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1. Introduction

Let P,(D) and P,(D) be linear partial differential operators with constant
coefficients. Let the order of P, with respect to &, be m, that of P, be m’,
and m>m’. Let b; (D), k=1, -+, p be normal boundary operators of order j,
and R%}={x>0}. We shall consider the following one-parameter family of
unilateral boundary value problems:

(em Py(D)+Py(D)) u(x) = 0 in RY ;
bi;,(D) “(x)|z1w = ¢k(xl)’ k= 1) M.

Here ¢=(¢,, ***, ) belongs to FH(CF(R*))*, where F~! denotes the inverse
Fourier transformation. We shall choose b;,(D), k=1, -++, p so that the bounded
solutions are uniquely determined. We have introduced the notion of “reduci-
bility” for the family of elliptic boundary value problems in [1] and that of
“admissibility” for the family of Cauchy problems in [2]. In §3, by using
the localization in the Fourier images of the solutions of (1.1), which we may
call the local Fourier analysis, we shall introduce the notion of “micro-admissi-
bility” and ‘“‘micro-reducibility”’ of (1.1) and show the same kind of results as
those on the reducibility of the family of elliptic boundary value problems in
[1]. As a preliminary, we shall study in §2 asymptotic behaviour of the chara-
cteristic roots more deeply than [1]. In §4, we shall pacth up the localization
in the Fourier images and study relation between the reducibility and the micro-
reducibility on various examples. In §5, we shall show the normal reducibility
of the following one-parameter family of non-characteristic Cauchy problems for
kowalewskian operators:

(1.1)

(1.2) [ (6-P(D)+PyD))u =0, in R";

bj(D) tt] gm0 = ;o j = 0, +++, m—1.
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If the Cauchy problems (1.2) are uniquely solvable and the limit %, of the solu-
tions u, of (1.2) exists in C(R,,; 9'(R}"")), which denotes the space of continu-
ous functions of x, in R, valued in 9'(R}7"), then u, satisfies

(1.3) [PZ(D)u = 0’ in Rn :

bJ(D) ul,]_:o = ¢J’j == O, R m”—l .
Here m=ord P, (the order of P)), m'=ord P,, and m>m’. In appendix, we

shall give a brief survey of boundary values of solutions to a non-characteristic
hyperplane according to [4].

2. Preliminaries

In this section, we shall study necessary properties of the characteristic
roots and the asymptotic behaviour of determinants more deeply than [1].

Let P,(D) and P,(D) be linear partial differential operators with constant
coefficients. Let the order of F, with respect to &, be m, that of P, be m’, and
m>m’. Let their symbols be

21 P\(&) = g+ 370 Py, (8 ET,
(2.2) PyE) = p-EV -+ 71 1o (£ EV

Here p, ;(£") and p, ;(£') are polynomials of £’ without restrictions on orders, that
is, P|(D) and P,(D) are non-kowlaewskian in general and p is a non-zero con-
stant.

We shall deal with the following polynomial with a small positive parameter

E:
(2.3) gn=n' . P,(E)+Py§) = 0.

By replacing & by &- | p|¥™~"" we may assume that | p|=1. Denote the char-
acteristic roots of (2.3) with respect to &, by 7,(§, £’),j=1, -+, m and those of

24) Py&)=0
with respect to &, by o ;(&'), j=1, -+, m’, respectively.
AssuMPTION 2.1.  There exists a point £j in R"™! such that for 1< j<k<m’'
a (&) = au(&0) -

Remark. If Assumption 2.1 is satisfied, then there exists an open ball
By=B(ry; &;) of radius 7, with the centre £; such that all o;(&’) are simple on
the closure of B,.

Under Assumption 2.1, we have essentially studied the asymtotic properties
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of the characteristic roots of (2.3) in [1]. We shall calculate the second and the
third terms of the asymptotic expansions of the characteristic roots of (2.3).
Denote by @ the argument of —p satisfying 0<6 <2z, that is, —p=exp 6.
Denote

0 ¢ exp 2

’ P /__1 .
m m,y m m,, and 'szgf’” ’]=m’+1,...’m.

© = exp

Lemma 2.2. Let Assumption 2.1 be satisfied and B, be the open ball in
Remark to Assumption 2.1. If the suffixes {j} of the characteristic roots =;(€, £'),
j=1, -, m of (2.3) are properly chosen, then there exists a positive number &, such
that if 0<E<E,, then 7;(&, '), j=1, -+, m satisfy the following asymptotic proper-
ties on the closure of By:

For j=1, -, m'

(25) 6, E) = oiE)F5ialE) 7 HsuE) €L O@E ),
0

where 0, = —,
1
(2.6) Sjp = —Pi(0j,§")0, Pyo;, )7,
1 p "
2.7) Sj3= "2_,‘81 Py, £')0, polajs E') 05,0

—0, Py(c;, £')-0, Pya;, E')_l°sj,z .

For j=m'+1, --m

@9 6 &) = @Tf"%+’z<’=")+(@v;)-*-ta(s')-e+0<62) :
where
— _‘Pl,l‘l‘f’z,l‘f’_l
(2.9) t, = o ,
(2‘10) t3 — (m__m/)—l l: m'(m'__l)z—i—m(m—l) 'tzz

+((m'—1) p™* py1—(m—1) p1,)) tz’l'f)_lpz,z‘.pl,z] .

