MODULE CORRESPONDENCE IN AUSLANDER-REITEN QUIVERS FOR FINITE GROUPS

Shigeto KAWATA

(Received February 23, 1988)

1. Introduction

Let G be a finite group and k be a field of characteristic p>0. Let Θ be a connected component of the stable Auslander-Reiten quiver $\Gamma_s(kG)$ of the group algebra kG and set $V(\Theta) = \{vx(M) | M \text{ is an indecomposable } kG\text{-module in }\Theta\}$, where vx(M) denotes the vertex of M. As we shall see in Proposition 3.2 below, if Q is a minimal element in $V(\Theta)$, then $Q \leq_G H$ for all $H \in V(\Theta)$. In particular we see that Q is uniquely determined up to conjugation in G.

Let $N=N_G(Q)$ and let f be the Green correspondence with respect to (G, Q, N). Choose an indecomposable kG-module M_0 in Θ with Q its vertex. Let Δ be the connected component of $\Gamma_s(kN)$ containing fM_0 . The purpose of this paper is to show that there is a subquiver Λ of Δ and a graph isomorphism $\psi: \Lambda \rightarrow \Theta$ such that ψ^{-1} behaves like the Green correspondence f as a bijective map between modules in Λ and those in Θ . In particular Θ is isomorphic with a subquiver of Δ . Also it will be shown that if $H \in V(\Theta)$, then $H \leq_G N_G(Q)$.

The notation is almost standard. All the modules considered here are finite dimensional over k. We write W | W' for kG-modules W and W', if W is isomorphic to a direct summand of W'. For an indecomposable non-projective kG-module M, we write $\mathcal{A}(M)$ to denote the Auslander-Reiten sequence terminating at M. A sequence $M_0 - M_1 - \cdots - M_t$ of indecomposable kG-modules M_i ($0 \le i \le t$) is said to be a walk if there exists either an irreducible map from M_i to M_{i+1} or an irreducible map from M_{i+1} to M_i for $0 \le i \le t-1$. Concerning some basic facts and terminologies used here, we refer to [1], [5], [6] and [8].

The author would like to thank Dr. T. Okuyama for his helpful advice.

2. Preliminaries

To begin with, we recall some basic facts on relative projectivity.

Let *H* be a subroup of *G* and $\{g_i\}_{i=1}^n$ be a right transversal of *H* in *G*. If *W* and *W'* are *kG*-modules, then $(W, W')^H$ denotes the *k*-space Hom_{*kH*}(*W*, *W'*).

The trace map $t_H^G: (W, W')^H \to (W, W')^G$ is defined by $t_H^G(\phi) = \sum_{i=1}^n \phi \cdot g_i$ for $\phi \in (W, W')^H$. For a set 3 of subgroups of G, write $(W, W')_S^G = \sum_{V \in \mathcal{S}} \operatorname{Im}(t_V^G)$ and $(W, W')_{\mathcal{S},G}^{\mathcal{S},G} = (W, W')_{\mathcal{S},G}^{\mathcal{G},G}$. A kG-homomorphism φ is said to be 3-projective, if $\varphi \in (W, W')_S^G$. A kG-module W is said to be 3-projective, if $W | \sum_{V \in \mathcal{S}} \oplus (W \downarrow_V)^G$.

For a set 3 of subgroups of G, we set $\tilde{3}=3\cap_{G}H=\{V^{g}\cap H \mid V\in 3, g\in G\}$.

Lemma 2.1 ([8], Theorem 2.3). With the notation above, let $\varphi \in (W, W')^{c}$. (1) φ is 3-projective if and only if φ factors through a 3-projective module.

(2) If W or W' is \mathfrak{B} -projective, then φ is \mathfrak{B} -projective.

Lemma 2.2.

(1) ([8], Cor. 5.4) For a kG-module A and a kH-module B, the following k-isomorphisms hold:

$$(A \downarrow_{H}, B)^{\tilde{\mathfrak{Z}}, H} \simeq (A, B \uparrow^{c})^{\mathfrak{Z}, G},$$
$$(B, A \downarrow_{H})^{\tilde{\mathfrak{Z}}, H} \simeq (B \uparrow^{c}, A)^{\mathfrak{Z}, G}.$$

(2) In particular, for kH-modules A and B, the following k-isomorphism holds:

$$((A\uparrow^{c})\downarrow_{H}, B)^{\overline{3},H} \simeq (A, (B\uparrow^{c})\downarrow_{H})^{\overline{3},H}.$$

The next two results are also well-known.

