractible in M. Then it is easy to see
that K is tranformed into a trivial knot by a finite number of crossing changes.
The unknotting number u(K) is the minimal number of crossing changes that are
necessary to transform K into a trivial knot. Let X,, I, [ (CZ,) be as in
Figure 1.3. Then, as consequences of the above results, we have;

Corollary 1. A genus g (=1) surface S in S is a fiber surface with 9S an
unknotting number 1 knot if and only if S is obtained from 3, by adding a twist
along an arc a (C3,) such that a intersects I, and 1_ transversely in one points.

Corollary 2. A genus g (>1) surface S in S3is a fiber surface with 8S an
unknotting number 1 knot if and only if S is obtained from 3,_, by adding a band
satisfying the properties (1), (2) of Proposition 8.2, and then plumbing a Hopf band
along b.
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REMARK. Quach [9] proved that if A(#)(=1) is an Alexander polynomial
with leading coefficient +1, then there exists an unknotting number 1, fibered
knot K in S® with Ag(t)=A(t), where Ag(t) denotes the Alexander polynomial
of K. The result implies that, for each g(>1), there are infinitely many un-
knotting number 1, fibered knots of genus g.

In section 9, by using Theorem 2, we study the rational homology 3-spheres
containing unknotting number 1 fibered knots. We say that a 3-manifold is a
lens space if it admits a Heegaard splitting of genus 1 [6]. Then we have;

Theorem 4. If a rational homology 3-sphere M contains an unknotting
number 1 fibered knot, then M is a lens space.

ReMARK. Moreover we will show that, for each g(>1), every lens space
contains an unknotting unmber 1 fibered knot of genus g, and we will give the
list of lens spaces containing genus 1, unknotting number 1, fibered knots. We
note that there exist lens spaces which do not contain genus 1 fibered knots [7].

As an immediate consequence of Theorem 4, we have;

Corollary 3. If an integral homology 3-sphere =2 contains an unknotting
number 1 fibered knot, then =3 is homeomorphic to S°.

2. Preliminaries

Throughout this paper, we work in the piecewise linear category, all mani-
folds, including knots, links, and Seifert surfaces are oriented, and all submani-
folds are in general position unless otherwise specified. For the definitions
of standard terms of 3-dimensional topology, knot and link theory, see [6],
and [10]. For a topological space B, #B denotes the number of the compo-
nents of B. Let H be a subcomplex of a complex K. Then N(H; K) denotes
a regular neighborhood of H in K. Let N be a manifold embedded in a mani-
fold M with dim N=dim M. Then Fr, N denotes the frontier of N in M.
An arc a properly embedded in a surface S is inessential if it is rel 8 isotopic to
an arc in 0S. If a is not inessential, then it is essential.

Let S be a surface properly embedded in a 3-manifold M. A disk D in
M is a compressing disk for S if DN S=0D, and 0D is not contractible in S.
If there does not exist a compressing disk for S, then S is incompressible.

Let S; be a surface with boundary in a 3-manifold M; (i=1, 2). Let B; be
a 3-ball in M; such that B;N9S; is an arc, and B;NS; is a disk ‘(Figure 2.1).
Let h: 0B,— 0B, be an orientation reversing homeomorphism such that
h(®B,N S,)=h(@B,N S,;). Then (M,—Int B))U ,(M,—Int B,) is a connected sum
of M, and M,, and is denoted by M,#M,. The image of S,U S, in M #M, is
called a connected sum of S, and S,.

A sutured manifold (M, ) is a compact 3-manifold M together with a set



Fi1BERED LINKs AND UNKNOTTING OPERATIONS 703

Fig. 21

v(< M) of mutually disjoint annuli A(y) and tori T(y) [2]. In this paper, we
mainly treat the case of T(y)=¢. The core curves of A(y), s(), are the sutures.
Every component of R(y)=0M —Inty is oriented, and R,(y)(R-(y)resp.)
denotes the union of the components whose normal vector point of (into resp.)
M. Moreover the orientation of R(y) must be coherent with respect to s(y).
We say that a sutured manifold (M, ) is a product sutured manifold if (M, «y) is
homeomorphic to (Fx I, 0F x I) with R (y)=F X {1}, where F is a surface, and
I is the unit in:erval [0, 1].

Let (M, 7v) be a sutrued manifold. A properly embedded annulus 4 in M
is a product annulus if one boundary component of 4 is contained in R,(v), and
the other is contained in R_(7). A properly embedded disk D in M is a product
disk if 9D N consists of two essential arcs in A(y). A product decomposition
(M, y)—(M', ') is a sutured manifold decomposition [2] along a product disk.

See Figure 2.2.

Fig. 2.2

Let L be a link in a 3-manifold M. The exterior E(L) of L is the closure of
the complement of N(L; M). A meridian loop for L is a non-contractible simple
loop in E(L), which bounds a disk in N(L; M). Let S be a Seifert surface for
L. Then we often abbreviate SNE(L) to S. S is a minimal genus Seifert
surface if X(S)=X(L).

Let S be a Seifert surface for L. Then (N, 8)=(N(S; E(L)), N(3S; 0E(L)))
has a product sutured manifold structure (Sx I, 8SxI). (N, 3d) is called the
sutured manifold obtained from S. Then the sutured manifold (N°, &)=
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(cl(E(L)—N), cl(0E(L)—38)) with R, (8°)=R_(8) is the complementary sutured
manifold for S. We say that a surface S in a 3-manifold is a fiber surface, if
0S is a fibered link with .S a fiber. It is easy to see that S is a fiber surface
if and only if the complementary sutured manifold for S is a product sutured
manifold.

Then we easily see;

Lemma 2.1. Every fiber surface in a connected 3-manifold is connected.

Let L be a link with a Seifert surface in a rational homology 3-sphere. It
is easy to see that Seifert surfaces for L determine a unique non trivial element
of Hy(E(L), 0E(L)), so that the cyclic covering space for L is well defined.
Then the next lemma follows from the fact that the infinite cyclic covering space
of a fibered link is homeomorphic to (surface) X R, and details of the proof are left
to the reader.

Lemma 2.2. For a surface S in a rational homology 3-sphere, with L=0.S
a fibered link, the following three conditions are equivalent.

(1) S s a fiber surface.

(2) S is a minimal genus Seifert surface for L.

(3) S is incompressible.

Let S be a fiber surface. Then there is an orientation preserving homeo-
morphism @ of S such that @ |as=idss, and E(L) is homeomorphic to SX I ~,
where (%, 1)~(p(x), 0) (*&S). ¢ is called a monodromy map. 98SXI has
an I-bundle structure such that each fiber projects to a meridian loop of
OE(L). Let p: SXI—E(L) be a natural map, D(CSXI) a product disk for
the product sutured manifold (SXx 7, 8S X I) such that each component of
DN (@S xI) is a fiber. Then the 2-complex []=p(D) is called a projected
product disk (or pp disk for short). For the pp disk [J, 8.7, 9.[] denotes
(DN (S*x{0})), p(DN(SX {1})) respectively. Suppose that there is an ambient

Fig. 2.3
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isotopy f; for SX I such that fy=id, f(D) is a product disk such that 8f(D)N
(0S x I) consists of fibers of 3Sx 1. Then we say that the pp disk [J'=p(f,(D))
is isotopic to [] by an isotopy as a pp disk.

ExampLE 2.3. A Hopf band A is a 41 twisted unknotted annulus in S

(Figure 2.3). A is a fiber surface, and a monodromy map for 4 is a right or
left hand Dehn twist along the core curve of A.

ExampLE 2.4. The genus 0 surface 4* of Figure 2.4 is a connected sum
of two Hopf bands, and hence, by [3] or [13], is a fiber surface.

Fig. 2.4

3. Theorem 1

In this section, we prove Theorem 1 stated in section 1. We assume that
the reader is familiar with [5], and [14].

Let L, L’, and D be as in Theorem 1. Let S be a minimal genus Seifert
surface for L in M. Let L, be the link obtained from L by splitting it as in
Figure 3.1, D, the disk as in Figure 3.1, and R, a minimal genus Seifert surface
for L, in E(0D,). By the arguments of the proof of [14, 1.4 Theorem], we may
suppose that R, intersects D, in an arc @, (Figure 3.2 (i)). Let R be the Seifert
surface for L obtained from R, by plumbing a Hopf band as in Figure 3.2 (ii).

Claim 3.0. If E(0D,U L,) is not irreducible, then the conclusion of Theorem 1

holds.
\\/ N~
D

L L

) (i)
Fig. 3.1
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@ (i)
Fig. 3.2

Proof. Let P=D,NE@D,UL,). Then P is a disk with two holes, with
two boundary components /, /, are meridian loops of L, and the rest boundary
component /; is parallel to 8D, in D,. Let S, be an essential 2-sphere in
E(L,udD,).

Subclaim 1. S,NP=*¢.

Proof. Assume that S,NP=¢. Then, by Figure 3.2, we may suppose
that S, is embedded in E(@D,U L), and 0D,UL is contained in a component
of M—S,. Since E(L) is irreducible, S, bounds a 3-ball in E(dD,U L), so that
S, bounds a 3-ball in E(0D, U L,), a contradiction.

Then we suppose that #(S; N P) is minimal among all essential 2-spheres
in E(@D,UL,). Let V(cS,) be an innermost disk, i.e. V NP=8V. By the
minimality of #(.S; N P), we see that 8V is not contractible in P.

Subclaim 2. 9V is parallel to I, in P.

Proof. Assume not. Then 8V is parallel to /, or [, Let D* be the disk
in D, such that 9D*=0V, and S,=V UD*. S, is a 2-sphere, and intersects
L, in one point. Then, by plumbing a Hopf band to R, in the right or left
side of D, in Figure 3.2, we may suppose that S,N L consists of one point.
This shows that a meridian loop for L is contractible in E(L), contradicting the
fact that L is a fibered link.

Subclaim 3. R, is of minimal genus in M.