Proof. In [1], we have calculated the first terms of the expansion of the
characteristic roots. Put &’=¢&"""", When Assumption 2.1 is satisfied, we know
that m’ characteristic roots of &-P,(&)+P,(£)=0 are analytic for sufficiently
small &’ and £’ in a neighbourhood of the closure of B,. As we need the first
three terms of the expansion of the characteristic roots 7;(€, £’), we may as-
sume that

A& E) = o j(E)F5;u(E) & +5;4(E) €% =1, ey m
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Expand the left-hand side of
8'-P1('1'j, E’)‘I"Pz(?'j, EI) =0

as a power series of €. Differentiate the power series by & and put &=0.
Then the coeflicient of &’ is

Pyoj §')10, Pyoj, £')+55

and this must be zero. Since o ;(£") are simple on the closure of B,, it implies

that 9,P,y(a;, £')#+0. Hence we have (2.6). By differentiating two times the

power series by €” and putting &'=0, we have (2.7). Thus we have (2.5).
Multiply (2.3) by ™, and put t=&-£,. Then

211) S p(E) E i D p (E) E 7 =0

We know that m—m’ roots of (2.11) are analytic in a neighbourhood of the
closure of B, for sufficiently small & Put t;=&-7;(E, &), j=m'+1, -, m
Then t;, j=m’+1, ---, m are the roots of (2.11). As we need first three terms
of the expansion of ¢;, we may assume that

b = @i (E) 6+ (E) 6, ) = m'+1, -y m

Substitute ¢; for ¢ in (2.11) and expand the left-hand side of (2.11) as a power
series of &. Then the coefficient of & is

m(@"';')m_l i tpy, 1(@T§)M_I+Pml(97§)m,_l tj,2+p2.l(@7'§)“’—l

and this must be zero. As (@+})"" m’ = —p, we have
(2.12) t;, = _.pl.l+P2,t'P—
m—m

Since the right-hand side of (2.12) is independent of j, we may write #; ,=¢,.
The coefficient of & is

mt, (@7} ‘+ﬁ(’”—” 1 AOH P (m—1) pyy 1, (@7} 4py (O™

' pty @) P D) gy, @2
+(m ‘—1)1’2,1 i.2(®7'§')m _2+P2,2(®T§)m 2
and this must be zero. Hence

the = (m—m'y@ry | P =Lmn]) s

+((m'—1) 7 pra—(m—1) py,,) tz+P_1Pz.z—Pl-2] = (87)) 7+,
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Thus we have (2.8). [0.E.D].

Let v and p be integers such that 1<p<m' and »+1=pu=<m. Let
J1s ***» Ju be a series of integers with

(2.13) 0= /i< <ju=m—1.
Let by(, '), j=j1, ***» ju be polynomials of order j as
(2-14) bj('r) E’) = Tj+2£-l bj,k(g’) Tj-kij =j1s '")jF- 5

which are denoted by b;(7) when regarded as polynomials of = with polynomial
coefficients. We shall use the same notation as in [1] except T and 8Dj as
follows.

NotaTtioN 2.3.  For polynomials &;(7), j=1, +++,  and for complex numbers
or functions 7; and ¢;, j=1, -+, p,

bl(”'l) bl (’Tn)
Mat Dy = Mat Dy(7y, =+, T by, o=+, bu) = | ¢ : ,

bu(ry) +++ bu(a)
Mat Dk = Mat Dk(Tl) ey T bl’ ooy b“; ¢1, ey ¢F)

b.l ("'1) b_l (Tk—l) ‘i.bl b} (’T'k+1) b} (TF) jl
bu(ry) + bulacs)  w Bu(raas) -+ Bulre)
where k=1, -+, pu.
1 w1
Mat Vn(g;jl’ ""jn) = le g.jﬂ
(G5t e (i)
Mat Vu_y_;,o = Mat Vieyr (5 Jvrzs =5 Ju) »
Mat Vu_y o = Mat V#—v(c;jwp ooy Ju) -

For 1skspu—v,
j;e zjv+k—1

Mat Vy.-\,’k = Mat V#—v(g;].wl, "')jv+k—1)j£’j'v+k+1! '",j;a)
Th= (o= @75 oo, i (471 eo)
Mat 9D} = Mat Dy(1, &, -+, £*771; 7ives, woe, 7in; TH) .
We shall abbreviate the determinant of Mat D as D, where Mat D is any of the

matrices abbreviated as above. Denote J=j, .+ *+ju and J'=]—j,,.
For v+1<k=y,
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D(k) = @]’.Do(l’ ooy Ck"\“‘z, gk‘"’, ooy é‘”'_"_l; ij+2’ eeey le") .
B""“‘(E’) = ;::1“ (biv+lp1(5,) ‘ VF—v,k+t2(E,) * 6‘D’/¢) .

By the same method as in Lemma 2.4 in [1], we have the following:

Lemma 2.4. Let Assumption 2.1 be satisfied and B, be the open ball in
Remark to Assumption 2.1. Then

(2.15) 18]..{1(;1 DO(TI) LIXN ‘TIJ,; bjl’ sy blp,).ej
= Do(o'n ***y Oy bip "'»biy)'el.V"‘-V:O .
For k=1, ---, v
(216) 131;12- Dk(TD Ty bila ) bjl,g; 4;1) ) d,;l"). &7
== Dk(o-ly ttty Oy, bilv "ty biv; ¢;1) A ‘f’v)‘@]'VM—v,o ’
and for k=v+1, -+, p
(217) lil;r(} Dk(TD *tty Tws biv ) bi}t; (I,;l’ R ¢;l").ej,
= Dv+1(0'1) Tty Oyt bjp B bfv+1; ¢;1a ty $v+1)'(—1)kuv_1.®/.V""‘"'l'o 4

where o, is a dummy variable, that is, the right-hand side of (2.17) is independent

of oyiy
The convergences are uniform on the closure of B,.

