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By an (m, I)-manifold pair (M, L) we mean a smooth m-manifold M and a
(regular) /-submanifold L such that L is a closed set in M and 0L=LN3dM.
Here, M and L may be non-compact or disconnected and —1<I<m (I=—1
means L=@). Let I=[—1,1]. A reflection in (M, L)X I is a smooth involution
a on (M, L)x I such that (M x1)=M x(—1) and Fix(a, M X I) is an m-mani-
fold and a acts non-freely on each component of Mx I. Then we can see that
Fix(a, (M, L) X I) is an (m, [)-manifold pair (cf. Property I). A smooth
imbedding ¢ from an (m, /)-manifold pair (M*, L*) to (M, L)xI with
o(M*, L¥)=Fix(a, (M, L)X I) for a reflection « in (M, L)X I is called a
reflector (of the reflection ).

DEFINITION.  An (m, l)-manifold pair (M*, L¥) is an imitation of an (m, l)-
manifold pair (M, L) with imitation map q: (M*, L*)— (M, L), if there is a
reflector ¢: (M*, L*)— (M, L)X I with g=p,¢, where p, denotes the projection
from (M, L)X I to (M, L).

In Section 1, we shall give six general properties of imitations, meaning that
any imitation map ¢q: (M*, L*)— (M, L) has properties close to a diffeomor-
phism and hence the distinguishment between (M*, L*) and (M, L) is not so
easy.

DEFINITION. An imitation (M*, L*) of (M, L) with imitation map ¢ is
pure if g=p,¢ for a reflector ¢p: (M*, L*)— (M, L)X I of a reflection & such
that a(x, 1)=(x, —1) for all x& M.

We also say that such &, ¢ and ¢ are pure. This subtle notion is needed when
we ask whether an imitation of an imitation is an imitation of the original mani-
fold pair (See Proposition 2.1). Let Diff X be the diffeomorphism group of a
smooth manifold X, which is a topological group (with respect to the compact-
open topology). For subspaces A;, i=1,2, ::+,s, and Y of X, we denote the
subgroup of Diff X consisting of all f&Diff X with f(4,)=4; (=1, 2, -, s,
and f|Y=id, by Diff(X, 4,, 4,, -+, A,, relY) (or Diff(X, 4,, 4,, ---, 4,) if
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Y=¢). By Diff(X, 4,, 4,, -+-, 4,, rel Y) we denote the path connected com-
ponent containing idyeDiff (X, 4,, 4,, «+-, A, rel Y).

DrFINITION. Two imitations (M*, L*), (M**, L**) of (M, L) with imita-
tion maps ¢, ¢’ are conjugate if fo(M*, L¥)=¢'(M**, L**) for some reflectors
¢ (M*, L¥)— (M, L)xI, ¢'s (M**, L**)—>(M, L)xI with p,p—q, pd'=¢’
and some feDIff (M X I, LxI, Mx1, Mx(—1)).

An imitation (M*, L*) of (M, L) with imitation map ¢ is said to be inessential
or essential according to whether ¢ is conjugate to a diffeomorphic imitation
map q': (M, L)=(M, L) or not. It is shown in Section 2 that all imitations
of all (m, l)-manifold pairs with m <2 are pure and inessential.

DErFINITION. An imitation (M*, L*) of (M, L) with imitation map ¢q is
normal if g=p,¢ for a reflector ¢: (M*, L*)— (M, L)X I of a reflection « in
(M, L)X I such that a(x,?)=(x, —t) for all (x,t)€d(MXI)UN,xI, where
N, denotes a neighborhood of L in M.

In Section 3 we show that for each (m, [)-manifold pair (M, L) with m>3 there
are infinitely many (up to conjugations) essential normal imitations of (M, L), by
using the fact that the 11-crossing Kinoshita/Terasaka knot is a knot imitation
of a trivial knot. In Section 4 some remarks on the imitations of 4-manifolds
are given. In Section 5 we discuss the Whitehead torsion invariant of an imita-
tion map. In fact, we observe that when M is a compact connected oriented
m-manifold, the Whitehead torsion 7(¢)&Wh = (M) is defined for any imita-
tion map q: M*— M. Further, when ¢ is conjugate to a 9-diffeomorphic
imitation map, we have 7(g)=—27 for some r&Wh (M) with 7=(—1)"*!7.
When ¢ is inessential, 7(¢)=0. Under the assumption that m>5 and
Wh 7 (M) has no 2-torsion, this invariant enables us to classify homotopy
equivalent 9-diffeomorphic imitation maps ¢: M*—M up to conjugations (See
Theorem 5.5).

This paper grew out of some parts of the unpublished paper[Ka, 1]. We also
note that an analogous definition of imitation was given in [K/K/S] (cf. Pro-
perties I, IT, IV and Corollary 2.5). Spaces and maps will be considered in the
smooth category.

1. Some general properties of imitations

Lemma 1.1. Let a be a reflection in M X I with M connected. Then M'=
Fix(a, MXI) is connected and splits M X I into two connected submanifolds
W, W_ such that
(1) There is a diffeomorphism W, =W _ sending M, onto M’ as the identification
map and M x 1 onto M x(—1),
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(2) The inclusions i': M, — W, and i: M X 1— W, induce an epimorphism
iy m(M%)—n(W,) and an isomorphism iy: w\(M X 1)—> (W), and

(3) The inclusions i’, i induce isomorphisms on homology, cohomology and coho-
mology with compact support, where M', and M denote the copies of M' in W,
and W_, respectively.