Proof. Let D* be the disk in D, such that 0D*=9V, and S,=D*U V. By
Subclaim 2, S, is a 2-sphere in M which intersects in L, in two points. Let R¥
be a minimal genus Seifert surface for L, in M. Since S,N L, consists of
two points, by applying cut and paste arguments on S,, we may suppose that
S,NR¥=D,NR¥ consists of an arc whose endpoints are S, N L,. This shows
that X(R,)>X(R¥). Clearly X(R¥)>X(R,). Hence X(R,)=(R¥), so that R, is of
minimal genus in M.
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Subclaim 4. E(L,) is érreducible.

Proof. Assume not. Let S; be an essential 2-sphere in E(L,). Since R,
is incompressible (Subclaim 3), by using standard innermost disk arguments,
we may suppose that S;N\R,=¢. Hence we may suppose that S;NL=d¢.
It is easy to see that S; is an essential 2-sphere in E(L), contradicting the irredu-
cibility of E(L).

By Subclaims 3 and 4, we see that R, is taut in terms of [2]. Hence, by
[2, Theorem 5.5] and the argument of the proof of [3, Theorem 1.1], we see that
E(L) posseses a taut foliation such that Ris a leaf of the foliation. Hence R
is a minimal genus Seifert surface for L in M, and this completes the proof of
Claim 3.0.

By Claim 3.0, hereafter, we suppose that E(0D, U L,) is irreducible. Then,
by the argument in the last paragraph of the proof of Claim 3.0, we see that
E(0D,U L) posseses a taut foliation such that R is a leaf of the foliation, so that
E®D,UL) is irreducible, and R is a minimal genus Seifert sufrace for L in
E(©D,). Then we have the following two cases.

Case 1. E(L) is Ryp -atoroidal.

If R is a minimal genus Seifert surface for L in M, then we have the conclu-
sion of Theorem 1. Suppose that R is not of minimal genus in M. Then by
[5, Theorem 1.8] or [12, 5.1 Theorem], and by the arguments of the proof of
[14, 1.14 Theorem], we see that the surface R* obtained from R by cutting along
@, is of minimal genus in M (Figure 3.3 (i)). Hence we see that the Seifert
surface S’ for L’ obtained from R* by removing the Hopf band is of minimal
genus in M (Figure 3.3 (ii)). We note that X(S’) (=X(L)=X(R)+2.
Since X(L")>X(L) (i.e. X(L")=X(L)+2), this_shows that R is a minimal genus
Seifert surface for L in M, a contradiction.

(@) (ii)
Fig. 3.3

Case 2. E(L) is not R,y -atoroidal.
Since E(L) is not R,y -atoroidal, there is an incompressible, non-boundary
parallel torus T in E(6D,U L) with the following properties.
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(3.1) T separates E(0D,)into ¥, and V, with dE(8D,)C V,, and RC V,, and

(3.2) iy: H(T)— H(V)) is injective.

Let T,, T, be incompressible, non-boundary parallel tori satisfying the
above conditions (3.1), (3.2). We say that 7,<7, if T, is isotopic to T'] such
that T{N T,=¢, and V'CV? where V' (V? resp.) denotes the closure of the
component of E(L)—T1{ (E(L)—T, resp.) which contains 3D,. Clearly < is an
order on the tori with the above properties (3.1), (3.2). Then we suppose that
T is maximal with respect to the order.

Claim 3.1. If T is incompressible in E(L), then R is a minimal genus Seifert
surface for L in M.

Proof. Since E(L) is irreducible, and S is incompressible, by using stan-
dard innermost disk arguments, we may suppose that T intersects S in essential
loops, so that each component of TN N° is an annulus, where (N°, ) is the
complementary sutured manifold for S in M. Since (V¥ ¥°) is a product
sutured manifold, by [15, Corollary 3.2], we may suppose, by moving T by an
ambient isotopy, that each component of 7' N° is a product annulus.

Since T is incompressible, and T'N R=¢, we may suppose that T intersects
D, in essential loops in the annulus cl(D,—N(a,; D,)). Suppose that some com-
ponent of T'N D, is contractible in 7. Then, by using cut and paste arguments,
we see that 8D, bounds a disk in E(L), contradicting the fact that E(dD,U L) is
irreducible. Hence we see that 3D, is ambient isotopic to an essential loop / on
T. Then, by the above, we may suppose that either / is ambient isotopic to a
component of T'N.S or each component of /N N° runs from R_(¥°) to R, ().
Then since lk(l, L)=Ik(0D,, L)=0, we see that I is ambient isotopic to a com-
ponent of T'NS. Hence we may suppose that 9D, N S=¢. This shows that
X(S)<X(R). Clearly X(S)>X(R). Hence X(S)=X(R), and R is a minimal
genus Seifert surface for L in M.

Claim 3.2. If T is compressible in E(L), then T bounds a solid torus in E(L).

Proof. Since E(L) is irreducible and T separates E(L), we see that T
bounds either a solid torus or a 3-manifold homeomorphic to the exterior of a
non-trivial knot in S® such that the boundary of the compressing disk is a
meridian loop. Assume that T bounds the exterior E of a non-trivial knot with
a compressing disk C for T such that 8C is a meridian loop for E. Then
0D,CE. Then B=E UN(C; E(L)) is a 3-ball such that 9D,C B, contradicting
the irreducibility of E(dD, U L).

Claim 3.3. If T is compressible in E(L), then R is a minimal genus Seifert
surface for L in M.

Proof. Assume that R is not a minimal genus Seifert surface for L in M.
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By Claim 3.2, T bonuds a solid torus 7 such that 6D,Cr. Since E(0D,UL) is
irreducible, and T is incompressible in E(@D,U L), we may suppose that T
intersects D, in essential loops in the annulus D,—N(q,; D,). By the argument
of the second paragraph of the proof of Claim 3.1, we see that every component
of TN D, is an essential loop in T. Then 8D, is ambient isotopic to an essential
loop lon T.

Let m be an essential simple loop on 7. Then M(m) denotes the manifold
obtained from D? X S* and M — Int 7 by identifying their boundaries by a homeo-
morphism which takes 8(D? X pt.) to m. Clearly M(m) is obtained from N by
doing a Dehn surgery along the core curve ¢ of 7. Then R(m) denotes the
image of R in M(m). Let m, be a simple loop on T such that M(m,)=M, and
R(my)=R.

Subclaim 1. The absolute value of the intersection number of my and 1 in T
is greater than one.

Proof. Assume that m, does not intersect /, i.e. m, and [ are parallel.
Then [ bounds a disk in 7, contradicting the fact that E(6D, U L) is irreducible.
Assume that m, intersects / in one point. Then [ is isotopic to ¢ in 7, con-
tradicting the fact that T is not boundary parallel in E(dD, U L).

Let I* be a simple loop in T intersecting / in one point. By Subclaim 1, we
see that M is homeomorphic to the connected sum of M(/*) and a non-trivial
lens space L, (Figure 3.4).

Since T 1is incompressible, and E(@D,UL) is irreducible, E(cUL)
(==E(L)—Int 7) is irreducible. By the maximality of T, it is easy to see that
E(L) is R.-actoroidal. By Subcalim 1, /is not ambient isotopic to m, Since
R(m,) is not of minimal genus, by [5, Theorem 1.8] or [12, 5.1 Theorem], we see
that R(]) is taut, so that of minimal genus.

Let R* be the image of R* (Figure 3.3 (i)) in M(I*). Then;

Subclaim 2. R* is a minimal genus Seifert surface in M(I*).

Proof. The idea of the following proof can be found in [14]. Let (N°, &%),
(N, 8", (N*, 6*) be the complementary sutured manifolds for R(=R(m,)), R(l),
R(I*) respectively. Let S? be a 2-sphere in M(!) such that S?N(M—Int7)isa
disk whose boundary is /, and intersecting R([) in an essential arc (Figure 3.4 (i)).
Then the image of S? in N'is a product disk @ in (N', §*), and, by doing the
product decomposition along 4), we get a sutured manifold (N, §), which is
homeomorphic to the complementary sutured manifold for R*. Since R(I) is
taut, (V/, 8) is taut. Hence, by [2, Lemma 3.12] or [12, 4.2 Lemmal], (Kr J) is
taut, so that R* is of minimal genus.

Since M=M(I*)4L,( Figure 3.4 (ii)), Subclaim 2 shows that R* of Flgure
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(i)

Fig. 34

3.3 (i) is of minimal genus. Hence S’ of Figure 3.3 (ii) is of minimal genus.

We note that X(L')(=X(S"))=X(R)+2, and X(L)<X(L'), i.e. X(L)+2<X(L").

This shows that R is a minimal genus Seifert surface for L in M, a contradiction.
This completes the proof of Theorem 1.

4, Fiber surfaces and pre-fiber surfaces

In this seation, we give the definition of pre-fiber surfaces, and show that
if there is a fiber surface F whose monodromy has a certain property, then we can
get a pre-fiber surface by removing a band from F (Proposition 4.5). And, by
using the result, we prove Theorem 2 (1).

Let S be a connected surface in a 3-manifold, and (N*, &°) the complemen-
tary sutured manifold for S. S is a pre-fiber surface, if there are pairwise dis-
joint compressing disks D*, D~ for R,(8°), R_(8°) respectively in N° such that
(N, &%) is homeomorphic to the product sutured manifold, where N is obtained
from N° by doing a surgery along D*UD~. Then S has two compressing disks
D*, D~ such that Int D*NInt D-=¢, D*NN°=D*, D-NN°=D". We say
that D*, D~ is a pair of canonical compressing disks for a pre-fiber surface S.

REmMARK. We note that N(0D*; D*) lies in the — side of S.

We say that a pre-fiber surface S is of zype 1 (type 2 resp.) if dD* is non-
separating (separating resp.) in R, (8°). Itis easy to see thatif .S is of type 1, then
(IN*, &) is homeomorphic to (D*X S*H,, (S'xXI) Y, D*xS?*, 8S8'xI), where S’
is a connected surface, | denotes a boundary connected sum, and d, (d- resp.)
denotes a disk in S’ X {1} (S"x {0} resp.).