Dente the asymptotic expansions of D, by
Dy = dy (&) &7 +dp\(§)- €T HOETT), k=0, .
By the same method as in Lemma 2.6 in [1], we have the following:

Lemma 2.5. Let Assumption 2.1 be satisfied and B, be the open ball in Re-
mark to Assumption 2.1.  Assume that V,_, ,=0.
When j,.,—j, 22,

(2.18) dyy = Dy(oy, =+, 045 bjy <+, b;)) @/ 1By, .

For k=1, -+, v

219)  dyy=Dyfoy, oy 343 by oony by oy 31071 By
For k=v+1, -, u

(2.20) d,=0.

I/thj\«H_jv: 1:



THE REDUCIBILITY OF THE BOUNDARY CONDITIONS IN THE 541
ONE-PARAMETER FamiLy 1I

(2'21) do,l = Do(o'l) ***y Oy, bily R bi\,)'@]_l'BF--v
+D0(a'1’ % Oy bip R} b bj.v_u)’@]—l‘ Vy,_y'l .

Jy-1
For k=1, -+, v
(222) dy, = Doy, =5 o5 bjy ++ by by, o0, $,) -0 1By,

+ Doy, -5 a5 bi:’ " biv—l’ bfv+1; (ﬁl’ ) 93\:—1» $v+1)'91_1' Vv,

For k=v+1, -+, u there are two cases as follows.
When v=1 and j,=0, it may be assumed that b; =b,=1 and b;,=b=E +
b (). Then

(2.23) dyy = (=1 (b—(01+5,.(8") 1) Dy -
When v=2 or j,=1,
(2.24) d,=0.

3. The micro-reducibility

Let the symbol of P, be (2.1) and that of P, be (2.2). Let b; (D), k=1, -+, p
be normal and R%={x,>>0}. We shall consider the following one-parameter
family of unilateral boundary value problems:

(3.1) [(em-m’ P,(D)+P,(D)) u(x) = 0 in R%;
. biy(D)u(x)| 400 = da(x'), k=1, .

Here we shall choose b;,(D), k=1, -+, u so that the bounded solutions solved by
the partial Fourier transformation with respect to x’ are uniquely determined.
In this paper, we hsall only deal with such solutions in order to determine a
unique solution of (3.1) for every fixed &. Denote by B(R’) the space of bound-
ed continuous functions in R%.

DreriniTION 3.1. A one-parameter family of the unilateral boundary
value problems (3.1) is said to be micro-admissible at £; if there exist an open
ball B with centre & in RZ™' and a positive number &, such that the one-para-
meter family of (3.1) satisfies the following two conditions:

(1) For every € with 0<€<&, and for every ®=(¢,, -+, pu) in FH(C(RB))*,
the unilateral boundary value problem (3.1) has a unique solution w,(x; ®) in
B(R?).

(2) For every @ in F~Y(C5(B))", there exists a function #,(x; ®) such that

leigl (%5 D) = uy(x; D) in C(RY) .

A one-parameter family of the unilateral boundary value problems (3.1) is
said to be micro-reducible at &; if the family (3.1) is micro-admissible at ] and
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satisfies the following two conditions:
(3) There exists a series (k,, -+, &,) such that

1§k1<"'<kv§ﬂi > Oéjk,<"'<]‘/,v§m,—l >

and every u,(x; @) satisfies the following unilateral bounadry value problem:

(3.2) l:Pz(D) u(x) =0 in R ;

bjs (D) (%) | sy = s, (), I =1, -+, v

(4) The reduced unilateral boundary value problem (3.2) is uniquely solvable.

In particular, when k;=I, I=1, -+, v, the family (3.1) is said to be normally
micro-reducible at £j. The family (3.1) is said to be abnormally micro-reducible
at £ if the family (3.1) is micro-reducible at £ but not normally micro-
reducible at £§.

ReMARK. When v=m’, the micro-reducibility is equivalent to the normal
micro-reducibility. We can also define the micro-admissibility at (xg; £) and
the micro-reducibility at (x5; £¢) by replacing R with a neighbourhood U’ of
xg. Since we only treat solutions solved by the partial Fourier transformation,
we do not need licaliaztion in x’-space.

Let us consider the partial Fourier transform with respect to x" of (3.1):
[ (" Py(Dy, E)+Py(Dy, E) (%, E) = 0
bj,,(Dly E’) ﬁ(xl) E,)Izllo = $k(§l)) k= 1’ V.

Let Assumption 2.1 be satisfied, B, be the open ball in Remark to Assumption
2.1, and ®=(¢,, ***, ¢pu) belong to F~Y(C5(B,))*. If the suffixes {j} of the chara-
cteristic roots 7; (€, £’), j=1, -+, m are properly chosen, which are simple in B,
for sufficiently small &, then the solutions of (3.3) are represented as

(3.4) A(xy, E') = Y(x,) o1 Cu(E, E'; ®) (exp i1 (E, E) x,) .
Here Y(x,) is the Heaviside function and for k=1, -+, pu,

Dk(Tl’ tty Tws bil’ ) bip,; (ﬁv ) Qsl") .
DO(Tp Tty T bjp °tty bi,,,)

(3.3)

(3.3) Ci(§, &' @)=

Next we shall study sufficient conditions for the unique solvability of (3.3).
Assume that there exists an open ball B’ with the centre £§ included in B, such
that on the closure of B’ and for sufficiently small &,

(3.6) Im 7,(&, £)>0, k=1, -+,

and
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(3.7) Im 7,(, £')<0, k= p+1, -, m,

where the suffixes {j} of 7/, &’), j=1, :--,m are properly chosen. Then
bounded solutions of (3.3) are uniquely determined for ® in F}(CF(B’))*. We
shall only deal with bounded solutions of (3.1) whose partial Fourier transforms
are (3.4).

