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By an (m, /)-manifold pair (M, L) we mean a smooth m-manifold M and a
(regular) /-submanifold L such that L is a closed set in M and dL—LΓidM.
Here, M and L may be non-compact or disconnected and — l<l<m (/= — 1
means L=0). Let / = [ — 1 , 1]. A reflection in (M, L)χl is a smooth involution
α on (M, L)xl such that α(Mx l ) = M x ( — 1) and Fix(α, MxI) is an m-mani-
fold and α acts non-freely on each component of MxL Then we can see that
Fix (or, (Λf, L) X /) is an (m, /)-manifold pair (cf. Property I). A smooth
imbedding φ from an (m, /)-manifold pair (M*, L*) to {MyL)χI with
φ(M*, L*)=Fix (α, (M,L)X/) for a reflection α in (M, L)xl is called a
reflector (of the reflection <x).

DEFINITION. An (m, /)-manifold pair (Λf *, L*) is an imitation of an ( ^ /)-
manifold pair (Λf, L) wώλ imitation map q: {M*, L*)->(Λί, L), if there is a
reflector φ: (M*, L*)->(M, L)xl with q=pιφ, where ^ denotes the projection
from (M, L) xl to (M, L).

In Section 1, we shall give six general properties of imitations, meaning that
any imitation map q: (Λf*, L*)-> (Λf, L) has properties close to a difϊeomor-
phism and hence the distinguishment between (M*, L*) and (M, L) is not so
easy.

DEFINITION. An imitation (M*, L*) of (M, L) with imitation map q is
>̂wr̂  if q=pιφ for a reflector φ: (M*, L*)-+(M, L)xl of a reflection α such

that ά(#, 1)=(Λ:, —1) for all x<=:M.

We also say that such a> φ and ^ are pure. This subtle notion is needed when
we ask whether an imitation of an imitation is an imitation of the original mani-
fold pair (See Proposition 2.1). Let DiffX be the diffeomorphism group of a
smooth manifold X, which is a topological group (with respect to the compact-
open topology). For subspaces Ah i=l>2, •••,$, and Y of X, we denote the
subgroup of ΌiSX consisting of a l l/eDiffX vAUιf(Ai)=Ai ( ( i = l , 2, •••, s,
and / | Y=id y by Dίff(-Y, A19 A2, - , Aβ, rel Y) (or Diff(X, ^ - ^ - , Λ ) i f
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Y=0). By Diffo(X, Av A2, •••, Asy rel Y) we denote the path connected com-
ponent containing idx^ΌΊS(X, Au A2, •••, As, rel Y).

DEFINITION. TWO imitations (Λf *, L*), (M**, L**) of (Λf, L) with imita-
tion maps q, q' are conjugate if fφ(M*, L*)=φ'(M**y L**) for some reflectors
φ: (Λf*,L*)->(M,L)xJ, φ' : (M**,L**)->(M,L)x/ with Λφ=g, A Φ ' = ί '
and some/eDiff(Λfx/,Lχ/,Λfχl,Λfx(-l)).

An imitation (Λf *, L*) of (Λf, L) with imitation map q is said to be inessential
or essential according to whether q is conjugate to a diffeomorphic imitation
map g': (M,L)^(M,L) or not. It is shown in Section 2 that all imitations
of all (m, /)-manifold pairs with nι<2 are pure and inessential.

DEFINITION. An imitation (Λf *, L*) of (Λf, L) with imitation map # is
normal if q=pλφ for a reflector φ: (M*, L*)->(M, L)x7 of a reflection or in
(M,L)xI such that α(#,f) = (#, — f) for all (x,t)&d(MxI)\jNLXl, where
iVL denotes a neighborhood of L in Λf.

In Section 3 we show that for each (m, /)-manifold pair (Λf, L) with m>3 there
are infinitely many (up to conjugations) essential normal imitations of (Λf, L), by
using the fact that the 11-crossing Kinoshita/Terasaka knot is a knot imitation
of a trivial knot. In Section 4 some remarks on the imitations of 4-manifolds
are given. In Section 5 we discuss the Whitehead torsion invariant of an imita-
tion map. In fact, we observe that when Λf is a compact connected oriented
m-manifold, the Whitehead torsion τ(q)^Whπ1(M) is defined for any imita-
tion map q: Λf*-»Λf. Further, when q is conjugate to a 9-diffeomorphic
imitation map, we have r(q)=—2τ for some TΞΞWΓITΓ^ΛΓ) with τ=(— l ) m + 1 τ .
When q is inessential, τ(#) —0. Under the assumption that m>5 and
Wh πλ{M) has no 2-torsion, this invariant enables us to classify homotopy
equivalent 3-diffeomorphic imitation maps q: M*->M up to conjugations (See
Theorem 5.5).

This paper grew out of some parts of the unpublished paper[Ka, 1]. We also
note that an analogous definition of imitation was given in [K/K/S] (cf. Pro-
perties I, II, IV and Corollary 2.5). Spaces and maps will be considered in the
smooth category.

1. Some general properties of imitations

Lemma 1.1. Let a he a reflection in Mxl with M connected. Then M'=
Fix (a, Mxl) is connected and splits Mxl into two connected submanifolds
W+y W_ such that
(1) There is a diffeomorphism W+^W_ sending M+ onto ML as the identification
map and Mxl onto Λfx(—1),
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(2) The inclusions i': M+-+W+ and i: Mχl->W+ induce an epimorphίsm

ί'l: τr1(Mί.)->zr1(W+) and an isomorphism if π^Mx l)-^π1(W+)ί and

(3) The inclusions i'\ i induce isomorphisms on homology, cohomology and coho-

mology with compact support, where M+ and ML denote the copies of M' in W+

and W_, respectively.