Proof. First note that 0M’'=Fix (e, (0M)x I) and Int M'=Fix(e, (Int M)
x1I). Let M{ be any connected component of M’. Since Int M’ and hence
Int M1 are closed sets in Int (M X I), we have

H(Mx I, MxI—Mji; Z)y=H,(Int (M xI), Int (M x I)—Int M{; Z,)
~H™Int M'; Z,)

by the Alexander/Spanier duality (cf. [Sp]). Since the natural homomorphism
H(MxI—-Mi{; Z,y—-H(MxI; Z,)) is onto and M X[ is connected, it follows
that

)
Zy=H(MxI, MxI—M/{; Z)) = Hy(MxI—M!{; Z,).

This implies that M{ splits M X I into two connected submanifolds W, W_.
Since a(W,)=W_, we see that M{=M" and « defines a desired diffeomorphism
in (1). To prove (2), (3), we use the fact that « difines a retraction from M X I
to W,. This means that the inclusion j: W,— M X I induces monomorphisms

Ji: m(Wy) = m(MXI),

Jxi Hy(W,) > Ho(MXI),
and epimorphisms

j*: H¥MXI)— HYW,),

j¥: H¥MxI)— H¥W,).

But the composite ji: M x 1— M x 1 is a (proper) homotopy equivalence. Hence
jb j*’ j*’ ];k and

iy m(MX1) = (W),

ig 1 He(MX1)— Hy (W),

i*: H¥(W,)— H*(Mx1),

i*: H¥W,)— HXMx 1)
are all isomorphisms. To complete the proof of (2), let W, W_ and M’ be
the preimages of W,, W_ and M’, respectively, under the universal covering
MxI—MxI. Then W, and W_ are connected (because M x 1 and M x (—1)

are connected). By the Mayer/Vietoris sequence, we see that M’ is con-
nected. Since j; is an isomorphism, we also see that W, is simply connected.
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Thus, the natural homomorphism 7 : z,(M%})— =,(W,) is onto, obtaining (2).
For (3), note that Hyu(Mx1I, W,)=H*(MxI, W, )=H¥MxI, W,)=0 since
J#, J* and j¥ are isomorphisms. By excision, Hy(W_, ML)y=H*(W_, M_)=
meaning that

if: Hy(ML)— Hy(W,)

i'*: H¥(W,) - H*(MY),

i¥: H¥(W,)— H¥M?)
are all isomorphisms. This completes the proof.

Let a be a reflection in (M, L)xI. By Lemma 1.1, Fix(a, M X I) splits each
connected component of MXxI, LxI, (M—L)x I, (Int M)x 1, (Int L) X1,
(0M)x I and (0L)Xx I into two connected components. Hence we obtain the
following:

Property I. Every imitation map g¢: (M*, L*)— (M, L) defines imitation
maps M*— M, L*—L, M*—L*— M—L, (Int M*, Int L*)— (Int M, Int L)
and (0M*, 9L*)— (oM, 0oL).

We see from Lemma 1.1 that any imitation map g: M*— M induces isomor-
phisms on homology, cohomology and cohomology with compact support.
Hence we obtain from Property I and Five Lemma the following:

Property II. Every imitation map q: (M*, L¥)— (M, L) induces isomor-
phisms on homology, cohomology and cohomology with compact support.

In Lemma 1.1 (3) Stiefel/Whitney and Pontrjagin classes of M/} and Mx1
coincide through the cobordism W, (cf. Milnor/Stasheff [M/S]). Hence we
have the following:

Property III. Ewvery imitation map q: M* — M preserves Stiefel|Whitney
and Pontrjagin classes of M* and M.

By Properties I, III, (M, L) is an orientable manifold pair if and only if so is
(M*, L*). When (M, L) is an oriented manifold pair, we orient (M*, L¥*) so
that g|Int M*: Int M*—Int M and ¢|Int L*: Int L*—Int L are degree one
maps, unless otherwise stated, by using Properties I and II.

Property IV. Let p: (M, L)— (M, L) be any regular or irregular covering
map, where M may be branched along some components of L when l=m—2.
Consider the pullback diagram of this covering map p by any imitation map
g: (M*,L*)—(M, L):
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@+, L% — (1, L)
3,
(M*: L*) E— (M: L) .
Then B is a covering map (this is well known) and § is an imitation map.

To obtain Property IV, we use the following lemma:

Lemma 1.2. Let o be a reflection in M X1 with M connected. For any
connectehd unbranched covering py—=pxid;: MxI—-Mx1, a lifts to a unique
reflection & in M X 1.

Proof. By Lemma 1.1 M’'=Fix(a, MXI) is connected and the natural
homomorphism z,(M’, x,)—> (M x I, x,), x,&M’, is onto, so that M’'=p;'M’
is connected and « induces the identity automorphism on 7z, (MXI, x,). By
the lifting property, e lifts to a unique involution & on M x I with Fix (&, M x I)
=M. Since @M x 1)=M x (—1), the proof of Lemma 1.2 is completed.

Proof of Property IV. Let ¢: (M*, L*)— (M, L)X I be a reflector of a
reflection a in (M, L)x I with g=p,¢. Let p,=pxid;: (M, L)xI— (M, Lyx I
be the product covering map. We shall show that « lifts, under p;, to a unique
reflection @ in (M, L)x I with Fix (@, (M, Lyx I)\=pr'¢(M*, L*). When p is
unbranched, we apply Lemma 1.2 to each component of Mx I and LxI and
obtain a unique reflection @ in (M, L)x I lifting & with Fix(a, (M, L)xI)=
pri¢p(M*, L*). When p is branched, the same argument shows that | (M —L) x I
and a|L X[ lift to unique reflections @&y _zyx; Iin (M—l)x[ and @, y;in LxI
with Fix(@y-zyx s, (M—L)X I)=pr'¢(M*—L*) and Fix (&, Lx I)=pr'$pL*,
respectively. Since p is a smooth branched covering map and « is a smooth
reflection, we see that &,,_;yx; and &;,, determine a unique smooth reflection
@ in (M, L)xI with Fix(a, (M, L)xI)=pr'p(M*, L*). Let (M*, L¥*)=
Fix(a, (M, LyxI) and &: (M*, L*)— (M, L)x I be the inclusion, which is a
reflector of the reflection & in (M, L)x 1. Then the imitation map §=p,p:
(M*, L*)— (M, L) and the covering map p=¢ 'p,$: (M*, L*¥)—(M*, L*) con-
stitute a desired pullback diagram, for pg=gp and §|p~'(x*): p~'(x*)—p~(x) is
a bijection for any x*& M * and x& M with ¢(x*)=x. This completes the proof.