Use the same suffixes {j} of 7;(¢, &’), j=1, -+, m as in Lemma 2.2. Denote

N*(0) = #{j; Im©®7;>0,j = m’'+1, ---,m} ,
NO)=4#{j; ImO7r; =0, =m'+1, -+, m} ,

and
N-(o) = #{]’ Im GT;<0’] =m'+41, -, m} ,
16

m—m

where @ is the argument of —p and @=exp Then we have the follow-

ing:
(1) The case when m—m'=2]—1, where [l is a positive integer.
(1—a) If =0 or =, then

N*@)=1-1,N@)=1, and N-(0)=1-1.
(1—b) If 0<é<m=, then
N*@)=I,N(@)=0, and N-()=1-1.
(1—c) If z<0<2rz, then
N*@)=1—1,N0)=0, and N-(0)=1.

(2) The case when m—m’=2I, where [/ is a positive integer.
(2—a) If =0, then

N*(0)=1—-1,N%(0) =2, and N-(0)=I-1.
(2—b) If 0<0<2x, then
N*@)=1,N(0) =0, and N-(0)=1.
It must be remarked that

{87}; ImB7;=0,k = m'+1, ---, m}
= {81 k=m'+1, -, m + N*0)+N(0)} .

In order to seek sufficient conditions for (3.6) and (3.7), we introduce
AssumPTION 3.2.

Imao;(50)>0,j =1, -, v
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Imo;(£0)<0,j = v+1, oo, m".
ReMARK. Here the number » may be changed by &§.

Assumption 3.2 implies that there exists an open ball B, with the centre &;
included in B, such that on the closure of B, and for sufficiently small &,

(3.8) Im 7;(&, £)>0,j =1, -+, »
(3.9) Im 7,(€, £)<0, j = v+1, =, m’ .

Lemma 2.2 implies that if Im @7/>0 (resp. Im @7;<<0), then there exists an
open ball B, with the centre £; included in B, such that Im 7;(&, £)>0 (resp.
Im 7(&, £')<<0) on the closure of B, and for sufficiently small & When Im 67}
=0, we need the following:

AsSUMPTION 3.3.

Im (—p,1(E6)+-p21(80)-p™) + 0.

Lemma 2.2 implies that if Im @7}=0 and

(3.10) Im (—p1,1(80)+22.(80)-p7)>0,

then Im 7,(&, £6)>0 and that if Im ©7}=0 and

(3.11) Im (—py,1(80)+P2a(80)-p71) <0,

then Im 7, £)<<0. Put

(3.12) p =v+N*(0)+N°%0), (The case when (3.10).),
(3.13) = v+N*0), (The case when (3.11).).

Then there exists an open ball B’ with the centre £; included in B, such that
on the closure of B’ and for sufficidntly small &,

(3.14) Im (& £')>0, j = m'+1, o, m'+p—v,
(3.15) Im Tj(e, g')<0’j = m,+[L—V+1, e m.

When m—m’'=2l—1 and (0<f<=z or #<@<2z) or when m—m’'=2l and
0<6<2m, that is, when N°@)=0, Assumption 3.3 is not required, Thus, by
permuting the suffixes {»+1, ---, m} of the characteristic roots properly, we can
find an open ball B’ with the centre £§ included in B, such that for sufficiently
small &, (3.6) and (3.7) are valid on the closure on B’.

NoTATION 3.4.

Dy() (") = Do(ay, *s a5 bsy, +++5 bjy)



THE REDUCIBILITY OF THE BOUNDARY CONDITIONS IN THE 545
ONE-PARAMETER FamiLy 11

Dy(o; v) (') = Do(o1, *+5 a3 bip D) bjy—l’ biv+1)

We shall need the following assumption of the “micro-ellipticity” of the
boundary conditions.

AssumPTION 3.5.
(1) Do) (£5)==0.
(2) Dy(o; ») (&0)*0.
(3) Do) (£0)* Bu-v(£0)+Di(a; v) (£6)* Vieon,1 F0.

Remark. If Assumption 3.5 is satisfied, then there exists an open ball B in-
cluded in B’ such that (1), (2), and (3) are valid for all £; on the closure of B.
If y=m’, then we have Dy(c) (£')==0 on the closure of B.

Recall that By_,(£") is a polynomial of £’ and that Vu_, , and V,_,, are con-
stants independent of £’. Then, by the same kind of method as in Theorem 4.4
in [1], we have the following:

Theorem 3.6. Let Assumption 2.1, 3.2, 3.3, and 3.5 be satisfied and B be
the open ball in Remark to Assumption 3.5. When m—m'=2l—1 and (0<6<=z
or #<0<2r) or when m—m’'=2l and 0<0<2rz, Assumption 3.3 is not required.
Let u be (3.12) or (3.13) and the boundary data space be F~Y(C5(B))".