Lemma 2.3 ([1], Prop. 2.17.10). Let M be an indecomposable non-projective kG-module and H be a subgroup of G. Then the Auslander-Reiten sequence $\mathcal{A}(M)$ splits on restriction to H if and only if H does not contain vx(M).

Lemma 2.4 ([4], Lemma 1.5 and [7], Theorem 7.5). Let H be a subgroup of G. Let M and L be indecomposable non-projective modules for G and H respectively. Assume that L is a direct summand of $(L\uparrow^G)\downarrow_H$ with multiplicity one, and that M is a direct summand of $L\uparrow^G$ such that $L|M\downarrow_H$. Then $\mathcal{A}(L)\uparrow^G$ $\simeq \mathcal{A}(M)\oplus \mathcal{E}$, where \mathcal{E} is a split sequence.

Finally we note:

Lemma 2.5. Let P be a non-trivial p-subgroup of G. Let M and L be indecomposable non-projective modules for G and $N_G(P)$ respectively. Assume that $\mathcal{A}(L)\uparrow^G \simeq \mathcal{A}(M)\oplus \mathcal{E}$, where \mathcal{E} is a split sequence and that $P \leq_G vx(L)$. If M is not a direct summand of the middle term of $\mathcal{A}(L)\uparrow^G$, then $\mathcal{A}(M)\downarrow_{N_G(P)} \simeq \mathcal{A}(L)\oplus \mathcal{E}'$, where \mathcal{E}' is a P-split sequence. Proof. Using the same argument as in the proof of [3], (2.3) Lemma (a), we have $\mathcal{A}(M)\downarrow_{N_{\mathcal{G}}(P)}\simeq \mathcal{A}(L)\oplus \mathcal{E}'$, where \mathcal{E}' is some exact sequence. Therefore we have only to show that \mathcal{E}' is a *P*-split sequence. Let (,) denote the inner product on the Green ring a(kG) induced by dim_k Hom_{kG}(,) [2]. For an exact sequence of kG-modules $\mathfrak{a}: 0 \to A \to B \to C \to 0$, put $\mathcal{H}(\mathfrak{a}) = B - A - C$. By [2], Theorem 3.4, it is sufficient to show that $(\mathcal{H}(\mathcal{E}')\downarrow_{P}, W) = 0$ for any kPmodule W. Using the Frobenius reciprocity, we have

$$\begin{aligned} (\mathcal{H}(\mathcal{E}')\downarrow_{P}, W) \\ &= (\mathcal{H}(\mathcal{A}(M))\downarrow_{P}, W) - (\mathcal{H}(\mathcal{A}(L))\downarrow_{P}, W) \\ &= (\mathcal{H}(\mathcal{A}(M)), W\uparrow^{c}) - (\mathcal{H}(\mathcal{A}(L)), W\uparrow^{N}) \\ &= (\mathcal{H}(\mathcal{A}(L)), (W\uparrow^{c})\downarrow_{N}) - (\mathcal{H}(\mathcal{A}(L)), W\uparrow^{N}), \end{aligned}$$

where $N=N_G(P)$. By the Mackey decomposition, $(W\uparrow^G)\downarrow_N \simeq W\uparrow^N \oplus W'$, where W' is $\{P^g \cap N \mid g \in G \setminus N\}$ -projective. Since L is not $\{P^g \cap N \mid g \in G \setminus N\}$ -projective, we have $(\mathcal{H}(\mathcal{A}(L)), W')=0$. Consequently we get $(\mathcal{H}(\mathcal{E}')\downarrow_P, W)=0$ as desired.

3. Minimal element in $V(\Theta)$

Let Ξ be a subgraph of the stable Auslander-Reiten quiver $\Gamma_s(kG)$ and set $V(\Xi) = \{vx(M) | M \in \Xi\}$. Note that every element in $V(\Xi)$ is a non-trivial *p*-subgroup of G since every M is non-projective. The following Lemma 3.1 is essential in our argument.

Lemma 3.1. Let Ξ be a subgraph of $\Gamma_s(kG)$. Assume that Ξ is connected. Take any $Q \in V(\Xi)$ with the smallest order among those p-subgroups in $V(\Xi)$. Then for any indecomposable module $M \in \Xi$, $M \downarrow_Q$ has an indecomposable direct summand whose vertex is Q.

