Kawauchi, A. Osaka J. Math. 26 (1989), 447-464

AN IMITATION THEORY OF MANIFOLDS

Dedicated to Professor Jnuzo Tao on his sixtieth birthday

AKIO KAWAUCHI

(Received September 9, 1988)

By an (m, l)-manifold pair (M, L) we mean a smooth *m*-manifold M and a (regular) *l*-submanifold L such that L is a closed set in M and $\partial L = L \cap \partial M$. Here, M and L may be non-compact or disconnected and $-1 \le l < m$ (l = -1 means $L = \emptyset$). Let I = [-1, 1]. A reflection in $(M, L) \times I$ is a smooth involution α on $(M, L) \times I$ such that $\alpha(M \times 1) = M \times (-1)$ and $\operatorname{Fix}(\alpha, M \times I)$ is an *m*-manifold and α acts non-freely on each component of $M \times I$. Then we can see that $\operatorname{Fix}(\alpha, (M, L) \times I)$ is an (m, l)-manifold pair (cf. Property I). A smooth imbedding ϕ from an (m, l)-manifold pair (M^*, L^*) to $(M, L) \times I$ with $\phi(M^*, L^*) = \operatorname{Fix}(\alpha, (M, L) \times I)$ for a reflection α in $(M, L) \times I$ is called a *reflector* (of the reflection α).

DEFINITION. An (m, l)-manifold pair (M^*, L^*) is an *imitation* of an (m, l)manifold pair (M, L) with imitation map $q: (M^*, L^*) \rightarrow (M, L)$, if there is a reflector $\phi: (M^*, L^*) \rightarrow (M, L) \times I$ with $q = p_1 \phi$, where p_1 denotes the projection from $(M, L) \times I$ to (M, L).

In Section 1, we shall give six general properties of imitations, meaning that any imitation map $q: (M^*, L^*) \rightarrow (M, L)$ has properties close to a diffeomorphism and hence the distinguishment between (M^*, L^*) and (M, L) is not so easy.

DEFINITION. An imitation (M^*, L^*) of (M, L) with imitation map q is *pure* if $q=p_1\phi$ for a reflector $\phi: (M^*, L^*) \rightarrow (M, L) \times I$ of a reflection α such that $\alpha(x, 1)=(x, -1)$ for all $x \in M$.

We also say that such α , ϕ and q are pure. This subtle notion is needed when we ask whether an imitation of an imitation is an imitation of the original manifold pair (See Proposition 2.1). Let Diff X be the diffeomorphism group of a smooth manifold X, which is a topological group (with respect to the compactopen topology). For subspaces A_i , $i=1, 2, \dots, s$, and Y of X, we denote the subgroup of Diff X consisting of all $f \in \text{Diff } X$ with $f(A_i) = A_i$ (($i=1, 2, \dots, s$, and $f | Y = \text{id}_Y$ by Diff(X, A_1, A_2, \dots, A_s , rel Y) (or Diff(X, A_1, A_2, \dots, A_s) if $Y = \emptyset$). By Diff₀(X, A_1, A_2, \dots, A_s , rel Y) we denote the path connected component containing id_x \in Diff(X, A_1, A_2, \dots, A_s , rel Y).

DEFINITION. Two imitations (M^*, L^*) , (M^{**}, L^{**}) of (M, L) with imitation maps q, q' are conjugate if $f\phi(M^*, L^*) = \phi'(M^{**}, L^{**})$ for some reflectors $\phi: (M^*, L^*) \rightarrow (M, L) \times I$, $\phi': (M^{**}, L^{**}) \rightarrow (M, L) \times I$ with $p_1\phi = q$, $p_1\phi' = q'$ and some $f \in \text{Diff}(M \times I, L \times I, M \times 1, M \times (-1))$.

An imitation (M^*, L^*) of (M, L) with imitation map q is said to be *inessential* or *essential* according to whether q is conjugate to a diffeomorphic imitation map $q': (M, L) \simeq (M, L)$ or not. It is shown in Section 2 that all imitations of all (m, l)-manifold pairs with $m \le 2$ are pure and inessential.

DEFINITION. An imitation (M^*, L^*) of (M, L) with imitation map q is normal if $q=p_1\phi$ for a reflector $\phi: (M^*, L^*) \rightarrow (M, L) \times I$ of a reflection α in $(M, L) \times I$ such that $\alpha(x, t) = (x, -t)$ for all $(x, t) \in \partial(M \times I) \cup N_L \times I$, where N_L denotes a neighborhood of L in M.

In Section 3 we show that for each (m, l)-manifold pair (M, L) with $m \ge 3$ there are infinitely many (up to conjugations) essential normal imitations of (M, L), by using the fact that the 11-crossing Kinoshita/Terasaka knot is a knot imitation of a trivial knot. In Section 4 some remarks on the imitations of 4-manifolds are given. In Section 5 we discuss the Whitehead torsion invariant of an imitation map. In fact, we observe that when M is a compact connected oriented m-manifold, the Whitehead torsion $\tau(q) \in Wh \pi_1(M)$ is defined for any imitation map $q: M^* \to M$. Further, when q is conjugate to a ∂ -diffeomorphic imitation map, we have $\tau(q) = -2\tau$ for some $\tau \in Wh \pi_1(M)$ with $\overline{\tau} = (-1)^{m+1}\tau$. When q is inessential, $\tau(q) = 0$. Under the assumption that $m \ge 5$ and $Wh \pi_1(M)$ has no 2-torsion, this invariant enables us to classify homotopy equivalent ∂ -diffeomorphic imitation maps $q: M^* \to M$ up to conjugations (See Theorem 5.5).

This paper grew out of some parts of the unpublished paper[Ka, 1]. We also note that an analogous definition of imitation was given in [K/K/S] (cf. Properties I, II, IV and Corollary 2.5). Spaces and maps will be considered in the smooth category.

1. Some general properties of imitations

Lemma 1.1. Let α be a reflection in $M \times I$ with M connected. Then M' =Fix $(\alpha, M \times I)$ is connected and splits $M \times I$ into two connected submanifolds W_+, W_- such that

(1) There is a diffeomorphism $W_+ \simeq W_-$ sending M'_+ onto M'_- as the identification map and $M \times 1$ onto $M \times (-1)$,

IMITATIOM THEORY

(2) The inclusions $i': M'_+ \to W_+$ and $i: M \times 1 \to W_+$ induce an epimorphism $i'_{\mathfrak{s}}: \pi_1(M'_+) \to \pi_1(W_+)$ and an isomorphism $i_{\mathfrak{s}}: \pi_1(M \times 1) \to \pi_1(W_+)$, and

(3) The inclusions i', i induce isomorphisms on homology, cohomology and cohomology with compact support, where M'_+ and M'_- denote the copies of M' in W_+ and W_- , respectively.

Proof. First note that $\partial M' = \operatorname{Fix}(\alpha, (\partial M) \times I)$ and $\operatorname{Int} M' = \operatorname{Fix}(\alpha, (\operatorname{Int} M) \times I)$. Let M'_1 be any connected component of M'. Since $\operatorname{Int} M'$ and hence $\operatorname{Int} M'_1$ are closed sets in $\operatorname{Int}(M \times I)$, we have

$$H_1(M \times I, M \times I - M'_1; Z_2) \simeq H_1(\operatorname{Int}(M \times I), \operatorname{Int}(M \times I) - \operatorname{Int}M'_1; Z_2)$$

$$\simeq H_c^{\mathfrak{m}}(\operatorname{Int}M'; Z_2)$$

by the Alexander/Spanier duality (cf. [Sp]). Since the natural homomorphism $H_1(M \times I - M'_1; Z_2) \rightarrow H_1(M \times I; Z_2)$ is onto and $M \times I$ is connected, it follows that

$$Z_2 \simeq H_1(M \times I, M \times I - M_1'; Z_2) \stackrel{\partial}{\simeq} \tilde{H}_0(M \times I - M_1'; Z_2).$$

This implies that M'_1 splits $M \times I$ into two connected submanifolds W_+ , W_- . Since $\alpha(W_+) = W_-$, we see that $M'_1 = M'$ and α defines a desired diffeomorphism in (1). To prove (2), (3), we use the fact that α diffines a retraction from $M \times I$ to W_+ . This means that the inclusion $j: W_+ \to M \times I$ induces monomorphisms

$$j_{\sharp}: \pi_1(W_+) \to \pi_1(M \times I) ,$$

$$j_{\star}: H_{\star}(W_+) \to H_{\star}(M \times I) ,$$

and epimorphisms

$$j^* \colon H^*(M \times I) \to H^*(W_+) ,$$

$$j^*_{\mathfrak{c}} \colon H^*_{\mathfrak{c}}(M \times I) \to H^*_{\mathfrak{c}}(W_+) .$$