ExamPLE 4.1. Let T be a genus 1 Heegaard surface for a lens space [6], and
D? a disk in 7. Let S=T—IntD?. Then S is a pre-fiber surface of type 1.
In fact, the complementary sutured manifold for S is homeomorphic to (D?X
S'h(D*xI) D*x S, dD* X I).

Let A be an unknotted, untwisted annulus in S3 Then 4 is a pre-fiber
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surface of type 2. In fact, the complementary sutured manifold for 4 is homeo-
morphic to (D?x S?, &), where s(v) consists of two essential loops in 8(D?x S*)
which are contractible in D*x S™.

The next proposition shows that pairs of canonical compressing disks for a
pre-fiber surface are unique.

Proposition 4.2. Let S be a pre-fiber surface, and D*, D, D*, D~ as above.
Let D*', D™ be a pair of canonical compressing disks for S such that N(0D*' ; D*')
(N(@D"; D™") resp.) lies in the — side (-+-side resp.) of S. Then D*'(D" resp.) is
isotopic to D+ (D~ resp.) by an ambient isotopy of the 3-manifold respecting S.

For the proof of Proposition 4.2, we prepare two lemmas. Let (V, §) be a
connected sutured manifold such that N is obtained from a (possibly discon-
nected) product sutured manifold (N’, §") with N’ irreducible by attaching a
1-handle along disks in R,(8’), and § is the image of §’. Let D be the dual
core of the 1-handle. Then;

Lemma 4.3. Suppose that N’ is disconnected. Let D, be a compressing
disk for R,(8,). Then D, is isotopic to D by an ambient isotopy of N respecting .

Proof. Since N is irreducible, NV is irreducible. Hence, by using standard
innermost disk arguments, we may suppose that no component of DN D, is
a simple loop. Suppose that DN D,=¢. Then 8D, bounds a disk D’ in
R,(8"). Since D, is a compressing disk, we see that D’ contains a component of
N’ (1-handle), so that D, is parallel to D. Suppose that DN D, = ¢. Let
A(CD,) be an outermost disk, i.e. AN D=08AN D=a an arc, and ANOD,=f
an arc such that ¢ U 8=0A. Let A’ be the image of A in N’. Then 8A'C
R,(8’), and 0A’ bounds a disk D’ in R,(8’) such that A’ is parallel to D’.
Hence we can remove @ by moving D, by an ambient isotopy of IV respecting 3.
Then by the induction on (D N D,), we have the conclusion.

Lemma 4.4. Let (N, 3), (N, 8') be as above. Suppose that N’ is con-
nected. Let D, be a compressing disk for R, (8) such that 8D, is non separating in
R,(8). Then D, is isotopic to D by an ambient isotopy of N respecting 3.

Proof. Let D', D* be the disks in R,(8") along which the 1-handle is
attached. We may suppose that no component of DN D, is a simple loop (see
the proof of Lemma 4.3). We see that if DN D,=¢, then we have the conclu-
sion (see the proof of Lemma 4.3). Suppose that DN D,+=¢. Let A(CD,) be
an outermost disk, and a=AND, B=AN3D,. Let A’ be the image of A in N'.
Without loss of generality, we may suppose that 8A’N D?=¢, and dA'N D!
consists of an arc «’ parallel to @ in D;. Let B’ be the image of 8 in N'.
Then 0A’'=a’UB’, and 0A’ bounds a disk D’ in R,(8’) such that A’ is parallel
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to D’. If D’ does not contain D? then we can move D, by an isotopy to reduce
#(DND,). Suppose that D’ contains D?. Then trace the arc &=9D,—g from
one endpoint to the other. It is =asy to see that there is a subarc a* of & such
that a* N D=0a*, the image of a* in N’ is an arc contained in D’, and the
endpoints of the image of a* is contained in D? (Figure 4.1). 'This shows that,
by moving D, by an isotopy, we can remove a*. Hence, by the induction on
#(D, N D), we have the conclusion.

a¥*

Fig. 4.1

Proof of Proposition 4.2. We prove Proposition 4.2 for D* and D*'. The
other case is essentially the same. Let (N°, &), (N, 8°) be as above. Then
we may suppoe that D¥'=D*NN° is a disk. Let S, be the surface in N°
corresponding to Sx {1/2} (C(N, §")=(Sx1I, 3SxI)). Then by using stan-
dard innermost disk arguments, we may suppose that D*'NS,,=¢. Then, by
Lemma 4.3 or Lemma 4.4, we see that D* is ambient isotopic to D* in N°.
This shows that D* is isotopic to D* by an ambient isotopy respecting S.

This completes the proof of Proposition 4.2.

/!

8

Let F be a fiber surface in a 3-manifold M, and ¢: F—F a monodromy map.
Suppose that there is an arc a(C S) such that;

(4.1) aN@(a)=0a=0¢p(a), and

(4.2) the components of N(d¢p(a); ¢(a)) lie in one side of a (Figure 4.2).

The purpose of this section is to prove;
Proposition 4.5. Let F, @, a be as above. If M is a rational homology

a, a a,

A

ik

Fig. 42
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3-sphere, and a does not separate F, then the surface obtained from F by cutting
along a is a pre-fiber surface.

In case when a separates F, we have;

Proposition 4.6. Let F, @, a be as above. If a separates F, then there is a
separating 2-sphere S* in M such that S\ F==a,i.e. F is a connected sum of two
fiber surfaces.

Proof of Proposition 4.6. Suppose that a separates F into F, and F,. Since
@ |ar=Idyr, and ¢ is a homeomorphism, we see that o(F;) is rel 0 isotopic to F;.
Hence, we may suppose that ¢(a)=a. Take a pp disk [J such that 9_[J=
9,0=a. Then [ is topologically an annulus. Then, by adding two meridian
disks to [], we get a 2-sphere S? in M, which intersects F in a.

Assume that S? does not separate M. Let M’ be the 3-manifold obtained
from M by cutting along S? and then capping off the boundary by two 3-cells.
We note that the complementary sutured manifold (N’, §) for the discon-
nected surface F, U F, in M’ is homeomorphic to the sutured manifold obtained
from the complementary sutured manifold (V, 8) of F by decomposing along
the product disk (JN/N. Hence F,U F, is a fiber surface in a connected 3-mani-
fold M’, contradicting Lemma 2.1.

Proof of Proposition 4.5. Let a, and a, be the components of Frz N(a; F).
We may suppose that @, N @(a) consists of two points, and a,Ngp(a)=¢. See
Figure 4.2. Let a be the subarc of 4, such that da=a, N ¢(a), and I=(p(a)—
N(a; F))Ua. Then lis a simple loop on F.

Claim 4.1. There exists a disk D in M such that dD=I, and (Int D)N F=a.

Proof. Let [J be a pp disk for F such that 8_[J=a, 0,[J=p(a). We
note that [JNOE(L) consists of two meridian loops. Let D,, D, be meridian
disks for L such that 8D,UdD,=[JN8E(L), and (J=[JUD,UD,. Then we
identify F N E(L) to F. Let B be the rectangle in F such that one edge is @, two
edges are the components of @(a) N N(a; F), and the last edge is @. Then
D= U B is topologically a disk such that 8D=1I, and DNF=BUIL Then, by
deforming D by pushing B—(a U a) slightly to the —side of F, we get a disk D
satisfying the conclusion.

Let .S; be the surface obatined from F by cutting along 4, and D as in
Claim 4.1. Then DN S;=0D=I, and we have;

Claim 4.2. No component of the surface obtained from S, by doing a surgery
along D, is closed.

Proof. If /is non-separating in S,, then Claim 4.2 is clear. Hence assume
that [ separates S, into S’ and S’ such that S"UD is a closed surface. Since
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a is non-separating in F, there is a simple loop m on F such that mN/=¢, and
m intersects a in one point. Then m intersects the closed surface S’U D in one
point, contradicting the fact that M is a rational homology 3-sphere.

Let a’ be the component of Frp N(g(a); F) such that a’'N/=¢. Then
we have;

Claim 4.3. There is a properly embedded arc a” (C F) such that a” N (aU d’)
=@, d'Ni=¢, and aUa’ Ua” cuts off an annulus A from F such that l is a core
of A.

Proof. Let F’ be the component of the surface obtained from F by cutting
along aUa’ such that /ICF’. Then /is parallel to the component of 3F’ which
meets aUa’. By Claim 4.2, there is a component I’ of 0F such that I'C F’.
Let B8 be an arc in F’ such that BNI'=8B8 NI’ consists of one point, the other
endpoint of B is contained in /, and, Int 8NI=¢. Then FrxN(BUI; F’) con-
sists of two components such that one is a simple loop parallel to /, and the
other is an arc a” properly embedded in F’. It is easy to see that @’ satisfies
the conclusion.

Claim 4.4. Let a’, a”, J be as in Claim 4.3. Then there is a 3-ball B®
in M such that BN\ F=, and A looks as in Figure 4.3 in BS.

B3

Fig. 4.3

Proof. Let D, B be as in the proof of Claim 4.1. Then N(AUD; M) is a
3-ball, and A, D looks as in Figure 4.4 in the 3-ball. Since D is obtained from
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D by pushing B—(aUa) to the—side of F, it is easy to see that the conclu-
sion holds.

Let D, a’, a”, B® be as in Claim 4.4. By Figure 4.3, we see that the com-
plementary sutured manifold (V%, 8%) for F looks as in Figure 4.5 (i) in B%. Let
[ be a pp disk for F such that 8_[]=a. Then we may suppose that []JC B,
and A=[JN N5 is a product disk for (N%, §7) (Figure 4.5 (i)). Let (N,, §,) be
the product sutured manifold obtained from (IN%, 8%) by a product decomposi-
tion along A, D, D* the disks properly embedded in c[(E(L)—N,) as in Figure
4.5 (ii). Let S, be the surface obtained from S; by doing surgery along D.  See
Figure 4.6. Finally, let (IV}, 8,) ((IV{, 8f) resp.) be the sutured manifold obtained
from S, (the complementary sutured manifold for S, resp.).