Proof. Let $M_0 \in \Xi$ be such that $Q = vx(M_0)$. As Ξ is connected, there is a walk $M_0 - M_1 - \cdots - M_t = M$, so that M_i is a direct summand of the middle term of the Auslander-Reiten sequence $\mathcal{A}(M_{i+1})$ or $\mathcal{A}(\Omega^{-2}M_{i+1})$. We proceed by induction on the "distance" t. Suppose that $M_{t-1} \downarrow_Q$ has an indecomposable direct summand whose vertex is Q. We may assume that $vx(M_t) \not\equiv_G Q$, since otherwise $vx(M_t) =_G Q$ and Q-source of M_t is a direct summand of $M_t \downarrow_Q$. By Lemma 2.3, $\mathcal{A}(M_t) \downarrow_Q$ and $\mathcal{A}(\Omega^{-2}M_t) \downarrow_Q$ split. Since M_{t-1} is a direct summand of the middle term of $\mathcal{A}(M_t) = \mathcal{A}(\Omega^{-2}M_t)$, $M_t \downarrow_Q$ has an indecomposable direct summand whose vertex is Q.

Lemma 3.1 implies that the minimal elements with respect to the partial order \leq_G are those that have the smallest order. Thus the following holds.

Proposition 3.2. Let Θ be a connected component of $\Gamma_s(kG)$. Let Q be

an element of $V(\Theta)$ which is minimal with respect to the partial order \leq_G . Then for any $H \in V(\Theta)$, we have $Q \leq_G H$. In particular Q is uniquely determined up to conjugation in G.

4. Module correspondence

Now returning to the situation of the introduction, let Q be a minimal element in $V(\Theta)$ throughout this section. Let Λ be the subquiver of Δ consisting of those kN-modules L in Δ such that there exists a walk $fM_0 = L_0 - L_1 - \cdots - L_t = L$ with $Q \leq_G vx(L_i)$ $(i=0, 1, \cdots, t)$.

First of all we note

Lemma 4.1. Let L be an indecomposable kN-module in Λ . Then $Q \leq vx(L)$.

Proof. This follows immediately from Lemma 3.1.

Let \mathfrak{X} be the set of all *p*-subgroups of N of order smaller than |Q|. Also let $\mathfrak{Y} = \{N \cap Q^g | g \in G \setminus N\}$.

Lemma 4.2. Let W be an indecomposable kG-module in Θ . Then there exists a kN-module T satisfying the following two conditions:

- (i) $(T \uparrow^{c}) \downarrow_{N} \simeq T \oplus T'$, where T' is \mathfrak{Y} -projective.
- (ii) $(W \downarrow_N, T)^{\mathfrak{X},N} \neq 0.$

Proof. By Lemma 3.1, $W \downarrow_Q$ has an indecomposable direct summand S whose vertex is Q. Let $T=S \uparrow^N$. We show that T satisfies the above two conditions. By the Mackey decomposition we have $T \downarrow_Q \simeq \sum_{g \in Q \setminus N/Q} \bigoplus (S \otimes g)$ and so every indecomposable direct summand of T has Q as a vertex. Hence by the Green correspondence $(T \uparrow^c) \downarrow_N \simeq T \oplus T'$, where T' is \mathfrak{Y} -projective. Let us show the condition (ii). Letting $\tilde{\mathfrak{X}} = \mathfrak{X} \cap_N Q$, we have by Lemma 2.2 (1)

$$(W\downarrow_N, T)^{\mathfrak{X},N} = (W\downarrow_N, S\uparrow^N)^{\mathfrak{X},N}$$
$$\simeq (W\downarrow_Q, S)^{\mathfrak{X},Q} \supset (S, S)^{\mathfrak{X},Q} \neq 0$$

and the assertion follows.

Lemma 4.3. Let T be a kN-module satisfying the condition (i) of Lemma 4.2. Let L be an indecomposable kN-module in Λ . Then the following k-isomorphisms hold:

$$((L \uparrow {}^{c})\downarrow_N, T)^{\mathfrak{X},N} \simeq (L, (T \uparrow {}^{c})\downarrow_N)^{\mathfrak{X},N} \simeq (L, T)^{\mathfrak{X},N}.$$

Proof. The first k-isomorphism holds by Lemma 2.2 (2).

