## Kawata S.

Osaka J. Math.
26 (1989) 671-678

# MODULE CORRESPONDENCE IN AUSLANDER-REITEN QUIVERS FOR FINITE GROUPS 

Shigeto KAWATA

(Received February 23, 1988)

## 1. Introduction

Let $G$ be a finite group and $k$ be a field of characteristic $p>0$. Let $\Theta$ be a connected component of the stable Auslander-Reiten quiver $\Gamma_{s}(k G)$ of the group algebra $k G$ and set $V(\Theta)=\{v x(M) \mid M$ is an indecomposable $k G$-module in $\Theta\}$, where $v x(M)$ denotes the vertex of $M$. As we shall see in Proposition 3.2 below, if $Q$ is a minimal element in $V(\Theta)$, then $Q \leq_{G} H$ for all $H \in V(\Theta)$. In particular we see that $Q$ is uniquely determined up to conjugation in $G$.

Let $N=N_{G}(Q)$ and let $f$ be the Green correspondence with respect to $(G, Q, N)$. Choose an indecomposable $k G$-module $M_{0}$ in $\Theta$ with $Q$ its vertex. Let $\Delta$ be the connected component of $\Gamma_{s}(k N)$ containing $f M_{0}$. The purpose of this paper is to show that there is a subquiver $\Lambda$ of $\Delta$ and a graph isomorphism $\psi: \Lambda \rightarrow \Theta$ such that $\psi^{-1}$ behaves like the Green correspondence $f$ as a bijective map between modules in $\Lambda$ and those in $\Theta$. In particular $\Theta$ is isomorphic with a subquiver of $\Delta$. Also it will be shown that if $H \in V(\Theta)$, then $H \leq{ }_{G} N_{G}(Q)$.

The notation is almost standard. All the modules considered here are finite dimensional over $k$. We write $W \mid W^{\prime}$ for $k G$-modules $W$ and $W^{\prime}$, if $W$ is isomorphic to a direct summand of $W^{\prime}$. For an indecomposable non-projective $k G$-module $M$, we write $\mathcal{A}(M)$ to denote the Auslander-Reiten sequence terminating at $M$. A sequence $M_{0}-M_{1}-\cdots-M_{t}$ of indecomposable $k G$ modules $M_{i}(0 \leq i \leq t)$ is said to be a walk if there exists either an irreducible map from $M_{i}$ to $M_{i+1}$ or an irreducible map from $M_{i+1}$ to $M_{i}$ for $0 \leq i \leq t-1$. Concerning some basic facts and terminologies used here, we refer to [1], [5], [6] and [8].

The author would like to thank Dr. T. Okuyama for his helpful advice.

## 2. Preliminaries

To begin with, we recall some basic facts on relative projectivity.
Let $H$ be a subrgoup of $G$ and $\left\{g_{i}\right\}_{i=1}^{n}$ be a right transversal of $H$ in $G$. If $W$ and $W^{\prime}$ are $k G$-modules, then $\left(W, W^{\prime}\right)^{H}$ denotes the $k$-space $\operatorname{Hom}_{k H}\left(W, W^{\prime}\right)$.

The trace map $t_{H}^{G}:\left(W, W^{\prime}\right)^{H} \rightarrow\left(W, W^{\prime}\right)^{G}$ is defined by $t_{H}^{G}(\phi)=\sum_{i=1}^{n} \phi \cdot g_{i}$ for $\phi \in\left(W, W^{\prime}\right)^{H}$. For a set 3 of subgroups of $G$, write $\left(W, W^{\prime}\right)_{3}^{G}=\sum_{V \in B} \operatorname{Im}\left(t_{V}^{G}\right)$ and $\left(W, W^{\prime}\right)^{3, G}=\left(W, W^{\prime}\right)^{G} /\left(W, W^{\prime}\right)_{3}^{G} . \quad$ A $k G$-homomorphism $\varphi$ is said to be 3-projective, if $\varphi \in\left(W, W^{\prime}\right)_{3}^{G}$. A $k G$-module $W$ is said to be $\mathcal{B}$-projective, if $W \mid \Sigma_{V \in B} \oplus\left(W \downarrow_{V}\right) \uparrow^{G}$.

