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1. Introduction

In this paper, we shall mainly study sufficient conditions for divergence of
solutions of a family of singulary perturbed equations as the positive parameter
& tends to zero. In [4], J. Chaillou studied singular perturbations in Cauchy
porblems for hyperbolic operators with constant coefficients, but we shall study
singular perturbations in non-characteristic Cauchy problems for kowalewskian
operators.

Let Py(D) and P,(D) be linear differential operators of kowalewskian with
constant coefficients. Put ord P,=m and ord P,=m’. Assume that m>m’.
Let us consider the following one-parameter family of Cauchy problems:

{ (&-Py(D)+PyD)) u(x) =0, in R";

Di™ u(x)|x1=0 = t;b_,-(x'),j: Lee,m.
When the Cauchy problems (1.1) are uniquely solvable, we can set a problem
of the convergence of solutions.

Denote by /A the Cauchy data space and by ®=(¢,, -**, $,,) an element of
A. Denote by O(C"™") the set of entire functions defined in C*7'. If A=0
(€"Y)", then the Cauchy-Kowalewski theorem implies that the Cauchy problems
(1.1) are globally uniquely solvable. If A=F-YCg(R"""))", where F~* denotes
the inverse Fourier transformation, then the Cauchy problems (1.1) can be solv-

ed by the Fourier transformation.
Devide the equation of (1.1) by & and put £ *="""', where A>0. Then

{(PI(D)—!—V“'”'PZ(D))uz(), in R";

D{—lulz1=0 == ¢j:j = 1) see,m

(1.1)

(1.2)

Since the convergence or divergence of solutions of (1.1) when &} 0 is equi-
valent to that of (1.2) when \ 1 oo, we shall deal with (1.2) instead of (1.1).
The reduced problem of (1.2) is

{PZ(D)u=O, in R";

1.3 .
( ) D{-lulx1=0 = ¢j)j = 13 °tty m’ .
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We shall introduce the notion of “‘admissibility” of singular perturbations
in Cauchy problems. Let U’ be a domain of R} and & be a positive number.

DrrintTioN 1.1. The Cauchy problems (1.1) in [—3§, 8]X U’ with the
Cauchy data space A are said to be admissible as a singular perturbation with
respect to a given Cauchy problem (1.3) if for every Cauchy data @ in A, the
solutions of (1.1) converge to that of (1.3) in C((—8, 8)X U’). The unilateral
Cauchy problems (1.1) in [0, 8] X U’ (resp. in [—8, 0] X U’) with the Cauchy data
space A are said to be admissible as a singular perturbation with respect to a
given unilateral Cauchy problem (1.3) if for every Cauchy data @ in 4, the
solutions of (1.1) converge to that of (1.3) in C((0, 8) X U") (resp. in C((—3, 0) X
U").

Denote the characteristic roots of P,(£)=0 with respect to & by o;(&’),
j=1, e, m".

AssumpTION 1.2. There exists a point £ in R*™! such that for 1<j<
R<m'

a;(§5) F ou(§7) -

RemMARk. If Assumption 1.2 is satisfied, then there exists an open ball
By=DB(r,; £t) of radius 7, with the centre £§ such that all o;(£’) are simple on
the closure of B,.

Let p,, be the coefficient of £ in P, and p,, be that of £ in P,. Put
P=D20[Pr,0-

ConprtiON 1.3. (m—m'=2 and p<<0) or (m—m’'=1 and p is real).

Let Assumption 1.2 be satisfied and B, be the open ball in Remark to
Assumption 1.2. In Theorem in §3, we shall show that Condition 1.3 is neces-
sary and sufficient for the admissibility of the Cauchy problems (1.1) in R"
with F~Y(C7(B,))" and that Condition 1.3 is necessary for the admissibility of
the Cauchy problems (1.1) in [—8, 8] X U’ with wider Cauchy data spaces.
We shall also study conditions for the admissibility of the unilateral Cauchy
problems (1.1) in Rt ={x&R"; x,>0} or in R:2={xcR"; x,<<0}.