For a group 7z, let z=z0>zW>Dz®>5... be the derived series of =, i.e., a
series with zG+V=[z®, 7], =0, 1, 2, ---, and Z==/N7-0o7®. For example,

if 7 is a free group, then N7.o z"={1} (cf. [L/S; p. 14]).

Property V. Every imitation map q: M*—M with M connected induces an
epimorphism qy: w,(M*)— =, (M) whose kernel Ker qy is a perfect group (i.e.,
Ker gy=[Ker g¢;, Ker q4]), so that gy induces an isomorphism =z (M *)=7,(M).
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Proof. Let M be the universal covering space of M and g: M*— M be the
lift of g. By Property IV, g is an imitation map. By Property II, M* is con-
nected and H,(M*)=0. This means that g, is an epimorphism and Ker g=
m(M*) is a perfect group. Since Ker ¢sC N 7=o7,(M *)®, the proof is completed.

2. Pure imitations and surfaces

The reflection r in (M, L)X I defined by r(x, t) =(x, —t) for all (x,2)E
M x 1 is called the standard reflection.

Proposition 2.1. If (M*, L*) is an imitation of a manifold pair (M, L) and
(M**, L**) {5 a pure imitation of (M*, L*), then (M**, L**) is an imitation of
(M, L). Further, of (M*, L¥*) is a pure imitation of (M, L), then (M**, L*¥) is
a pure imitation of (M, L).

Proof. Let ¢: (M*, L*)— (M, L)X I be a reflector of a reflection « in
(M, LYyx I and ¢': (M**, L¥*)— (M*, L*) x I a reflector of a pure reflection o’
in (M*, L*)x1. (M,L)xI admits an a-invariant bicollar neighborhood N of
d(M*, L*) so that there is a diffeomorphism f: (M*, L*) X I=N with f~'af the
standard reflection in (M*, L¥)x 1. Let a” be the reflection in (M, L)x I
obtained from « by replacing a| N with fa'f~'. Note that if & is pure, then so
is @”. The composite ¢” =f¢p': (M**, L*¥*)— (M, L)x I is a reflector of a”
and the map ¢"’=p,¢”: (M**, L¥*)— (M, L) is a desired imitation map, com-
pleting the proof.

The following question is unanswerable:
QuEsTION. Is every imitation pure?

For a reflection a in (M, L)x I we denote by f, the diffecomorphism of (M, L)
given by ra|(M,L)x1: (M,L)x1—(M,L)x1. Two f, geDiff(M, L) are
concordant if there is an heDiff (M, L)x1, (M, L)x1, (M, L)x(—1)) with
h|(M,L)x1=fx1 and h|(M,L)x(—1)=gx(—1). Note that fZ is always
concordant to idy, 1.

Lemma 2.2. Let an imitation map q: (M*, L*)— (M, L) be given by a
reflector ¢: (M*, L*)— (M, L)X I of a reflection a in (M,L)x1. If f, is con-
cordant to f', then qis given by a reflector ¢': (M*, L¥*)—(M, L)X I of a reflection
a' in (M, L)x I with f,=f'.

Proof. Let h: (M, L)x[1,2]— (M, L)yx[—2, —1] be a diffeomorphism
with A(x, 1)=(f,(x),—1) and A(x, 2)=(f"(x), —2) for all x& M. For I*=[—2, 2]
we define a*Diff(M, L)< I* by a*|(M, L)x[1, 2]=h, a*|(M, L)X I=a and
a*t|(M, LYyx[—2, —1]=h"*. Let d: (M, LYyxI*— (M, L)X I be the diffeomor-
phism given by d(x, t)=(x, t/2) for all (x,t)eMxI*. Then a’=da*d™'is a
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reflection in (M, L) X I with f,,=f" and the composite ¢’: (M*, L*) i(M, LyxI

d
C(M, LYyxI*—(M, L)x1 is a reflector of &’ with p;¢p’=¢. 'This completes the
proof.

Corollary 2.3. An imitation map q: (M*, L*)— (M, L) is pure if q is given
by a reflector of a reflection a with f, concordant to idy, 1.

For example, all imitations of S” (0<#<5) and R" (n>0) are pure and hence
normal (cf. Cerf [Ce], Milnor [Mi, 1; § 9. Lemma 5.7]).

Theorem 2.4. Let (M, L) be an (m, l)-manifold pair with m<2. Then for
every reflection o in (M, L)X 1, there is an heDiffy(Mx I, M x3I, LXI) with
hah™ the standard reflectoin in (M, L)x 1. Further, if o|(0M) X I is the standard
reflection, then we can take h so that heDiffy(M X I, M X 91, LX1I, rel(0M)XxI).

The following is direct from Theorem 2.4 and Corollary 2.3:

Corollary 2.5. Any imitation of any (m, l)-manifold pair (M, L) with m<2
is inessential and pure.

Note that the compactness of M is not needed in Theorem 2.4 and Corollary
2.5, though we assumed it in the first draft of this paper (cf. [Ka, 0]). To prove
Theorem 2.4 we use the fact that Diff(D", rel 9D")=Diff,(D", rel 8D") for
n<3 (cf. [Ce], Hatcher [Ha, Appendix]).