For a set $\mathcal{Z}$ of subgroups of $G$, we set $\tilde{\mathfrak{B}}=\mathfrak{B} \cap{ }_{G} H=\left\{V^{g} \cap H \mid V \in \mathcal{Z}, g \in G\right\}$.
Lemma 2.1 ([8], Theorem 2.3). With the notation above, let $\varphi \in\left(W, W^{\prime}\right)^{G}$. (1) $\varphi$ is 3-projective if and only if $\varphi$ factors through a 3-projective module.
(2) If $W$ or $W^{\prime}$ is $\mathfrak{3}$-projective, then $\varphi$ is $\mathfrak{3}$-projective.

## Lemma 2.2.

(1) ([8], Cor. 5.4) For a kG-module $A$ and a $k H$-module $B$, the following $k$-isomorphisms hold:

$$
\begin{aligned}
& \left(\mathrm{A} \downarrow_{H}, B\right)^{\tilde{\mathrm{B}}, H \simeq} \simeq\left(A, B \uparrow^{G}\right)^{8, G} \\
& \left(B, A \downarrow_{H}\right)^{\tilde{\mathrm{B}}, H \simeq\left(B \uparrow^{G}, A\right)^{3, G}}
\end{aligned}
$$

(2) In particular, for $k H$-modules $A$ and $B$, the following $k$-isomorphism holds:

$$
\left(\left(A \uparrow^{G}\right) \downarrow_{H}, B\right)^{\tilde{\mathrm{B}}, H} \simeq\left(A,\left(B \uparrow^{G}\right) \downarrow_{H}\right)^{\tilde{\mathrm{B}}, H}
$$

The next two results are also well-known.
Lemma 2.3 ([1], Prop. 2.17.10). Let $M$ be an indecomposable non-projective $k G$-module and $H$ be a subgroup of $G$. Then the Auslander-Reiten sequence $\mathcal{A}(M)$ splits on restriction to $H$ if and only if $H$ does not contain vx $(M)$.

Lemma 2.4 ([4], Lemma 1.5 and [7], Theorem 7.5). Let $H$ be a subgroup of $G$. Let $M$ and $L$ be indecomposable non-projective modules for $G$ and $H$ respectively. Assume that $L$ is a direct summand of $\left(L \uparrow^{G}\right) \downarrow_{H}$ with multiplicity one, and that $M$ is a direct summand of $L \uparrow^{G}$ such that $L \mid M \downarrow_{H}$. Then $\mathcal{A}(L) \uparrow^{G}$ $\simeq \mathcal{A}(M) \oplus \mathcal{E}$, where $\mathcal{E}$ is a split sequence.

Finally we note:
Lemma 2.5. Let $P$ be a non-trivial p-subgroup of $G$. Let $M$ and $L$ be indecomposable non-projective modules for $G$ and $N_{G}(P)$ respectively. Assume that $\mathcal{A}(L) \uparrow^{G} \simeq \mathcal{A}(M) \oplus \mathcal{E}$, where $\mathcal{E}$ is a split sequence and that $P \leq_{G} v x(L)$. If $M$ is not a direct summand of the middle term of $\mathcal{A}(L) \uparrow^{\natural}$, then $\mathcal{A}(M) \downarrow_{N_{G}(P)} \simeq$ $\mathcal{A}(L) \oplus \mathcal{E}^{\prime}$, where $\mathcal{E}^{\prime}$ is a $P$-split sequence.