Proof. First note that dM'=Fix(a, (dM) X /) and Int M'=Fix(α, (Int M)

X/). Let M[ be any connected component of M'. Since IntikΓ and hence

Int Mi are closed sets in I n t ( M x i ) , we have

H^MxI, Mxl-Mί; Z 2 )^i/ 1 (Int(Mx/), Int(ΛfxJ)-Int M[\ Z2)

by the Alexander/Spanier duality (cf. [Sp]). Since the natural homomorphism

H^MxI—Mi; Z2)->H1(MxI; Z2) is onto and Mxl is connected, it follows

that

9
Iy Mxl-Mί; Z2) » B0(MxI-Mί; Z2).

This implies that M[ splits Mxl into two connected sub manifolds W+, W_.

Since a(W+)= W_> we see that Mί=M' and a defines a desired diffeomorphism

in (1). To prove (2), (3), we use the fact that a difines a retraction from Mxl

to W+. This means that the inclusion j: W+->MxI induces monomorphisms

and epimorphisms

j*: H*{MxI)-*H*{W+),

jf: H*(MxI)-+H*(W+).

But the composite ji: Mxί-^Mxί is a (proper) homotopy equivalence. Hence

j*>j*j*jϊ and

i*: H*(W+)-*H*(Mxl),

if: H*(W+)-+H*(Mxl)

are all isomorphisms. To complete the proof of (2), let W+, W__ and M' be

the preimages of W+, W_ and M', respectively, under the universal covering

RίxI-^MxI. Then W+ and W_ are connected (because Mx 1 and iWΓχ(—1)

are connected). By the Mayer/Vietoris sequence, we see that M' is con-

nected. Since j f is an isomorphism, we also see that W+ is simply connected.
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Thus, the natural homomorphism z/: π1(M+)-+π1(W+) is onto, obtaining (2).
For (3), note that H*(MxI, W+)=H*(MxIy W+)=H*{MxI, W+)=0 since
j*,j* and j * are isomorphisms. By excision, H*(W_, ML)=H*(W_, ML)=
H*(W_,ML) = 0. By (1), H
meaning that

i'*:

if: H*(W+)^H*(M'+)

are all isomorphisms. This completes the proof.

Let α be a reflection in (M, L)χ/. By Lemma 1.1, Fix(α, Mxl) splits each
connected component of M x / , Lx/, (M—L)x I, ( I n t M ) x / , (IntL)x/,
(9M)x/and (dL)xI into two connected components. Hence we obtain the
following:

Property I. Every imitation map q: {M*} L*)->(M, L) defines imitation
maps M*->M, L*->L, M*-L*->M-L, (IntM*, IntZ,*)->(IntMy IntL)
and(dM*, dL*)->(8M, dL).

We see from Lemma 1.1 that any imitation map q: M*->M induces isomor-
phisms on homology, cohomology and cohomology with compact support.
Hence we obtain from Property I and Five Lemma the following:

Property II. Every imitation map q: (M*, L*)->(M, L) induces isomor-
phisms on homology, cohomology and cohomology with compact support.

In Lemma 1.1 (3) Stiefel/Whitney and Pontrjagin classes of M+ and Mx\
coincide through the cobordism W+ (cf. Milnor/StasheflE [M/S]). Hence we
have the following:

Property III. Every imitation map q: M*-+M preserves StiefeljWhitney
and Pontrjagin classes of M* and M.

By Properties I, III, (M3 L) is an orientable manifold pair if and only if so is
(M*, L*). When {M, L) is an oriented manifold pair, we orient (M*, L*) so
that q I Int M*: Int M*-»Int M and q \ Int L*: Int L* -»Int L are degree one
maps, unless otherwise stated, by using Properties I and II.

Property IV. Let p: (M,L)->(M,L) be any regular or irregular covering
map, where M may be branched along some components of L when l=m—2.
Consider the pulΐback diagram of this covering map p by any imitation map
q: (M*,L*)->(M,L):
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(it*, L*) -X. (gt, I)
[[ t

(AT*, L*) -^-> {M, L).

Then ft is a covering map (this is well known) and q is an imitation map.

To obtain Property IV, we use the following lemma:

Lemma 1.2. Let a be a reflection in Mxl with M connected. For any
connectehd unbranched covering pI=pχidI: MxI-»MxI, a lifts to a unique
reflection ά in Mxl.

Proof. By Lemma 1.1 M'=Fix(α, Mxl) is connected and the natural
homomorphism πx{M\ x^)-^nx{MxI, xo)f xo^M\ is onto, so that M'=pJιM'
is connected and a induces the identity automorphism on π^MxI, xQ). By
the lifting property, a lifts to a unique involution a on M x / with Fix(#, Mxl)
= M ' . Since a(ΛΪX ί)=Mx (—1), the proof of Lemma 1.2 is completed.

Proof of Property IV. Let φ: (M*,L*)->(Λί, L)xl be a reflector of a
reflection a in (M, L)χl with q=pλφ. Let ρr=pXid7: (M, L) X/-> (M, L)χl
be the product covering map. We shall show that a lifts, under pr, to a unique
reflection a in (M, L)xl with Fix (α, (M, L) X I)=pJ^{M*, L*). When p is
unbranched, we apply Lemma 1.2 to each component oϊMxI and Lxl and
obtain a unique reflection a in {ftϊ,L)xI lifting α with Fix(α, (M} L)xl)=
pJ1φ(M*, L*). When^> is branched, the same argument shows that a \ (M—L) XI
and a\LxI lift to unique reflections a(M_L)xI in (M— Z)x/and α L X / in Lxl
with Fix(α ( M _ i ) x / , ( M - I ) X / ) = ^ / - 1 Φ ( M * - L * ) and Fix(aLxI) LxI)=piιφL*>
respectively. Since p is a smooth branched covering map and a is a smooth
reflection, we see that όt(M^L)XI and άLxI determine a unique smooth reflection
a in {M>L)xI with Fix(α, (ΛΪ, L)xI)=pjιφ(M*, L*). Let (M*, ! * ) =
Fix(α, (M,L)xI) and φ: (M*, I * ) - ^ ^ L)xl be the inclusion, which is a
reflector of the reflection a in (M, L)χl. Then the imitation map q=pιφ'-
(M*, I*)->(M, I ) and the covering map p^φ^p& (M*, L*)-^(M*, L*) con-
stitute a desired pullback diagram, for pq=qp and ^ l ^ " 1 ^ * ) : ^ ' ^ Λ ? * ) - ^ ^ ) " 1 ^ ) is
a bijection for any x*EzM* and xGΞM with g(Λ;*)=Λ;. This completes the proof.