2.6 Proof of Theorem 2.4 when m=0. Note that L=¢ and there is an
h,eDiffy(M x I, M x 8I) with Fix (hahi', M x I)=Mx 0. Since Diff (D", rel 9D")
=Diffy(D!, rel 8D"), we obtain a desired &, completing the proof.

2.7 Proof of Theorem 2.4 when m=1. By 2.6 and the isotopy extension
theorem, we can assume that «|(L U AM)X I is the standard reflection.
Further, by cutting M along L if L=@, we can assume that L=¢@. Choose
a discrete set Q in Int M which cuts M into closed intervals. Then we
have an h eDiff,(M X1, Mx0I, rel (@M )xI) such that kahi(QxI)=QxI
and Fix(haht', MxI)=Mx0. By 2.6 and the isotopy extension theorem, we
can assume that hahi'(x, t)=(x, —2) for all (x, )eQXIUO(M xI). Since
Diff (D?, rel 0D?)=Diff(D?, rel 8D?), we obtain a desired &, completing the proof.

When m=2, the following two lemmas are basic to the proof of Theorem 2.4:

Lemma 2.8. For any connected surface M with 0M=@ and a 2-disk D?
in M and any reflection ot in M X I, there is an heDiffy(M X I, M X 8I) such that
hah™| D* X I is the standard reflection.

Lemma 2.9. For any connected surface M with 0M =@ and any reflection
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a in MXI with o|(0M)X I the standard reflection, there is an heDiffy(M X I,
M %8I, rel (0M) X I) such that hah™ is the standard reflection in M X I.

2.10 Proof of Theorem 2.4 when m=2, assuming Lemmas 2.8 and 2.9.
If 8M =@ and /=—1, then we have a desired # by Lemmas 2.8 and 2.9.
If oM =@, we can assume by 2.7 and the isotopy extension theorem that
a|(0M,dM NL)xI is the standard reflection. Hence if 9M=+@ and I=—1,
then we have a desired 2 by Lemma 2.9. If /=0 or 1, then we can further assume
by 2.6, 2.7, the isotopy extension theorem and the uniqueness of a-invariant
tubular neighborhoods that a| N(L)x I is the standard reflection for a tubular
neighborhood N(L) of L in M. Applying Lemma 2.9 to at|cl(M—N(L)) X I, we
obtain a desired #, completing the proof.

Proof of Lemma 2.8. Let peD? It suffices to show that there is an
h,eDiff,(Mx I, MxdI) with hahi'(pXxI)=pxI, because then we obtain a
desired % by 2.6 and the isotopy extension theorem and the uniqueness of
a-invariant tubular neighborhoods. By a proper arc in MXI we mean the
image of a smooth proper imbedding (Z, {1}, {—1})—>(M X1, Mx 1, M X (—1)).
For the proof, we need to consider three cases.

Case (1): M =S

In this case, any proper arc in M X[ connecting M X (—1) with M'x1 is
ambient isotopic to pXI. Hence we obtain a desired A, by considering an «-
invariant proper arc in M X I.

Case (2): M =R~

In this case, M'=Fix(a, M X I)==R? for M’ is an acyclic connected open
2-manifold by Lemma 1.1 (3). It suffices to construct an a-invariant proper
arc J in MXI with 7 (MXI—]J)=Z, because then we see from the Dehn’s
lemma that J is ambient isotopic to p X I in M X I by considering the image of
J in D*xI under an imbedding gxid;: MXI—D?*x1I with g: M=1IntD? a
diffeomorphism. To obtain such a J, we first choose a proper arc J' in M x [
meeting M’ transversally in a single point, . Take a 2-sphere 5 in M X Int ]
such that x'€3 and 3 meets J' transversally in two points and 7,(N—J')=Z
for the non-compact region N of M X I divided by =. Note that B=
cl(MxI—N)isa 3-disk. We show that there is an f € Diff,(M X I, rel M x8I)
such that /' meets fM’ transversally in a single point and 3N fM'=@. To see
this, we may consider that 3, meets M’ transversally in loops. Let ¢ be a loop
in XN M’ bounding a 2-disk d in 3 such that IntdNM'=@ and |d N J'|<L1.
Let d' be a 2-disk in M’ bounded by ¢. Note that |d'NJ'|=1]dN ]|
(=0or 1). Since d’Ud bounds a 3-disk in M x I, we have an f,eDiff,(Mx 1,
rel M xdI) such that J' meets f, M’ transversally in a single point and the com-
ponent number of N f,M’ is smaller than that of N M’. By induction on the
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component number of 3N M’, we have a desired f. Then we have f~(B)N M’
=@. Let IV be one of the manifolds obtained from M X I by splitting along M’
such that WN f~Y(B)=@. Let J”=f"(J)NW. Since the natural homomor-
phism z(M'—f~(J')) = (M x I—f~%(BU J'))==Z is an isomorphism, it follows
that z,(W—J")=Z. Then J=]"Ua]J’ is an a-invariant proper arc in M x [
with 7 (M X I— ] )==Z and the proof of the case (2) is completed.

Case (3): MxS?%, R

In this case, we have H(M)=0 and we have a simple loop ¢ and a simple
loop or simple proper open curve ¢* in M meeting transversally at the point p.
Since M X1 is irreducible, we have an heDiffy(M x I, rel M x9I) such that
h(cxI) meets M'=Fix(a, MxI) transversally in 9-parallel loops in A(cXI).
Hence we have an a-invariant annulus 4 in M x I with ANMX1=cx 1. Since
any two homotopic simple loops in M are ambient isotopic, we have a reflection
a’'=h'ah’™" in M xI with b’ Diffy(M x I, Mx8I) and an a’-invariant annulus
A" in MXI with A’"NMX1=cx1 and A'NMX(—1)=cx(—1). We may
consider that A’ meets ¢* X[ transversely. Then there is just one arc com-
ponent J in A’ Nc*X I with end points pxX1, px(—1). J is ambient isotopic
to px I in ¢*X I and hence in M xI. This means that any a'-invariant proper
arc J' in A’ is ambient isotopic to p X I in M X I and we have a desired 4. 'This
completes the proof of Lemma 2.8.