Proof. Using the same argument as in the proof of [3], (2.3) Lemma (a), we have $\mathcal{A}(M) \downarrow_{N_{G^{\prime}}(P)} \simeq \mathcal{A}(L) \oplus \mathcal{E}^{\prime}$, where $\mathcal{E}^{\prime}$ is some exact sequence. Therefore we have only to show that $\mathcal{E}^{\prime}$ is a $P$-split sequence. Let (,) denote the inner product on the Green ring $a(k G)$ induced by $\operatorname{dim}_{k} \operatorname{Hom}_{k G}($,$) [2]. For$ an exact sequence of $k G$-modules 1: $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, put $\mathcal{H}(1)=B-A-C$. By [2], Theorem 3.4, it is sufficient to show that $\left(\mathscr{H}\left(\mathcal{E}^{\prime}\right) \downarrow_{P}, W\right)=0$ for any $k P$ module $W$. Using the Frobenius reciprocity, we have

$$
\begin{aligned}
& \left(\mathscr{H}\left(\mathcal{E}^{\prime}\right) \downarrow_{P}, W\right) \\
= & \left(\mathcal{H}(\mathcal{A}(M)) \downarrow_{P}, W\right)-\left(\mathcal{H}(\mathcal{A}(L)) \downarrow_{P}, W\right) \\
= & \left(\mathcal{H}(\mathcal{A}(M)), W \uparrow^{G}\right)-\left(\mathcal{H}(\mathcal{A}(L)), W \uparrow^{N}\right) \\
= & \left(\mathcal{H}(\mathcal{A}(L)),\left(W \uparrow^{G}\right) \downarrow_{N}\right)-\left(\mathcal{H}(\mathcal{A}(L)), W \uparrow^{N}\right),
\end{aligned}
$$

where $N=N_{G}(P)$. By the Mackey decomposition, $\left(W \uparrow^{G}\right) \downarrow_{N} \simeq W \uparrow^{N} \oplus W^{\prime}$, where $W^{\prime}$ is $\left\{P^{g} \cap N \mid g \in G \backslash N\right\}$-projective. Since $L$ is not $\left\{P^{g} \cap N \mid g \in G \backslash N\right\}$-projective, we have $\left(\mathscr{H}(\mathcal{A}(L)), W^{\prime}\right)=0$. Consequently we $\operatorname{get}\left(\mathcal{H}\left(\mathcal{E}^{\prime}\right) \downarrow_{P}, W\right)=0$ as desired.

## 3. Minimal element in $\boldsymbol{V}(\boldsymbol{\theta})$

Let $\Xi$ be a subgraph of the stable Auslander-Reiten quiver $\Gamma_{s}(k G)$ and set $V(\Xi)=\{v x(M) \mid M \in \Xi\}$. Note that every element in $V(\Xi)$ is a non-trivial $p$-subgroup of $G$ since every $M$ is non-projective. The following Lemma 3.1 is essential in our argument.

Lemma 3.1. Let $\Xi$ be a subgraph of $\Gamma_{s}(k G)$. Assume that $\Xi$ is connected. Take any $Q \in V(\Xi)$ with the smallest order among those p-subgroups in $V(\Xi)$. Then for any indecomposable module $M \in \Xi, M \downarrow_{Q}$ has an indecomposable direct summand whose vertex is $Q$.

Proof. Let $M_{0} \in \Xi$ be such that $Q=v x\left(M_{0}\right)$. As $\Xi$ is connected, there is a walk $M_{0}-M_{1}-\cdots-M_{t}=M$, so that $M_{i}$ is a direct summand of the middle term of the Auslander-Reiten sequence $\mathcal{A}\left(M_{i+1}\right)$ or $\mathcal{A}\left(\Omega^{-2} M_{i+1}\right)$. We proceed by induction on the "distance" $t$. Suppose that $M_{t-1} \downarrow Q$ has an indecomposable direct summand whose vertex is $Q$. We may assume that $v x\left(M_{t}\right) \neq{ }_{G} Q$, since otherwise $v x\left(M_{t}\right)={ }_{G} Q$ and $Q$-source of $M_{t}$ is a direct summand of $M_{t} \downarrow_{Q}$. By Lemma 2.3, $\mathcal{A}\left(M_{t}\right) \downarrow_{Q}$ and $\mathcal{A}\left(\Omega^{-2} M_{t}\right) \downarrow_{Q}$ split. Since $M_{t-1}$ is a direct summand of the middle term of $\mathcal{A}\left(M_{t}\right)$ or $\mathcal{A}\left(\Omega^{-2} M_{t}\right), M_{t} \downarrow_{Q}$ has an indecomposable direct summand whose vertex is $Q$.