Let $(T \uparrow^c) \downarrow_N = T \oplus (\Sigma_i \oplus X_i)$, where X_i is an indecomposable \mathfrak{Y} -projective kN-module. It is enough to show that $(L, X_i)^{\mathfrak{X}, N} = 0$ for all X_i . So we have to show that any $\alpha \in (L, X_i)^N$ is \mathfrak{X} -projective. Since X_i is $\tilde{Q} = (Q^g \cap N)$ -projective

for some $g \in G \setminus N$, there exists $\beta \in (L \downarrow_{\widetilde{Q}}, X_i)^{\widetilde{Q}}$ such that $\alpha = t_{\widetilde{Q}}^N(\beta)$. Now, there exists a walk $fM_0 = L_0 - L_1 - \cdots - L_t = L$ such that $Q \leq vx(L_i)$ $(i=0, 1, \cdots, t)$ by Lemma 4.1. As \widetilde{Q} is not conjugate to Q in N, $\mathcal{A}(L_i) \downarrow_{\widetilde{Q}}$ splits $(i=0, 1, \cdots, t)$ by Lemma 2.3. Since $L_0 \downarrow_{\widetilde{Q}}$ is \mathfrak{X} -projective and L_1 is a direct summand of the middle term of $\mathcal{A}(L_0)$, it follows that $L_1 \downarrow_{\widetilde{Q}}$ is also \mathfrak{X} -projective. Using this argument repeatedly, we conclude that $L \downarrow_{\widetilde{Q}}$ is \mathfrak{X} -projective. Therefore β is \mathfrak{X} -projective by Lemma 2.1 and hence α is \mathfrak{X} -projective.

Lemma 4.4. Let L be an indecomposable kN-module in Λ . Then $L\uparrow^{G}$ has a unique indecomposable direct summand M whose vertex contains Q, and we have

(1) L is a direct summand of $M \downarrow_N$, and

(2) M lies in Θ .

Moreover letting T be a kN-module satisfying the conditions in Lemma 4.2 for M, we have:

$$((L\uparrow^c)\downarrow_N, T)^{\mathfrak{X},N} \simeq (M\downarrow_N, T)^{\mathfrak{X},N} \simeq (L, T)^{\mathfrak{X},N} \neq 0.$$

In particular, L is a direct summand of $(L\uparrow^{c})\downarrow_{N}$ with multiplicity one.

Proof. Since $L|(L\uparrow^{G})\downarrow_{N}, L\uparrow^{G}$ has an indecomposable direct summand M such that $L|M\downarrow_{N}$. Therefore the vertex of M contains Q and $L\uparrow^{G}$ has at least one indecomposable direct summand whose vertex contains Q.

Let $fM_0 = L_0 - L_1 - \dots - L_t = L$ be a walk. We prove the assertion by induction on the t.

If t=0, i.e., $L \simeq fM_0$, then the assertion follows since f is the Green correspondence.

Suppose the assertion holds for L_{t-1} . We shall derive a contradiction assuming that $L\uparrow^{c}$ has two indecomposable direct summands M and W whose vertices contain Q. Let $L\uparrow^{c}=M\oplus W\oplus W'$. We may assume that $L|M\downarrow_{N}$. By Lemma 2.4 $\mathcal{A}(L_{t-1})\uparrow^{c}=\mathcal{A}(M_{t-1})\oplus \mathcal{E}$, where M_{t-1} is the unique indecomposable direct summand of $L_{t-1}\uparrow^{c}$ whose vertex contains Q and \mathcal{E} is a split sequence. Note that the middle term of \mathcal{E} does not have an indecomposable direct summand whose vertex contains Q, since M_{t-1} (resp. $\Omega^2 M_{t-1}$) is a unique indecomposable direct summand of $L_{t-1}\uparrow^{c}$ (resp. $(\Omega^2 L_{t-1})\uparrow^{c}$) whose vertex contains Q. Let Y (resp. Y') be the middle term of $\mathcal{A}(M_{t-1})$ (resp. $\mathcal{A}(\Omega^{-2}M_{t-1})$). Since L is a direct summand of the middle term of $\mathcal{A}(L_{t-1})$ or $\mathcal{A}(\Omega^{-2}L_{t-1})$, it follows that $M\oplus W | Y$ or $M\oplus W | Y'$. In particular both M and W lie in Θ .