(1) The case when rank Mat Vu_,=p—v, that is, Vu_,,*+0. The family
(3.1) is normally micro-reducible at &;. In particular, if the boundary conditions
are Dirichlet’s

(3.16) b (D)=DFL k=1, p,
k

then the family (3.1) is normally micro-reducible at &;.

(2) The case when rank Mat Vu_, o=p—v—1. Then Vy_,,=0.

(2-1) If jyy—jv=2 and Bu_,(E0)*0, then the family (3.1) is normally micro-
reducible at Ej.

(2-2) If jy41—jv=1, then there are three cases as follows.

(2-2-a) If Bu_,(E6)*0 and V., =0, then the family (3.1) is normally micro-
reducible at E§.

(2-2-b) If Vu_y 170 and Dt Bu_,(E6)=0 for all multi-indexes «, that is, Bu_,(£")
=0, then the limit u, of the solutions of (3.1) satisfies the following boundary condi-
tions :

(3.17) bi (D) (%) ] 400 = a(x"), k=1, -, v—1, p+1.

In particular, when v<m’'—1, the family (3.1) is abnormally micro-reducible at Eg.
When v=m', the family (3.1) is micro-admissible at £ but not micro-reducible
at E¢.

(2-2—¢) If Vu_y,+0 and there exists a multi-index o such that D, By_,(£5)=0,
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that is, Bu_,(E')=0, then the family (3.1) is micro-admissible at £ but not micro-
reducible at Ej.

4. Various examples

We shall patch up the localization in £’-space and study the reducibility in
various examples. We shall require the following ‘‘global-ellipticity”’ of the
boundary conditions:

AssumPTION 4.1. There exist positive numbers I, C, and M independent
of 0<<€<1 and £’ in R*"! such that

|(Dy-&) | SCCEDM,
and every cofactor Dy, , of D, k, I=1, -+, p satisfies

| Dy, | S CLEDM .
Here <€">=(1+|€'|)"

REMARK. In some cases, instead of Assumption 4.1, it might be better to
assume

[(Dy-€N) 7 =CEDM|E" "2,

where >0 and to deal with L%-solutions instead of S’-solutions. Then we
can admit some algebraic singularities of D, at £'=0.

ExampLE 4.2. Let P,(£) be an elliptic polynomial of order 2u with real
coefficients such that P,(£)>0 for £ in R" and

(+.1) Py(£) = £+ 32050 py, (87 17

Let P,(£’) be an elliptic polynomial of &’ with real coefficients such that P,(&’)>
0 for £’ in R" ' and ord P,<<ord P,. Then, for £ in R" and for 0<&<1,

(4.2) ¥ Py(E)+iE,+PyE) 0.

This implies that the characteristic roots 7;(€, '), j=1, -++, 2 satisfy Im 7,(&, £')
>0 or Im 7,(&, £')<0 alternatively in RZ™" for 0<&€<1.

Let us consider the following one-parameter family of unilateral boundary
value problems:

(6%1- P(D)+iD,+Py(D")) u(x) = 0 in R ;
bik(D) u(x)lxlio = ¢o,,(x’), k= 1, e b,

with 0<é<1. Let bj=by=1 and bd;,, k=2, ---, u be normal and satisfy As-
sumption 3.5 for B=R*"'. Then the family (4.3) is normally micro-reducible

(4.3) [
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at every point £’ in R*™!, which will be shown under.

Let @ in F~Y(C7(B(0; R)))*, where B(0; R)={|&'| <R}. Since ju<2u—1
and j,=1, it follows that for every pair (1, ,), }, e A={j,, -+, ju} with [,<<l,, we
have 0<l,—, < ju—j,<2u—2. Hence /%1, (mod 2x—1), and we have rank
Mat Vu_,o=p—1. Since the characteristic roots are simple for [£'| <R and
E< &, the partial Fourier transforms of the solutions %, of (4.3) can be represent-
ed as (3.4). By Lemma 2.2, we have

(44) (& ') = iPyE")+O(E ™),
and

(4.5) /(6 E')+E = O+ 0(8), j=2, =+, 2p

Here ©=exp 2(2:; ) 5 and ¢=exp 2'37[ The imaginary parts of 7, £'),

j=1, +++, u are positive. Hence Lemma 2.4 implies

lim (6, £'; @) = lim (D,&7)/(D-&") = by,
and for k=2, .-+,

lelil;l Cy&, E'; @) = llgl (Dy+&)|(Dy+€7) = 0.
Therefore

lim u, = uy = ¥ (%) - Fe'(exp—Py£") xoy(E")) -
This implies that u, satisfies
(ZD,+Py(D")) u(x) = 0 in R% ;

[u(x) lsy00 = $u(*") -

Thus (4.3) is normally micro-reducible at every point in B(0; R), where R is an
arbitrary positive number.

When Assumption 4.1 is satisfied, the family (4.3) is normally reducible.
In fact, Assumption 4.1 assures the commutation of the limit & | 0 and the
inverse Fourier transformation. Then we have only to calculate the pointwise
limit of (3.4) in &’-space, but this is the micro-reducible version.

(4.6)

The above example can be generlized as follows:

ExaMPLE 4.3. Assume the same assumptions as in Example 4.2. Let Py(¥)
be an elliptic polynomial of order 2« such that Py(£)==0 for & in R" and the
characteristic roots of Py(£)=0 with respect to £, are simple in Rf™'. Consider
the following equation:
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(4.7) (€71 Py(&)+iE+Py(E)) Py(£) = 0.