In [2], we have already studied that if the solutions #, of (1.1) converge
in C(R,,; 9'(R}7")), then the limit satisfies (1.3). On this point, when Condition
1.3 is not satisfied, we shall show that the convergence in C(R") of the solutions #u,
of (1.1) in R” for a data ® in F~Y(C§(B,))" implies that ¢,.,,(€’) is represented
as a linear combination of ¢,(&"), j=1, ---,m’, where . denotes the Fourier
transformation.

In case of L*theory, K. Uchiyama [6] studied Cauchy problems for the
future of hyperbolic equations with variable coefficients when the conditions of
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Case 2 or 4 in Theorem in §3 are satisfied under Assumption 1.2 for By=R*".

2. Preliminaries

We shall state asymptotic behaviour of determinants appearing in the ex-
pression of solutions of the Cauchy problems. Since these have been proven
essentially in [1], the proofs will be omitted.

Let P,(£) and P,(&) be polynomials of £ R" with constant coefficients as
follows:

(2.1) Py(&) = ET+ 30750 pum-E) EL
2.2) PyE) = pEV + 055" pow- (") EL .

Here p, ;(£) and p, ;(£') are polynomials of £’ with their orders not higher than
jand p==0. For a large positive parameter A, we put

(23) Py(E) = Py(E)+A" """ - Py(%) .
By replacing A | p| “Y™="") for A in (2.3), we may assume that
p= —expif, 0=60<2r.

Denote the characteristic roots of P,(£)=0 with respect to & by 7;(, &'), j=1,
--+, m and those of P,(£)=0 with respect to &, by o;(¢'), j=1, -+, m’, respectively.
We shall use the following notation:

27t

m—m'

£ = exp

il .
T.;-:gj m l,]:m'_‘_l, ...’m

® = exp i0 —, where 0 is the argument of —p.
m—m

By the same method as in Lemma 3.2, [1], we have the following:

Lemma 2.1. Let Assumption 1.2 be satisfied and B, be the open ball in
Remark to Assumption 1.2. If the suffixes {j} of the characteristic roots =;j(\, "),
j=1, -, m are properly chosen, then there exists a positive number N(B,) such
that if A>N(B,y), then v;(\, £'), j=1, -+, m satisfy the following asymptotic pro-
perties on the closure of By:
for j=1, -, m’

(2.4) (M E) = o (E) AN ()N B,
and for j=m'+1, --,m
(2.5) i\ ENN =15 O+FN o7 (BN (N ET)
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Here r;,(E") are continuous on the closure of B, and ;,(\, ') remain bounded on
the closure of B, when \ 1 oo.

NotaTiON 2.2. For complex numbers or functions 7; and ¢;, j=1, -, m
(r) - ()

(r)" o ()™
Dy = Dy(ry, *+*, Tms b1, s D)

('r:1)° (Tk-l)o 431 (Tk+1)° (7;01)0

(‘r‘1)m"1 (""k—1)m_1 ¢'m (’7.'Ie+1)m—l (".':rt)”"1

DO = DO('rn °tty Tm) =

where k=1, ---, m.

J=m'+-4(m—1)
Ao = @I'(T,/n’+1"'7',ln)m,’Do(Tr/n'+1, R T:’n)
A, = @J-m’.(_1)k—m’—1.(7;n,+1...7;_1..,;“....,;”)m’ﬂ

XDo(Tmra1y o0y Thety Thaty s Tm)y R =m'+1, ., m.
By the same method as in Lemma 2.4, [1], we have the following:

Lemma 2.3. Let @ belong to F~Y(C5(B,))" and denote by ¢ the Fourier
transform of ¢ with respect to x'. Assume that 7;(\, E'), j=1, +--, m satisfy the
asymptotic properties (2.4) and (2.5) in Lemma 2.1. Then

(2.6) 11:;1;1 Dy(11, +++y Tw)N =Dy(ay, **, o)+ Ay -
For k=1, «--, m’
(2.7) lim Dy(my, =+, w3 by - Sm)/ N
= Doy, **, w3 D1y s ) Ay .
For k=m'+1, -+, m
lim Dy(rs, =, s o -+, ) N7
= Dyris(01, s T by s Puran) A s

(2.8)

where o ., 15 a dummy variable, that is, by the definition, D,s.i(cy, ***y Cwrirs Pus
ey Poriy) 15 independent of a ;.
The convergences are uniform on the closure of B,.