But the composite $ji: M \times 1 \rightarrow M \times 1$ is a (proper) homotopy equivalence. Hence $j_{i}, j_{*}, j^{*}, j_{c}^{*}$ and

$$i_{\sharp}: \pi_1(M \times 1) \to \pi_1(W_+),$$

$$i_{\ast}: H_{\ast}(M \times 1) \to H_{\ast}(W_+),$$

$$i^{\ast}: H^{\ast}(W_+) \to H^{\ast}(M \times 1),$$

$$i^{\ast}_{\epsilon}: H^{\ast}_{\epsilon}(W_+) \to H^{\ast}_{\epsilon}(M \times 1)$$

are all isomorphisms. To complete the proof of (2), let \tilde{W}_+, \tilde{W}_- and \tilde{M}' be the preimages of W_+, W_- and M', respectively, under the universal covering $\tilde{M} \times I \rightarrow M \times I$. Then \tilde{W}_+ and \tilde{W}_- are connected (because $\tilde{M} \times 1$ and $\tilde{M} \times (-1)$ are connected). By the Mayer/Vietoris sequence, we see that \tilde{M}' is connected. Since $j_{\frac{1}{2}}$ is an isomorphism, we also see that \tilde{W}_+ is simply connected.

Thus, the natural homomorphism $i'_{\sharp}: \pi_1(M'_+) \to \pi_1(W_+)$ is onto, obtaining (2). For (3), note that $H_*(M \times I, W_+) = H^*(M \times I, W_+) = H^*_c(M \times I, W_+) = 0$ since j_*, j^* and j^*_c are isomorphisms. By excision, $H_*(W_-, M'_-) = H^*(W_-, M'_-) = H^*_c(W_-, M'_-) = 0$. By (1), $H_*(W_+, M'_+) = H^*(W_+, M'_+) = H^*_c(W_+, M'_+) = 0$, meaning that

$$\begin{aligned} &i'_{*} \colon H_{*}(M'_{+}) \to H_{*}(W_{+}) ,\\ &i'^{*} \colon H^{*}(W_{+}) \to H^{*}(M'_{+}) ,\\ &i^{*}_{c} \colon H^{*}_{c}(W_{+}) \to H^{*}_{c}(M'_{+}) \end{aligned}$$

are all isomorphisms. This completes the proof.

Let α be a reflection in $(M, L) \times I$. By Lemma 1.1, Fix $(\alpha, M \times I)$ splits each connected component of $M \times I$, $L \times I$, $(M-L) \times I$, $(Int M) \times I$, $(Int L) \times I$, $(\partial M) \times I$ and $(\partial L) \times I$ into two connected components. Hence we obtain the following:

Property I. Every imitation map $q: (M^*, L^*) \rightarrow (M, L)$ defines imitation maps $M^* \rightarrow M$, $L^* \rightarrow L$, $M^* - L^* \rightarrow M - L$, (Int M^* , Int L^*) \rightarrow (Int M, Int L) and $(\partial M^*, \partial L^*) \rightarrow (\partial M, \partial L)$.

We see from Lemma 1.1 that any imitation map $q: M^* \rightarrow M$ induces isomorphisms on homology, cohomology and cohomology with compact support. Hence we obtain from Property I and Five Lemma the following:

Property II. Every imitation map $q: (M^*, L^*) \rightarrow (M, L)$ induces isomorphisms on homology, cohomology and cohomology with compact support.

In Lemma 1.1 (3) Stiefel/Whitney and Pontrjagin classes of M'_+ and $M \times 1$ coincide through the cobordism W_+ (cf. Milnor/Stasheff [M/S]). Hence we have the following:

Property III. Every imitation map $q: M^* \rightarrow M$ preserves Stiefel/Whitney and Pontrjagin classes of M^* and M.

By Properties I, III, (M, L) is an orientable manifold pair if and only if so is (M^*, L^*) . When (M, L) is an oriented manifold pair, we orient (M^*, L^*) so that $q | \text{Int } M^*$: Int $M^* \rightarrow \text{Int } M$ and $q | \text{Int } L^*$: Int $L \Rightarrow \text{Int } L$ are degree one maps, unless otherwise stated, by using Properties I and II.

Property IV. Let $p: (\tilde{M}, \tilde{L}) \to (M, L)$ be any regular or irregular covering map, where \tilde{M} may be branched along some components of L when l=m-2. Consider the pullback diagram of this covering map p by any imitation map $q: (M^*, L^*) \to (M, L)$:

$$\begin{array}{ccc} (\tilde{M}^*, \, \tilde{L}^*) \stackrel{q}{\longrightarrow} (\tilde{M}, \, \tilde{L}) \\ \tilde{p} & & \downarrow p \\ (M^*, \, L^*) \stackrel{q}{\longrightarrow} (M, \, L) \ . \end{array}$$

Then \tilde{p} is a covering map (this is well known) and \tilde{q} is an imitation map.

To obtain Property IV, we use the following lemma:

Lemma 1.2. Let α be a reflection in $M \times I$ with M connected. For any connected unbranched covering $p_I = p \times id_I : \tilde{M} \times I \rightarrow M \times I$, α lifts to a unique reflection $\tilde{\alpha}$ in $\tilde{M} \times I$.

Proof. By Lemma 1.1 $M' = \operatorname{Fix}(\alpha, M \times I)$ is connected and the natural homomorphism $\pi_1(M', x_0) \to \pi_1(M \times I, x_0), x_0 \in M'$, is onto, so that $\tilde{M}' = p_I^{-1}M'$ is connected and α induces the identity automorphism on $\pi_1(M \times I, x_0)$. By the lifting property, α lifts to a unique involution $\tilde{\alpha}$ on $\tilde{M} \times I$ with $\operatorname{Fix}(\tilde{\alpha}, \tilde{M} \times I)$ $= \tilde{M}'$. Since $\tilde{\alpha}(\tilde{M} \times 1) = \tilde{M} \times (-1)$, the proof of Lemma 1.2 is completed.

Proof of Property IV. Let $\phi: (M^*, L^*) \rightarrow (M, L) \times I$ be a reflector of a reflection α in $(M, L) \times I$ with $q = p_1 \phi$. Let $p_I = p \times id_I : (\tilde{M}, \tilde{L}) \times I \to (M, L) \times I$ be the product covering map. We shall show that α lifts, under p_I , to a unique reflection $\tilde{\alpha}$ in $(\tilde{M}, \tilde{L}) \times I$ with Fix $(\tilde{\alpha}, (\tilde{M}, \tilde{L}) \times I) = p_I^{-1} \phi(M^*, L^*)$. When p is unbranched, we apply Lemma 1.2 to each component of $\tilde{M} \times I$ and $\tilde{L} \times I$ and obtain a unique reflection $\tilde{\alpha}$ in $(\tilde{M}, \tilde{L}) \times I$ lifting α with $Fix(\tilde{\alpha}, (\tilde{M}, \tilde{L}) \times I) =$ $p_{L}^{-1}\phi(M^*, L^*)$. When p is branched, the same argument shows that $\alpha | (M-L) \times I$ and $\alpha | L \times I$ lift to unique reflections $\tilde{\alpha}_{(M-L) \times I}$ in $(\tilde{M} - \tilde{L}) \times I$ and $\tilde{\alpha}_{L \times I}$ in $\tilde{L} \times I$ with Fix $(\tilde{\alpha}_{(M-L)\times I}, (\tilde{M}-\tilde{L})\times I)=p_I^{-1}\phi(M^*-L^*)$ and Fix $(\tilde{\alpha}_{L\times I}, \tilde{L}\times I)=p_I^{-1}\phi L^*$, respectively. Since p is a smooth branched covering map and α is a smooth reflection, we see that $\tilde{\alpha}_{(M-L)\times I}$ and $\tilde{\alpha}_{L\times I}$ determine a unique smooth reflection $\tilde{\alpha}$ in $(\tilde{M}, \tilde{L}) \times I$ with $\operatorname{Fix}(\tilde{\alpha}, (\tilde{M}, \tilde{L}) \times I) = p_I^{-1} \phi(M^*, L^*)$. Let $(\tilde{M}^*, \tilde{L}^*) =$ $\operatorname{Fix}(\tilde{\alpha}, (\tilde{M}, \tilde{L}) \times I)$ and $\tilde{\phi}: (\tilde{M}^*, \tilde{L}^*) \to (\tilde{M}, \tilde{L}) \times I$ be the inclusion, which is a reflector of the reflection $\tilde{\alpha}$ in $(\tilde{M}, \tilde{L}) \times I$. Then the imitation map $\tilde{q} = p_1 \tilde{\phi}$: $(\tilde{M}^*, \tilde{L}^*) \rightarrow (\tilde{M}, \tilde{L})$ and the covering map $\tilde{p} = \phi^{-1} p_I \tilde{\phi}: (\tilde{M}^*, \tilde{L}^*) \rightarrow (M^*, L^*)$ constitute a desired pullback diagram, for $p\tilde{q} = q\tilde{p}$ and $\tilde{q} \mid \tilde{p}^{-1}(x^*) : \tilde{p}^{-1}(x^*) \to p^{-1}(x)$ is a bijection for any $x^* \in M^*$ and $x \in M$ with $q(x^*) = x$. This completes the proof.