Renumber 7,(&, £') of (4.4) as 7,.4,(&, £') and 74(&, &') of (4.5) as 744(&, E'),j=2,
-+, u, respectively. We denote by o(¢’), j=1, -+, « the characteristic roots of
P,(£)=0, which have positive imaginary parts. Put o, (&')=i-P,(§') and
T;j=0cj,j=1, =+, k+1. Let us consider the following one-parameter family:

(48) [(SZF—I'P‘(D)JF iDy+Po(D')) PD) u(x) = 0 in B’ ;
' b, (D) (%) | 4yp0 = Gal()s k=1, -+, ptx .
Here we assume that j,<2p+2«—1 and that bj, satisfy Assumption 3.5 for

B=R*"'. Then we can apply Theorem 3.6 to this example for B=R""!. When
Assumption 4.1 is satisfied, we can have the same result as in Theorem 4.4 in [1].

Let us give an example of the micro-admissible family, which is not micro-
reducible. This is a special case of Example 4.3.

EXAMPLE 4.4. Put Pi—ES+CE"S, Py—(E", and P3=53+%<g'>2 in (4.7).

31’6’ 27 1.emma 2.2 implies that o) =—<E,

7= iKE Y+ O(E"), 73-6=0—<EH*+E+0(e?), and 7,-6=OF —<EH-E+O(E).

Denote ®=exp and {=exp

We set the following boundary conditions:
”Ix,w = ¢y, D1u|z1¢o = ¢, D12u|sl¢o = ¢p3, and D17u|x,¢o = ¢g.
Here ¢, ¢, ¢35, and ¢ belong to F~Y(C5(R*™!)). Then we have
) ’ c/eIN2 . i/l ’ __1_
Dy (5 <ED,i<E 1 m) = i<g>(<ED>—5 ) # 0,
U ppry /e, 2\ _ _ sEN\2 fz_i
Dy (2<%, g 1,7) = —<g (@) + 0,
By, =i (§—1)KED?, and V,,,=t(E-1).
Thus
40,/@ = —£ €~ 1) <€ (<ED—1) (KE>+1),
d,,/0° = (I<E"D? §i—by) i (E—1) KEDV —(KEM dy+69)-£ (6 1),
and
408 = (=2 )it ¢ —1) €Y+ (et < )£ D).

Obviously, this family is micro-admissible at every point in RE™'. Denote by #u,
the limit of #, when & | 0. Since
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({i&l u,)| x40 = uolxﬂo = F—l((dm +d2,l)/d0.l) = F_l(‘?gl) ’
u, satisfies the boundary condition u|,,,;=¢,. We have
Dt g0 = F (<8 dyu-HiE'S i o)
= F_l(cx 9§1+Cz ‘ﬁz“f‘ G, 433) ’

__KEY — XED _ —2i
where C1—4<EI>+1, C, KESTT and G, S WESTD) We also have
Ditt) o = FH(( — <€ du <> ) o)
= F7(C, $1+Cs q§2‘|‘Cs ‘ﬁs) ’
where C4=———<EI> ! C,= KED(KED+1T) and C, _XE>+1 Hence u,

KEH+17 7 KED+1 7 POAKEYFT
does not satisfy the boundary conditions Dyu|, ,,=¢, and D*u|, ,c=¢;. Thus
this family is not micro-reducible at every point in RZ™.

Since v depends on &, u the number of the boundary conditions may be
changed by &. When g is changed by £;, we can not set the problem of the
reducibility. The following example, to which Theorem 3.6 can not be applied,
will show us such a situation.

ExampLE 4.5. Let P(§)=<&>* and P,(§)=—<EX®. Then the characteristic
roots of &% P,(£)+Py(£)=0 are --i<¢"> and i%-(1—<g'>2-52)1/2. For fixed &,

two characteristic roots have positive imaginary parts for sufficienty large &'.
Therefore, let us consider the following one-parameter family of unilateral
boundary value problems:

“9) [ (e P(D)+PD))u = 0in RY ;
' ulx;¢0:¢l’Dlulx110=¢29

where ¢, and ¢, belong to S(R"). But the &’-solutions of (4.9) are not unique.
In fact, if ¢,, ¢,, and ¢, belong to F~Y(C7(B(0; R))) and E<R™'<1, then the
following family
“10) [ (PO PAD) u = 0in B3

ulz,w = ¢y D1u|z,¢o = ¢y, D, “lslw = ¢,

is micro-reducible at every point in B(0; R).

5. The convergence of canonical extensions

We shall deduce some results from the convergence of the canonical ex-



550 R. AsHiNo
tensions, referring to Appendix. Let P, and P, be kowalewskian with their sym-
bols:

P& = Elm‘ll"E?-—Ol Pl,m—i(El) Elj ’

Py(&) = Pao &""4—23"-'5‘ Pew-iE)E

Denote P,(£)=¢+Py(£)+P,(&) and

be; = G'Pl.m—j'l_j’z,m’—jyj =0,--,m—1,
where p, ;=0 for k<<0. Let us consider a sequence of prolongable solutions

u, of

(5.1) [P,(D) u=20,in R}
. bj(D)uI8110=¢j7j=0, ...,m_]_.
Here every b;(D) is a normal boundary operator of order j and every ¢; belongs

to @'(R""). Then we have the following lemma.