Fig. 4.5

Fig. 4.6

Since S, is obtained from F by cutting along a, and (N%, 8%) is properly
isotopic in E(0F) to the sutured manifold obtained from F (note that F is a
fiber surface), we see that (N, §,) is ambient isotopic to (IV;, 8,) in M. Hence,
hereafter, we identify (IV, §,) to (N}, §,), and we identify S, to S, x {1/2}
(c8,;xI=N,). Then D*, D~ are compressing disks for R,(8f), R_(8%) in
Ni§(=cl(E(8S,)—N,)) respectively. Let N* be the manifold obtained from N¢
by doing surgery along D*UD-. Then (N*, §) is ambient isotopie to the
sutured manifold obtained from S, (see Figure 4.6). This shows that S, is a
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pre-fiber surface, and this completes the proof of Proposition 4.5.
As a consequence of Proposition 4.5, we have;

Proof of Theorem 2(1). Let D be the crossing disk for L. Then, by
Theorem 1, we see that S looks as in Figure 1.1. Then S, looks as in Figure
4.7 (1). Let S* be the surface obtained from S, by adding a band & as in
Figure 4.7 (ii). We note that .S, is a plumbing of F and a fiber surface 4* in S3
(Example 2.4). Hence S* is a fiber surface. Moreover, by Figure 4.7 (ii), it is
directly observed that the arc « in Figure 4.7 (ii) satisfies the assumptions of
Proposition 4.5 (cf. Figure 4.3). Hence, by Proposition 4.5, we see that S is
a pre-fiber surface.

@ (ii)
Fig. 4.7

Let S, be as in Theorem 2, a, as in Figure 1.2, and D*, D~ a pair of
canonical compressing disks for the pre-fiber surface S,. Then the next lemma
will be used in section 6 to prove Proposition 6.1.

Lemma 4.7. Let S,, a,, D*, and D~ be as above. Then 0D*, and 0D~
are ambient isotopic in S, to a loop intersecting a, in one point.

Proof. Without loss of generality we may suppose that the Hopf band
A is attached to the + side of F (Figure 1.1). Then there is a compressing
disk D~ for S, such that @D~ corresponds to the core curve of A, and
N(0D~; D7) lies in the -+ side of S,. Then by the proof of Theorem 2 (1)
(Figure 4.7), and the proof of Proposition 4.5 (Figures 4.5, 4.6), we see that D~
is a component of a pair of canonical comporesing disks for S,. Hence, by
Proposition 4.2, we see that 9D~ is ambient isotopic to a loop intersecting a, in
one point. Let a(C.S) be the arc correspondsing to g, (Figure 4.8). Then it is
directly observed from Figure 4.8 that there is a pp disk (] such that 9,[]=a,
8,0N8.[0=0a, and the components of N(da; 8_[]) lie in pairwise different
sides of a. Hence there is a monodromy map +: S— S such that y»"Y(a) Na=
da, and the components of N(8yr"'(a); yr"'(a)) lie in pairwise different sides of a.
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Fig. 49

Let (]’ be pp a disk such that 8_[]'=a, 0.[]'=+(a). Roughly speaking,
O'=+(). Then O’ looks as in Figure 4.9 in the 3-ball B=N(a; M).

Let b, be an unknotted band, and A, a disk in a 3-ball B, as in Figure 4.10.
Let #: 0B— 0B, be a homeomorphism such that 2(S N0B)=k(b,N3B,), and
R[]’ N8B)=h(A,N08B,). Then (M—IntB)U ,B,=M, and it is easy to see that
(S—Int B)Ub,=S, and D*=([J'—Int B)U A, is a compressing disk for .S, such
that N(0D*; D*) lies in the—side of S,,.

4

Fig. 4.10

By definition, it is easy to see that 8D* is ambient isotopic to a loop
corresponding to r(the core curve of A). Hence D* is a component of a pair
of canonical compressing disks for S,. Hence, by Proposition 4.2, 9D* is
ambient isotopic to a loop intersecting 4, in one point.
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5. Propositions

In this section, we prove some technical propositions. For the statement
of the results, we give some definitions.

Let M be a compact 3-manifold, u a subsurface of dM. For a connected
surface S properly embedded in (M, u), let

X(S) = max{0, —X(S)}.
When S is a union of connected surfaces S, -++, S,, let
X(S) = a1 X(S)) .
Then, we define the function
x: H(M, p)— Z
by
%(a) = min{X_(S)|S is an embedded surface representing a}.

We say that S is norm minimizing if X_(S)=x([S]), where [S] denotes the
homology class in Hy(M, u) represented by S.

Let S’ be a compact, connected surface with 85’ ¢, ,, /, non separating
simple loops in S’. Let N=S'xI, §=08'x1I, and l,=I,x {0}, L,=1,x {1}
(CAN). Let N, be the manifold obtained from N by attaching a 2-handle 9,
along /4, N' the manifold obtained from N by attaching two 2-handles along ,,U,.
We may regard that N is obtained from N, by attaching a 2-handle 9, along /,.
5, 8 denote the images of & in N, N' respectively. Then (N, §), (N, &), (N, 5),
have mutually coherent sutured manifold structures. The purpose of this sec-
tion is to prove Propositions 5.1 and 5.2 below.

Proposition 5.1.  Suppose that R.(3) are not norm minimizing in H,(N, §).
Then 1, is ambient isotopic to a loop disjoint from I,.

RemARk. It is easily observed that if 7, and 7, are disjoint, and not parallel
then R.(3) is not norm minimizing in H,(N, §)

Proposition 5.2. Suppose that (N, §) is a product sutured manifold. Then
1, is ambient isotopic to a loop intersecting I, in one point.

As a consequence of Proposition 5.1, we have;

Corollary 5.4. Let S, be a pre-fiber surface of type 1 in a rational homology
3-sphere M, D*, D~ a pair of canonical compressing disks for S,, and S, the surface
obtained from S, by doing a surgery along ‘D*. Suppose that X(L)>X(S,)+2,
where L=0S,. Then 0D* is ambient isotopic in S, to a loop disjoint from 0D~
and S, is a pre-fiber surface, where D~ is a component of a pair of canonical com-
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pressing disks for S,.

The proof of Proposition 5.1 is done by using the outermost fork argu-
ment of M. Scharlemann [11]. And the proof of Proposition 5.2 is done by
using the Haken type argument of Casson-Gordon [1].

For the proof of the propositions, we prepare one lemma. Let (E, &) be
a connected sutured manifold. Suppose that there is a non separating com-
pressing disk C for R, (€) such that (E, &) is a product sutured manifold, where
E is obtained from E by cutting along C, and & the image of & in E. Let 4
be an incompressible product annulus in (E, €). Then;

Lemma 5.3. A4 is ambient isotopic to an annulus disjoint from D by an
ambient isotopy of E respecting &.

The proof of Lemma 5.3 is done by using the same arguments as that of
Lemma 4.4. Hence we omit it.

Proof of Proposition 5.1. Let F be a norm minimizing surface in (N, 3)
such that [F]=[R,(§)]€H,N, §). Since [F]=[R,(3)], by piping the boundary
components of F, if necessary, we may suppose that 0 F=s(3) (Figure 5.1).

<&

The next claim will be used in the proof of Corollary 5.4.

Fig. 5.1

Claim 5.0. N is érreducible.

Proof. Assume not. Let F be a surface in N corresponding to S’ X {1/2},
and V), V, the closure of the components of N—F. Then (V,,V,) is a
Heegaard splitting of N in terms of [1]. Henee, by [1, Lemma 1.1], we see
that there is an essential 2-sphere S, in N such that ;N S, consists of a disk.
Then it is easy to see that N is a connected sum of a lens space and a product
sutured manifold. But this contradicts the fact that R.(8) are not norm mini-
mizing.

Claim 5.1. FN9,*¢.

Proof. Assume that FN9,=¢. Then we can regard that FCN, Let
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D be the disk properly embedded in N, such that D=(,x I)U (the core of D,).
Then the manifold N, obtained by cutting N, along D is homeomorphic to
R_(8,)x I, where R_(§,)% {0} corresponds to R_(5,). Since N, is irreducible,
by using standard innermost disk arguments, we may suppose that F N D=¢.
Hence we may regard that FCNN,. Then, by [15, Corollary 3.2], we see that
F is a parallel to R_(§,). Hence X(F)=X(S")+2(=X(R_(3))), a contradiction.

We may suppose that F intersects &), in horizontal disks E,, -++, E, in this
order. Let Fy=cl(F— U E;), and 4; (i=1,--,n—1) the annulus in 8N,
bounded by 0F; UOE,,,. Let D be as in the proof of Claim 5.1. We suppose
that #(8F, N0 D) is minimal among all disks ambient isotopic to D in N,. Let
a be the dual core of the 2-handle &,. Then « is an arc in N such that
aNdN=aNR,(8)=08a. Since F is norm minimizing, by [12, 3.5 Lemma b)],
we may suppose that F separates N into two components M,, M, such that
M,DR_(8), MiDR,(5). This shows that « intersects F an even number of
times and the signs of the intersections are alternately different on . Hence we

have;

Claim 5.2. n is an even number, and the orientations on OE,, -+, 0E,
induced from F, are alternately different in 0N,

Claim 5.3. If n=2, then I, is ambient isotopic to a loop disjoint from 1.

Proof. Let Fi=(F—(E,UE,)UA4,. Then X(F,)=X(F)—2. By the argu-
ment of the proof of Claim 5.1, we see that F; is parallel to R_(5,). Hence,
there is a product annulus 4 in N, such that AN R, (§,)=L. Let D(CN,) be
as in the proof of Claim 5.1. Then D cuts (N,, &) into a product sutured
manifold. Hence, by Lemmas 5.3, we may suppose that D and A4 are disjoint.
We note that 4;=D N N is the product annulus 7,x I in (N, §). Hence 7,x {1}
and [, are disjoint, and we have the conclusion.

By Claim 5.3, hereafter, we suppose that n>4. Let D be as above. Then,
by using standard cut and paste arguments, we may suppose that DN F, con-
sists of arcs. We suppose that #(8DN1]) is minimal among all disks ambient
isotopic to D in N,. Then;

Claim 5.4. No component of DN F, is an inessential arc in F,,.