For a group π , let $\pi = \pi^{(0)} \supset \pi^{(1)} \supset \pi^{(2)} \supset \cdots$ be the derived series of π , i.e., a series with $\pi^{(i+1)} = [\pi^{(i)}, \pi^{(i)}], i=0, 1, 2, \cdots$, and $\overline{\pi} = \pi / \bigcap_{i=0}^{\infty} \pi^{(i)}$. For example, if π is a free group, then $\bigcap_{i=0}^{\infty} \pi^{(i)} = \{1\}$ (cf. [L/S; p. 14]).

Property V. Every imitation map $q: M^* \to M$ with M connected induces an epimorphism $q_{\sharp}: \pi_1(M^*) \to \pi_1(M)$ whose kernel Ker q_{\sharp} is a perfect group (i.e., Ker q_{\sharp} =[Ker q_{\sharp} , Ker q_{\sharp}]), so that q_{\sharp} induces an isomorphism $\overline{\pi}_1(M^*) \simeq \overline{\pi}_1(M)$.

Proof. Let \tilde{M} be the universal covering space of M and $\tilde{q}: \tilde{M}^* \to \tilde{M}$ be the lift of q. By Property IV, \tilde{q} is an imitation map. By Property II, \tilde{M}^* is connected and $H_1(\tilde{M}^*)=0$. This means that q_{\sharp} is an epimorphism and Ker $q_{\sharp}=\pi_1(\tilde{M}^*)$ is a perfect group. Since Ker $q_{\sharp} \subset \bigcap_{i=0}^{\infty} \pi_1(M^*)^{(i)}$, the proof is completed.

2. Pure imitations and surfaces

The reflection r in $(M, L) \times I$ defined by r(x, t) = (x, -t) for all $(x, t) \in M \times I$ is called the *standard reflection*.

Proposition 2.1. If (M^*, L^*) is an imitation of a manifold pair (M, L) and (M^{**}, L^{**}) is a pure imitation of (M^*, L^*) , then (M^{**}, L^{**}) is an imitation of (M, L). Further, if (M^*, L^*) is a pure imitation of (M, L), then (M^{**}, L^{**}) is a pure imitation of (M, L).

Proof. Let $\phi: (M^*, L^*) \to (M, L) \times I$ be a reflector of a reflection α in $(M, L) \times I$ and $\phi': (M^{**}, L^{**}) \to (M^*, L^*) \times I$ a reflector of a pure reflection α' in $(M^*, L^*) \times I$. $(M, L) \times I$ admits an α -invariant bicollar neighborhood N of $\phi(M^*, L^*)$ so that there is a diffeomorphism $f: (M^*, L^*) \times I \cong N$ with $f^{-1}\alpha f$ the standard reflection in $(M^*, L^*) \times I$. Let α'' be the reflection in $(M, L) \times I$ obtained from α by replacing $\alpha | N$ with $f\alpha' f^{-1}$. Note that if α is pure, then so is α'' . The composite $\phi'' = f\phi': (M^{**}, L^{**}) \to (M, L) \times I$ is a reflector of α'' and the map $q'' = p_1 \phi'': (M^{**}, L^{**}) \to (M, L)$ is a desired imitation map, completing the proof.

The following question is unanswerable:

QUESTION. Is every imitation pure?

For a reflection α in $(M, L) \times I$ we denote by f_{α} the diffeomorphism of (M, L)given by $r\alpha|(M, L) \times 1$: $(M, L) \times 1 \rightarrow (M, L) \times 1$. Two $f, g \in \text{Diff}(M, L)$ are concordant if there is an $h \in \text{Diff}((M, L) \times I, (M, L) \times 1, (M, L) \times (-1))$ with $h|(M, L) \times 1 = f \times 1$ and $h|(M, L) \times (-1) = g \times (-1)$. Note that f_{α}^2 is always concordant to $id_{(M,L)}$.

Lemma 2.2. Let an imitation map $q: (M^*, L^*) \rightarrow (M, L)$ be given by a reflector $\phi: (M^*, L^*) \rightarrow (M, L) \times I$ of a reflection α in $(M, L) \times I$. If f_{α} is concordant to f', then q is given by a reflector $\phi': (M^*, L^*) \rightarrow (M, L) \times I$ of a reflection α' in $(M, L) \times I$ with $f_{\alpha'}=f'$.

Proof. Let $h: (M, L) \times [1, 2] \rightarrow (M, L) \times [-2, -1]$ be a diffeomorphism with $h(x, 1) = (f_{\alpha}(x), -1)$ and h(x, 2) = (f'(x), -2) for all $x \in M$. For $I^+ = [-2, 2]$ we define $\alpha^+ \in \text{Diff}(M, L) \times I^+$ by $\alpha^+ | (M, L) \times [1, 2] = h, \alpha^+ | (M, L) \times I = \alpha$ and $\alpha^+ | (M, L) \times [-2, -1] = h^{-1}$. Let $d: (M, L) \times I^+ \rightarrow (M, L) \times I$ be the diffeomorphism given by d(x, t) = (x, t/2) for all $(x, t) \in M \times I^+$. Then $\alpha' = d\alpha^+ d^{-1}$ is a

reflection in $(M, L) \times I$ with $f_{\alpha'} = f'$ and the composite $\phi' : (M^*, L^*) \xrightarrow{\phi} (M, L) \times I$ $\subset (M, L) \times I^+ \xrightarrow{d} (M, L) \times I$ is a reflector of α' with $p_1 \phi' = q$. This completes the proof.

Corollary 2.3. An imitation map $q: (M^*, L^*) \rightarrow (M, L)$ is pure if q is given by a reflector of a reflection α with f_{α} concordant to $id_{(M,L)}$.

For example, all imitations of S^n $(0 \le n \le 5)$ and R^n $(n \ge 0)$ are pure and hence normal (cf. Cerf [Ce], Milnor [Mi, 1; § 9. Lemma 5.7]).

Theorem 2.4. Let (M, L) be an (m, l)-manifold pair with $m \le 2$. Then for every reflection α in $(M, L) \times I$, there is an $h \in \text{Diff}_0(M \times I, M \times \partial I, L \times I)$ with $h\alpha h^{-1}$ the standard reflectoin in $(M, L) \times I$. Further, if $\alpha \mid (\partial M) \times I$ is the standard reflection, then we can take h so that $h \in \text{Diff}_0(M \times I, M \times \partial I, L \times I, \text{rel}(\partial M) \times I)$.

The following is direct from Theorem 2.4 and Corollary 2.3:

Corollary 2.5. Any imitation of any (m, l)-manifold pair (M, L) with $m \le 2$ is inessential and pure.

Note that the compactness of M is not needed in Theorem 2.4 and Corollary 2.5, though we assumed it in the first draft of this paper (cf. [Ka, 0]). To prove Theorem 2.4 we use the fact that $\text{Diff}(D^n, \text{rel }\partial D^n) = \text{Diff}_0(D^n, \text{rel }\partial D^n)$ for $n \leq 3$ (cf. [Ce], Hatcher [Ha, Appendix]).

2.6 Proof of Theorem 2.4 when m=0. Note that $L=\phi$ and there is an $h_1 \in \text{Diff}_0(M \times I, M \times \partial I)$ with $\text{Fix}(h_1 \alpha h_1^{-1}, M \times I) = M \times 0$. Since $\text{Diff}(D^1, \text{rel} \partial D^1) = \text{Diff}_0(D^1, \text{rel} \partial D^1)$, we obtain a desired h, completing the proof.