For a group TΓ, let 7Γ=7Γ(O)Z>7Γ(1)Z)7Γ(2)Z) be the derived series of 7Γ, i.e., a
series with π

(i+1)=[π(i\ π(% ί=0, 1, 2, •••, and τr=7r/Πr=o τr(0. For example,
if it is a free group, then Π Γ-o τ r ω = {1} (cf. [L/S; p. 14]).

Property V. Every imitation map q: M*->M with M connected induces an

epimorphism q9: π1(M*)->π1(M) whose kernel Ker q$ is a perfect group (i.e.,

Ker 5 f

#=[Ker q^ Ker q^\), so that q% induces an isomorphism
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Proof. Let M be the universal covering space of M and q\ M*-+M be the
lift of q. By Property IV, q is an imitation map. By Property II, iίϊ* is con-
nected and H1(M*)=0. This means that q% is an epimorphism and Kerg t—
TΓ^M*) is a perfect group. Since Ker j f c Π Γ-ofci(Λf *) ( f '\ the proof is completed.

2. Pure imitations and surfaces

The reflection r in (M,L)xI defined by r(tf,f) = (#, — *) for all θ M ) e
Λf x 7 is called the standard reflection.

Proposition 2.1. If (Λf *, L*) ώ tf/z imitation of a manifold pair (Λf, L) and
(Λf **, L**) is a pure imitation of (Λf *, L*), fA*w (Λf **, L**) is an imitation of
(Λf, L). Further, if (Λf *, L*) ώ α £wr* imitation of (Λf, L), then (M**, L**) w

imitation of (M, L).

Proof. Let φ: (Λf*, L*)->(Λf, L)xl be a reflector of a reflection α in
{M, L)xl and ψ7: (Λf **, L**)-> (Λf*, L*) X / a reflector of a pure reflection α'
in (Λf*, L*)x/. (M,L)xI admits an α-invariant bicollar neighborhood ΛΓof
φ{M*, L*) so that there is a diffeomorphism /: (Λf*, L * ) χ / ^ i V with f"ιaf the
standard reflection in (Λf*, L*)x7. Let α " be the reflection in {M,L)χI
obtained from a by replacing αliVwith/α'/"1. Note that if a is pure, then so
is a". The composite φ"=fφ'ι (Λf**, L**)->(Λf, L)x7 is a reflector of α "
and the map q"=p$": (Λf**, L**)->(M, L) is a desired imitation map, com-
pleting the proof.

The following question is unanswerable:

QUESTION. IS every imitation pure ?

For a reflection a in (Λf, L)xl we denote by fΛ the diffeomorphism of (Λf, L)
given by m|(Λf ,L)x l : (Λf,L)x l->(Λf,L)x 1. Two /,^eDiff(Λf, L) are
concordant if there is an AeDiff((Λf, L)x7, (Λf, L ) χ l , (Λf, L)χ(—1)) with
A | ( M , L ) x l = / x l and Λ | ( M , L ) x ( - l ) = £ X ( - l ) . Note that /J is always
concordant to id(M>z).

Lemma 2.2. L ί̂ αw imitation map q: (M*,L*)->(M,L) be given by a
reflector φ: (M*,L*)^{M, L)xl of a reflection a in (Λf, L)χ7. If fΛ is con-
cordant to/', then q is given by a reflector φ': (Λf *, L*)->(Λf, L)xl of a reflection
a' in (Λf, L) XI with fΛ>=f.

Proof. Let h: (M, L)x [1, 2]->(Λf, L)x [—2, — 1] be a diffeomorphism
with h(x, 1 ) = ( / - ( Λ ? ) , - 1 ) and A(Λ?,2)=(//(Λ?), - 2 ) for all *<=M. For 7 + = [ - 2 , 2]
we define α + eDif f (M,L)x7 + by α + | ( M , L)x[l , 2]=A, α + | ( M , L ) x 7 = α and
α + | (Λf,L)x[-2, -1]=A" 1 . Let ι/: (M, L) x 7+-> (M, L) X 7 be the diffeomor-
phism given by J(Λ;, ί)=(Λ?, tβ) for all (Λ?, ί)^Λf X 7 + . Then a'=da+d"1 is a
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reflection in (M, L)xl with/„/=/' and the composite φ': (M*, L*) t» (M, L) X /

C (M, L) X / + -> {My L) x / is a reflector of α' with pl(j>'=q. This completes the
proof.

Corollary 2.3. An imitation map q: (M*, L*)-> (M, L) w ̂ >wre z/ q is given
by a reflector of a reflection a with fΛ concordant to iά(MtL).

For example, all imitations of Sn (0<n<5) and Rn (n>0) are pure and hence
normal (cf. Cerf [Ce], Milnor [Mi, 1; § 9. Lemma 5.7]).

Theorem 2.4. Let (M, L) be an (m, ΐ)-manifold pair with m<2. Then for
every reflection a in (M,L)xI, there is an h^ΏiS0(MχI,MxdIy Lxl) with
hah'1 the standard reflectoin in (M, L) x /. Further, if a \ (dM) XI is the standard
reflection, then we can take h so that h^Diΰo(MxI, Mxdl, Lxl, rel(3M)χ/).

The following is direct from Theorem 2.4 and Corollary 2.3:

Corollary 2.5. Any imitation of any (m, lymanifold pair (M, L) with m<2
is inessential and pure.

Note that the compactness of M is not needed in Theorem 2.4 and Corollary
2.5, though we assumed it in the first draft of this paper (cf. [Ka, 0]). To prove
Theorem 2.4 we use the fact that Diff(Dw, rel 3D*)=Diffo(DM, rel dDn) for
n<3 (cf. [Ce], Hatcher [Ha, Appendix]).