Proof. Assume that a component @ of DN F, is an inessential arc in F.
Then there is a disk A, in F, such that Fr, A;=8. By doing 8-compression on
D along A, in N,, we get two disks D’, D” whose boundaries lie in R.(3,).
Since 3D is non separating in R.(§,), at least one of the disks, say D’, is non
separating in N,. By Lemma 4.4, we see that D’ is ambient isotopic to D. On
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the other hand, by moving D’ by an ambient isotopy, we have #(0D'N%) <
#(@DN1), a contradiction.

We get a planar tree T by corresponding each component of D—F, to a
vertex, and each component of DN F; to an edge. We regard that T is embed-
ded in D and each edge of T intersects D F, in one point which is contained in
the corresponding component of DN F,. See Figure 5.2. Let ¢ be a com-
ponent of DN F,, and ey the edge of T corresponding to . 'Then ¢ N ey consists
of a point, which separates 7 into two arcs 7, and 7,. One endpoint of vy, lies in
U ;%1 0F;. Labell the corresponding side of ey by % if the endpoint lies in 3E,.
Then we can labell the each side of the edges of T by {1, ---, n}.

%ﬁ
113
‘3- 4 2 Y
2 1 1
114
2J3

Fig. 5.2

In general, for a tree 9, an outermost vertex is a vertex with valency 1. An
edge adjacent to an outermost vertex is called an outermost edge. A fork is a
vertex with valency >3. Let & be the collection of the forks of 9. Let I’ be
the tree obtained by removing all components of 4 — S which contains an outer-
most vertex. An outermost vertex for 9’ is an outermost fork of 4. If F=¢,
then < does not contain an outermost fork. If v is an outermost fork, then the
components of 4—o which contain no forks are called outermost lines of v. If v,
(e resp.) is a vertex (an edge resp.) which is contained in an outermost line of v,
then we say that v, (¢, resp.) is dominated by v. Then we have;

Claim 5.5. If there is an outermost edge of T which is labelled by i and
i+1 for some i€ {1, .-, n—1}, then there is a norm minimizing surface F' in

(N, §) such that [F']=[F] and, #(F' N D,)=#(F N D,)—2.

Proof. Let A be the closure of the component of D—F, corresponding to
the outermost vertex adjacent to the outermost edge. Let Fi=(F—(E;UE;.,))
UA4;. By Claim 5.2, we see that F, is orientable. Then [F]=[F]€H,N, J),
and X(F,)=X(F)—2. Since the core arc of A; intersects A in one point, A
is an essential loop in F,. Hence A is a compressing disk. Let F’ be the
surface obtained from F, by doing a surgery along A. By moving F’ by a tiny
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isotopy, we see that F’ satisfies the conclusion.

Claim 5.6. Suppose that there is a vertex v of T such that v is not an outer-
most vertex, and the adjacent edges of v are labelled alternately by i and i+1
(Figure 5.3). Then there is a norm minimizing surface F' in (N,§) such that
[F'1=[F"], and $(F' N D,)=#(F N D,)—2.

i+1 i

i i+1
Fig. 5.3

Proof. Let A be the closure of the component of D—Fj corresponding to
v, and Fy=(F—(E;UE;,,))UA4;. Then F, is orientable (see the proof of Claim
5.5), [Fi]=[F], and X(F,)=X(F)—2. ANF,=08A, and the absolute value of the
algebraic intersection number of A with the core of 4; is the number of the
edges adjacent to v. Hence A is a compressing disk for F;. Let F’ be the
surface obtained from F, by doing surgery along A. By moving F’ by a tiny
isotopy, we see that F’ satisfies the conclusion.

Claim 5.7. If there is an outermost line with the pattern as in Figure 5.4,
then there is a norm minimizing surface F' in (N,8) such that [F')=[F], and
#(F' ND)=#(F NDy)—2.

1 v 2 n o n—1
V) O————— ¢+ v s v, ———————
1 2 n n—1
(i) (ii)
Fig. 54

Proof. Suppose that there is a pattern of Figure 5.4 (i). The other case is
essentially the same. Let A be the closure of the component of D—F corres-
ponding to v (Figure 5.4), and F,=(F—(E,UE,))UA4,. Then ANF,=0A.
Hence if A is not contractible in F), then, by compressing F; along A, we
have a surface F’ satisfying the conclusions. Hence, in the rest of the proof, we
suppose that A is contractible in F;. Then AN cl(F—(E,U E,)) consists of two
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inessential arcs B, B, in cl(F—(E,U E,)) such that 03;C0E; (=1, 2). Hence
there are two planar surfaces P,, P, in F, such that Fry P;=g; (Figure 5.5). By
Claim 5.4, we see that P; is not a disk.

Sublcaim 1. T contains a fork.

Proof. Assume that T does not contain a fork. Then, by tracing the
edges of T from v, (Figure 5.4), we see that there are n components 8, B, B, ***,
B, of DN F, such that 88, C8E; (i=1, :+-, n), where B,, 53, are as above. Then
it is easy to see that some B3; contained in P, is an inessential arc in F,, con-
tradicting Claim 5.4.

Let v, be the outermost fork which dominates v,, v, an outermost vertex
dominated by v,, and located next to ;. By using the argument of the proof
of Subclaim 1, we have;

Subclaim 2. The outermost line between v, and v, contains at most n—1
edges.

Subclaim 3. Either the conclusions of Claim 5.7 holds or the outermost edge
adjacent to v, is labelled by 1 and n.

Proof. Suppose that the outermost edge is not labelled by 1 and #. Then,
by Claim 5.5, we see that either the conclusions of Claim 5.7 hold or the edge is
labelled by two 1’s or two #’s. Suppose that the second case occurs. If the
outermost line between v, and v, contains more than n—1 edges, then we have
a contradiction as in the proof of Subclaim 1. Hence the outermost line con-
tains at most n—1 edges, and this fact together with Subclaim 2 show that
there are exactly » edges between v, and v, in T, and the outermost edge adjacent
to v, is labelled by two #’s (Figure 5.6). Then, by tracing the edges in T from
v, to v,, we again have a contradiction as in the proof of Subclaim 1.

Suppose that the second conclusion of Subclaim 3 holds. If the outermost
line between v, and v, contains more than 7/2 edges, then we have a pattern
of Figure 5.3 in the outermost line, so that we have the conclusion of Claim 5.7
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Fig. 56

by Claim 5.6. Assume that the outermost line contains j(<n/2) edges. By
Subclaim 2, we see that there are exactly » edges between v, and v, in T
(Figure 5.7).

v

Fig. 5.7

Let By, By B3 ***, B, be the components of DN F, corresponding to the
edges between v, and 0, in 7. Then, for i<n—j, 08;COF;. Then fix some
Biy(k<n—j) suc such that B,C P, and B, is innermost, i.e. S, cuts off a planar
surface P, from F, such that no component of 9E, U 9E,U -:- UOE,_; is contained

in P, (Figure 5.8).
P, /
YO

P,

oE,

Fig. 5.8

By Claim 5.4, we see that some 9E,(m>n—j-1) is contained in 0P,. Since
j <n/2 and B, is innermost, we see that 3,, joins 0E, and 9E,. This shows that
m=n-+1—Fk, so that P, is an annulus. Then, by Claim 5.4, we see that every
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component of DN F, which meets 9E,, joins 0F,, and 0E,. But this contradicts
the fact that #(6D N 0E,)=#(8DNAE,), and this completes the proof of Claim
5.7.

Completion of the proof of Proposition 5.1. We suppose that #(F N9),)
is minimal among all norm minimizing surfaces representing [R.(3)]. If
#(F N9,)=2, then, by Claim 5.3, we have the conclusion. Assume that n>2.
By Claim 5.5, we see that each outermost edge is labelled by either two 1’s,
two n’s or 1 and =.

Suppose that T does not have a fork. If an outermost edge is labelled by
two 1’s or two »’s, then we have a contradiction by Claim 5.7. If an outer-
most edge is labelled by 1 and #, then we have a pattern of Figure 5.3 in T,
so that we have a contradiction by Claim 5.6. Hence T has a fork.

Let v be an outermost fork for 7. If all the outermost edges dominated
by v are labelled by 1 and #, then by Claim 5.6, we see that each outermost line
contains at most 7#/2 edges. Hence the adjacent edges of v are labelled alternate-
ly by »/2 and n/2+1, contradicting Claim 5.6. Hence we may suppose that
some outermost edge dominated by v is labelled by two 1’s. Then, by Claim
5.7, we see that v is adjacent to the edge. Let v, be an outermost vertex which
is dominated by v and next to the outermost edge. By Claim 5.5, we see that
there are at least n—1 edges in the outermost line between v and v,. Then,
by Claims 5.5 and 5.7, we see that the edge adjacent to v, is labelled by 1 and
n. Hence we have a pattern of Figure 5.3 in the outermost line, contradicting
Claim 5.6, 2nd this completes the proof.

Proof of Corollary 5.4. Let (IV;, 8,)((IN§, 8%) resp.) be the sutured manifold
obtained from S; (the complementary sutured manifold for S; resp.) (=0, 1).
Then we may suppose that Df=D* N N§ are disks properly embedded in N§,
and (cl(N§—N(Dg U Dy ; N§), 85) is properly isotopic to (IVy, §,) in E(L). Hence,
hereafter, we identify (V;, 8,) to (c{(N§—N(Dg U Dy ; N§), 8¢). Then (I, &%) is
obtained from (V,, §,) by attaching two 2-handles N(Dg ; N§), N(Dy; N§) along
the simple loops dD* X {1}, dD~ X {0} in (IN,, &) (=<¢(S, X I, 8:S, X I)).

Case 1. X_(S)>0.

In this case, S; is not norm minimizing. Hence, by Claim 5.0, and [5,
Lemma 0.4] or [12, section 3], we see that R,(8f) is not norm minimizing in
H,(N3, 81). Then, by Proposition 5.1, we may suppose that dD* and 8D~ are
disjoint. Moreover since M is a rational homology 3-sphere, they are not
parallel. Let D¥=Dg U A*, where A*, A~ are the product annuli 0D*X I,
0D~ x1Iin (N,, 8,). Then Df, Dy are mutually disjoint disks properly embedded
in N{ such that D} U D7 cuts (IV{, 87) into a product sutured manifold. Hence
S, is a pre-fiber surface and clearly D~ corresponds to Dy.
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Case 2. X_(S,)=0.