Lemma 5.1. If there exists a sequence of prolongable solutions u, of (5.1)
and a distribution v such that

(5.2) [#e]* — v in D'(R"),

then

(5.3) P(D)yv=0 in RL;v=][v]";

(5.4) BD) lys0 = BiD) el syso = $1oj = 0, -, m'—1.

Proof. First we shall prove the assertion when b;=D/, j=0, ---, m—1.
Denote by {g, ;},1=1, 2, & the dual boundary systems of {D,/} with respect to

. t : .
P(D), I=1, 2, &, respectively. Then by (4.5), ¢;,;(§)= (-1,—-21,_0 bixE) El""),
I=1,2,&. For every u(x) in C*(R"), we have :
P(D) (Y (x)-u) = &-P (D) (Y (%,)-u)+Py(D) (Y (%,)-%)
= Y(x,)+€-Py(D) u+Y () Py(D) u+&- 2750 'y, m- (D) {8 (%)) ¢}
‘l‘E?-,-EI ‘Qz,m’—j—1(D) {8 (xl) ¢;}

= Y (%) Py(D) u+33750 *qe,m-j-1(D){8 () b}
where ¢(x")=D/ul|, -, j=0, ::-,m—1. Since the dual boundary system is
uniquely determined in the case of constant coefficients, it implies that

‘e (D) = &' (D) +'q (D), k= 0, -+, m'—1
and
'qe (D) = E-'qi (D), k=m', -, m .
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Thus we can write
(5.5)  PyD) [ue]* = X720 *qe,m-j-1(D) {8 (x1) 5}

=& 7% *q1,m-j-1(D) {8 (%)) P} + 7! *Gom- j1(D) {8 (1) D} -
Letting € | 0 in (5.5), we have

(5.6) PyD) v = X725 ', mr-j-1(D) {8 (%) 5} -

Since the support of the right-hand side of (5.6) is included in x,=0, it follows
that P,(D) v=0 in R}. The expression (5.6) and the definition of the boundary
values of v imply (5.4). The uniqueness of the expression (5.6) of [9]* implies
v=[v]".

Denote by {c,,;} the dual boundary system of {;} with respect to Py(D).
Then by (4.6),

— L.5Y ¢ it
Co,j = €* ka0 Byt b G1,j kT kw0 "Wy ik To,jk -

Here a;,; satisfy (4.4) and a;,=0, for j<0. Since a;, are independent of &,
we have

15101 Ce,j = im0 sk G-k -
Thus we can reduce this general case into the first. [Q.E.D.]

In [2], we have already studied the necessary conditions for the convergence
of solutions of the one-parameter family of Cauchy problems. The following
theorem shows that an admissible one-parameter family of Cauchy problems is
normally reducible.

Theorem 5.2. Assume that there exists a sequence of solutions u, of the

following Cauchy problems:

(5.7) [P!(D) u=0,in R";

Ei(D)ul sy = 5y j =0, -, m—1,
and a distirbution v such that

(5.8) 121?01 uy(x) = v(x) in C(R,,; D'(R:)).
Then v satisfies the following reduced Cauchy problem:

(5.9) [PZ(D) u=0,inR";

b’(D) ul,fo = ¢J’j = O, *cy ml‘—"l .
Proof. By (5.8), we have
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ljm Y (x,) ug(x) = Y (x,) v(x) in D'(R").
Since [u,]*=Y(x,) u,(x), it follows that
11m [u]t = Y(x) v(x) in 9'(R").
We know that

b;(-D) utlxll,o = b;(D) ua|21=0 = ¢j’j = 0, s m—1.

Hence u, satisfies the boundary value problem (5.1). By applying Lemma
5.1, we have Py(D) v=0 in 9'(R%), v=[v]*, and

bJ(D) 7":,&0 = b;(D) lel=0 = ¢j)j = O: "ty m'—1. [QED]

ReMARK. For example, when P, is strongly hyperbolic and the data be-
long to C5(R"™"), then the Cauchy problem (5.7) is uniquely solvable for every
&<1. See Theorem 4.7 and 4.10 in [6]. Hence when P, is strongly hyper-
bolic and P, is hyperbolic, the admissibility implies the normal reducibility.

The following example shows that as for the one-parameter family of boun-
dary value problems, it is not appropriate to require the convergence of canoni-
cal extensions.

ExampLE 5.3. Let us consider the one-parameter family of boundary value
problems of ordinary differential operators:

d )2 d
E—)+2(&-—)+1)u=0,
(5.10) [« )T ( dx)+ )E
#(0) =u(0)=0.
Put u,::éx—s—-exp (— %) Then u, is the global solution in 9’(R), especially

in @'(R*). The canonical extension of %, is Y(x) u,(x) as we refer in Remark
to Lemma 4.2. Since

Yy ¢ = (" 17t gen) ar, p=Ci (),

{Yu,, > does not converge in P'(R) when € | 0. Put

,:ue(x), for x=0;
W= —w), for x<0.

Then
Cow ¢>= [ B et (plen)—p(—en) e
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and <{v,, p>—>2¢'(0)I'(3), when €| 0. Here T'(2) is the gamma function.
Therefore v, is a solution not in R but in R* and converges in 9'(R).

ReEMARK. In case of initial value problems with variable coefficients, A.
Yoshikawa, [8] studied the same kind of equations as in Example 5.3 in a smart
treatment.

Appendix
The boundary values of solutions to a non-characteristic hyperplane

We shall give a brief survey of a general boundary value theory for solu-
tions of linear partial differential equations with constant coefficients according
to [4] based on hyperfunction theory.