Lemma 3.1 implies that the minimal elements with respect to the partial order $\leq_{G}$ are those that have the smallest order. Thus the following holds.

Proposition 3.2. Let $\Theta$ be a connected component of $\Gamma_{s}(k G)$. Let $Q$ be
an element of $V(\Theta)$ which is minimal with respect to the partial order $\leq_{G}$. Then for any $H \in V(\Theta)$, we have $Q \leq{ }_{G} H$. In particular $Q$ is uniquely determined up to conjugation in $G$.

## 4. Module correspondence

Now returning to the situation of the introduction, let $Q$ be a minimal element in $V(\Theta)$ throughout this section. Let $\Lambda$ be the subquiver of $\Delta$ consisting of those $k N$-modules $L$ in $\Delta$ such that there exists a walk $f M_{0}=L_{0}-$ $L_{1}-\cdots-L_{t}=L$ with $Q \leq_{G} v x\left(L_{i}\right)(i=0,1, \cdots, t)$.

First of all we note
Lemma 4.1. Let L be an indecomposable $k N$-module in $\Lambda$. Then $Q \leq v x(L)$.
Proof. This follows immediately from Lemma 3.1.
Let $\mathfrak{X}$ be the set of all $p$-subgroups of $N$ of order smaller than $|Q|$. Also let $\mathfrak{Y}=\left\{N \cap Q^{g} \mid g \in G \backslash N\right\}$.

Lemma 4.2. Let $W$ be an indecomposable $k G$-module in $\Theta$. Then there exists a $k N$-module $T$ satisfying the following two conditions:
(i) $\left(T \uparrow^{G}\right) \downarrow_{N} \simeq T \oplus T^{\prime}$, where $T^{\prime}$ is $\mathfrak{Y}$-projective.
(ii) $\left(W \downarrow_{N}, T\right)^{\mathfrak{x}, N \neq 0}$.

Proof. By Lemma 3.1, $W \downarrow_{Q}$ has an indecomposable direct summand $S$ whose vertex is $Q$. Let $T=S \uparrow^{N}$. We show that $T$ satisfies the above two conditions. By the Mackey decomposition we have $T \downarrow_{Q} \simeq \Sigma_{g \in Q \backslash N / Q} \oplus(S \otimes g)$ and so every indecomposable direct summand of $T$ has $Q$ as a vertex. Hence by the Green correspondence $\left(T \uparrow^{G}\right) \downarrow_{N} \simeq T \oplus T^{\prime}$, where $T^{\prime}$ is $\mathfrak{Y}$-projective. Let us show the condition (ii). Letting $\tilde{\mathfrak{X}}=\mathfrak{X} \cap_{N} \boldsymbol{Q}$, we have by Lemma 2.2 (1)

$$
\begin{aligned}
& \left(W \downarrow_{N}, T\right)^{\mathfrak{x}, N}=\left(W \downarrow_{N}, S \uparrow^{N}\right)^{\mathfrak{x}, N} \\
\simeq & \left(W \downarrow_{Q}, S\right)^{\tilde{\mathfrak{x}}, Q} \supset(S, S)^{\tilde{\mathfrak{x}}, Q} \neq 0
\end{aligned}
$$

and the assertion follows.
Lemma 4.3. Let $T$ be a $k N$-module satisfying the condition (i) of Lemma 4.2. Let $L$ be an indecomposable $k N$-module in $\Lambda$. Then the following $k$-isomorphisnis hold:

$$
\left(\left(L \uparrow{ }^{G}\right) \downarrow_{N}, T\right)^{\mathfrak{x}, N} \simeq\left(L,\left(T \uparrow^{G}\right) \downarrow_{N}\right)^{\mathfrak{x}, N} \simeq(L, T)^{\mathfrak{x}, N} .
$$