2.7 Proof of Theorem 2.4 when m=1. By 2.6 and the isotopy extension theorem, we can assume that $\alpha | (L \cup \partial M) \times I$ is the standard reflection. Further, by cutting M along L if $L \neq \emptyset$, we can assume that $L=\emptyset$. Choose a discrete set Ω in Int M which cuts M into closed intervals. Then we have an $h_1 \in \text{Diff}_0(M \times I, M \times \partial I, \text{rel}(\partial M) \times I)$ such that $h_1 \alpha h_1^{-1}(\Omega \times I) = \Omega \times I$ and $\text{Fix}(h_1 \alpha h_1^{-1}, M \times I) = M \times 0$. By 2.6 and the isotopy extension theorem, we can assume that $h_1 \alpha h_1^{-1}(x, t) = (x, -t)$ for all $(x, t) \in \Omega \times I \cup \partial (M \times I)$. Since $\text{Diff}(D^2, \text{rel} \partial D^2) = \text{Diff}_0(D^2, \text{rel} \partial D^2)$, we obtain a desired h, completing the proof.

When m=2, the following two lemmas are basic to the proof of Theorem 2.4:

Lemma 2.8. For any connected surface M with $\partial M = \emptyset$ and a 2-disk D^2 in M and any reflection α in $M \times I$, there is an $h \in \text{Diff}_0(M \times I, M \times \partial I)$ such that $h\alpha h^{-1}|D^2 \times I$ is the standard reflection.

Lemma 2.9. For any connected surface M with $\partial M \neq \emptyset$ and any reflection

 α in $M \times I$ with $\alpha | (\partial M) \times I$ the standard reflection, there is an $h \in \text{Diff}_0(M \times I, M \times \partial I, \text{rel}(\partial M) \times I)$ such that $h \alpha h^{-1}$ is the standard reflection in $M \times I$.

2.10 Proof of Theorem 2.4 when m=2, assuming Lemmas 2.8 and 2.9. If $\partial M = \emptyset$ and l=-1, then we have a desired h by Lemmas 2.8 and 2.9. If $\partial M \neq \emptyset$, we can assume by 2.7 and the isotopy extension theorem that $\alpha \mid (\partial M, \partial M \cap L) \times I$ is the standard reflection. Hence if $\partial M \neq \emptyset$ and l=-1, then we have a desired h by Lemma 2.9. If l=0 or 1, then we can further assume by 2.6, 2.7, the isotopy extension theorem and the uniqueness of α -invariant tubular neighborhoods that $\alpha \mid N(L) \times I$ is the standard reflection for a tubular neighborhood N(L) of L in M. Applying Lemma 2.9 to $\alpha \mid cl(M-N(L)) \times I$, we obtain a desired h, completing the proof.

Proof of Lemma 2.8. Let $p \in D^2$. It suffices to show that there is an $h_1 \in \text{Diff}_0(M \times I, M \times \partial I)$ with $h_1 \alpha h_1^{-1}(p \times I) = p \times I$, because then we obtain a desired h by 2.6 and the isotopy extension theorem and the uniqueness of α -invariant tubular neighborhoods. By a proper arc in $M \times I$ we mean the image of a smooth proper imbedding $(I, \{1\}, \{-1\}) \rightarrow (M \times I, M \times 1, M \times (-1))$. For the proof, we need to consider three cases.

Case (1): $M \simeq S^2$.

In this case, any proper arc in $M \times I$ connecting $M \times (-1)$ with $M \times 1$ is ambient isotopic to $p \times I$. Hence we obtain a desired h_1 by considering an α -invariant proper arc in $M \times I$.

Case (2): $M \simeq R^2$.

In this case, $M' = Fix(\alpha, M \times I) \cong R^2$, for M' is an acyclic connected open 2-manifold by Lemma 1.1 (3). It suffices to construct an α -invariant proper arc J in $M \times I$ with $\pi_1(M \times I - J) \simeq Z$, because then we see from the Dehn's lemma that J is ambient isotopic to $p \times I$ in $M \times I$ by considering the image of J in $D^2 \times I$ under an imbedding $g \times id_I \colon M \times I \to D^2 \times I$ with $g \colon M \simeq Int D^2$ a diffeomorphism. To obtain such a J, we first choose a proper arc J' in $M \times I$ meeting M' transversally in a single point, x'. Take a 2-sphere Σ in $M \times \text{Int } I$ such that $x' \notin \Sigma$ and Σ meets J' transversally in two points and $\pi_1(N-J') \cong Z$ for the non-compact region N of $M \times I$ divided by Σ . Note that B = $cl(M \times I - N)$ is a 3-disk. We show that there is an $f \in Diff_0(M \times I, rel M \times \partial I)$ such that J' meets fM' transversally in a single point and $\Sigma \cap fM' = \emptyset$. To see this, we may consider that Σ meets M' transversally in loops. Let c be a loop in $\Sigma \cap M'$ bounding a 2-disk d in Σ such that Int $d \cap M' = \emptyset$ and $|d \cap J'| \le 1$. Let d' be a 2-disk in M' bounded by c. Note that $|d' \cap J'| = |d \cap J'|$ (=0 or 1). Since $d' \cup d$ bounds a 3-disk in $M \times I$, we have an $f_1 \in \text{Diff}_0(M \times I)$, rel $M \times \partial I$) such that J' meets $f_1 M'$ transversally in a single point and the component number of $\Sigma \cap f_1 M'$ is smaller than that of $\Sigma \cap M'$. By induction on the

component number of $\Sigma \cap M'$, we have a desired f. Then we have $f^{-1}(B) \cap M' = \emptyset$. Let W be one of the manifolds obtained from $M \times I$ by splitting along M' such that $W \cap f^{-1}(B) = \emptyset$. Let $J'' = f^{-1}(J') \cap W$. Since the natural homomorphism $\pi_1(M' - f^{-1}(J')) \to \pi_1(M \times I - f^{-1}(B \cup J')) \cong Z$ is an isomorphism, it follows that $\pi_1(W - J'') \cong Z$. Then $J = J'' \cup \alpha J''$ is an α -invariant proper arc in $M \times I$ with $\pi_1(M \times I - J) \cong Z$ and the proof of the case (2) is completed.

Case (3): $M \cong S^2$, R^2 .

In this case, we have $H_1(M) \neq 0$ and we have a simple loop c and a simple loop or simple proper open curve c^* in M meeting transversally at the point p. Since $M \times I$ is irreducible, we have an $h \in \text{Diff}_0(M \times I, \text{ rel } M \times \partial I)$ such that $h(c \times I)$ meets $M' = \text{Fix}(\alpha, M \times I)$ transversally in ∂ -parallel loops in $h(c \times I)$. Hence we have an α -invariant annulus A in $M \times I$ with $A \cap M \times 1 = c \times 1$. Since any two homotopic simple loops in M are ambient isotopic, we have a reflection $\alpha' = h'\alpha h'^{-1}$ in $M \times I$ with $h' \in \text{Diff}_0(M \times I, M \times \partial I)$ and an α' -invariant annulus A' in $M \times I$ with $A' \cap M \times 1 = c \times 1$ and $A' \cap M \times (-1) = c \times (-1)$. We may consider that A' meets $c^* \times I$ transversely. Then there is just one arc component J in $A' \cap c^* \times I$ with end points $p \times 1$, $p \times (-1)$. J is ambient isotopic to $p \times I$ in $c^* \times I$ and hence in $M \times I$. This means that any α' -invariant proper arc J' in A' is ambient isotopic to $p \times I$ in $M \times I$ and we have a desired h_1 . This completes the proof of Lemma 2.8.

Proof of Lemma 2.9. Consider a division of M into a family of 2-disks $\{B_i | 1 \le i < v\}$ such that Int $B_i \cap$ Int $B_j = \emptyset$ for all i, j with $i \ne j$ and $\partial M \cap \partial B_1$ is a compact 1-manifold and for each $k < \nu$, $M_k = \bigcup_{i=1}^k B_i$ is a compact connected surface such that if $k+1 < \nu$, then $\partial M_k \cap \partial B_{k+1}$ is a compact 1-manifold, and for any compact set K in $M, K \cap B_i = \emptyset$ except a finite number of i. We shall construct an $h_1 \in \text{Diff}_0(M \times I, M \times \partial I, \text{ rel } M \times I)$ such that $h_1 \alpha h_1^{-1} | B_1 \times I$ is the standard reflection. For this purpose we may consider that M' =Fix($\alpha, M \times I$) meets cl($\partial B_1 - \partial M$) $\times I$ transversally in proper arcs and simple loops. Since the natural homomorphism $\pi_1(M') \rightarrow \pi_1(M \times I)$ is an isomorphism and $M \times I$ is irreducible, we can eliminate these simple loops by cellular moves. This means that there is an $h'_1 \in \text{Diff}_0(M \times I, \text{ rel}\,\partial(M \times I))$ with $h'_1M' \cap B_1 \times I$ We may consider that $h'_1 \alpha h'_1^{-1} \operatorname{cl}(\partial B_1 - \partial M) \times [-1, 0)$ meets $=B_1 \times 0.$ $cl(\partial B_1 - \partial M) \times (0, 1]$ transversally in proper arcs and simple loops. We can eliminate them by cellular moves, so that we have an $h_1' \in \text{Diff}_0(M \times I, M \times \partial I,$ Thus, $h_1' h_1'$ gives a desired h_1 . Applying the same argument to $(cl(M-B_1) \times I, I)$ $B_2 \times I$, $h_1 \alpha h_1^{-1}$ in place of $(M \times I, B_1 \times I, \alpha)$ we obtain an $h_2 \in \text{Diff}_0(M \times I, \alpha)$ $M \times \partial I$, rel $\partial M \times I \cup M_1 \times I$) with $h_2 h_1 \alpha h_1^{-1} h_2^{-1} | M_2 \times I$ the standard reflection. By continuing this process, we obtain, for each k, an $h_k \in \text{Diff}_0(M \times I, M \times \partial I,$ rel $\partial M \times I \cup M_{k-1} \times I$) with $h_k \cdots h_2 h_1 \alpha h_1^{-1} h_2^{-1} \cdots h_k^{-1} | M_k \times I$ the standard reflec-