Since X_(S,)=0, X_(S,) is either 0,1 or 2. Since S, is a pre-fiber surface
of type 1, S, contains a non separating loop. Hence it is easy to see that S, is
either a torus with one hole, or a torus with two holes. If S, is a torus with
one hole, then S, is a disk so that X(L)=1=X(S,)+2, a contradiction. Suppose
that S, is a torus with two holes, so that S, is an annulus. Then

Claim. There are mutually disjoint disks E,, E, in M such that (E,U E,)N
S1:6(E1 UE,)=L.

Proof. Since X(L)>X(S,)+2, we see that there is a Seifert surface &€
for L such that X(€)=2, so that & is a union of two disks. Then, by using
standard innermost disk, outermost arc arguments, we see that either & satisfies
the conclusion of Claim, or € intersects S, in essential loops in S;, so that
S, is compressible. Suppose that the second conclusion holds. Then by .doing
a surgery along a compressing disk for .S;, and moving the resulting surface by
a tiny isotopy, we get a pair of disks satisfying the conclusion.

By the above claim, we see that E,, E, are embedded in (N, 8f), so that,
by regarding E,UE, as F, the proof of Proposition 5.1 shows that D% is
ambient isotopic in S, to a loop disjoint from 0D~. Hence, by the argument
of Case 1, we see that the conclusion holds.

Proof of Proposition 5.2. Let {D,, -+, D,} be a system of mutually disjoint
product disks in (N, §) such that U D; decomposes (N, §) to the product sutured
manifold (D?x I, 8D?*x I). Let S be the surface corresponding to S’x {1/2} in
N. S is a Heegaard surface of (N, 8) [1]. Then, by the arguments of the
proof of [1, Lemma 1.1], and the distinguished circle argument of Ochiai [8,
Lemma], we may suppose that each D; intersects S in an arc. We note that
the arguments in [1, Lemma 1.1] and [8] work for product disks. Hence the
image of S in D?>x 1 is a torus with one hole T with 8T=8D?x {1/2}. More-
over, by using the core disks of the 2-handles, we see that T has two compress-
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ing disks Dy, D, such that 8D; corresponds to I; in S’, N(8D,; D,) lies in the
+ side of T, and N(8D;; D,) lies in the — side of 7. This fact together with
Lemma 4.4 shows that 7, is isotopic to a loop intersecting /; in one point. See
Figure 5.9.

6. Monodromy maps

LetL,L', S, F, A,S,, S, and M be as in Theorem 2, and b as in Figure 1.1.
Let @: F— F be a monodromy map, and a (CF) a component of Fry N(b; F)
(Figure 1.1). The purpose of this section is to prove the following proposition.

Proposition 6.1. If X(L')>X(L)+2, then, by deforming @ by a rel 0
ambient isotopy, if necessary, we may suppose that a(\ p(a)=0a=0¢p(a), and the
components of N(0p(a); p(a)) lie in one side of a (Figure 4.2).

ReEMARK. Proposition 6.1 together with Proposition 4.6 shows that if
X(L')>X(L)+2, then a is non separating in F.

Then we give a proof of Theorem 2 (2). As a consequence of Proposition
6.1, we have;

Corollary 6.2. Let S be as in Theorem 2 (2), and yp: S— S a monodromy
map of S. Then there is a non separating simple loop I in S such that (l) is
ambient isotopic in S to a loop disjoint from I.

Proof of Proposition 6.1. Let (N, 8), (Np, &), (IV;, 8,) be the sutured
manifolds obtained from S, S, S, respectively, and (N°, &), (NV§, 85), (IV, 87)
the complementary sutured manifolds for S, S,, S; respectively. By Theorem
2 (1) (section 4), S, is a pre-fiber surface. Let D}, Dy be a pair of canonical
compressing disks for S,. Then we may suppose that Dy looks as in Figure 6.1.

Fig. 6.1

By Lemma 4.7, we may suppose that dDg intersects a, of Figure 1.1 in one
point. By Corollary 5.4, we may suppose that dDj and 98Dy are pairwise
disjoint. Hence 0D; looks as in Figure 6.2.

Claim 6.1. There is a disk D in M such that DN S,=DNInt S,=0dD,
and D intersects the band b in an essential arc a,.
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D;
Fig. 6.2

Proof. We identify S, to the surface obtained from .S, by doing a surgery

along D7. Let D=D{. By Figure 6.3, it is directly observed that D satisfies
the conclusions.

Let (] be a pp disk for F such that 0_[J=a, 0,[J=¢p(a). Suppose that
@(a) does not run through 4. Then it is easy to see that we have the conclu-
sion of Proposition 6.1. Hence suppose that @(a) runs through &. Then, by
deforming [] by an isotopy as a pp disk, we may suppose;

(6.1) 9.0 Nbd consists of arcs joining the components of Frzb, and
#{(6.0Nd)Na,} is minimal among the rel 8 isotopy class in &, and

(6.2) If @ is a component of 8, [] N (F—b) such that 0a C Fry b, then « is
not rel 8 isotopic in c/(F—b) to a subarc of Fry b.

Since 8_[1N D=aN D=¢, we see that each component of (JN D is either
an arc whose endpoints lie in 0,7 , or a simple loop. Then;

Claim 6.2. If necessary, by applying cut and paste on D, we may suppose
that [N D consists of arcs.

Proof. Let (N%, 8%) be the complementary sutured manifold for F. Then
we may suppose that [JNN% is a product disk. Suppose that a component /
of (JN D is asimple loop. We may suppose that /C([JNN%). Then!bounds
a disk in [J. Hence, we can apply a cut and paste on D, by using the disk,
to remove /. Do the same untill all the simple loops are removed.

Let p: FxI— E(8F) be a natural map (section 2), and & the product disk
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in (Fx 1, 8F xI) such that p(9)=[]. Then, by Claim 6.2, we see that p~(D)
consists of arcs whose endpoints lie in YN (Fx {1}). Then let A be the closure
of an outermost component of 9 — p~'(D) which does not intersect P N (Fx {0})
(Figure 6.4). Then B8=p(A)ND(=p(Frg A)) is an arc with BNa,=08B. Let
a be the subarc of @, such that da=08. Then aU B bounds a disk D* in D.
If D* does not contain 9a; (Figure 6.5 (i)), then, by (6.2), p(A) U D* is a com-
pressing disk for F, a contradiction. Hence 84, C D* (Figure 6.5 (ii)). Then
[(0*=D*U p(A) is a pp disk for F such that _[]*=a,. Since 8, [1*=(a,—a)U
(p(A)N F), by moving [J* by a tiny isotopy as a pp disk, we get a pp disk [J**
such that 8_[]** is properly isotopic to @ in F (in fact, it moves through &), and
8..[J** does not go through 4. Since 8_[J** is ambient isotopic to a,, we have
the conclusion of Proposition 6.1.

Fx{0}
Fig. 6.4

0] (i)
Fig. 6.5
Proof of Theorem 2 (2). By the remark of Proposition 6.1, we see that

S, is a type 1 pre-fiber surface. Hence, by Corollary 5.4, we see that S, is a
pre-fiber surface.

Proof of Corollary 6.2. Let ! be 3 non separating simple loop in S corres-
ponding to 8Dy of Figure 6.1. By [3], we see that yr=1,04r,, where Jr;: S— S
is an orientation preserving homeomorphism such that +, | 4 is a Dehn twist along
L Al cis-ay=1d., Yr,| p=e, and yn,|.s-;y=1d. Then, by Proposition 6.1, it is
easy to see that yr(/) is ambient isotopic to a loop disjoint from .
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7. Proof of Theorem 3

In this section, we prove Theorem 3 stated in section 1.

Firstly, we prepare some notations. Let S be a surface in a 3-manifold M,
and a (CM) an arc such that aNS=0a (CInt S), and the components of
N(da; a) lie in one side of S. Let A be the component of dN(a; M)—S which
is an open annulus. Then S,=(S —Int N(a; M))U A4 is a surface, and has the
orientation coherent to S. See Figure 7.1. We say that S, is obtained from
S by adding a pipe along a.

Fig. 71

Let S, a, S, be as above, and (N ¥, §°) the complementary sutured manifold
for S. Then we may suppose that a’=a N N°is an arc such that 8¢’ C R (8°)
or 3a’CR_(8°). We suppose that 8¢’ CR_(8°). The other case is essentially
the same. Let (Vg 8;) be the complementary sutured manifold for S,. Then,
by Figure 7.2, we immediately have;

Lemma 7.1. (N, &;) is homeomorphic to (N, §'), where N' is obtained
from c(N;—N(a'; N3)) by adding a 1-handle along disks in R.(3), and 8 is
the image of 8° in N'.

Fig. 7.2

Then we give the definition of the surface 3, in S? (see section 1). Let
D be a disk in S%.  Fix a D*-boundle structure with D a fiber on E(8D). Then
we define a sequence of arcs a,, a,, -+ as follows.

Let @, be an arc in S?3 such that N(84,; a;) lies in the — side of D, ;N D=
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8a,(CInt D), and there is a disk A such that a,C0A, AN Int D=0A—Int a,=0
an arc in D. Clcarly g, is unique up to ambient isotopy of S? respecting D.

T

a,

Fig. 7.3
% a,
Fig. 74

Suppose that @, has defined. Then let g, be an arc such that N(9a;.,; a4,)
lies in the — side of D, a,,; N Int A=¢, a,CInt a,,, (so that c/(a,,,—a;) consists
of two arcs), cl(a,+;—a;) N D= 0(a,4,—a;), and each component of a;.,—a; is
transverse to the fibration on E(8D). By the induction on 7, it is not hard to see
that a; is unique up to the ambient isotopy of S? respecting D.