Let P(D) be a differential operator of order m with constant coefficeints and
its symbol be

(A1) PE)=&"+X71p &) Em .

Here every p,(£') is a polynomial of &’ with order p,<j. Let every byD),
j=0, -+-,m—1 be a differential operator of order j with constant coefficients and
its symbol be

(A.2) bj(E) = E/+ 041 b,4(E") ES 7.

Here every b; 4(£') is a polynomial of £’ with order 4;,<k. Such a differential
operator as b,(D) is said to be normal, and

(A3) bi(D) (%) | syy0 = $s(*),j = 0, =+, m—1

is called the normal boundary condition. A system {b;}7=¢ is said to be normal if

every b; is normal. When {b;}70 is normal, there exist normal differential

operators a; ,(D’) such that for j=0, .-, m—1
(A.4) Dlj = Ei_o aj,k(D’)‘bj—k(D) .

A system {c(D)}7=5 is called the dual boundary system of {b;(D)}7=s with
respect to P(D) if for every C™ function u(x) it satisfies

P(D) (Y (%)) u(x)) = Y () P(D) u(x)+ 375 “em- j-1(D) (8 (%) b;(D) (%)) ,

in a neighbourhood of x,=0. Here Y (x,) is the Heaviside function and & (x,)
is the Driac measure. The symbols of the dual boundary system of {D}7=}
with respect to P(D) are

(A5) 2® = (- i@ 87),
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and those of {b;}7=¢ are
(A.6) c;(§) = a0 ey jrri(E')q;-0(E) -

Let U be a domain containing the origin. Put U*=UnN {x,>0}, U’=UN
{x,=0}, U =UN{x,<0}, Ur=U*UU® and U-=U-U U". When U is re-
garded as an open set in R*™!, U° is denoted by U’, that is, U’= {0} x U".

A distribution u in 9'(U*) is said to be prolongable into x, <0 if there
exist an open set J and a distribution v in 9'(V’), which is called an extension
of u, such that

VN{x>0 = U* and o|y+=wu.

Lemma A.l. Let u(x) be a prolongable solution of P(D)u(x)=0 in U™.
Then there exist a unique extension [u]* in D'(U) of u and unique data ¢;(x’) in
D'(U"), j=0, ---, m—1 satisfying supp [u]*cU* and
(A7) P(D) [u]* (%) = 2720 *em-j-1 (D)8 (%)) (2} -

Here the extension [u]* is said to be canonical and is independent of the choice of the
boundary system. The data ¢;(x") are called the boundary values to x,=0 with
respect to {b;(D)}7=. We write b(D)u|,, ,o=¢;.

Proof. Let {p,;} be a partition of unity on U and X be the difining function
of the set U*. We can write pju=3), D”f; ,, where f;, are continuous func-
tions with supp f;,Csupp p;. Put v=33; 33, D*(Xf;.). Then v|y+=u|y+
and supp vc U*. Hence P(D) v=0 in U* and supp P(D) vC UP. By the local
structure theorem of a distribution whose support is included in x,=0 (See Théo-
rém XXXVI in [7]), we can write locally

(A8) P(D)v = S D8(m) i) -
Here fi(x’) are distributions. If M =m, then
D,M8 (%)) fu(%) = P(D) DM~"(8 (%;) far("))+ 2450 Di*8 (%) ga(x”) -

By replacing v by v—D,*""(8(x,) fu(x")), we can diminish M by one. Repeat-
ing this operation, we can finally let M=m—1. We denote this extension by
[#]* and the coefficients in the right-hand side by v;(x’), then we have a local
representation of (A.7) when ¢;,(D)=*!D,/ as

(A.9) P(D) [u]* = X750 D777 8(xy) vy(#') -
Let [u]’* be another extension and
P(D) [u]"™" = 3720 D" 8(w) w; (x) -

If [u]*—[u]’* is not identically zero, then
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[ul*—[u]* = 33720 D73(x)) hy(x")
where £,,(x’) is not identiaclly zero. But
P(D) ([#]*—[u]"*) = DM " 8(x,) pltag(x")+-
= 3750 D78 (y) (vi(x") —wj(x)) -
This contradicts the uniqueness of the coefficients in the structure theorem.
Thus [#]* and v,(x") are uniquely determined locally. The sheaf property of

distributions implies that (A.9) holds globally. In the case of general {c;(D)},
put

(A.10) ¢i(D) = -0 c;(D") DI *,
then

(A.11) tDJ = .0d; (D) cjy -
Hence

P(D) [u]* = 37= rd e jer-t(D) 'd o j_y (D) {8 (xy) v;(x")}
= W3 fepmeia(D) {8(%) koo i1 as(D") viop(®)}

that is,
Pi(x") = Sli-o - joren (D) v p(x") .

Since this equation can be solved with respect to v;(x’), it follows that ¢;(x") are
uniquely determined by . [QE.D.]

Remark. If # can be extended as a solution, then x, is a C*-parameter, that
is, #(x) is microlocally C* at (x;1, 0, ---, 0) for every x. Hence the product
Y(x,) u(x) can be defined and we have [u]*=Y(x,) u.

The following lemma will clarify the meaning of the limits of boundary
values. The proof will be omitted.

LemMA A2, Let U={|x,| <8} x U’ and u(x) be a prolongable solution of
P(D)u=01in U*. Then

(A.12) bi(D) () | 115 = b;(D) (%) | 4,40 »
in @'(U’) when § |, 0.
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