456

tion. When $\nu < +\infty$, $h_{\nu-1} \cdots h_2 h_1$ gives a desired h. Let $\nu = +\infty$. Our construction guarantees us that for each $x \in M \times I$, there is a natural number k such that $h_k \cdots h_2 h_1(x) \in M_k \times I$. Then we have a $g \in \text{Diff}(M \times I, M \times \partial I, \text{ rel } \partial M \times I)$ given by $g|M_k \times I = h_1^{-1} h_2^{-1} \cdots h_k^{-1}|M_k \times I$ for each k. We show that $g \in$ $\operatorname{Diff}_{0}(M \times I, M \times \partial I, \operatorname{rel} \partial M \times I)$. Then g^{-1} gives a desired h. For each k, we take a path $\tilde{h}_k(t), 0 \le t \le 1$, in Diff $(M \times I, M \times \partial I, \text{rel } \partial M \times I \cup M_{k-1} \times I)$ with $\tilde{h}_k(t) = \operatorname{id}_{M \times I} (0 \le t \le 1 - 1/k) \text{ and } \tilde{h}_k(1) = h_k^{-1}$. For each t with $0 \le t < 1$, there is a natural number k such that $t \leq 1-1/k$. Then we define $\tilde{g}(t) = \tilde{h}_1(t)\tilde{h}_2(t) \cdots \tilde{h}_k(t)$, which is a well-defined continuous function from [0, 1) to $\text{Diff}(M \times I, M \times \partial I,$ rel $\partial M \times I$) with $\tilde{g}(0) = \operatorname{id}_{M \times I}$. To see that $g \in \operatorname{Diff}_0(M \times I, M \times \partial I, \operatorname{rel} \partial M \times I)$, it suffices to show that $\lim_{t\to 1^{-0}} \tilde{g}(t) = g$ in $\text{Diff}(M \times I, M \times \partial I, \text{ rel } \partial M \times I)$. Take any compact set $K \subset M \times I$ and any open set $U \subset M \times I$ with $g(K) \subset U$. Then $K \subset M_k \times I$ and $g \mid K = h_1^{-1} h_2^{-1} \cdots h_k^{-1} \mid K$ for some k. We find a small positive number δ such that $\tilde{h}_1(t)\tilde{h}_2(t)\cdots\tilde{h}_k(t)(K) \subset U$ for all t with $1-\delta < t < 1$. Since $\tilde{h}_i(t)|K = \operatorname{id}_K$ for all $i \ge k+1$, we see that $\tilde{g}(t)(K) \subset U$ for all t with $1 - \delta < t < 1$. Hence $\lim_{t \to 1^{-0}} \tilde{g}(t) = g$ in Diff $(M \times I, M \times \partial I, \text{rel } \partial M \times I)$. This completes the proof of Lemma 2.9.

3. The Kinoshita/Terasaka 11-crossing knot and the existence of essential imitations

Let K be an (m-2)-knot in S^m . If (S^m, K^*) is an imitation of (S^m, K) , then K^* is called a *knot imitation* of K (More generally, when K is a link, K^* is called a *link imitation* of K). The first example of an essential imitation has been suggested by a property of the Kinoshita/Terasaka 11-crossing knot, k_{KT} , in [K/T], which we draw in Fig. 1. Fig. 2 shows a 2-knot K in $R^4 = S^4 - \{\infty\}$ with an involution α_K on (S^4, K) such that $\operatorname{Fix}(\alpha_K, (S^4, K)) \cong (S^3, k_{KT})$. It is known that this 2-knot K is trivial, i.e., bounds a 3-disk in S^4 [For example, this follows from a result of Marumoto [Mar], because K is a ribbon 2-knot of 1-fusion and $\pi_1(S^4-K)\cong Z$]. Note that K bounds an α_K -invariant 3-manifold V in S^4 . Take an α_K -invariant normal disk bundle T(K) of K in S^4 so that there is a diffeomorphism $f: (K \times [0, 1], K \times 0) \cong (V \cap T(K), K)$. Then $f(K \times 1)$ bounds a 3-disk in S^4 -Int T(K) by an argument of Gluck [G, 1]. This enables

Fig. 1

us to find two disjoint trivial (4,2)-disk pairs (D_i^4, D_i^2) , $i = \pm 1$, in (S^4, K) with $\alpha_{K}(D_{1}^{4}, D_{1}^{2}) = (D_{-1}^{4}, D_{-1}^{2})$ such that $(S^{4} - (\operatorname{Int} D_{1}^{4} \cup \operatorname{Int} D_{-1}^{4}), K - (\operatorname{Int} D_{1}^{2} \subset \operatorname{Int} D_{-1}^{2}))$ is diffeomorphic to $(S^3, k_0) \times I$ with k_0 a trivial knot. Then α_{κ} defines a reflection α in $(S^3, k_0) \times I$ with $Fix(\alpha, (S^3, k_0) \times I) \cong (S^3, k_{KT})$ and we see that k_{KT} is a knot imitation of k_0 . By Properties of I, II, IV, the Alexander ploynomial of any knot imitation of a trivial knot must be trivial. Hence any non-trivial knot with up to 10 crossings is no knot imitation of a trivial knot (cf. [B/Z]). That is, k_{KT} is a knot with the smallest crossing number in the class of all knot imitations of a trivial knot. Using a tangle version of the fact that k_{KT} is a knot imitation of a trivial knot, Nakanishi [N] proved, in our terminology, that every link in S^3 has, as a normal link imitation, a prime link (and a hyperbolic link by [So], [Kan]). In a forthcoming paper [Ka, 2], we shall propose a notion finer than a normal imitation, which we call an almost identical imitation, and show the existence of almost identical imitations with hyperbolic exteriors for any (3, 1)-manifold pair in a reasonable large class including all links in S^3 . In this section, by making use of an imitation map $q: (S^3, k_{KT}) \rightarrow (S^3, k_0)$, we shall observe the following weak but general assertion (which contrasts with Corollary 2.5):

Proposition 3.1. For any (m, l)-manifold pair (M, L) with $m \ge 3$, there are infinitely many (up to conjugations) essential normal imitations (M^*, L^*) of (M, L).