Let T and U be kN-modules satisfying the conditions (i) and (ii) for M and W respectively in Lemma 4.2 and put $T'=T\oplus U$. Then

S. KAWATA

$$((L\uparrow^{\mathfrak{c}})\downarrow_{N}, T')^{\mathfrak{X},N} \cong (M\downarrow_{N}, T')^{\mathfrak{X},N} \oplus (W\downarrow_{N}, T')^{\mathfrak{X},N} \oplus (W'\downarrow_{N}, T')^{\mathfrak{X},N} \cong (L, T')^{\mathfrak{X},N} \oplus (Z, T')^{\mathfrak{X},N} \oplus (W\downarrow_{N}, T')^{\mathfrak{X},N} \oplus (W'\downarrow_{N}, T')^{\mathfrak{X},N},$$

where $M \downarrow_N = L \oplus Z$. But by Lemma 4.3, $((L\uparrow^c)\downarrow_N, T')^{\mathfrak{X},N} \simeq (L, T')^{\mathfrak{X},N}$. This implies that $(W\downarrow_N, U)^{\mathfrak{X},N} \subset (W\downarrow_N, T')^{\mathfrak{X},N} = 0$, which is a desired contardiction. Thus $L\uparrow^c$ has a unique indecomposable direct summand M whose vertex contains Q, and the statements (1) and (2) hold. Moreover we obtain that

$$((L \uparrow {}^{G}) \downarrow_{N}, T)^{\mathfrak{X},N} \simeq (M \downarrow_{N}, T)^{\mathfrak{X},N} \simeq (L, T)^{\mathfrak{X},N} \neq 0,$$

since $M | L \uparrow^{c}$ and $L | M \downarrow_{N}$. Hence L is a direct summand of $(L \uparrow^{c}) \downarrow_{N}$ with multiplicity one; for otherwise

$$(L, T)^{\mathfrak{X},N} \oplus (L, T)^{\mathfrak{X},N} \subset ((L\uparrow^{c})\downarrow_{N}, T)^{\mathfrak{X},M} \simeq (L, T)^{\mathfrak{X},N} \neq 0,$$

a contradiction.

For an indecomposable kN-module L in Λ , let ψL be a unique indecomposable direct summand of $L\uparrow^{c}$ whose vertex contains Q.

Lemma 4.5. Let L and L' be indecomposable kN-modules in Λ . Then $\psi L \simeq \psi L'$ if and only if $L \simeq L'$.

Proof. If $L \simeq L'$, then $\psi L \simeq \psi L'$ clearly. To show the converse, assume by way of contradiction that $\psi L \simeq \psi L'$ but $L \simeq L'$. Since $L|\psi L|_N$ and $L'|\psi L'|_N$, we have that $L \oplus L'|\psi L|_N |(L\uparrow^c)|_N$. Let $(L\uparrow^c)|_N \simeq L \oplus L' \oplus W$. Let T be a kN-module satisfying the conditions (i) and (ii) of Lemma 4.2 for $\psi L (\simeq \psi L')$. Then

$$((L\uparrow^{c})\downarrow_{N}, T)^{\mathfrak{X},N}$$

$$\simeq (L, T)^{\mathfrak{X},N} \oplus (L', T)^{\mathfrak{X},N} \oplus (W, T)^{\mathfrak{X},N}.$$

But by Lemma 4.3, $((L\uparrow^c)\downarrow_N, T)^{\mathfrak{X},N} \simeq (L, T)^{\mathfrak{X},N}$. This implies that $(L', T)^{\mathfrak{X},N} = 0$, which is contrary to Lemma 4.4.

We are now ready to prove the main theorem of this paper.

Theorem 4.6. ψ induces a graph isomorphism from Λ onto Θ which preserves edge-multiplicity and direction. Also ψ gives rise to a one-to-one correspondence between indecomposable modules in Θ and those in Λ and the following hold :

(1) Let M be an indecomposable kG-module in Θ . Then $M \downarrow_N \simeq \psi^{-1} M \oplus (\Sigma_i \oplus W_i)$, where $W_i \downarrow_Q$ is \mathfrak{X} -projective for all i.

(2) Let L be an indecomposable kN-module in Λ . Then $L\uparrow^{G} \simeq \psi L \oplus (\Sigma_{i} \oplus V_{i})$,

676

where V_i is \mathfrak{X} -projective for all *i*.