Proof of Lemma 2.9. Consider a division of M into a family of 2-disks
{B;|1<i<w} such that Int B;N Int B;=@ for all 7, j with i 4= j and OM N8B, is
a compact 1-manifold and for each k<w, M,= U %, B is a compact connected
surface such that if k+1<w, then 0M,N0B,,, is a compact 1-manifold, and
for any compact set K in M, K NB;=@ except a finite number of . We
shall construct an h,&Diff(M X1, M x0l, rel M xI) such that hahi'|B, xI
is the standard reflection. For this purpose we may consider that M’ =
Fix(a, M xXI) meets cl(0B,—0M)x I transversally in proper arcs and simple
loops. Since the natural homomorphism 7z,(M")— 7z, (M X I) is an isomorphism
and M X I is irreducible, we can eliminate these simple loops by cellular moves.
This means that there is an A{Diffy(M X I, rel d(M x 1)) with A{M'N B, x 1
=B, x0. We may consider that Ajah{™ cl(0B,—0M)x[—1, 0) meets
cl(0B,—0M)x (0, 1] transversally in proper arcs and simple loops. We can
eliminate them by cellular moves, so that we have an A{’ € Diffy(M x I, M X 91,
rel (OM) X I U M x 0) with A{’h{ah{™'h{’"'|B; X I the standard reflection.
Thus, A1’h] gives a desired A,. Applying the same argument to (cl(M—B,;)x I,
B, X1, hyahi') in place of (MXxI, B;x1I, a) we obtain an h,eDiff,(M X1,
Mx0I, rel aMxI UM, xI) with h,h ahi*h;'|M,x I the standard reflection.
By continuing this process, we obtain, for each k, an h,& Diff,(Mx 1, M x a1,
rel OM X I UM,_, xXI) with k- hyh ahi b3+ hy'| M, X I the standard reflec-
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tion. When v<<-+oo, h,_, -+ hh, gives a desired . Let v=+oc0. Our con-
struction guarantees us that for each x& M X I, there is a natural number & such
that A, - hyhy(x) €M, x 1. Then we have a g € Diff(M x I, M X931, rel aM xI)
given by g|M,XI=hi'hy'---hi*|MyxI for each k. We show that g&
Diff,(Mx I, MxdI, rel aM x I). Then g~* gives a desired A. For each &, we
take a path %,(t), 0<t <1, in Diff(Mx I, Mx I, rel 3M x I U M,_,xI) with
hy(t)=idy; (0<t<1—1/k) and %,(1)=hz. For each ¢ with 0<¢<1, there is a
natural number % such that #<1—1/k. Then we define F(¢)=nh,(t)h,(t) -+ h\(t),
which is a well-defined continuous function from [0, 1) to Diff (M x I, M xdl,
rel 0M x I) with §(0)=idy ;. To see that geDiff,(Mx I, M x0l, rel 0OM x I),
it suffices to show that ‘llll‘r(l) g(t)=g in Diff (M xI, Mx0I, reloMx1I). Take

any compact set K C M X I and any open set UC M x I with g(K)c U. Then
KcM,xI and g|K=h'h3'---hi' | K for some k. We find a small positive
number § such that /,(¢)A,(t) -+ y(£)(K)C U for all ¢ with 1—8<¢<1. Since
hi(t)| K=idg for all i>k-+1, we see that 3(t)(K)C U for all ¢ with 1—8<<¢<1.
Hence‘ llln}] F(t)=g in Diff (M x I, M X1, rel aM x I). This completes the proof

of Lemma 2.9.

3. The Kinoshita/Terasaka 1l-crossing knot and the existence of
essential imitations

Let K be an (m—2)-knot in S™. If (8", K*)is an imitation of (S", K),
then K* is called a knot imitation of K (More generally, when K is a link, K* is
called a link imitation of K). The first example of an essential imitation has
been suggested by a property of the Kinoshita/Terasaka 11-crossing knot, &g,
in [K/T], which we draw in Fig. 1. Fig. 2 shows a 2-knot K in R*=S*— {oo}
with an involution ay on (S*% K) such that Fix(ag, (S* K))=(S? kgp). Itis
known that this 2-knot X is trivial, i.e., bounds a 3-disk in S* [For example, this
follows from a result of Marumoto [Mar], because K is a ribbon 2-knot of
1-fusion and #,(S*—K)=<Z]. Note that K bounds an a-invariant 3-manifold
V in S* Take an ag-invariant normal disk bundle T(K) of K in S* so that
there is a diffeomorphism f: (KX [0, 1], Kx 0)=(V N T(K), K). Then f(KXx1)
bounds a 3-disk in S*—Int T'(K) by an argument of Gluck [G, 1]. This enables
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us to find two disjoint trivial (4,2)-disk pairs (D{, D?), i= =1, in (S*, K) with
ag(Dt, D})=(D%,, D?,) such that (S*—(Int D1 U Int D%,), K —(Int D{cC Int D2,))
is diffeomorphic to (S? k,) X I with k, a trivial knot. Then ay defines a reflec-
tion a in (S3, k) X I with Fix(a, (S3, k) X I)=<(S?, kgr) and we see that kg, is
a knot imitation of &, . By Properties of I, II, IV, the Alexander ploynomial of
any knot imitation of a trivial knot must be trivial. Hence any non-trivial knot
with up to 10 crossings is no knot imitation of a trivial knot (cf. [B/Z]). That
is, Rgr 1s a knot with the smallest crossing number in the class of all knot
imitations of a trivial knot. Using a tangle version of the fact that kg, is a knot
imitation of a trivial knot, Nakanishi [/V] proved, in our terminology, that every
link in S® has, as a normal link imitation, a prime link (and a hyperbolic link
by [So], [Kan]). In a forthcoming paper [Ka, 2], we shall propose a notion
finer than a normal imitation, which we call an almost identical imitation, and
show the existence of almost identical imitations with hyperbolic exteriors for
any (3, 1)-manifold pair in a reasonable large class including all links in S3. In
this section, by making use of an imitation map gq: (S3, kgxr)— (S3, k), we shall
observe the following weak but general assertion (which contrasts with Corollary

2.5):

Proposition 3.1. For any (m, l)-manifold pair (M, L) with m>3, there are
infinitely many (up to conjugations) essential normal imitations (M*, L*) of (M, L).