Proof. The first $k$-isomorphism holds by Lemma 2.2 (2).
Let $\left(T \uparrow^{G}\right) \downarrow_{N}=T \oplus\left(\Sigma_{i} \oplus X_{i}\right)$, where $X_{i}$ is an indecomposable $\mathfrak{V}$-projective $k N$-module. It is enough to show that $\left(L, X_{i}\right)^{\mathfrak{X}, N=0}$ for all $X_{i}$. So we have to show that any $\alpha \in\left(L, X_{i}\right)^{N}$ is $\mathfrak{X}$-projective. Since $X_{i}$ is $\widetilde{Q}=\left(Q^{g} \cap N\right)$-projective
for some $g \in G \backslash N$, there exists $\beta \in\left(L \downarrow_{\tilde{Q}}, X_{i}\right)^{\tilde{Q}}$ such that $\alpha=t_{\tilde{Q}}^{N}(\beta)$. Now, there exists a walk $f M_{0}=L_{0}-L_{1}-\cdots-L_{t}=L$ such that $Q \leq v x\left(L_{i}\right)(i=0,1, \cdots, t)$ by Lemma 4.1. As $\widetilde{Q}$ is not conjugate to $Q$ in $N, \mathcal{A}\left(L_{i}\right) \downarrow \tilde{Q}$ splits $(i=0,1, \cdots, t)$ by Lemma 2.3. Since $L_{0} \downarrow \tilde{Q}$ is $\mathfrak{X}$-projective and $L_{1}$ is a direct summand of the middle term of $\mathcal{A}\left(L_{0}\right)$, it follows that $L_{1} \downarrow \tilde{Q}$ is also $\mathfrak{X}$-projective. Using this argument repeatedly, we conclude that $L \downarrow_{\tilde{Q}}$ is $\mathfrak{X}$-projective. Therefore $\beta$ is $\mathfrak{X}$ projective by Lemma 2.1 and hence $\alpha$ is $\mathfrak{X}$-projective.

Lemma 4.4. Let $L$ be an indecomposable $k N$-module in $\Lambda$. Then $L \uparrow^{\top}$ has a unique indecomposable direct summand $M$ whose vertex contains $Q$, and we have
(1) $L$ is a direct summand of $M \downarrow_{N}$, and
(2) $M$ lies in $\Theta$.

Moreover letting $T$ be a $k N$-module satisfying the conditions in Lemma 4.2 for $M$, we have:

$$
\left(\left(L \uparrow^{G}\right) \downarrow_{N}, T\right)^{\mathfrak{x}, N} \simeq\left(M \downarrow_{N}, T\right)^{\mathfrak{x}, N} \simeq(L, T)^{\mathfrak{x}, N_{\neq 0}} .
$$

In particular, $L$ is a direct summand of $\left(L \uparrow^{G}\right) \downarrow_{N}$ with multiplicity one.
Proof. Since $L \mid\left(L \uparrow^{G}\right) \downarrow_{N}, L \uparrow^{G}$ has an indecomposable direct summand $M$ such that $L \mid M \downarrow_{N}$. Therefore the vertex of $M$ contains $Q$ and $L \uparrow^{G}$ has at least one indecomposable direct summand whose vertex contains $Q$.

Let $f M_{0}=L_{0}-L_{1}-\cdots-L_{t}=L$ be a walk. We prove the assertion by induction on the $t$.

If $t=0$, i.e., $L \simeq f M_{0}$, then the assertion follows since $f$ is the Green correspondence.

Suppose the assertion holds for $L_{t-1}$. We shall derive a contradiction assuming that $L \uparrow^{G}$ has two indecomposable direct summands $M$ and $W$ whose vertices contain $Q$. Let $L \uparrow^{G}=M \oplus W \oplus W^{\prime}$. We may assume that $L \mid M \downarrow_{N}$. By Lemma $2.4 \mathcal{A}\left(L_{t-1}\right) \uparrow^{G} \simeq \mathcal{A}\left(M_{t-1}\right) \oplus \mathcal{E}$, where $M_{t-1}$ is the unique indecomposable direct summand of $L_{t-1} \uparrow^{G}$ whose vertex contains $Q$ and $\mathcal{E}$ is a split sequence. Note that the middle term of $\mathcal{E}$ does not have an indecomposable direct summand whose vertex contains $Q$, since $M_{t-1}$ (resp. $\Omega^{2} M_{t-1}$ ) is a unique indecomposable direct summand of $L_{t-1} \uparrow^{G}$ (resp. $\left.\left(\Omega^{2} L_{t-1}\right) \uparrow^{G}\right)$ whose vertex contains $Q$. Let $Y\left(\right.$ resp. $\left.Y^{\prime}\right)$ be the middle term of $\mathcal{A}\left(M_{t-1}\right)\left(\right.$ resp. $\left.\mathcal{A}\left(\Omega^{-2} M_{t-1}\right)\right)$. Since $L$ is a direct summand of the middle term of $\mathcal{A}\left(L_{t-1}\right)$ or $\mathcal{A}\left(\Omega^{-2} L_{t-1}\right)$, it follows that $M \oplus W \mid Y$ or $M \oplus W \mid Y^{\prime}$. In particular both $M$ and $W$ lie in $\Theta$.