Proof. It is a direct consequence of Lemmas 4.4, 4.5 and 2.4 that ψ indeed induces a graph monomorphism. To show that ψ is an epimorphism, let M be an arbitrary element of Θ and let $M_0 - M_1 - \cdots - M_t = M$ be a walk in Θ . If t=0, i.e., $M=M_0$, then $M_0=f^{-1}(fM_0)=\psi L_0$. Now, suppose then that there exists an element L_{t-1} in Λ such that $M_{t-1}=\psi L_{t-1}$. By Lemmas 4.4 and 2.4 we have $\mathcal{A}(L_{t-1})\uparrow^{\mathcal{C}}=\mathcal{A}(M_{t-1})\oplus \mathcal{C}$ and $\mathcal{A}(\Omega^{-2}L_{t-1})\uparrow^{\mathcal{C}}=\mathcal{A}(\Omega^{-2}M_{t-1})\oplus \mathcal{C}'$, where \mathcal{C} and \mathcal{E}' are split sequences. Recall that M_t is a direct summand of the middle term of $\mathcal{A}(M_{t-1})$ or $\mathcal{A}(\Omega^{-2}M_{t-1})$. Therefore there exists some indecomposable direct summand L of the middle term of $\mathcal{A}(L_{t-1})$ or of $\mathcal{A}(\Omega^{-2}L_{t-1})$ such that $M|L\uparrow^{\mathcal{C}}$. Since $Q\leq_G vx(M)\leq vx(L)$, L lies in Λ . Consequently $M=\psi L$ and ψ is an epimorphism.

Next we prove (1) by induction on the distance t from M_0 to $M=M_t$. If t=0, i.e., $M=M_0$, then the statement (1) follows since f is the Green correspondence. Suppose the statement (1) holds for M_{t-1} . We may assume that M_t is a direct summand of the middle term of $\mathcal{A}(M_{t-1})$ (otherwise replace M_{t-1} by $\Omega^{-2}M_{t-1}$). Let $M_t \downarrow_N \simeq \psi^{-1}M_t \oplus (\Sigma_i \oplus W_i)$ and let $M_{t-1} \downarrow_N \simeq \psi^{-1}M_{t-1} \oplus (\Sigma_i \oplus W_i)$. By Lemma 2.5, $\mathcal{A}(M_{t-1}) \downarrow_N \simeq \mathcal{A}(\psi^{-1}M_{t-1}) \oplus \mathcal{E}'$, where \mathcal{E}' is a Q-split sequence. Note that \mathcal{E}' is an exact sequence termining at $\Sigma_i \oplus W_i'$. If W_i is a direct summand of the middle term of $\mathcal{A}(\psi^{-1}M_{t-1})$, then $Q \leq_G vx(W_i)$, since otherwise W_i lies in Λ but this contradicts that ψ is a graph isomorphism which preserves edge-multiplicity. Therefore $W_i \downarrow_Q$ is \mathfrak{X} -projective. Suppose then that $W_i \downarrow_Q | (\Sigma_i \oplus W_i') \downarrow_Q \oplus (\Sigma_i \oplus \Omega^2 W_i') \downarrow_Q$, it follows that $W_i \downarrow_Q$ is \mathfrak{X} -projective.

The statement (2) follows similarly by virtue of Lemma 2.4.

As an immediate consequence of the above theorem, we have

Corollary 4.7. Let Θ be a connected component of $\Gamma_s(kG)$ and let Q be a minimal element in $V(\Theta)$. Then for any element H of $V(\Theta)$, we have $H \leq_G N_G(Q)$.

References

- D.J. Benson: Modular Representation Theory: New Trends and Methods, Lecture Notes in Mathematics, Vol. 1081, Springer-Verlag, New York/Berlin, 1984.
- [2] D.J. Benson and R.A. Parker: The Green ring of a finite group, J. Algebra 87 (1984), 290-331.
- K. Erdmann: Blocks whose defect groups are Klein four groups: a correction, J. Algebra 76 (1982), 505-518.

S. KAWATA

- [4] K. Erdmann: Algebras and dihedral defect groups, Proc. London Math. Soc. (3) 54 (1987), 88-114.
- [5] W. Feit: The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.
- [6] P. Gabriel: Auslander-Reiten sequences and representation-finite algebras, 1-71, Lecture Notes in Mathematics, Vol. 831, Springer-Verlag, New York/Berlin, 1980.
- [7] J.A. Green: Functors on categories of finite group representations, J. Pure Appl. Algebra 37 (1985), 265-298.
- [8] P. Landrock: Finite Group Algebras and their Modules, London Math. Soc. Lecture Note series 84, Cambridge University Press, London, 1983.

Department of Mathematics Osaka City University 558 Osaka, Japan