Proof. By the uniqueness of α -invariant tubular neighborhoods of $k_0 \times I$ in $S^3 \times I$, we may consider that $\alpha \mid T(k_0) \times I$ is the standard reflection for a tubular neighborhood $T(k_0)$ of k_0 in S^3 . Let $S^3(k_{KT}; 1/d)$ be the Dehn surgery manifold of S³ along k_{KT} with coefficient 1/d. Then any imitation map $q: (S^3, k_{KT}) \rightarrow$ (S^3, k_0) associated with this reflection α in $(S^3, k_0) \times I$ induces an imitation map $q_d: S^3(k_{KT}; 1/d) \rightarrow S^3$, since the Dehn surgery manifold of S^3 along k_0 with coefficient 1/d is again S³. By Thurston's hyperbolization theorem [T, 1], k_{KT} is a hyperbolic knot. Then by Thurston's argument on hyperbolic Dehn surgery (cf. [T, 1], [T, 2]), there is a positive integer d^* such that $S^3(k_{KT}; 1/d)$ is hyperbolic with Vol $S^{3}(k_{KT}; 1/d) < \text{Vol}(S^{3}-k_{KT})$ for all d with $|d| \ge d^{*}$ and $\sup_{|d| \ge d^*} \operatorname{Vol} S^3(k_{KT}; 1/d) = \operatorname{Vol}(S^3 - k_{KT}). \text{ Hence we have infinitely many imitation}$ maps $\bar{q}_i: \bar{S}_i^3 \to S^3$ $(i=1, 2, 3, \cdots)$ such that \bar{S}_i^3 are hyperbolic manifolds with different volumes. Let $G_i = \pi_i(\bar{S}_i^3)$. By Mostow rigidity (cf. [T, 1]), any two of G_i , $i=1, 2, 3, \dots$, are not isomorphic. Since $\alpha \mid T(k_0) \times I$ was the standard reflection, we may consider that \bar{q}_i induces an imitation map $D_i^3 \rightarrow D^3$ (also denoted by \overline{q}_i) for a 3-manifold \overline{D}_i^3 , obtained from \overline{S}_i^3 by removing an open 3-disk. Since $\text{Diff}_0(D^3, \text{ rel } \partial D^3) = \text{Diff}(D^3, \text{ rel } \partial D^3)$, we see from Lemma 2.2 that $\bar{q}_i: \bar{D}_i^3 \to D^3$ is normal for all *i*. Clearly, $\pi_1(\bar{D}_i^3) \simeq G_i$. Let $m \ge 4$. Assume that there is a normal imitation map \bar{q}_i^{m-1} : $\bar{D}_i^{m-1} \rightarrow D^{m-1}$ with $\pi_1(\bar{D}_i^{m-1}) \simeq G_i$. Regard S^m as a union $D^{m-1} \times S^1 \cup S^{m-2} \times D^2$. Then $\overline{q}_i^{m-1} : \overline{D}_i^{m-1} \to D^{m-1}$ induces a normal

imitation map $\overline{q}_i^m : \overline{D}_i^m = \overline{D}_i^{m-1} \times S^1 \cup S^{m-2} \times D^2 - \operatorname{Int} D_0^m \to D^{m-1} \times S^1 \cup S^{m-2} \times D^{m-1}$ $D^2 - \operatorname{Int} D_0^m \simeq D^m$ for an *m*-disk $D_0^m \subset \operatorname{Int} S^{m-2} \times D^2$. Then $\pi_1(\overline{D}_i^m) \simeq G_i$. Thus, we have a normal imitation map $\bar{q}_i^m: \bar{D}_i^m \to D^m$ with $\pi_1(\bar{D}_i^m) \simeq G_i$ for all $m \ge 3$ and all *i*. To complete the proof, we choose an *m*-disk D^m in Int (M-L). Replacing D^m by \overline{D}_i^m , we obtain from (M, L) a normal imitation (M_i^*, L_i^*) of (M, L) with imitation map q_i^M defined by \overline{q}_i^m and the identity on $M - \text{Int } D^m$. Suppose that q_i^M and q_j^M are conjugate for some i, j with $i \neq j$. Take the universal covering space $\widetilde{M-L}$ of M-L. By Properties I, IV, q_i^M and q_j^M lift conjugate imitation maps $\widetilde{q}_i^{M-L}: \widetilde{M_i^* - L_i^*} \to \widetilde{M - L}$ and $\widetilde{q}_j^{M-L}: \widetilde{M_j^* - L_j^*} \to \widetilde{M - L}$. Note that $\widetilde{M_i^* - L_i^*}$ (or $M_i^* - L_i^*$, respectively) has just one non-simply connected component, whose fundamental group is isomrophic to a free product of copies of G_i (or G_j , respectively). Thus, a free product of some copies of G_i must be isomorphic to a free product of some copies of G_i . Since G_i and G_j are non-isomorphic indecomposable groups ($\cong Z$), it follows from the Kurosh Subgroup Theorem (cf. [L/S]) that G_i is isomorphic to a proper subgroup of G_j and G_j is isomorphic to a proper subgroup of G_i . Thus, G_i is isomorphic to a subgroup N_i of G_i of index $r_i \ge 2$. Let \overline{S}_i^3 be a covering space of \overline{S}_i^3 with $\pi_1(\overline{S}_i^3) = N_i$. Since \overline{S}_i^3 and \overline{S}_i^3 are $K(\pi, 1)$ -spaces and $G_i \simeq N_i$, \overline{S}_i^3 is homotopy equivalent to \overline{S}_i^3 . In particular, $H_3(\bar{S}_i^3) \simeq H_3(\bar{S}_i^3) \simeq Z$. This means that $r_i < +\infty$ and \bar{S}_i^2 is a hyperbolic 3-manifold with Vol $\overline{S}_i^3 = r_i$ Vol \overline{S}_i^3 . By Mostow rigidity (cf. [T, 1]), Vol $\overline{S}_i^3 =$ Vol \bar{S}_i^3 . Hence $r_i = 1$, a contradiction. Therefore, any two of q_i^M , $i = 1, 2, 3, \dots$, are not conjugate. This completes the proof.

4. Remarks on imitations of 4-manifolds

In a forthcoming paper[Ka, 2], we shall show that every closed connected oriented 3-manifold has, as a normal imitation, a hyperbolic 3-manifold (cf. [Ka, 0], [Ka, 1]). The following remark answers in part a question asking whether an analogous assertion holds in dimension 4:

Proposition 4.1. Let M be a closed 4-manifold. If there is an imitation map $q: M^* \rightarrow M$ with M^* negatively (or non-positively, respectively) curved, then Euler characteristic $\chi(M)$ of M is posoitive (or non-negative, respectively).

Proof. By Chern's result [Ch], $\chi(M^*) > 0$ (or ≥ 0 , respectively). By Property II, $\chi(M^*) = \chi(M)$. Hence $\chi(M) > 0$ (or ≥ 0 , respectively), completing the proof.

For example, $S^1 \times S^3 \# S^1 \times S^3$ can not have as an imitation any non-positively curved 4-manifold. However, the following question is unanswerable:

QUESTION. Does what non-aspherical closed 4-manifold M have an

aspherical 4-manifold as an imitation? (Is the condition $\chi(M) \ge 0$ needed here?)

Next, we consider any exotic 4-space \tilde{R}^4 , i.e., any smooth open 4-manifold, homeomorphic but not diffeomorphic to R^4 (cf. Gompf [G]).

Proposition 4.2. \tilde{R}^4 is a normal imitation of R^4 .

Proof (based on a suggestion by Y. Matsumoto). Note that there is a diffeomorphism $f: \tilde{R}^4 \times \operatorname{Int} I \cong R^4 \times \operatorname{Int} I$. For a point $x_0 \in \tilde{R}^4$, we have a diffeomorphism $g: (R^4 \times \operatorname{Int} I, f(x_0 \times \operatorname{Int} I)) \cong (R^4, 0) \times \operatorname{Int} I$. Let r be the standard reflection in $\tilde{R}^4 \times I$ and $\alpha = gf(r \mid \tilde{R}^4 \times \operatorname{Int} I) f^{-1}g^{-1}$. Then α is an involution on $(R^4, 0) \times \operatorname{Int} I$ with $\operatorname{Fix}(\alpha, R^4 \times \operatorname{Int} I) = gf(\tilde{R}^4 \times 0)$. For an open 4-ball neighborhood V of 0 in R^4 , we have an $h \in \operatorname{Diff}_0(R^4 \times \operatorname{Int} I)$ such that $\alpha^h = h\alpha h^{-1}$ acts on $V \times \operatorname{Int} I$ by $\alpha^k(x, t) = (x, -t)$ for all $(x, t) \in V \times \operatorname{Int} I$, by using the uniqueness of tubular neighborhoods. The action α^h on $R^4 \times \operatorname{Int} I$ extends to a smooth action α^h on the smooth manifold $X = R^4 \times \operatorname{Int} I \cup V \times I$ with boundary $V \times \partial I$. Since X is diffeomorphic to $R^4 \times I$ and $\operatorname{Fix}(\alpha_h^+, X) = hgf(\tilde{R}^4 \times 0)$, we have a reflector $\phi: \tilde{R}^4 \to R^4 \times I$. Hence \tilde{R}^4 is an imitation of R^4 . By Corollary 2.3, all imitations of R^4 are pure and hence normal. This completes the proof.

REMARK 4.3. Every (smooth) homology 4-sphere \overline{S}^4 is a normal imitation of S^4 . In fact, it is well-known that \overline{S}^4 is the boundary of a smooth contractible 5-manifold W and the double DW is diffeomorphic to S^5 . This means that there is a reflector $\overline{S}^4 \rightarrow S^4 \times I$ and \overline{S}^4 is an imitation of S^4 , which is pure and hence normal by Corollary 2.3.

REMARK 4.4. Every exotic *n*-sphere \tilde{S}^n $(n \ge 7)$ is no imitation of S^n . In fact, if \tilde{S}^n is an imitation of S^n , then \tilde{S}^n is *h*-cobordant to S^n by Lemma 1.1. By the *h*-cobordism theorem [Mi, 1], \tilde{S}^n is diffeomorphic to S^n , a contradiction.