Let $T$ and $U$ be $k N$-modules satisfying the conditions (i) and (ii) for $M$ and $W$ respectively in Lemma 4.2 and put $T^{\prime}=T \oplus U$. Then

$$
\begin{aligned}
& \left(\left(L \uparrow^{\epsilon}\right) \downarrow_{N}, T^{\prime}\right)^{\mathfrak{x}, N} \\
\simeq & \left(M \downarrow_{N}, T^{\prime}\right)^{\mathfrak{x}, N} \oplus\left(W \downarrow_{N}, T^{\prime}\right)^{\mathfrak{x}, N} \oplus\left(W^{\prime} \downarrow_{N}, T^{\prime}\right)^{\mathfrak{x}, N} \\
\simeq & \left(L, T^{\prime}\right)^{\mathfrak{x}, N} \oplus\left(Z, T^{\prime}\right)^{\mathfrak{x}, N} \oplus\left(W \downarrow_{N}, T^{\prime}\right)^{\mathfrak{x}, N} \oplus\left(W^{\prime} \downarrow_{N}, T^{\prime}\right)^{\mathfrak{x}, N},
\end{aligned}
$$

where $M \downarrow_{N}=L \oplus Z$. But by Lemma 4.3, $\left(\left(L \uparrow^{G}\right) \downarrow_{N}, T^{\prime}\right)^{\mathfrak{X}, N} \simeq\left(L, T^{\prime}\right)^{\mathfrak{X}, N}$. This implies that $\left(W \downarrow_{N}, U\right)^{\mathfrak{x}, N} \subset\left(W \downarrow_{N}, T^{\prime}\right)^{\mathfrak{x}, N}=0$, which is a desired contardiction. Thus $L \uparrow^{G}$ has a unique indecomposabie direct summand $M$ whose vertex contains $Q$, and the statements (1) and (2) hold. Moreover we obtain that

$$
\left(\left(L \uparrow^{G}\right) \downarrow_{N}, T\right)^{\mathfrak{x}, N} \simeq\left(M \downarrow_{N}, T\right)^{\mathfrak{X}, N} \simeq(L, T)^{\mathfrak{x}, N_{\neq 0}},
$$

since $M \mid L \uparrow^{G}$ and $L \mid M \downarrow_{N}$. Hence $L$ is a direct summand of $\left(L \uparrow^{G}\right) \downarrow_{N}$ with multiplicity one; for otherwise

$$
(L, T)^{\mathfrak{x}, N^{\prime}} \oplus(L, T)^{\mathfrak{x}, N^{\prime}} \subset\left(\left(L \uparrow^{G}\right) \downarrow_{N}, T\right)^{\mathfrak{x}, M} \simeq(L, T)^{\mathfrak{x}, N_{\neq 0}},
$$

a contradiction.
For an indecomposable $k N$-module $L$ in $\Lambda$, let $\psi L$ be a unique indecomposable direct summand of $L \uparrow^{G}$ whose vertex contains $Q$.

Lemma 4.5. Let $L$ and $L^{\prime}$ be indecomposable $k N$-modules in $\Lambda$. Then $\psi L \simeq \psi L^{\prime}$ if and only if $L \simeq L^{\prime}$.