2.6 Proof of Theorem 2.4 when m—0. Note that L—φ and there is an
h^Όift^MxI, Mx dl) with Fix^αAr1, MxI)=Mx 0. Since ΌiS(D\ rel 3D1)
= Diffo(Z)1, rel 3D1), we obtain a desired h, completing the proof.

2.7 Proof of Theorem 2.4 when m = l . By 2.6 and the isotopy extension
theorem, we can assume that a \ (L U dM) X I is the standard reflection.
Further, by cutting M along L if LΦ0, we can assume that L = 0 . Choose
a discrete set Ω in Int M which cuts M into closed intervals. Then we
have an /^eDifl^Mx/, Mx dl, rel(3M)χ/) such that hιahτ\flχI)=Ω,χI
and Fix^α/zΓ1, MχI)=MxO. By 2.6 and the isotopy extension theorem, we
can assume that hxahϊ\x3 t) = (x, —t) for all (x, ί ) G ί l χ / U 9 ( M χ / ) . Since
Diff(D2, rel 3£>2)=Diff0(Z>2, rel 3D2), we obtain a desired hy completing the proof.

When m=2, the following two lemmas are basic to the proof of Theorem 2.4:

Lemma 2.8. For any connected surface M with dM=0 and a 2-disk D2

in Mand any reflection a in Mxl, there is an h^ΌΊS0(MxI, Mxdl) such that
hah'1 \D2χI is the standard reflection.

Lemma 2.9. For any connected surface M with 9MΦ 0 and any reflection
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a in Mxl with a\(dM)χI the standard reflection, there is an h^Ώi&0(MxI,
Mx dl} rel (8M) X /) such that hah'1 is the standard reflection in MxL

2.10 Proof of Theorem 2.4 when m=2, assuming Lemmas 2.8 and 2.9.
If dM=0 and / = — 1, then we have a desired h by Lemmas 2.8 and 2.9.
If 3MΦ0, we can assume by 2.7 and the isotopy extension theorem that
a\(dM,dMΓ)L)xI is the standard reflection. Hence if 9MΦ0 and /= — 1,
then we have a desired h by Lemma 2.9. If /=0 or 1, then we can further assume
by 2.6, 2.7, the isotopy extension theorem and the uniqueness of α-invariant
tubular neighborhoods that a | N(L) XI is the standard reflection for a tubular
neighborhood N(L) of L in M. Applying Lemma 2.9 to a \ cl(M—N(L))X/, we
obtain a desired h, completing the proof.

Proof of Lemma 2.8. Let p^D2. It suffices to show that there is an
A1eDifF0(Mx/, Mxdl) with h1ahϊ1(pxl)=pχl, because then we obtain a
desired h by 2.6 and the isotopy extension theorem and the uniqueness of
α-invariant tubular neighborhoods. By a proper arc in Mxl we mean the
image of a smooth proper imbedding (/, {1}, {— l})->(Λfx/,ΛfX 1, M x ( - l ) ) .
For the proof, we need to consider three cases.

In this case, any proper arc in Mxl connecting M x ( - l ) with Mx 1 is
ambient isotopic to p X L Hence we obtain a desired hx by considering an a-
invariant proper arc in MxL

In this case, M'=Fix(α, MχI)^R2, for M' is an acyclic connected open
2-manifold by Lemma 1.1 (3). It suffices to construct an α-invariant proper
arc J in Mxl with ^(MxI—J)^Zy because then we see from the Dehn's
lemma that / is ambient isotopic to pxl in Mxl by considering the image of
/ in D2xl under an imbedding gxidji MχI->D2xI with g: M^lntD2 z
diffeomorphism. To obtain such a /, we first choose a proper arc/ ' in Mxl
meeting M1 transversally in a single point, x'. Take a 2-sphere Σ in Mx Int /
such that # ' $ Σ and 2 meets / ' transversally in two points and π^N—J^^Z
for the non-compact region N of Mxl divided by Σ. Note that B —
cl(MχI—N) is a 3-disk. We show that there is an/eDiff0(MXI, rel Mxdl)
such that/ ' meets fM' transversally in a single point and ΣΠ/M'—0. To see
this, we may consider that 2 meets M' transversally in loops. Let c be a loop
in Σ Π Mf bounding a 2-disk d in Σ such that Int d Π M'=0 and | d Π / ' | < 1.
Let d' be a 2-disk in M' bounded by c. Note that |d' Π/'I = Id Π J'\
(=0 or 1). Since d' {jd bounds a 3-disk in M x / , we have an /1GDiff0(Mχ7,
relMx3/) such that/ ' meets fxM

f transversally in a single point and the com-
ponent number of Σ Π fxM' is smaller than that of Σ Π M'. By induction on the
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component number of Σ Π M\ we have a desired /. Then we have f~\B) Π M'
= 0. Let W be one of the manifolds obtained from Mxl by splitting along M'
such that WΓ\f"\B)=0. Let J"=f-\J') f| PF. Since the natural homomor-
phism TtxiM'—f'XJ')) - » ^ ( M x I — f ' \ B U J'))^Z is an isomorphism, it follows
that π^W—J'^sέZ. Then /=/" 'UccJ" is an α:-invariant proper arc in Mxl
with π1(MxI—J)^Z and the proof of the case (2) is completed.

) :M^S 2 , R2.
In this case, we have H1(M)Φ0 and we have a simple loop £ and a simple

loop or simple proper open curve c* in M meeting transversally at the point p.
Since Mxl is irreducible, we have an AeDiffo(Mx/, relMxSJ) such that
h(cxl) meets M'=Fix(a, Mxl) transversally in 3-parallel loops in h(cxl).
Hence we have an α-invariant annulus A in M XI with Af)Mxl=cχl. Since
any two homotopic simple loops in M are ambient isotopic, we have a reflection
ar=hfah'~λ in Mx/with A'eDiffo(Mx J, Mxdl) and an α'-invariant annulus
A1 in MX/ with ^ Π M x l = c χ l and ; 4 ' n M x ( - l ) = £ : χ ( - l ) . We may
consider that A' meets c*χl transversely. Then there is just one arc com-
ponent / in A'Γ[c*Xl with end points px 1, px(— 1). / is ambient isotopic
to pxl in £* χ 7 and hence in i l ίx/ . This means that any a '-invariant proper
arc / ' in A' is ambient isotopic to px I'm Mxl and we have a desired hv This
completes the proof of Lemma 2.8.