Proof. By the uniqueness of @-invariant tubular neighborhoods of k,X I in
S3x I, we may consider that | T'(k,) X I is the standard reflection for a tubular
neighborhood T'(k,) of &, in S Let S® (kx,; 1/d) be the Dehn surgery manifold
of S® along kg, with coefficient 1/d. 'Then any imitation map ¢: (S%, kxp)—
(S8, ko) associated with this reflection a in (S3, k)) X I induces an imitation
map ¢;: S¥kgr; 1/d)— S3, since the Dehn surgery manifold of S? along k, with
coefficient 1/d is again S3. By Thurston’s hyperbolization theorem [T, 1], kgy is
a hyperbolic knot. Then by Thurston’s argument on hyperbolic Dehn surgery
(cf. [T, 1], [T, 2]), there is a positive integer d* such that S3kg,; 1/d) is
hyperbolic with Vol S3kx,; 1/d) < Vol (S2—kg,) for all d with |d|>d* and

Sup Vol S35 1/d)=Vol(S3—kk;). Hence we have infinitely many imitation
|d|=d*

maps g;: S!—S3 (i=1, 2, 3, -++) such that S} are hyperbolic manifolds with
different volumes. Let G;==;(S}). By Mostow rigidity (cf. [T, 1]), any two of
G, i=1, 2, 3, ---, are not isomorphic. Since «|7(k,) X I was the standard re-
flection, we may consider that g; induces an imitation map D}—D? (also denoted
by g;) for a 3-manifold Dj, obtained from S} by removing an open 3-disk.
Since Diffy(D? rel 3D%) = Diff (D3, rel 9D®), we see from Lemma 2.2 that
g:: D} — D?is normal for alli. Clearly, z,(D})=G;. Let m>4. Assume that
there is a normal imitation map g?~': Dy '—>D""! with # (D7 ')=G,. Regard
S™ as a union D" "1 S'US™ ?x D?%. 'Then g?~*: D?~'— D" ! induces a normal
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imitation map g7: DP=Dr"'xS'US™?x D*—Int DF— D" x S'US™ %X
—Int Df=D" for an m-disk D”‘CInt S»-2x D?. Then z(D?)=G;. Thus,
we have a normal imitation map g?: D? — D™ with z,(D?)=G; for all m>3 and
all7. To complete the proof, we choose an m-disk D" in Int (M —L). Replacing
D" by D7, we obtain from (M, L) a normal imitation (M¥, L¥) of (M, L) with
imitation map ¢¥ defined by g7 and the identity on M —Int D”. Suppose that
q¥ and qf-‘ are conjugate for some 7, j with 73=j. Take the universal covering
space M—L of M—L. By Properties I, IV, q, and q, lift conjugate imitation
maps ¥~ : M¥— [¥—L¥—>M—L and g"~*: M*—L¥—M—L. Note that M¥—L¥
(or M7 (%1 —L¥, respectively) has just one non-simply connected component, whose
fundamental group is isomrophic to a free product of copies of G; (or G}, respec-
tively). Thus, a free product of some copies of G; must be isomorphic to a
free product of some copies of G;. Since G; and G, are non-isomorphic inde-
composable groups (£ Z), it follows from the Kurosh Subgroup Theorem (cf.
[L/S]) that G; is isomorphic to a proper subgroup of G; and G| is isomorphic to
a proper subgroup of G;. Thus, G; is isomorphic to a subgroup N; of G; of
index 7,>2. Let Sibea covermg space of 5} with z,(S})=N;. Since S? and
S are K(n, 1)-spaces and G,;=Nj, §? is homotopy equivalent to S In parti-
cular, H3(§f) H3(83)~Z Thls means that 7,<<+co and S? is a hyperbolic
3-manifold with Vol S?=r, Vol §%. By Mostow rigidity (cf. [T 1]), Vol Si=
Vol Si.  Hence r,=1, a contradiction. Therefore, any two of ¢¥, i= 1,2, 3, -
are not conjugate. 'This completes the proof.

4. Remarks on imitations of 4-manifolds

In a forthcoming paper[Ka, 2], we shall show that every closed connected
oriented 3-manifold has, as a normal imitation, a hyperbolic 3-manifold (cf.
[Ka, 0], [Ka, 1]). The following remark answers in part a question asking
whether an analogous assertion holds in dimension 4:

Proposition 4.1. Let M be a closed 4-manifold. If there is an imitation
map q: M*—M with M* negatively (or non-positively, respectively) curved, then
Euler characteristic X(M) of M is posoitive (or non-negative, respectively).

Proof. By Chern’s result [Ch], X(M*)>0 (or >0, respectively). By
Property II, X(M*)=X(M). Hence X(M)>0 (or >0, respectively), completing
the proof.

For example, S*'x S34.S*X.S® can not have as an imitation any non-positively
curved 4-manifold. However, the following question is unanswerable:

QuesTioN. Does what non-aspherical closed 4-manifold M have an
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aspherical 4-manifold as an imitation? (Is the condition X(M)>0 needed here?)

Next, we consider any exotic 4-space R, i.e., any smooth open 4-manifold,
homeomorphic but not diffeomorphic to R! (cf. Gompf [G]).