5. Imitations of compact *m*-manifolds with $m \ge 5$ and the Whitehead torsion invariant

Let M be a compact connected oriented *m*-manifold, and \tilde{M} be the universal covering space of M. Let $q: M^* \to M$ be an imitation map, and $\tilde{q}: \tilde{M}^* \to \tilde{M}$ be the lift of q. By Properties IV, II, \tilde{q} induces a homology isomorphism. By Milnor's remark [Mi, 2; Remark 2 (p. 387)], we can define the torsion $\tau(q) \in Wh \pi_1(M)$ to be the torsion $\tau(M_q, M^*) \in Wh \pi_1(M_q)$ for the mapping cylinder M_q of q under the natural identification $Wh \pi_1(M_q) \cong Wh \pi_1(M)$. We call this torsion the *torsion of* the *imitation map* $q: M^* \to M$. Note the fq $(f \in Diff M)$ is also an imitation map.

Lemma 5.1. If two imitation maps $q: M^* \rightarrow M$, $q: M^{**} \rightarrow M$ are conjugate, then we have $\tau(fq) = \tau(q')$ for an $f \in \text{Diff } M$.

IMITATION THEORY

Proof. There are reflectors $\phi: M^* \to M \times I$, $\phi': M^{**} \to M \times I$ and an $h \in \text{Diff}(M \times I, M \times 1, M \times (-1))$ with $p_1 \phi = q$, $p_1 \phi' = q'$ and $h \phi M^* = \phi' M^{**}$. Let $\tilde{q}: \tilde{M}^* \to \tilde{M} \times I \to \tilde{M}$ be the lift of $q: M^* \to M \times I \to M$. Since $\tilde{\phi}$ and \tilde{p}_1 induce homology isomorphisms, we can define the torsions $\tau(\phi) \in \text{Wh } \pi_1(M \times I)$ and $\tau(p_1) \in \text{Wh } \pi_1(M)$, with the identity $\tau(q) = p_{1*}\tau(\phi) + \tau(p_1)$. But, $\tau(p_1) = 0$, so that $\tau(q) = p_{1*}\tau(\phi) = p_{1*}\tau(M \times I, \phi M^*)$. Similarly, $\tau(q') = p_{1*}\tau(M \times I, \phi' M^{**})$. Let $f \in \text{Diff } M$ be given by $h \mid M \times 1 \in \text{Diff } M \times 1$. Then $\tau(q') = p_{1*}h_*\tau(M \times I, \phi M^*) = f_*p_{1*}\tau(M \times I, \phi M^*) = f_*\tau(q) = \tau(fq)$. This completes the proof.

The following is direct:

Corollary 5.2. If an imitation map $q: M^* \rightarrow M$ is inessential, then $\tau(q) = 0$.

Let $\phi: M^* \to M \times I$ be a reflector with $p_1 \phi = q$. By Lemmas 1.1, 1.2, the lift $(\tilde{W}_+; \tilde{M} \times 1, \phi \tilde{M}^*)$ of the triad $(W_+; M \times 1, \phi M^*)$ to the universal covering space \tilde{W}_+ of W_+ gives a homology cobordism. Hence the torsions $\tau(W_+, M \times 1)$, $\tau(W_+, \phi M^*) \in Wh \pi_1(W_+)$ are also defined. Let $p_{\pm} = p_1 | W_{\pm} : W_{\pm} \to M$. By Lemma 1.1, we have $p_{\pm *} : Wh \pi_1(W_{\pm}) \cong Wh \pi_1(M)$.

Lemma 5.3. Assume that an imitation $q: M^* \to M$ is ∂ -diffeomorphic, that is, $q \mid \partial M^*: \partial M^* \to \partial M$ is a diffeomorphism if $\partial M \neq \emptyset$. Then for any reflector $\phi: M^* \to M \times I$ with $p_1 \phi = q$, we have $\tau(q) = -2p_{+*}\tau(W_+, M \times 1)$ and $\overline{\tau}(W_+, M \times 1) = (-1)^{m+1}\tau(W_+, M \times 1)$, where $\overline{\tau}$ denotes the conjugate of τ .

The following is direct from Lemmas 5.1 and 5.3:

Corollary 5.4. If an imitation map $q: M^* \to M$ is conjugate to a ∂ -diffeomorphic imitation map $q': M^{**} \to M$, then there is an element $\tau \in Wh \pi_1(M)$ such that $\tau(q) = -2\tau$ and $\overline{\tau} = (-1)^{m+1}\tau$.

Proof of Lemma 5.3. Using the lift of a collar of ϕM^* in $M \times I$ to $\tilde{M} \times I$, we have $\tau(q) = p_{1*}\tau(M \times I, \phi M^*) = p_{+*}\tau(W_+, \phi M^*) + p_{-*}\tau(W_-, \phi M^*)$. By Lemma 1.1(1), $p_{+*}\tau(W_+, \phi M^*) = p_{-*}\tau(W_-, \phi M^*)$. Hence $\tau(q) = 2p_{+*}\tau(W_+, \phi M^*)$. When $\partial M \neq \emptyset$, note that $(\partial M \times I, \phi(\partial M^*))$ is diffeomorphic to $(\partial M \times I, \partial M \times 0)$. Let $(W_+^{\sigma}; \phi M^{*\sigma}, M_1^{\sigma})$ be a triangulation of $(W_+; \phi M^*, M_1)$ with $M_1 = \partial W_+ - \text{Int } \phi M^*$ and $(W_+^{\delta}; \phi M^{*\delta}, M_1^{\delta})$ be a dual cell division. The Reidemeister duality between the chain complexes $C_{\mathfrak{q}}(\tilde{W}_+^{\sigma}, \tilde{\phi}\tilde{M}^{*\sigma})$ and $C_{\mathfrak{q}}(\tilde{W}_+^{\delta}, \tilde{M}_1^{\delta})$ (cf. [Mi, 3]) implies the identity $\tau(W_+, \phi M^*) = (-1)^m \overline{\tau}(W_+, M_1) = (-1)^m \overline{\tau}(W_+, M_1)$ $M \times 1)$ (cf. [Mi, 2]). Hence

$$\tau(q) = (-1)^m 2p_{+*} \overline{\tau}(W_+, M \times 1)$$

and

$$p_{1*}\tau(M \times I, W_{+}) = p_{-*}\tau(W_{-}, \phi M^{*}) = p_{+*}\tau(W_{+}, \phi M^{*})$$

= $(-1)^{m} p_{+*}\overline{\tau}(W_{+}, M \times 1)$.

On the other hand, by the short exact sequence $0 \to C_{\sharp}(\tilde{W}_+, \tilde{M} \times 1) \to C_{\sharp}(\tilde{M} \times I, \tilde{M} \times 1) \to C_{\sharp}(\tilde{M} \times I, \tilde{W}_+) \to 0$ under a triangulation of $(M \times I, W_+, M \times 1)$, we have

$$0 = p_{1*}\tau(M \times I, M \times 1) = p_{+*}\tau(W_+, M \times 1) + p_{1*}\tau(M \times I, W_+).$$

That is,

$$p_{1*\tau}(M \times I, W_{+}) = -p_{+*\tau}(W_{+}, M \times 1)$$
.

Therefore, $p_{+*}\tau(W_+, M \times 1) = (-1)^{m+1}p_{+*}\overline{\tau}(W_+, M \times 1)$, that is, $\tau(W_+, M \times 1) = (-1)^{m+1}\overline{\tau}(W_+, M \times 1)$ and $\tau(q) = -2p_{+*}\tau(W_+, M \times 1)$. This completes the proof.

It follows from Properties II, IV that any imitation map $q: M^* \rightarrow M$ inducing an isomorphism $q_{\sharp}: \pi_1(M^*) \simeq \pi_1(M)$ is a homotopy equivalence. From now on, we shall consider a homotopy equivalent ∂ -diffeomorphic imitation map $q: M^* \rightarrow M$ with $m \ge 5$. Our main tool is the (relative) *s*-cobordism theory due to Barden/Mazur/Stallings (cf. [Mi, 2]).

Theorem 5.5. For $m \ge 5$ we have the following:

(1) For every element $\tau \in Wh \pi_1(M)$ with $\overline{\tau} = (-1)^{m+1}\tau$, there is a homotopy equivalent ∂ -diffeomorphic imitation map $q: M^* \to M$ with $\tau(q) = -2\tau$,

(2) Assume that $Wh \pi_1(M)$ is 2-torsion-free. Then two homotopy equivalent ∂ -diffeomorphic imitation maps $q: M^* \to M$, $q': M^{**} \to M$ are conjugate if and only if we have $\tau(fq) = \tau(q')$ for an $f \in \text{Diff } M$.