Proof of Lemma 2.9. Consider a division of M into a family of 2-disks
{Bi 11 <ί<v} such that Int J5, Π Int B~0 for all i3 j with z Φ/ and ΘMΠ 9#i is
a compact 1-manifold and for each k<v, Mk= U , i i B{ is a compact connected
surface such that if k-\-l<v, then dMk(~]dBk+1 is a compact 1-manifold, and
for any compact set K in M> K ΓiB—0 except a finite number of i. We
shall construct an H1GΌΊS0(MXl, M X 3 7 , r e lMx/) such that h1ahγ1\B1xI
is the standard reflection. For this purpose we may consider that M'—
Fix(α, Mxl) meets cl(351 — 3M)x/transversally in proper arcs and simple
loops. Since the natural homomorphism ^ ( M ' ) - » ^ ( M x / ) is an isomorphism
and Mxl is irreducible, we can eliminate these simple loops by cellular moves.
This means that there is an hi(=Όiff0(MxIy rel3(Mx/)) with h[Mf^BxxI
= β 1 χ 0 . We may consider that h[ah[~ι cl(dB1 — dM) X [ — 1, 0) meets
cl(dB1—dM)x(0, 1] transversally in proper arcs and simple loops. We can
eliminate them by cellular moves, so that we have an Λί/eDirT0(Mχ/, Mxdl,
re l(3M)x/UΛf X 0) with h'1'h'1ah'Γ1h'1'-

1\B1x I the standard reflection.
Thus, h\h[ gives a desired hv Applying the same argument to (cl(M— B^xl,
B2XI,hλahTι) in place of (Mxl, Bxxl} a) we obtain an h2^ΌΊff0(MχI,
Mxdl TeldMxlΌM^I) with h2hιahϊιh2l\M2xI the standard reflection.
By continuing this process, we obtain, for each k, an hk^ΌifίQ(MxI, Mxdl,
rel dMX/ UMk_ x XI) with hk- h2hλahT1 h2

ι-- hj1 \MkXl the s tandard reflec-
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tion. When z/< + oo, λv^ λ^i gives a desired h. Let i/= + <χ>. Our con-
struction guarantees us that for each x^MxI, there is a natural number k such
that AA. ^A^eΛίfcX/. Then we have a ^ e D i ί f ( M χ / , Mx9/, rel 9Mχ7)
given by g\MkXI=hTlh,2l~-hkl\MkxI for each A. We show that ge
Diffo(Λfx7, Mx9/, rel 9Mx7). Then^" 1 gives a desired A. For each k, we
take a path hk(t), 0 < * < l , in Diff(Mx7, Mx97, rel 3 M χ / U M H x / ) with
A*(*)=idMx/ ( 0 < * < l — l/k) and hk(l)=hjK For each * with 0 < * < l , there is a
natural number A such that t< 1 — 1/β. Then we define giή^^ή^t) ••• #A(f),
which is a well-defined continuous function from [0, 1) to Diff(Mx7, Mx97,
rel 9Mχ7) with g(0)=idMxI. To see that £<ΞDiffo(Mx7, Mx 97, rel 9Mχ7),
it suffices to show that lim g(t)=g in Diff(Mx7, Mx97, rel9Mχ7). Take

/-*l-0

any compact set KdMxI and any open set U(ZMxI with g(K)czU. Then
KdMkχI and £ | K ^ h ^ h j 1 --hj1 \K for some k. We find a small positive
number δ such that h^ή^t)-- hk(t)(K)(zU for all * with 1—δ<α<l. Since
hi(t)\K=iάκ for all i>k+l, we see that g(t)(K)c: U for all * with 1—δ<α<l.
Hence lim g(t)=g in Diff(Mx I, Mx 97, rel 9MX 7). This completes the proof

/->l-0

of Lemma 2.9.

3. The Kinoshita/Terasaka 11-crossing knot and the existence of
essential imitations

Let K be an (m-2)-knot in Sm. If (Sm, K*) is an imitation of (Sm, K)y

then K* is called a knot imitation of K (More generally, when K is a link, K* is
called a link imitation oί K). The first example of an essential imitation has
been suggested by a property of the Kinoshita/Terasaka 11-crossing knot, kκτ,
in [K/T], which we draw in Fig. 1. Fig. 2 shows a 2-knot K i n i ? 4 = 5 4 — {oo}
with an involution aκ on (S4, i£) such that FΊx(aKy (S\ K))^(S3, kKΊ). It is
known that this 2-knot K is trivial, i.e., bounds a 3-disk in S 4 [For example, this
follows from a result of Marumoto [Mar], because K is a ribbon 2-knot of
1-fusion and π1(S4—K)^Z]. Note that K bounds an α^-invariant 3-manifold
V in S4. Take an o^-invariant normal disk bundle T(K) of K in S4 so that
there is a diffeomorphism/: (Kx [0, 1], Kx 0)^(V Π Γ(i^), i^). Then/(i^x 1)
bounds a 3-disk in S 4 — Int T(K) by an argument of Gluck [G, 1]. This enables

Fig. 1
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us to find two disjoint trivial (4,2)-disk pairs (Dj> Z)?), z — ± 1 , in (S4, K) with
aκ{Dl Di)=(Diu DU) such that (S4-(IntD\ U IntZ)ίi), ϋΓ-(IntZ)?cIntDii))
is diffeomorphic to (S3, ko)χl with Λo a trivial knot. Then α^ defines a reflec-
tion a in (S3, ko)xl with Fix(α, (S3, ko)χI)^(S3, kκτ) and we see that kκτ is
a knot imitation of k0 . By Properties of I, II, IV, the Alexander ploynomial of
any knot imitation of a trivial knot must be trivial. Hence any non-trivial knot
with up to 10 crossings is no knot imitation of a trivial knot (cf. [B/Z]). That
is, kκτ is a knot with the smallest crossing number in the class of all knot
imitations of a trivial knot. Using a tangle version of the fact that kκτ is a knot
imitation of a trivial knot, Nakanishi [N] proved, in our terminology, that every
link in S3 has, as a normal link imitation, a prime link (and a hyperbolic link
by [So], [Kan]). In a forthcoming paper [Ka, 2], we shall propose a notion
finer than a normal imitation, which we call an almost identical imitation, and
show the existence of almost identical imitations with hyperbolic exteriors for
any (3, l)-manifold pair in a reasonable large class including all links in *S3. In
this section, by making use of an imitation map q: (*S3, kκτ)^>(S3

y k0), we shall
observe the following weak but general assertion (which contrasts with Corollary
2.5):

Proposition 3.1. For any (my l)-manifold pair (M, L) with m>Z, there are
infinitely many {up to conjugations) essential normal imitations (M*, L*) of (M, L).