Let =, be the surface obtained from D by adding a pipe along @,. Then
a,N 3,=0a, and we let 3, be the surface obtained from X, by adding a pipe along
a,, and so on. We note that each 3, has two compressing disks Dj, D, corres-
ponding to a meridian of a,, and A respectively. Then dDj are I* of Figure 1.3.
Then we have;

Proposition 7.2. 3, is a pre-fiber surface of type 1, and Dy, Dy is a pair of
canonical compressing disks for 3,,.

Proof. The proof is done by the induction on n. By the observation in
Example 4.1, we see that 3, is a pre-fiber surface of type 1, and Dy, Dy is a pair
of canonical compressing disks for 3,.

Suppose, by induction, that X, satisfies the conclusion of Proposition 7.2.
Let (N,, 8,)(IV5, 85) resp.) be the sutured manifold obtained from =, (the com-
plementary sutured manifold for 3, resp.) Let Df=DE NN, Q$=N(I-),*f; N3),
and N,_;=c(N;—(Dy UD;)). Then (N,_,, 8;) is ambient siotopic to the
product surtured manifold obtained from =X,_,. Hence N,_, has a =,_;-bundle
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structure such that each fiber corresponds to =,_; X {x}(x&I). We regard D5
are 1-handles attached to IV,_;. By defintion we may suppose that a=a,,, N N3
is an arc such that aN9D;=¢, and aND; is a vertical arc in D;(=D?*xI).
Hence 2N N,,_; consists of two arcs &, a,.

N
/A
=== = -
7
a \W\\g]: \\_]]
N5 N
Fig. 7.5

Claim. By moving a,., by an ambient isotopy of S?* respecting =.,, if neces-
sary, we may suppose that a,, a, are transverse to the fibration on N,_, (Figure7.5).

Proof. By Figure 7.6, we may suppose that each component of a,,,—a,
is close to a meridian loop in 9E(8%,). Since the fibration on 8E(0%,) induced
from the fibration on V,_, is a fibration by longitudes, we see that the components
of a,.,—a, are transverse to the fibration. Hence «;, @, are transverse to the
fibration on N, _,.

The complementray sutured manifold (N§,1, 854,) for X,,, is obtained from
(IVi, 85), and @ as in Lemma 7.1. Hence, by Figure 7.5, we easily see that 5,
is a pre-fiber surface, and D;,,, Dy, is a pair of canonical compressing disks.

This completes the proof of Proposition 7.2.

Proof of Theorem 3. The proof is done by the induction on n=(X(L)—
X(S)))/2. Let D*, D~ be a pair of canonical compressing disks for S, and S,
the surface obtained from S; by doing a surgery along D*, (IV;, 8;)((IV¢, &%) resp.)
the sutured manifold obtained from S; (the complementary sutured manifold for
S; resp.) (=1, 2).

Claim 7.1. If X(S,)=X(L)—2, then S, is a connected sum of S, and 3,.
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Proof. By Proposition 5.2, we may suppose that 0D* intersects 8D~ in one
point. Let a be an arc in S, such that one endpoint of « lies in 85, the other
endpoint is dD*N0D~, and Int aN(0D*UOD )=¢. Then the regular neigh-
borhood B of aUD*UD™ in M is a 3-ball such that BN S, is a regular neigh-
borhood of a U0D*UOD™ in S;. 0B desums .S, into S, and 3,.

Claim 7.2. If X(S,)<X(L)—2, then S, is a pre-fiber surface of type 1.

Proof. By Corollary 5.4, we see that S, is a pre-fiber surface. Assume
that S, is of type 2. 'Then, by Corollary 5.4, we may suppose that D*N D™ =¢,
and 0D~ is a separating loop in S,, i.e. 9D*U 0D~ separates S;. Let S; be the
surface obtained from S, by doing surgery along D*U D".

Subclaim. No component of S, is closed.

Proof. Assume that a component S of Sy is closed. Let /(C.S;) be a simple
loop which interects 8D* in one point. Then, by pushing / to the — side of
S,, we get a simple loop intersecting S in one point, contradicting the fact thet
M is a rational homology 3-shpere.

By Subcalim, we see that S, is a disconnected Seifert surface for L. Then,
by doing compressions on S; as much as possible, we get a disconnected, incom-
pressible Seifert surface S* for L. By Lemma 2.2, we see that S* is a fiber
surface, contradicting Lemma 2.1.

Completion of the proof. Claim 7.1 shows that if =1, then the conclusion
holds. Suppose that z>>1. By Claim 7.2 and the induction, we see that .S, is
a connected sum of a fiber surface and =,_, (Figure 7.7). Let S; be as in the
proof of Subclaim.

Fig. 7.7

(N5, 8f) is homeomorphic to (D* X S'H (S,xI)Y D*x S*, 0S8, X[I). Let
t=D*NNji, and D¥=N(Dt; Ni). Then, we may identify (c/(N{i—(DfU
D7), 85) to (N, §,), where S,Xx {1/2} corresponds to S,. We regard 9f, Dt
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are 2-handles attached to (V,, ;). Then (N,UDi UDr, §,) is properly isotopic
to (I3, 85) in E(L). Hence we identify (N5, 83) to (M;UD? UDr, §,). Let 47,
A~ be pairwise disjoint product annuli in (N,,8,) (C(N3, 8%)), such that 4™ N
R_(8,)=0Df, A"NR,(8,)=0D7. Let Di=A*UDy{, D;=A"UDr7, and D7=
N(D7; N3) (Figure 7.8). Then D3, D7 represents a pair of canonical compres-
sing disks for S,, and (c{(N5—(D; U Dy)), 85) is ambient isotopic the sutured
manifold (IV;, 8;) obtained from S;. Hence we may regard that N3 is obtained
from NN; by a attaching two 1-handles 95, 9;. Then fix a D*-bundle structure
on 97 =D?x I, and S,;-bundle structure on N;=S;xI. Let a be an arc in N}
such that aNON;=aNR(85)=0a, aND;=¢, aND; is an arc transverse
to the fibers, and oz NV, consists of two arcs transverse to the fibers. It is easy
to see that the arcs with the above properties are unique up to the ambient
isotopies of IV respecting the fibers. Let o, be an arc as in Figure 7.7. 'Then,
by the arguments of the proof of Proposition 7.2 (see Figure 7.6), we see that the
arc a;N N5 has the above properties. Moreover, by Figure 7.8, we see that S,
is obtained from S, by adding a pipe along «;. This shows that S, is a con-
nected sum of a fiber surface and =, and it is easy to see that a pair of canonical
compressing disks for S; corresponds to that of 3,.
This completes the proof of Theorem 3.

Dy D5
¢ s
7 : A ’
R_(8f) N{ N, — I } Dy — «a
N
/ A
/ﬁg P {
c I 7\
. Nz
fibration by surface fibration by surfaces
parallel to S, parallel to S;
Fig. 7.8

8. Arcs and bands for pre-fiber surfaces

In this section, we study the converse to Theorem 2. For the statement of
the result, we prepare some notations. Let & be a surface in a 3-manifold such
that 08+¢. Let o be an arc properly embedded in &, D a disk such that
DNS=a, and &’ the image of & after 41 surgery along D. We say that S’
is obtained from & by adding a twist along @. Let 8: IXI— N be an embed-
ding such that B87(8)=R87%0S)=({0} x I)U ({1} XI), and the orientation on
Ix {0, 1} is coherent with that of 3S. Then we say that the surface SU B(Ix 1)
is obtained from S by adding a band =R xI). The arc B(IX {1/2}) is
called the core arc of the band b.

Let T be a pre-fiber surface in a closed 3-manifold M, possibly
dim Hy(M; 0)>0, and D*, D~ a pair of canonical compressing disks for T.
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Then we have the following two propositions.

Proposition 8.1. Suppose that a properly embedded arc a (CT) intersects
oD%, 0D~ in one points. Then the surface T’ obtained from T by adding a twist
along a is a fiber surface.

RemMARK. Let S be a fiber surface in a rational homology 3-sphere. Lem-
ma 4.7 shows that if we get a pre-fiber surface S’ from S by adding a twist along
an arc a, then the arc on S’ corresponding to a satisfies the assumptions of
Proposition 8.1.

Let (N, &) be the complementary sutured manifold for 7. Then we may
suppose that & N N° is an arc @’ such that da’C Int & for a core arc a.

Proposition 8.2. Let b be a band attached to T with the following properties.
(1) The core arc a of b intersects D*, D~ in one points.
(2) There is a disk A in N° such that a'C0A, ANON‘=0ANON‘=
c(dA—a’), and 0AN R, (8°)(0A N R_(8°) resp.) consists of an arc.
Then the surface T' obtained from T by adding the band b is a fiber surface.

ReMARK. Let S, be a pre-fiber surface in a rational homology 3-sphere as
in Theorem 2 (2), and & a band for S, as in Figure 1.2. Proposition 6.1, Figures
4.5, and 8.1 shows that the core arc of 4 has the properties (1), (2) of Propostion
8.2.

ReEmMARK. We note that if F is fibered and the band b satisfies the above con-
ditions (1), (2), then the twists on the band is not essential. In fact, by doing
Stallings twists [13] along D", we see that the bands obtained from b by adding
twists also produce fiber surfaces.

Fig. 8.1
Let D}=D*NN°‘, D;=D"NN".

Proof of Proposition 8.1. Let D be a disk in M such that DN T=a. Then
the image of D in N° is an annulus 4 such that one boundary component / of 4
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is contained in Int N° and the other is a simple loop in dN° intersecting s(8°)
in two points (Figure 8.2). Then, by the assumption, we may suppose that [
intersects D}, D7 in one points. Moreover, by taking sufficiently small D, if
necessary, we may suppose that (Df U D;) N 4 consists of two essential arcs in 4.

Fig. 8.2

Let N=cl(N°*—N(D} U D;; N°)), and & the image of & in 9N. Then (N, 5)
is a product sutured manifold. Let @**, @*~ be the disks in R, (3) corres-
ponding to Fry.N(D;; N°), 9=+, @~ the disks in R_(8) corresponding to
FryeN(D;; N°). Then, by the above, we may suppose that ANN consists of
two disks A;, A, (Figure 8.2) such that A\N (D" UD ™ ")=¢, A,N(D""UD™)
=¢. The we may suppose that A,, A, have the following properties with respect
to the I-bundle structure on (N, §). :

(8.1) A, is a union of fibers.