Proposition 4.2. R* is a normal imitation of R*.

Proof (based on a suggestion by Y. Matsumoto). Note that there is a
diffeomorphism f: R*xInt I=~R*xIntI. For a point x,& B¢ we have a
diffeomorphism g: (R*X Int I, f(x, X Int I))=<(R*, 0) X Int I. Let r be the standard
reflection in B*X I and a=gf(r | R*xInt I)f~'g~". Then a is an involution on
(RY, 0)x Int I with Fix(et, R*x Int I)=gf(R*x0). For an open 4-ball neighbor-
hood ¥ of 0 in Rf, we have an A& Diff,(R*x Int I) such that a*=hah™" acts on
VxInt I by a*(x, t)=(x, —t) for all (x, £) V' X Int I, by using the uniqueness of
tubular neighborhoods. The action a* on R*Xx Int I extends to a smooth action
a* on the smooth manifold X=R*x Int I UV x I with boundary ' xX8I. Since
X is diffeomorphic to R*X I and Fix(aj, X)=hgf(R*x0), we have a reflector
¢: R*>R'xI. Hence R*is an imitation of R:. By Corollary 2.3, all imita-
tions of R* are pure and hence normal. This completes the proof.

Remark 4.3. Every (smooth) homology 4-sphere S* is a normal imitation
of S%. In fact, it is well-known that S* is the boundary of a smooth contractible
5-manifold W and the double DW is diffeomorphic to S% This means that
there is a reflector S*—>S*Xx I and §* is an imitation of S%, which is pure and
hence normal by Corollary 2.3.

REMARK 4.4. Every exotic n-sphere S" (n>7) is no imitation of S”. In
fact, if §” is an imitation of S”, then S" is A-cobordant to S” by Lemma 1.1.
By the A-cobordism theorem [Mi, 1], S” is diffeomorphic to S, a contradiction.

5. Imitations of compact m-manifolds with m>5 and the White-
head torsion invariant

Let M be a compact connected oriented m-manifold, and M be the
universal covering space of M. Let g: M*— M be an imitation map, and
g: M*—DM be the lift of g. By Properties IV, II, 7 induces a homology iso-
morphism. By Milnor’s remark [Mi, 2; Remark 2 (p. 387)], we can define the
torsion 7(q) € Wh 7z;(M) to be the torsion 7(M,, M*)&Wh z,(M,) for the map-
ping cylinder M, of g under the natural identification Wh 7,(M,)=Wh =, (M).
We call this torsion the torsion of the imitation map q: M*—M. Note the
fq (f=Diff M) is also an imitation map.

Lemma 5.1. If two imitation maps q: M*—M, q: M **— M are conjugate,
then we have ( fq)=7(q") for an f €Diff M.
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Proof. There are reflectors ¢: M*—>MXxI, ¢': M**—>M X I and an
heDiff(MxI, Mx1, Mx(—1)) with p,p=q, p,p'=q" and hpM* = ¢'M**.

Let §: M*—(EMXI&M be the lift of ¢: M*iMXIglM. Since ¢ and 3,

induce homology isomorphisms, we can define the torsions 7(¢)=Wh 7z,(M x I)
and ~(p,)€Wh z,(M), with the identity 7(q)=p,x7(p)++(p,). But, 7(p,)=0, so
that 7(¢)=px7(P)=px7(M X I, pM*). Similarly, 7(¢")=psr(M X I, ¢'M**).
Let f €Diff M be given by A|Mx1€Diff Mx1. Then 7(q¢")=p shsr(M X1,
SM*)=foprar(M X I, pM*)=f,7r(q)=7(fgq). This completes the proof.

The following is direct:
Corollary 5.2. If an imitation map q: M* — M is inessential, then v(q)=0.

Let ¢: M*>MxI be a reflector with pp=q. By Lemmas 1.1, 1.2, the lift
(W.; Mx1, ¢M*) of the triad (W, ; Mx1, $M*) to the universal covering
space W, of W, gives a homology cobordism. Hence the torsions 7(W,, M x 1),
Wy, pM*)eWh 7z, (W,) are also defined. Let p.=p,|W.: W.—M. By
Lemma 1.1, we have p.y: Wh z(W.)= Wh z,(M).

Lemma 5.3. Assume that an imitation q: M* — M is 9-diffeomorphic, that
is, q|OM*: dM*— M is a diffeomorphism if 0M==@¢. Then for any reflector
b: M*—>MxI with pp=q, we have 7(q)= —2p,x7(W,, Mx1) and =(W,,
M X 1)=(—1)"+'r(W,, MX1), where T denotes the conjugate of .

The following is direct from Lemmas 5.1 and 5.3:

Corollary 5.4. If an imitation map q: M*— M is conjugate to a 0-diffeo-
morphic imitation map q': M**— M, then there is an element +&Wh (M) such
that 7(q)= —2r and 7=(—1)"*'r.

Proof of Lemma 5.3. Using the lift of a collar of $M* in MxIto MxI,
we have ()= puyr(Mx I, $M*)=poyr(W., $M*)+p_yr(W._, $M*). By
Lemma 1.1(1), pix7(Wy, oM*)=p_wr(W_, $M*). Hence 7(q)=2p.xT
(W, pM*). When 0M =@, note that (dM X I, $(0M*)) is diffeomorphic to
(OMx I, M x0). Let (W< ; $M*°, M?) be a triangulation of (W.; ¢M*, M,)
with M,=0W,—Int $M* and (W3 ; ¢M*3, M?) be a dual cell division. The
Reidemeister duality between the chain complexes Cy(W?, M*7) and Cy(W 2, M)
(cf. [Mi, 3]) implies the identity 7(W.,, ¢M*)=(—1)"=(W,, M))=(—1)"=(W,,
Mx1) (cf. [Mi, 2]). Hence

7(g) = (= 1)"2p47(W,, MX1)
and
PI*T(MX1> W+) = p—*T(W—’ qu*) = P+*T(W+’ ¢M*)
== ("‘l)mp_‘_*T(W.‘., MX 1) .
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On the other hand, by the short exact sequence 0— Cy(W.,, M x 1)— Cy(M x I,
Mx1)—CyMxI, W,)->0 under a triangulation of (MxI, W,, Mx1), we
have '

0= pyar(MxI, MX1) = pry7(Wy, MX1)+pur(MXxI, W,).
That is,
DPisT(MXI, W)= —psr(W,, MXx1).