Corollary 5.6. Assume that $m \ge 5$ and $Wh \pi_1(M)$ is 2-torsion-free. Then a homotopy equivalent ∂ -diffeomorphic imitation map $q: M^* \rightarrow M$ is inessential if and only if $\tau(q)=0$.

Proof of Theorem 5.5. To see (1), note that there is a relative h-cobordism $(W; M, M^*)$ with $\tau(W, M) = \tau$. Since $\tau + (-1)^m \overline{\tau} = 0$, the double of W pasting two copies of M^* is a product (cf. [Mi, 2]). Hence we obtain a homotopy equivalent ∂ -diffeomorphic imitation map $q: M^* \rightarrow M$ with $\tau(q) = -2\tau$, proving (1). Next, we show the 'if' part of (2). (The 'only if' part follows from Lemma 5.1.) For this purpose, we may assume that $f = \operatorname{id}_M$. Let $\phi: M^* \to M \times I$, $\phi': M^{**} \to M \times I$. $M \times I$ be reflectors with $p_1 \phi = q$, $p_1 \phi' = q'$. The triads $(W_+; M \times 1, \phi M^*)$ and $(W'_+; M \times 1, \phi' M^{**})$ (obtained from $M \times I$ by splitting along ϕM^* and $\phi' M^{**}$, respectively) are relative h-cobordisms, because q, q' are homotopy equivalent ∂ -diffeomorphic imitation maps. By Lemma 5.3, $\tau(q) = -2p_{+*}\tau(W_+, M \times 1)$ and $\tau(q') = -2p'_{+*}\tau(W'_{+}, M \times 1)$ (where $p'_{+} = p_1 | W'_{+}: W'_{+} \to M$). Since Wh $\pi_1(M)$ is 2-torsion-free and $\tau(q) = \tau(q')$, we have $p_{+*}\tau(W_+, M \times 1) =$ $p'_{+*}\tau(W'_{+}, M \times 1)$. By [Mi, 2], there is a diffeomorphism $g: W_{+} \cong W'_{+}$ such that $g|M \times 1 = id_{M \times 1}$ and $g(\phi M^*) = \phi' M^{**}$. By Lemma 1.1 (1), we can construct $\vec{g} \in \text{Diff}(M \times I, M \times 1, M \times (-1))$ with $\vec{g}(\phi M^*) = \phi' M^{**}$. Thus, q and q' are conjugate. This completes the proof.

EXAMPLE 5.7. Let C_5 be a cyclic group of order 5. Let t be an automorphism of C_5 sending each element to its inverse, and G be the HNN group of C_5 by t. Note that $[G, G] = C_5$ and G is the 2-knot group of the 2-twist spun figure eight knot and hence the group of an (m-2)-knot K in S^m for all $m \ge 5$. Wh C_5 is known to be an infinite cyclic group with a generator represented by $\tau = x + \bar{x} - 1$ for a generator x of C_5 (cf. [Mi, 2]). Since t induces the identity on Wh C_5 , Wh C_5 is imbedded in Wh G by a monomorphism induced from the inclusion $C_5 \subset G$ (cf. Farrell/Hsiang[F/H]). Let *m* be odd ≥ 5 . Then $\overline{\tau} =$ $(-1)^{m+1}\tau$. Applying Theorem 5.5 (1) to the compact exterior $E^m = S - \text{Int } N(K)$ with N(K) a normal disk bundle of K in S^m , we have a homotopy equivalent ∂ -diffeomorphic imitation map $q_n^E: E_n^* \to E$ with $\tau(q_n^E) = -2n\tau$ for all non-negative integers n. Note that the adjunction space $E_n^* \cup N(K)$ identifying ∂E_n^* with $\partial N(K)$ by the diffeomorphism $q_n^E | \partial E_n^* : \partial E_n^* \simeq \partial N(K)$ is a homotopy *m*-sphere \tilde{S}^m and q_n^E extends to an imitation map $\tilde{q}_n: (\tilde{S}^m, \tilde{K}_n^*) \to (S^m, K)$. By Lemma 1.1, \tilde{S}^{m} is h-cobordant to S^{m} , so that \tilde{S}^{m} is diffeomorphic to S^{m} . Thus, we have an imitation map $q_n: (S^m, K_n^*) \rightarrow (S^m, K)$ such that $q_n^{-1}N(K) = N(K_n^*)$ is a normal disk bundle of K_n^* in S^m and $q_n | N(K_n^*), K_n^* \rangle$: $(N(K_n^*), K_n^*) \rightarrow (N(K), K)$ is a diffeomorphism and S^m -Int $N(K^u_*) = E^*_n$ and $q_n | E^*_n = q^E_n : E^*_n \to E$, which is a homotopy equivalent ∂ -diffeomorphic imitation map.

Assertion 5.8. Any two of q_0 , q_1 , q_2 , q_3 , \cdots are not conjugate.

In fact, if q_n and q_s are conjugate, then q_n^E and q_s^E are conjugate. By Lemma 5.1, there is an $f \in \text{Diff } E$ with $\tau(q_s^E) = \tau(fq_n^E)$. But, f induces an automorphism f_* of Wh G with f_* Wh $C_5 =$ Wh C_5 . Since $\tau(q_s^E) = -2s\tau$ and $\tau(fq_n^E) = f_*(\tau(q_n^E)) = \pm 2n\tau$ and $n, s \ge 0$, we see that n = s, as desired.

References

- [B/Z] G. Burde/H. Zieschang: Knots, Walter de Gruyter, 1985.
- [C] J. Cerf: Sur les Difféomorphismes dela Sphère de Dimension Trois ($\Gamma_4=0$), Lecture Notes in Math. 53, Springer-Verlag, 1968.
- [Ch] S.S. Chern: On curvature and characteristic classes of a Riemann manifold, Abh. Math. Sem. Univ. Hamburg 20 (1955), 117–126.
- [F/H] F.T. Farell/W.C. Hsiang: Manifolds with $\pi = G \times_{\alpha} T$, Amer. J. Math. 95 (1973), 813–848.
- [G] R.E. Gompf: An infinite set of exotic R⁴'s, J. Differential Geometry 21 (1985), 283-300.
- [G,1] H. Gluck: The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308-333.
- [Ha] A.E. Hatcher: A proof of the Samle conjecture, Ann. Math. 117 (1983), 553-607.
- [Kn] T. Kanenobu: Hyperbolic links with Brunnian properties, J. Math. Soc. Japan 38 (1986), 295–308.

- [Ka,0] A. Kawauchi: Hyperbolic imitations of 3-manifolds, A preliminary version, 1987 (unpublished).
- [Ka,1] A. Kawauchi: Imitations of (3,1)-dimensional manifold pairs, Sugaku 40 (1988), 193-204 (in Japanese; An English translation will appear).
- [Ka,2] A. Kawauchi: Almost identical imitations of (3,1)-dimensional manifold pairs, Osaka J. Math. (to appear).
- [K/K/S] A. Kawauchi/T. Kobayashi/M. Sakuma: On 3-manifolds with no periodic maps, Japan. J. Math. 10 (1984), 185-193.
- [K/T] S. Kinoshita/H. Terasaka: On unions of knots, Osaka Math. J. 9 (1957), 131– 153.
- [L/S] R.C. Lyndon/P.E. Schupp: Combinatorial Group Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 89, Springer-Verlag, 1977.
- [Ma] Y. Marumoto: On ribbon 2-knots of 1-fusion, Math. Sem. Notes, Kobe Univ. 5 (1977), 59-68.
- [Mi,1] J.W. Milnor: Lectures on the h-Cobordism, Princeton Univ. Press, Princeton, 1965.
- [Mi,2] J.W. Milnor: Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.
- [Mi,3] J.W. Milnor: A duality theorem for Reidemeister torsion, Ann. Math. 76 (1962), 137-147.
- [M/S] J.W. Milnor/J.D. Stasheff: Characteristic Classes, Ann. Math. Studies 76, Princeton Univ. Press, Princeton, 1974.
- [N] Y. Nakanishi: Primeness of links, Math. Sem. Notes, Kobe Univ. 9 (1981), 415-440.
- [So] T. Soma: Simple links and tangles, Tokyo J. Math. 6 (1983), 65-73.
- [Sp] E.H. Spanier: Algebraic Topology, McGraw Hill, 1966.
- [T,1] W.P. Thurston: Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.
- [T,2] W.P. Thurston: The Geometry and Topology of 3-Manifolds (preprint).

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan