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1. Introduction

Let G be a finite group and % be a field of characteristic p>>0. Let ® be a
connected component of the stable Auslander-Reiten quiver T'y(kG) of the
group algebra kG and set V(®)={vx(M)|M is an indecomposable AG-module
in 8}, where vx(M) denotes the vertex of M. As we shall see in Proposition
3.2 below, if @ is a minimal element in V(®), then Q<;H for all H = V(®).
In particular we see that @ is uniquely determined up to conjugation in G.

Let N=N,(Q) and let f be the Green correspondence with respect to
(G, @, N). Choose an indecomposable 2G-module M, in ® with @ its vertex.
Let A be the connected component of I',(kN) containing fM,. The purpose
of this paper is to show that there is a subquiver A of A and a graph iso-
morphism +r: A—© such that 4»~! behaves like the Green correspondence f as a
bijective map between modules in A and those in ®. In particular @ is iso-
morphic with a subquiver of A. Also it will be shown that if H € V(®), then
H < Ne(Q).

The notation is almost standard. All the modules considered here are
finite dimensional over k. We write W | W’ for kG-modules W and W', if W
is isomorphic to a direct summand of W’. For an indecomposable non-pro-
jective kG-module M, we write A(M) to denote the Auslander-Reiten sequence
terminating at M. A sequence M,— M;— -+ — M, of indecomposable kG-
modules M; (0<i<t) is said to be a walk if there exists either an irreducible
map from M, to M,,, or an irreducible map from M;,, to M; for 0<i<t—1.
Concerning some basic facts and terminologies used here, we refer to [1], [5],
[6] and [8].

The author would like to thank Dr. T. Okuyama for his helpful advice.

2. Preliminaries

To begin with, we recall some basic facts on relative projectivity.
Let H be a subrgoup of G and {g;} 7., be a right transversal of H in G. If
W and W’ are kG-modules, then (W, W')¥ denotes the k-space Homy, (W, W’).
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The trace map t§: (W, W)¥— (W, W')¢ is defined by tf(¢)= .—él ¢-g; for
pe(W, W)%. For aset 8 of subgroups of G, write (W, W)§=3lycg Im(z%)
and (W, W))BG=(W, W)°(W, W’)§. A kG-homomorphism ¢ is said to be
B-projective, if p=(W, W’)g A kG-module W is said to be B-projective, if
WISy eg®Win)1e. ]

For a set B of subgroups of G, we set 3=3 N H={V¢*NH|VEB, g=G}.

Lemma 2.1 ([8], Theorem 2.3). With the notation above, let p= (W, W')°.

(1) o is B-projective if and only if @ factors through a B-projective mo-
dule.

(2) If Wor W’ is B-projective, then @ is B-projective.

Lemma 2.2.

(1) ([8], Cor. 5.4) For a kG-module A and a kH-module B, the following
k-isomorphisms hold :

(Aly, BYSH=(4, B19)8G,
(B, A\z)BH=(B1¢, 4)8G .

(2) In particular, for kH-modules A and B, the following k-isomorphism
holds:

((419)}n, BYBH=(4, (B1°)} 2)BH .
The next two results are also well-known.

Lemma 2.3 ([1], Prop. 2.17.10). Let M be an indecomposable non-pro-
Jective kG-module and H be a subgroup of G. Then the Auslander-Reiten sequence
A(M) splits on restriction to H if and only if H does not contain vx(M).

Lemma 2.4 ([4], Lemma 1.5 and [7], Theorem 7.5). Let H be a subgroup
of G. Let M and L be indecomposable non-projective modules for G and H re-
spectively. Assume that L is a direct summand of (L1\®)|y with multiplicity
one, and that M is a direct summand of LS such that L|M\y. Then A(L)1¢
= AM)DE, where & is a split sequence.

Finally we note:

Lemma 2.5. Let P be a non-trivial p-subgroup of G. Let M and L be
indecomposable non-projective modules for G and Ng(P) respectively. Assume
that A(LY1¢=A(M)DPE, where £ is a split sequence and that P<;vx(L). If
M is not a direct summand of the middle term of A(L)1C, then A(M)|y 4=
A(L)DE’, where &' is a P-split sequence.
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Proof. Using the same argument as in the proof of [3], (2.3) Lemma (a),
we have AM)|yqp=AL)BE’, where £ is some exact sequence. There-
fore we have only to show that & is a P-split sequence. Let (, ) denote the
inner product on the Green ring a(AG) induced by dim, Hom;(,)[2]. For
an exact sequence of AG-modules 4: 0—-A4—B—C—0, put J(¢)=B—A—C.
By [2], Theorem 3.4, it is sufficient to show that (F(E’)|p, W)==0 for any kP-
module . Using the Frobenius reciprocity, we have

(ENe W)
= (A(ADDN p, W)—(I(AL)))p, W)
= (J(AM)), W) —(H(AL)), W 1Y)
= (J(AL)), W) w)—(H(AL)), WHY),

where N=N(P). By the Mackey decomposition, (W16)| y=W1I¥@ W', where
W'is {P*N N | g= G\N}-projective. Since L is not {P* NN |g & G\N}-pro-
jective, we have (J(A(L)), W')=0. Consequently we get(FH(E) p, W)=0 as
desired.

3. Minimal element in V(8)

Let = be a subgraph of the stable Auslander-Reiten quiver T';(AG) and
set V(E)={vx(M)|M E}. Note that every element in V(E) is a non-trivial
p-subgroup of G since every M is non-projective. The following Lemma 3.1
is essential in our argument.

Lemma 3.1. Let E be a subgraph of T'(kG). Assume that E is con-
nected. Take any Q< V(E) with the smallest order among those p-subgroups in
V(E). Then for any indecomposable module M 5, M |, has an indecomposable
direct summand whose vertex 1s Q.

Proof. Let M,EE be such that Q=vx(M;). As E is connected, thereis a
walk M,—M,—---—M,=M, so that M, is a direct summand of the middle term
of the Auslander-Reiten sequence A(M;,,) or A(Q™*M;,,). We proceed by in-
duction on the ‘“‘distance” . Suppose that M,_,}o has an indecomposable
direct summand whose vertex is @. We may assume that vx(M,)£,@Q,
since otherwise v(M,)=; @ and @-source of M, is a direct summand of M,|,.
By Lemma 2.3, A(M,)lq and A(Q2M,)|¢ split. Since M,_, is a direct
summand of the middle term of A(M,) or A(Q2M,), M,|q has an indecom-
posable direct summand whose vertex is @.

Lemma 3.1 implies that the minimal elements with respect to the partial
order <; are those that have the smallest order. 'Thus the following holds.

Proposition 3.2. Let © be a connected component of T'(kG). Let Q be



674 S. Kawata

an element of V() which is minimal with respect to the partial order <;. Then
for any HEV(O), we have Q< H. In particular Q is uniquely determined up
to conjugation in G.

4. Module correspondence

Now returning to the situation of the introduction, let @ be a minimal
element in V(®) throughout this section. Let A be the subquiver of A con-
sisting of those KN-modules L in A such that there exists a walk fM,=L,—
L,—:+—L,=L with Q<;vx(L;) (=0, 1, ---, #).

First of all we note

Lemma4.1. Let L be an indecomposable kN-module in A. Then Q <wvx(L).
Proof. This follows immediately from Lemma 3.1.

Let X be the set of all p-subgroups of N of order smaller than |@]. Also
let Y={N NQ*?| g=G\N}.

Lemma 4.2. Let W be an indecomposable kG-module in ©. Then there
exists a kN-module T satisfying the following two conditions:

(1) (T w=TPT’, where T' is Y-projective.

(i) (Wly, T)EN=%£O.

Proof. By Lemma 3.1, W|, has an indecomposable direct summand S
whose vertex is €. Let T=S1". We show that T satisfies the above two
conditions. By the Mackey decomposition we have T'|o=3,co\n/eP(S®g)
and so every indecomposable direct summand of 7 has @ as a vertex. Hence by
the Green correspondence (T'16)| y=TPT’, where T’ is Y-projective. Let us
show the condition (ii). Letting £=%M , @, we have by Lemma 2.2 (1)

(Wy, TEN = (W, SI¥)EN
=~ (Wi, S)EQ(S, S)%Q=%0
and the assertion follows.

Lemma 4.3. Let T be a kN-module satisfying the condition (i) of Lemma
4.2. Let L be an indecomposable KN-module in A. Then the following k-isomor-
phisn:s hold:

(L1 )w, TYBN = (L, (T1O) )N = (L, T)EN .

Proof. The first k-isomorphism holds by Lemma 2.2 (2).

Let (T16)|{y=T&®(=; P X;), where X is an indecomposable Y-projective
kN-module. It is enough to show that (L, X;)&N=0 for all X;. So we have to
show that any @€ (L, X;)" is X-projective. Since X; is @=(Q% N N)-projective



MobpULE CORRESPONDENCE 675

for some g=G\N, there exists B=(L| 3, X;)a such that a=t%’(,8). Now, there
exists a walk fM,= Ly—L,—+—L,=L such that Q<wx(L;) (=0, 1, --+, t) by
Lemma 4.1. As @ is not conjugate to @ in N, A(L;){5 splits (:=0, 1, -+, £) by
Lemma 2.3. Since L, is Z-projective and L, is a direct summand of the
middle term of A(L,), it follows that L,|5 is also X-projective. Using this
argument repeatedly, we conclude that L|g is X-projective. Therefore B is %-
projective by Lemma 2.1 and hence « is X-projective.

Lemma 44. Let L be an indecomposable kN-module in A. Then L1¢
has a unique indecomposable direct summand M whose vertex contains Q, and we
have

(1) L is a direct summand of M|y, and

(2) M lies in ©.

Moreover letting T be a kN-module satisfying the conditions in Lemma 4.2 for M,
we have:

((LTG)lN: T)&,N - (Ml«N, T)E'N g (L, T)EtN:‘:O .
In particular, L is a direct summand of (L1°)| y with multiplicity one.

Proof. Since L|(L1€){y, L1¢ has an indecomposable direct summand
M such that L| M |y. Therefore the vertex of M contains @ and L{¢ has at
least one indecomposable direct summand whose vertex contains Q.

Let fMy=L,—L,—-+—L,=L be a walk. We prove the assertion by in-
duction on the ¢.

If t=0, i.e., L=fM,, then the assertion follows since f is the Green cor-
respondence.

Suppose the assertion holds for L,_;,. We shall derive a contradiction
assuming that L1¢ has two indecomposable direct summands M and W whose
vertices contain Q. Let L1°=MPWPW’'. We may assume that L|M|,.
By Lemma 2.4 J(L;_,)1¢=A(M,_,)DE, where M,_, is the unique indecom-
posable direct summand of L, ,1¢ whose vertex contains @ and &£ is a split
sequence. Note that the middle term of & does not have an indecomposable
direct summand whose vertex contains @, since M,_, (resp. Q°M,_,) is a unique
indecomposable direct summand of L, 1€ (resp. (Q*L,.;)1¢) whose vertex
contains . Let Y (resp. Y’) be the middle term of A(M,_,) (resp. A(Q2M,_,)).
Since L is a direct summand of the middle term of A(L,_,) or A(Q2L,_,), it
follows that MW |Y or MW |Y'. In particular both M and W lie in 8.

Let T and U be kN-modules satisfying the conditions (i) and (ii) for M
and W respectively in Lemma 4.2 and put 7'=T@®U. Then
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(LA, T)EN
= (M|, T'VENSW |y, TVNDW' |y, T)EN
= (L, T"ENDZ, TVENS Wy, TVENDW' |y, T')EN,

where M |y=L@®Z. But by Lemma 4.3, (L1°)|y, T")&N=(L, T")%N, This
implies that (W |y, UYENc (W |y, T'y5N=0, which is a desired contardiction.
Thus L1¢ has a unique indecomposabie direct summand M whose vertex con-
tains €, and the statements (1) and (2) hold. Moreover we obtain that

(L1 Y ws TVEN = (M |y, TN = (L, T)¥N+0,

since M |L1¢ and L|M|y. Hence L is a direct summand of (L1¢)}, with
multiplicity one; for otherwise

(L, T*N(L, TEN ((L16)|y, T)3M = (L, T)EN+0,
a contradiction.

For an indecomposable AN-module L in A, let 4rL be a unique indecom-
posable direct summand of L1¢ whose vertex contains €.

Lemma 4.5. Let L and L' be indecomposable kRN-modules in A. Then
rL==ApL' if and only if L=L'.

Proof. If L=L’, then rL=+rL’ clearly. To show the converse, assume
by way of contradiction that yL=+rL’ but L7 L’. Since L|yL|y and
L'|L'}y, we have that LOL'|YL|y|(L1€)|y. Let (L1¢)|{y=LHL'DW.
Let T be a kN-module satisfying the conditions (i) and (ii) of Lemma 4.2 for
L (=+L"). Then

(L16)w, T)EN
= (L, T)E»N@(L’, T)&,N@(W’ T)?E,N_

But by Lemma 4.3, ((L1)}y, T)%N=(L, T)%N. This implies that (L, T)&N
=0, which is contrary to Lemma 4.4.

We are now ready to prove the main theorem of this paper.

Theorem 4.6. +r induces a graph isomorphism from A onto ® which pre-
serves edge-multiplicity and direction. Also ) gives rise to a one-to-one corres-
pondence between indecomposable modules in © and those in A and the following
hold :

(1) Let M be an indecomposable kG-module in ©. Then M |y="'MD
(CDW,), where W,|q is X-projective for all i.

(2) Let L be an indecomposable kN-module in A. Then L1°=yLB(E;DV;),



MobDULE CORRESPONDENCE 677

where V; is X-projective for all i.

Proof. It is a direct consequence of Lemmas 4.4, 4.5 and 2.4 that +)» indeed
induces a graph monomorphism. To show that +) is an epimorphism, let M be
an arbitrary element of ® and let My—M,—--—M,=M be a walk in 8. If =0,
i.e., M=M,, then My=f"Y(fMy)=+L,. Now, suppose then that there exists an
element L,_, in A such that M, ,=+L,_,. By Lemmas 4.4 and 2.4 we have
AL )1=A(M,_)BE and A(Q7L,_)1°=A(Q2M,_,)BE’, where £ and
&’ are split sequences. Recall that M, is a direct summand of the middle term
of A(M,_,) or A(Q"*M,_;). Therefore there exists some indecomposable direct
summand L of the middle term of A(L,_,) or of A(Q™2L,_,) such that M|L1€.
Since @< ¢ va(M)<wvx(L), L lies in A. Consequently M=+L and 4 is an epi-
morphism.

Next we prove (1) by induction on the distance ¢ from M, to M=M,. If
t=0, i.e., M=M,, then the staement (1) follows since f is the Green correspon-
dence. Suppose the statement (1) holds for M,_,. We may assume that M, is
a direct summand of the middle term of A(M,_,) (otherwise replace M,_, by
Q7*M,_)). Let M| y="'M,D(Z;OW;) and let M, v=+v""M, D E:D
W?!. By Lemma 2.5, A(M;_)) | y=A("'M,_,)BE’, where & is a Q-split
sequence. Note that &’ is an exact sequence terminating at 3,PW/!. If W, is
a direct summand of the middle term of A(Y™'M,_,), then @ £, vx(W)), since
otherwise W, lies in A but this contradicts that 4Jr is a graph isomorphism which
preserves edge-multiplicity. Therefore W;|o is X-projective. Suppose then
that W, is a direct summand of the middle term of £&. Then since each W#|,
is X-projective and Wlo| (D W) B (2B W!)lq, it follows that W;|e is
X-projective.

The statement (2) follows similarly by virtue of Lemma 2.4.

As an immediate consequence of the above theorem, we have

Corollary 4.7. Let © be a connected component of T'(kG) and let Q be a
minimal element in V(©). Then for any element H of V(®), we have H< ; N4(Q).

References

[1] D.J. Benson: Modular Representation Theory: New Trends and Methods,
Lecture Notes in Mathematics, Vol. 1081, Springer-Verlag, New York/Berlin,
1984.

[2] D.J. Benson and R.A. Parker: The Green ring of a finite group, J. Algebra 87
(1984), 290-331.

[31 K. Erdmann: Blocks whose defect groups are Klein four groups: a correction, J.
Algebra 76 (1982), 505-518.



678
(4]
(5]
(6]
(71
(8]

S. Kawara

K. Erdmann: Algebras and dihedral defect groups, Proc. London Math. Soc. (3)
54 (1987), 88-114.

W. Feit: The Representation Theory of Finite Groups, North-Holland, Am-
sterdam, 1982.

P. Gabriel: Auslander-Reiten sequences and representation-finite algebras, 1-71,
Lecture Notes in Mathematics, Vol. 831, Springer-Verlag, New York/Berlin, 1980.
J.A. Green: Functors on categories of finite group representations, J. Pure Appl.
Algebra 37 (1985), 265-298.

P. Landrock: Finite Group Algebras and their Modules, London Math. Soc.
Lecture Note series 84, Cambridge University Press, London, 1983.

Department of Mathematics
Osaka City University
558 Osaka, Japan