Proof. By the uniqueness of α-invariant tubular neighborhoods of kQ X / in
S3xl, we may consider that a\ T{ko)xl is the standard reflection for a tubular
neighborhood T(k0) of k0 in *S3. Let S3 (kκτ\ ί/d) be the Dehn surgery manifold
of S3 along kκτ with coefficient \\d. Then any imitation map q: (S3, kκτ)->
(S3, k0) associated with this reflection a in (S 3, k0) X / induces an imitation
map qd: S3(kκτ; l/d)->S3, since the Dehn surgery manifold of S3 along k0 with
coefficient 1/d is again S3. By Thurston's hyperbolization theorem [T, 1], kκτ is
a hyperbolic knot. Then by Thurston's argument on hyperbolic Dehn surgery
(cf. [T, 1], [T, 2]), there is a positive integer d* such that S3(kκτ\ l/d) is
hyperbolic with Vol S3(kκτ; lld)<Yol(S3-kκτ) for all d wi th \d\> J * and

Sup Vol S3{kκτ\ ljd)=Yol(S3—kKΊ). Hence we have infinitely many imitation

maps # t : S
3i->S3 (i=l, 2, 3, •••) such that S3 are hyperbolic manifolds with

different volumes. Let G,-—7ΓX (S?). By Mostow rigidity (cf. [T, 1]), any two of
Giy t=ί, 2, 3, •••, are not isomorphic. Since a\ T(ko)xl was the standard re-
flection, we may consider that q{ induces an imitation map D] —>Z>3 (also denoted
by ξfj) for a 3-manifold D3

y obtained from S3 by removing an open 3-disk.
Since Diffo(Z)3, rel 8D3) = Diff(JD3, rel 9D3), we see from Lemma 2.2 that
q{\ D]-+D3 is normal for all /. Clearly, τr1(JD?)^GI. Let m>4. Assume that
there is a normal imitation map qf-1: D7~ι-*Dm~ι with π^Df^^Gi. Regard
Sm as a union D^'xS1 U Sm~2xD2. Then qf~ι: Df-ι-^Dm~ι induces a normal
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imitation map qf: Df = Df-1xS1Ό Sm~2 X D2-Int DZ-^D"1-1 X S11) Sm'2X
D2-Int D%^Dm for an m-disk D%clnt S""-2XD2. Then π^D?)^G,. Thus,
we have a normal imitation map q?: DT~>Dm with π1(D?)^Gi for all m>3 and
all /. To complete the proof, we choose an ?ft-disk Dm in Int (M—L). Replacing
Dm by Df, we obtain froxn (M, L) a normal imitation (Mf, Lf) of (Λί, L) with
imitation map j f defined by q? and the identity on M — Int Z)w. Suppose that
qf and ^ are conjugate for some i,j with iφj. Take the universal covering

space M—L of M—L. By Properties /, /F, #f and qf lift conjugate imitation

maps qf~L: Mf^Lf-^M^ί and 5f"L: M^LJ^M^L. Note that Mf^Lf

(or Mf—Lf, respectively) has just one non-simply connected component, whose

fundamental group is isomrophic to a free product of copies of Gt (or GjΊ respec-

tively). Thus, a free product of some copies of G{ must be isomorphic to a

free product of some copies of G ; . Since G, and Gj are non-isomorphic inde-

composable groups ( ^ Z ) , it follows from the Kurosh Subgroup Theorem (cf.

[L/S]) that Gι is isomorphic to a proper subgroup of Gy and Gj is isomorphic to

a proper subgroup of G, . Thus, (?,- is isomorphic to a subgroup iV, of Gt of

index rt > 2 . Let Sj be a covering space of S? with π1(Sf)=Ni. Since S? and

S? are jfiΓ(7r, l)-spaces and G^Niy S] is homotopy equivalent to S]. In parti-

cular, HZ{S])^HZ{S])^Z. This means that r, < + oo and S2 is a hyperbolic

3-ma_nifold with Vol Sf=r{ Vol S?. By Mostow rigidity (cf. [T, 1]), VolS? =

Vol Sf. Hence rf = l , a contradiction. Therefore, any two of #f, i= 1, 2, 3, •••,

are not conjugate. This completes the proof.

4. Remarks on imitations of 4-manifolds

In a forthcoming paper[Ka, 2], we shall show that every closed connected
oriented 3-manifold has, as a normal imitation, a hyperbolic 3-manifold (cf.
[Ka, 0], [Ka, 1]). The following remark answers in part a question asking
whether an analogous assertion holds in dimension 4:

Proposition 4.1. Let M be a closed A-manίfold. If there is an imitation
map q: M*-^>M with M* negatively [or non-positively, respectively) curved, then
Euler characteristic X(M) of M is posoitive (or non-negative, respectively).

Proof. By Chern's result [Ch], %(M*)>0 (or >0, respectively). By
Property II, X(M*)=X(M). Hence X(M)>0 (or >0, respectively), completing
the proof.

For example, S1xS3#S1xS3 can not have as an imitation any non-positively
curved 4-manifold. However, the following question is unanswerable:

QUESTION. Does what non-aspherical closed 4-manifold M have an
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aspherical 4-manifold as an imitation? (Is the condition X(M)>0 needed here?)