Proof. If $L \simeq L^{\prime}$, then $\psi L \simeq \psi L^{\prime}$ clearly. To show the converse, assume by way of contradiction that $\psi L \simeq \psi L^{\prime}$ but $L \neq L^{\prime}$. Since $L \mid \psi L \downarrow_{N}$ and $L^{\prime} \mid \psi L^{\prime} \downarrow_{N}$, we have that $L \oplus L^{\prime}\left|\psi L \downarrow_{N}\right|\left(L \uparrow^{G}\right) \downarrow_{N}$. Let $\left(L \uparrow^{G}\right) \downarrow_{N} \simeq L \oplus L^{\prime} \oplus W$. Let $T$ be a $k N$-module satisfying the conditions (i) and (ii) of Lemma 4.2 for $\psi L\left(\simeq \psi L^{\prime}\right)$. Then

$$
\begin{aligned}
& \left(\left(L \uparrow^{G}\right) \downarrow_{N}, T\right)^{\mathfrak{x}, N} \\
\simeq & (L, T)^{\mathfrak{x}, N} \oplus\left(L^{\prime}, T\right)^{\mathfrak{x}, N} \oplus(W, T)^{\mathfrak{x}, N} .
\end{aligned}
$$

But by Lemma 4.3, $\left(\left(L \uparrow^{G}\right) \downarrow_{N}, T\right)^{\mathfrak{x}, N} \simeq(L, T)^{\mathfrak{x}, N}$. This implies that $\left(L^{\prime}, T\right)^{\mathfrak{x}, N}$ $=0$, which is contrary to Lemma 4.4.

We are now ready to prove the main theorem of this paper.
Theorem 4.6. $\psi$ induces a graph isomorphism from $\Lambda$ onto $\Theta$ which preserves edge-multiplicuty and direction. Also $\psi$ gives rise to a one-to-one correspondence between indecomposable modules in $\Theta$ and those in $\Lambda$ and the following hold:
(1) Let $M$ be an indecomposable $k G$-module in $\Theta$. Then $M \downarrow_{N} \simeq \psi^{-1} M \oplus$ $\left(\Sigma_{i} \oplus W_{i}\right)$, where $W_{i} \downarrow_{Q}$ is $\mathfrak{X}$-projective for all $i$.
(2) Let $L$ be an indecomposable $k N$-module in $\Lambda$. Then $L \uparrow^{G} \simeq \psi L \oplus\left(\Sigma_{i} \oplus V_{i}\right)$,
where $V_{i}$ is $\mathfrak{X}$-projective for all $\boldsymbol{i}$.
Proof. It is a direct consequence of Lemmas 4.4, 4.5 and 2.4 that $\psi$ indeed induces a graph monomorphism. To show that $\psi$ is an epimorphism, let $M$ be an arbitrary element of $\Theta$ and let $M_{0}-M_{1}-\cdots-M_{t}=M$ be a walk in $\Theta$. If $t=0$, i.e., $M=M_{0}$, then $M_{0}=f^{-1}\left(f M_{0}\right)=\psi L_{0}$. Now, suppose then that there exists an element $L_{t-1}$ in $\Lambda$ such that $M_{t-1}=\psi L_{t-1}$. By Lemmas 4.4 and 2.4 we have $\mathcal{A}\left(L_{t-1}\right) \uparrow^{G}=\mathcal{A}\left(M_{t-1}\right) \oplus \mathcal{E}$ and $\mathcal{A}\left(\Omega^{-2} L_{t-1}\right) \uparrow^{G}=\mathcal{A}\left(\Omega^{-2} M_{t-1}\right) \oplus \mathcal{E}^{\prime}$, where $\mathcal{E}$ and $\mathcal{E}^{\prime}$ are split sequences. Recall that $M_{t}$ is a direct summand of the middle term of $\mathcal{A}\left(M_{t-1}\right)$ or $\mathcal{A}\left(\Omega^{-2} M_{t-1}\right)$. Therefore there exists some indecomposable direct summand $L$ of the middle term of $\mathcal{A}\left(L_{t-1}\right)$ or of $\mathcal{A}\left(\Omega^{-2} L_{t-1}\right)$ such that $M \mid L \uparrow^{G}$. Since $Q \leq_{G} v x(M) \leq v x(L), L$ lies in $\Lambda$. Consequently $M=\psi L$ and $\psi$ is an epimorphism.