Therefore, pys7(Wy, M X 1)=(—1)""p 4 7(W,, M x1), that is, 7(W,, M X 1)=
(—1)m+re(W,, M x 1) and 7(q)=—2p,47(W,, M x1). This completes the proof.

It follows from Properties II, IV that any imitation map ¢: M*—M inducing
an isomorphism gy: 7z, (M*) =<7z, (M) is a homotopy equivalence. From now
on, we shall consider a homotopy equivalent 9-diffeomorphic imitation map
g: M*— M with m>5. Our main tool is the (relative) s-cobordism theory due
to Barden/Mazur/Stallings (cf. [Mi, 2]).

Theorem 5.5. For m>5 we have the following :
(1) For every element r&Wh n(M) with 7=(—1)"*'r, there is a homotopy
equivalent 0-diffeomorphic imitation map q: M*— M with (q)=—2,
(2) Assume that Wh (M) is 2-torsion-free. Then two homotopy equivalent
d-diffeomorphic imitation maps q: M*—M, q': M**— M are conjugate if and
only if we have t(fq)==(q") for an f € Diff M.

Corollary 5.6. Assume that m>5 and Wh (M) is 2-torsion-free. Then

a homotopy equivalent 0-diffeomorphic imitation map q: M*—M is inessential if
and only if v(q)=0.

Proof of Theorem 5.5. To see (1), note that there is a relative A-cobordism
(W; M, M*) with #(W, M)=~. Since 7+(—1)"7=0, the double of W pasting
two copies of M* is a product (cf. [Mi, 2]). Hence we obtain a homotopy equiv-
alent 9-diffeomorphic imitation map gq: M*—M with 7(q)=—2, proving (1).
Next, we show the ‘if’ part of (2). (The ‘only if’ part follows from Lemma 5.1.)
For this purpose, we may assume that f=id,,. Let ¢: M*->Mx1I, ¢': M**—
MxI be reflectors with p,p=q, p,¢p'=q’. The triads (W,; M x 1, $M*) and
(W' ; Mx1, ¢'M**) (obtained from M X I by splitting along ¢M* and ¢'M**,
respectively) are relative A-cobordisms, because ¢, ¢’ are homotopy equivalent
0-diffeomorphic imitation maps. By Lemma 5.3, 7(¢)= —2p 47(W,, M x1)
and 7(¢")=—2p5x7(W,, M x 1) (where p\=p,|W,: Wi—-M). Since
Wh z,(M) is 2-torsion-free and +(¢)=7(q’), we have p 7(W,, MX1)=
phar(WI, Mx1). By [Mi, 2], there is a diffeomorphism g: W, =W such that
glMx1=idy., and g(¢pM*)=¢'M**. By Lemma 1.1 (1), we can construct
geDiff (M X1, Mx1, Mx(—1)) with g(¢M*)=¢ 'M**. Thus, q and ¢’ are
conjugate. 'This completes the proof.
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ExampLE 5.7. Let C; be a cyclic group of order 5. Let ¢ be an automor-
phism of C; sending each element to its inverse, and G be the HNN group of
Cs by t. Note that [G, G]=C; and G is the 2-knot group of the 2-twist spun
figure eight knot and hence the group of an (m—2)-knot K in S™ for all m>5.
Wh C; is known to be an infinite cyclic group with a generator represented by
T=x-+X—1 for a generator x of Cj (cf. [Mi, 2]). Since # induces the identity on
Wh C;, Wh C; is imbedded in Wh G by a monomorphism induced from the
inclusion C;CG (cf. Farrell/Hsiang[F/H]). Let m be odd>5. Then ==
(—1)»*17.  Applying Theorem 5.5 (1) to the compact exterior E"=.S—Int N(K)
with N(K) a normal disk bundle of K in S™, we have a homotopy equivalent
9-diffeomorphic imitation map g5 : Ejf — E with 7(¢r )= —2nr for all non-negative
integers #. Note that the adjunction space E¥UN(K) identifying 0EF with
ON(K) by the diffeomorphism gy |[0E¥: 0E¥=dN(K) is a homotopy m-sphere
S™ and g7 extends to an imitation map g,: ($", K¥)—(S™, K). By Lemma 1.1,
S™ is h-cobordant to S™, so that §” is diffeomorphic to S™. Thus, we have
an imitation map g,: (S, K¥)—(S™, K) such that ¢;'N(K)=N(K¥) is a normal
disk bundle of K¥ in S™ and ¢,|N(K¥), K¥): (N(K¥), KF)—(N(K), K) is a
diffeomorphism and S™—Int N(K%)=E¥ and q,|E¥=qZ: E¥— E, which is a
homotopy equivalent 3-diffeomorphic imitation map.

Assertion 5.8. Any two of q,, ¢, ¢, ¢s, -+ are not conjugate.

In fact, if g, and g, are conjugate, then g5 and ¢F are conjugate. By Lemma 5.1,
there is an f €Diff E with 7(¢F)=7(fgs). But, f induces an automorphism f
of Wh G with fyWh C;=Wh C;. Since 7(¢F)=—2s7 and 7(fqF)=f«(7(q7))=

+2nr and n, s >0, we see that n=s, as desired.
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