Next, we consider any exotic 4-space R4, i.e., any smooth open 4-manifold,
homeomorphic but not diffeomorphic to R4 (cf. Gompf [G]).

Proposition 4.2. R4 is a normal imitation of R4.

Proof (based on a suggestion by Y. Matsumoto). Note that there is a
diffeomorphism /: R4 X Int I^R4X Int /. For a point x0 G R4, we have a
diffeomorphism g:(R4X Int /, f(x0 X Int /)) ̂  (R4, 0) X Int /. Let r be the standard
reflection in R4xl and a=gf(r \ R4χ Int I)f~ιg~ι Then a is an involution on
(JR4, 0) X Int / with Fix(α, R4 X Int I)=gf(R4X 0). For an open 4-ball neighbor-
hood V of 0 in JR4, we have an AeDiffo(i?4χ Int /) such that ah=hah~1 acts on
Vx Int I by ak(x, t)=(x, —t) for all (x, ί ) G F x Int /, by using the uniqueness of
tubular neighborhoods. The action ah on i?4X Int / extends to a smooth action
a\ on the smooth manifold X=R4 χlntI{jVχI with boundary Vx dl. Since
X is diffeomorphic to R4XI and ¥ix(<Xh, X)=hgf(R4χ0), we have a reflector
φ: R4^>R4xI. Hence R4 is an imitation of R4. By Corollary 2.3, all imita-
tions of JR4 are pure and hence normal. This completes the proof.

REMARK 4.3. Every (smooth) homology 4-sphere S4 is a normal imitation
of S4. In fact, it is well-known that S4 is the boundary of a smooth contractible
S-manifold W and the double DW is diffeomorphic to S5. This means that
there is a reflector S4->S4xI and S4 is an imitation of S4, which is pure and
hence normal by Corollary 2.3.

REMARK 4.4. Every exotic w-sphere Sn (n>7) is no imitation of S". In
fact, if Stt is an imitation of Sn, then Sn is A-cobordant to Sn by Lemma 1.1.
By the A-cobordism theorem [Mi, 1], Sn is diffeomorphic to Sn, a contradiction.

5. Imitations of compact m-manifolds with m>5 and the White-
head torsion invariant

Let M be a compact connected oriented 7/z-manifold, and ftϊ be the
universal covering space of M. Let j : M * - > M be an imitation map, and
q: Λ4r*->Λ4Γ be the lift of q. By Properties IV, II, q induces a homology iso-
morphism. By Milnor's remark [Mi, 2; Remark 2 (p. 387)], we can define the
torsion τ(?)EWh πλ{M) to be the torsion τ(Mq, M * ) e W h πλ(Mq) for the map-
ping cylinder Mq of q under the natural identification Wh7r1(M ί)^Whτr1(M).
We call this torsion the torsion of the imitation map q: M*-*M. Note the
fq (f^ΏiSM) is also an imitation map.

Lemma 5.1. // two imitation maps q: M*->M, q: M**->M are conjugate,
then we have τ(fq)=τ(qf) for an f eDiff M.
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Proof. There are reflectors φ:M*->Mx/, φ ' :M**->Mx7 and an
AeDiff(Mχ7, M x l , Mχ(—1)) with p,φ=qy pλφ

f = qf and hφM* = φ'M**.

Let q\ M*^MxI^$I be the lift of q: M*^MxI^M. Since φ and pλ

induce homology isomorphisms, we can define the torsions τ(φ)eWh7Γ1(Mx7)
and ripJtaWhπ^M), with the identity τ(q)=pι*τ(φ)+τ(p1). But, τ(/>1) = 0> s o

that τ(?)=A*τ(Φ)=A*τ(Mx/, φilf*). Similarly, τ(?')=A*τ(Mx7, φ'M**).
Let/eDif fM be given by A|ΛfxleDiff AΓxl. Then τ(q')=px*h*τ{MxIy

φM*)=f*p1*τ(MxI, φM*)=f*τ(q)=τ(fq). This completes the proof.

The following is direct:

Corollary 5.2. If an imitation map q: M*-+M is inessential, then r(q)=0.

Let φ: M*-»Mx7 be a reflector with pxφ=q. By Lemmas 1.1, 1.2, the lift
(ίΓ+; M x l , φM*) of the triad (W+; Mxl, φM*) to the universal covering
space W+ of W+ gives a homology cobordism. Hence the torsions τ(W+> Mx 1),
r{W+y φM*)fΞWhπι(W+) are also defined. Let p±=ρι\W±: W±->M. By
Lemma 1.1, we have^±*:

Lemma 5.3. Assume that an imitation q: M*->M is d-diffeomorphic, that
is, q\dM*\ 3M*->3M is a dίffeomorphism if 3M=|=0. Then for any reflector
φ: M * - > M x 7 with p^ = q, we have r{q)= —2p+*τ(W+y Mx 1) and Ψ(W+,
MX l)=(—l)m+1τ(W+y Mx 1), zvhere τ denotes the conjugate of τ.

The following is direct from Lemmas 5.1 and 5.3:

Corollary 5.4. If an imitation map q: M*->M is conjugate to a d-diffeo-
morphic imitation map q': Λf**->M, then there is an element τ€ΞWhzr1(.M) such
that τ ( ί )= - 2 τ and τ=(-ί)m+1τ.