Next we prove (1) by induction on the distance $t$ from $M_{0}$ to $M=M_{t}$. If $t=0$, i.e., $M=M_{0}$, then the staement (1) follows since $f$ is the Green correspondence. Suppose the statement (1) holds for $M_{t-1}$. We may assume that $M_{t}$ is a direct summand of the middle term of $\mathcal{A}\left(M_{t-1}\right)$ (otherwise replace $M_{t-1}$ by $\left.\Omega^{-2} M_{t-1}\right)$. Let $M_{t} \downarrow_{N} \simeq \psi^{-1} M_{t} \oplus\left(\Sigma_{i} \oplus W_{i}\right)$ and let $M_{t-1} \downarrow_{N} \simeq \psi^{-1} M_{t-1} \oplus\left(\Sigma_{i} \oplus\right.$ $\left.W_{i}^{\prime}\right)$. By Lemma 2.5, $\mathcal{A}\left(M_{t-1}\right) \downarrow_{N} \simeq \mathcal{A}\left(\psi^{-1} M_{t-1}\right) \oplus \mathcal{E}^{\prime}$, where $\mathcal{E}^{\prime}$ is a $Q$-split sequence. Note that $\mathcal{E}^{\prime}$ is an exact sequence terminating at $\Sigma_{i} \oplus W_{i}^{\prime}$. If $W_{i}$ is a direct summand of the middle term of $\mathcal{A}\left(\psi^{-1} M_{t-1}\right)$, then $Q \underset{=}{\mathbb{F}_{G} v x\left(W_{i}\right) \text {, since }}$ otherwise $W_{i}$ lies in $\Lambda$ but this contradicts that $\psi$ is a graph isomorphism which preserves edge-multiplicity. Therefore $W_{i} \downarrow$ is $\mathfrak{X}$-projective. Suppose then that $W_{i}$ is a direct summand of the middle term of $\mathcal{E}^{\prime}$. Then since each $W_{i}^{\prime} \downarrow_{Q}$ is $\mathfrak{X}$-projective and $W_{i} \downarrow_{Q} \mid\left(\Sigma_{i} \oplus W_{i}^{\prime}\right) \downarrow_{Q} \oplus\left(\Sigma_{i} \oplus \Omega^{2} W_{i}^{\prime}\right) \downarrow_{Q}$, it follows that $W_{i} \downarrow_{Q}$ is $\mathfrak{X}$-projective.

The statement (2) follows similarly by virtue of Lemma 2.4.
As an immediate consequence of the above theorem, we have
Corollary 4.7. Let $\Theta$ be a connected component of $\Gamma_{s}(k G)$ and let $Q$ be a minimal element in $V(\Theta)$. Then for any element $H$ of $V(\Theta)$, we have $H \leq_{G} N_{G}(Q)$.

## References

[1] D.J. Benson: Modular Representation Theory: New Trends and Methods, Lecture Notes in Mathematics, Vol. 1081, Springer-Verlag, New York/Berlin, 1984.
[2] D.J. Benson and R.A. Parker: The Green ring of a finite group, J. Algebra 87 (1984), 290-331.
[3] K. Erdmann: Blocks whose defect groups are Klein four groups: a correction, J. Algebra 76 (1982), 505-518.
[4] K. Erdmann: Algebras and dihedral defect groups, Proc. London Math. Soc. (3) 54 (1987), 88-114.
[5] W. Feit: The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.
[6] P. Gabriel: Auslander-Reiten sequences and representation-finite algebras, 1-71, Lecture Notes in Mathematics, Vol. 831, Springer-Verlag, New York/Berlin, 1980.
[7] J.A. Green: Functors on categories of finite group representations, J. Pure Appl. Algebra 37 (1985), 265-298.
[8] P. Landrock: Finite Group Algebras and their Modules, London Math. Soc. Lecture Note series 84, Cambridge University Press, London, 1983.

Department of Mathematics Osaka City University 558 Osaka, Japan