(8:2) N(A;; N)D(DUD ™), N(Ay; N)D(DH-UD ).

Let P,=Fr5 N(A,; N), P,=Fr5 N(A,; N). Then, by (8.1), and (8.2), P,, P,
are regarded as product disks in in (N°, &), and P, U P, decomposes (N*, &) into
the union of a product sutured manifold (N’, §’) homeomorphic to (N, §) and
(D?x S, v), where s(7y) consists of two essential loops in 8(D?X S') which are
contractible in D*x 8.  We note that [ is a core curve of D?*x S* and if we do
41 surgery on (D? X S%, ) along I then we get product sutured manifold

—
S ()

-1 surgery along [

D*x St .
Fig. 8.3
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(D x S, &) (Figure 8.3). Since the complementary sutured manifold for T” is
obtained from (N*, §°) and (D? X S*, ') by summing them along product disks cor-
responding to Py, P,, it is a product sutured manifold. Hence 7" is a fiber surface.

Proof of Proposition 8.2. We may suppose that AND} (AND;7 resp.)
consists of an arc with one endpoint lies in 8D} (8D; resp.). Let N=
cf(N*—N(D? U D7 ; N°)), and § the image of & in dN. (N, 35)is a product sutured
manifold. Then, by the above, ANN consists of three disks A;, A,, A; such
that AN R_(8)=¢, A;N R, (5)=¢ (Figure 8.4). Let P+, P+~ be the disks in
R, (3) corresponding to FryeN(D;; N°), D=+, @~ the disks in R_(8) corres-
ponding to Fry.N(D7; N°) such that D+ NAF¢, D" NAF¢, D TNAF¢,
D "NA;=¢. Then we may suppose that A, A,, A, have the following pro-
perties with respect to the product structures on (N, 3).

D;
v

(i)
Fig. 84
(8.3) There are mutually disjoint disks D, D,, D; in N such that D; is a
union of fibers (1=1, 2, 3), D;,DA; (j=1, 3), D,=A,, DN R, ()=A,NR,(3),
D;NR_(8)=A;NR_(3).
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(84) N(D;; N) DD+, N(D,; N)D(D*~UD~*), N(Dy; Ny oD~

Let P;=Frz:N(D;; N) (i=1, 2, 3). 'Then, by (8.4), P,, P,, P; are regarded
as product disks in (N°, 8°), and P, U P,U P; decomposes (IN°, §°) into a union of
a sutured manifold (N’, §’) homeomorphic to (¥, §) and a sutured manifold
(B, mU7;Uv;), where B is a 3-ball, and s(v,), s(v,), s(vs) are sutures as in
Figure 8.5.

s(71)

/
6 (7).
e

&

Fig. 8.5

Let (N°’, &) be the complementary sutured manifold for 7°. Then N
is obtained from N° by removing Int N(b; N°), and s(8“) is obtained from
s(8°)—N(b; N°) by adding two arcs in Fry.N(h; N°) corresponding to 86N 07T".
See Figure 8.6. Hence P,, P,, P, are regarded as product disks for (N%, §%),
and P,U P,U P; decomposes (IN°/, 8°’) into a union of a product sutured mani-
fold homeomorphic to (N, §) and (D?x S?, ¢), where (D?x S, v) is obtained
from (B, v,Uv,U;) by using b. Then, by Figures 8.5 and 8.6, it is directly
observed that (D?*x.S?, 7)is a product sutured manifold. Hence (N, 87) is a
product sutured manifold, so that 7" is a fiber surface.

Fig. 8.6

9. Unknotting number 1 fibered knots

In this section, we study unknotting number 1 fibered knots in rational
homology 3-spheres. Firstly, we prove Theorem 4 stated in section 1. Then
we show that, for each g>1, every lens space contains an unknotting number
1 fibered knot of genus g (Proposition 9.2). In Proposition 9.1 we show that a
rational homology 3-sphere M contains an unknotting number 1 fibered knot of
genus 1 if and only if M is a lens space of type L,, ;.
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Proof of Theorem 4. Suppose that M contains an unknotting number 1
fibered knot of genus g. 'Then, by Theorem 2(1), we see that M contains a pre-
fiber surface S, of genus g such that 95, is a trivial knot. Let D*, D™ be a
pair of canonical compressing disks for .S,,.

Claim 9.1. S, is a type 1 pre-fibere surface.

Proof. By Figure 6.1, we see that there is a properly embedded arc in S,
which intersects 9D* in one point. Since S, has one boundary component,
this shows that D% is non separating in S;. Hence S, is of type 1.

Claim 9.2. If M contains a type 1 pre-fiber surface Sy of genus 1, then M

is a lens space.

Proof. The complementary sutured manifold (IV§, 8%) for Sy is homeo-
morphic to (D*xS'Y (D? x I)Y D* X S*, 8D* X I) (cf. Example 4.1). Since
(N4, 8%) is the complementary sutured manifold, there is a homeomorphism
f: R.(8%)— R_(8%) such that the manifold obtained from N§ by identifying the
points in R(8%) by f is homeomorphic to E(8Sy). Let D be a disk in N§ cor-
responding to D*X {1/2}. Then D cuts N§ into two components N*, N~ such
that N*, N~ are solid tori, and R,(8%) CON™, R_(8%) CON~. There is a
homeomorphism %: N+ — 0N~ such that % is an extension of f and N*U,N~
is homeomorphic to M. Hence M admits a Heegaard splitting of genus 1.

By Claims 9.1, and 9.2, we see that if g=1, then M is a lens space. Here-
after we suppose that g>1. Then, by Claim 9.1 and Corollary 5.4, we may
suppose that 8D* and 9D~ are disjoint.

Claim 9.3. 3D*U 0D~ does not separate S,.

Proof. Assume that dD* U 0D~ separates S;,. Let Sy be the component of
S,—(dD*UdD") which does not contain 8S,, Then S=S,UD*UD" is a
closed surface in M. By Claim 9.1, there is a simple loop / in S, which intersects
0D* in one point. Then, by pushing / slightly to the —side, we see that there is
a simple loop in M which intersects S in one point, contradicting the fact that
M is a rational homology 3-sphere.

Let S, be the surface obtained from S, by doing surgery along D*. By
Corollary 5.4, we see that S is a pre-fiber surface. Then;

Claim 9.4. S, is a type 1 pre-fiber surface.

Proof. By Claim 9.3, we see that 9D~ is non separating in S;. Hence,
by Corollary 5.4, we see that S, is of type 1.

By Claim 9.4, and the induction on g, we see that M contains a pre-fiber
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surface of type 1 and of genus 1. Then, by Claim 9.2, we see that M admits
a Heegaard srplitting of genus 1.

Proposition 9.1. A rational homology 3-sphere M contains an unknotting
number 1, genus 1 fibered knot if and only if M is a lens space of type L,, , for some
meZ—{0}.

For the notation of the lens spaces, see [6].

Proof. Suppose that M contains an unknotting number 1, genus 1 fibered
knot K. Then, by Theorem 1, we see that there is a minimal genus Seifert
surface S for K such that S is a plumbing of a surface F in M and a Hopf band.
Since genus (S)=1, F is an annulus, so that E(0F) is homeomorphic to 72X I,
where T? is a 2-dimensional torus. Hence M is obtained from 7%X I and two
solid tori T3, T, by identifying their boundaries. Let A be the annulus in
E(0F) corresponding to the fiber F, and [)=AN(T?*x {0}), L=A4AN(T?x {1}).
Then meridian loop of T; intersects /; in one point (=1, 2). Hence it is easy
to see that M is a lens space of type L,, ;.

Suppose that M is a lens space of type L, ;. Then it is observed in [7]
that the knots K, K, of Figure 9.1 are fibered. It is easy to see that both K|
and K, have unknotting number 1.

This completes the proof of Proposition 9.1.

where o is a surgery description

" of L, ,

Fig. 9.1

Proposition 9.2. If M is a lens space, possibly dim H,(M; Q)>0, then, for
each g>1, there is an unknotting number 1 fibered knot of genus g in M.

ReMARk. If M is a lens space with dim H,(M; Q)>0, then M is homeo-
morphic to S?x S*.

Proof. By Example 4.1, there is a genus 1 pre-fiber surface T in M such
that 97 is a trivial knot. Let D*, D~ be a pair of canonical compressing disks
for T, I*, I~ a pair of properly embedded arcs in T' such that 7* N 9D™* consists
of one point, 7~ N98D~ consists of one point, and 87*N 98I~ consists of one
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point p. Let I*(I” resp.) be the arc obtained from I* (I~ resp.) by pushing
Int I* (Int I~ resp.) slightly to the—side (+side resp.) of 7. I=I*Ul" is an
embedded arc in M such that /N T=0!/U p. Then deform ! by an ambient
isotopy in a small neighborhood of p so that /N T=0l. Clearly / satisfies the
conditions (1), (2) of Proposition 8.2. Hence there is a band b for T such that
the surface F obtained from T by attaching b is a fiber surface. Then, by a
plumbing of F and a Hopf band along b, we have a genus 2, fiber surface which
bounds an unknotting number 1 fibered knot (Figure 9.2).

trivial knot
Fig. 9.2

Suppose that g>2. Let F, be the surface in S*® as in Figure 9.3. It is
observed in [9] that F, is a fiber surface. In fact, F, is obtained from one Hopf
band and n copies of the fiber surface of Figure 9.4. Then, by a plumbing of
the above F and F,_, along b and E of Figure 9.3, we get a genus g fiber surface
S, [4]. It is directly observed from Figure 9.3 that if we apply a crossing
change on 98, along the crossing disk D of Figure 9.3, then we get a trivial
knot. Hence #(3S,)=1.




742

(1]
(2]
[31

(4]
(5]

(6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]
[14]

[15]

T. KoBAYASHI

This completes the proof of Proposition 9.2.
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