Proof of Lemma 5.3. Using the lift of a collar of φM* in Mxl to M"x7,
we have τ(?)=j>1*τ(Mx7, φM*)=p+*τ(W+, φM*)+p_*τ(W_, φM*). By
Lemma 1.1(1), p+*τ(W+, φM*)=p-*τ(W., φM*). Hence τ(q) = 2p+*τ
(W+,φM*). When 3M=f=0, note that (3Mx7, φ(8M*)) is difΓeomorphic to
(3Mx7, 3MxO). Let (Wl φM**y M\) be a triangulation of (JV+; φM*y Mγ)
with Mx=dW+-lnt φM* and (W\ φM*8

y Ml) be a dual cell division. The
Reidemeister duality between the chain complexes C,(PΪ̂ +, φiί?*0*) and Ct(W+, AΪl)
(cf. [Mi, 3]) implies the identity τ(W+y φM*)=(-l)mτ(W+y Mι)=(-l)mτ(W+,
Mx 1) (cf. [Mi, 2]). Hence

and

A*τ(Mx/, JΓ+) =^>_*τ(PF_, φM*) =p+*τ{W+, φM*)
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On the other hand, by the short exact sequence 0-*Q(H^+, Mx lJ
Xϊxl)-*>Ci'jSϊxIj W+)->0 under a triangulation of (Mx/, W+9 Mx 1), we
have

0 = A*τ(Mx/, Mx l)=p+*τ(W+y Mx

That is,

A*τ(Mx/, PF+) = -j>+*τ(W+, M x

Therefore, £+*τ(PF+, M x l M - l ) w + ^ + * τ ( ^ + > M x 1), that is, T(PF+, M x 1)=
(—ί)m+1ψ(W+, Mx 1) and τ(?)= — 2p+*τ(W+} Mx 1). This completes the proof.

It follows from Properties II, IV that any imitation map q: M*->M inducing
an isomorphism q^\ 7r1(M*)^^r1(M) is a homotopy equivalence. From now
on, we shall consider a homotopy equivalent 9-diffeomorphic imitation map
q: M*->M with m>5. Our main tool is the (relative) s-cobordism theory due
to Barden/Mazur/Stallings (cf. [Mi, 2]).

Theorem 5.5. For m>5 we have the following:
(1) For every element τ G W h ^ ( M ) with τ=(—l)m+1τ, there is a homotopy
equivalent d-diffeomorphic imitation map q: M*-+M with τ(q) = —2τ,
(2) Assume that Wh π^M) is 2-torsion-free. Then two homotopy equivalent
d-diffeomorphic imitation maps q: M*->M, q'\ M**->M are conjugate if and
only if we have τ{fq)=τ{q') for an f e Diff M.

Corollary 5.6. Assume that m>S and Whπ-^M) is 2-torsion-free. Then
a homotopy equivalent d-diffeomorphic imitation map q: M*->M is inessential if
and only if τ(q)=0.

Proof of Theorem 5.5. To see (1), note that there is a relative A-cobordism
(W; M, M*) with T(W, M)=τ. Since τ + ( - l ) m τ = 0 , the double of ^pasting
two copies of M* is a product (cf. [Mi, 2]). Hence we obtain a homotopy equiv-
alent 3-diffeomorphic imitation map q: M*->M with τ( j )=— 2τ, proving (1).
Next, we show the 'if part of (2). (The 'only if part follows from Lemma 5.1.)
For this purpose, we may assume that/=id M . Let φ: M*-^>MχI, φ': M**^-
Mxl be reflectors with pλφ=q, Piφ'=q' The triads (W+) Mx 1, φM*) and
(W+ M x 1, φ'M**) (obtained from M x / b y splitting along φM* and φ'M**,
respectively) are relative λ-cobordisms, because q> q' are homotopy equivalent
3-diffeomorρhic imitation maps. By Lemma 5.3, τ(q)= — 2p+*τ(W+, Mx 1)
and τ ( j ' ) = - 2 p ; * τ ( ϊ Γ ί , M x l ) (where ρ'+=ρι\W'+: W'+->M). Since
W h ^ M ) is 2-torsion-free and τ(q)=τ(q'), we have p+*τ(W+, Mx ί) =
p+*τ(Wl, MX 1). By [Mi, 2], there is a diffeomorphism g: W+^W+ such that

l = i d M x l and g{φM*)=φ'M**. By Lemma 1.1 (1), we can construct
/, M x l , M x ( - l ) ) with g(φM*)=φ'M**. Thus, q and q' are

conjugate. This completes the proof.
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EXAMPLE 5.7. Let C5 be a cyclic group of order 5. Let t be an automor-
phism of C5 sending each element to its inverse, and G be the HNN group of
C5 by t. Note that [G, G]=C5 and G is the 2-knot group of the 2-twist spun
figure eight knot and hence the group of an (m—2)-knot K in Sm for all m>5.
Wh C5 is known to be an infinite cyclic group with a generator represented by

τ==χ-\-ss—ί for a generator x of C5 (cf. [Mi, 2]). Since t induces the identity on
Wh C5, Wh C5 is imbedded in Wh G by a monomorphism induced from the
inclusion C5dG (cf. Farrell/Hsiang[F/H]). Let m be o d d > 5 . Then r =
(— l) m + 1 τ. Applying Theorem 5.5 (1) to the compact exterior Em=S— Int N(K)
with N(K) a normal disk bundle of K in Sm

y we have a homotopy equivalent
3-difΓeomorphic imitation map q%: Ef->E with τ(qϊί)=—2nτ for all non-negative
integers n. Note that the adjunction space E*{JN(K) identifying dEf with
dN(K) by the diffeomorphism qξ\dE*\ dEf^dN(K) is a homotopy ra-sphere
Sm and qξ extends to an imitation map qn: (Sm

9 R$)->(Sm, K). By Lemma 1.1,
Sm is A-cobordant to Sm, so that Sm is diffeomorphic to Sm. Thus, we have
an imitation map qn: (Sm, K*)->(Sm, K) such that q-1N(K)=N(Kf) is a normal
disk bundle of K* in Sm and qn\N(K*)f K*): (N(K*), K*)^(N(K), K) is a
diffeomorphism and SM-IntN(K%)=E* and qn\E*=q*: E*-+Ey which is a
homotopy equivalent 9-diffeomorphic imitation map.

Assert ion 5.8. Any two of q0, qv q2y q3, ••• are not conjugate.

In fact, if qn and qs are conjugate, then qξ and qf are conjugate. By Lemma 5.1,
there is an/GDiff ί 1 with τ(qf)=zr(fqn). But, / induces an automorphism /*
of Wh G with /*Wh C5=Wh C5. Since τ(qf)=-2sτ and τ(/?f)=Λ(τ(?f))=

and /z, ί > 0 , we see that n=s, as desired.
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