Since all 74 are distinct, it implies that 4,+0 for k=0, m'+1, .-, m. We
shall use the exact values of 4,/4,,,.
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Lemma 2.4.
(2.9) Ay =6/ (— l)ml‘ Iosi<rsm-m-1(& ',—é‘ ).
For k=m’+1,,m
(2.10) A= @/ (=)t T g o —E)
(2.11) A Ay =", k=m'+1, ..., m—1.
Proof. We have

(Tt 1....,,/”)"" — §(1+'"+(m-m'—l))m’

(2.12) - exp( 27 m—m’—1) (m—m')/Z)

= exp (wi-m'(m—m’'—1)).

Since m'(m—m’'—1)=mm’ (mod 2), then (2.12)=(—1)". The Vandermonde
determinant Dy(7prs1, =+, Tw)=Dy(1, &, +++, £"~"'~1) equals the difference product
Mosi<t/smem—1(E¥ —&%). This implies (2.9).

Since (m—m’—1) (m’+1)=(m—1) (m’+1) (mod 2), it implies that

(2.13) (Thrars Thoy s Thar o)™+

— (__1)(m—1)(m'+l).g(m’+l)(m’+l—lz) .

We have

EmEe (Tmrgrs =%y Thets Thaly % Ti)
= gm—k,(l, ) Ck—ml_z) gk—m" °tty gm—m’—l)
— (tm—k, ., L-m—m'—z’ 1’ e, Cm—k—l)
= (T)In+m’—k+1’ o Ttln—ly Tyln’-d-h R Tt,n-!»m’—k) .

Multiply the jth row of Dy(Tmrs1, ***y Thoty The1, =+ Tm) by EMRGD j=2 ...,
m—m'—1. Then
- - /— - ,_
C(m E)(m—-m’=2)(m-m 1)/2'D0(7'r,n’+1, e, 7-;2__1’ Tllz+1y ery 7-"")
= o(T:n+m’—k+ly °% T:n—l, Tr,n’+1, R T"n+m’——k)

= (—1)(k_m'_1)(m-k)'Do(’r,,nul; R T:n—l) .
Since

éa(m—k)(m—m'—Z)(m—m’—l)/z — gm—k. (__ 1)(m-k)(m—m'~3)
and

(k—m'—1) (mn—k)—(m—k) (mn—m’'—3) = (m—k) (k—m+-2)
= —(m—k) (m—k—1)4-(m—k) = m—k (mod 2),
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it implies that

’ ’ 4 4
DO(Tm’+11 Sty Th=1y Thkaly °°° Tm)

=g (= 1) ke Dy(tmrs1y o0y Tmo1) -

(2.14)

The power of { in A4, is
(m'+1) (m'+1—k)+-k—m = m"*+m'+1—km’ (mod m—m')
and that of (—1) in 4, is
k—m'—1+4+(m—1) (m'+1)+m—k = mm'++2m—2m'—2 = mm’ (mod 2).

The Vandermonde determinant Dy(7mss1, ***, Tm—1) €quals the difference product

o<i<i<mm—2&" —t". Thus (2.10) is proven.
By easy calculation, (2.10) implies (2.11). [Q.E.D]

3. The admissibility of singular perturbations

First we shall show the global unique solvability of (1.2) with entire func-
tions data. For a polynomial P(§)=3}, p, &%, denote M(P)=max |p,|.
o«

Devide the equation of (1.2) by p, , and put p=p, o/p, , and replace x« | p| ~¥m=n"
for . Then we may assume that | p|=1 and P,(&) is (2.3) satisfying (2.1) and
(2.2). Put M=M(P)+M(P,). Then M(P)< """ M, for A>1. For b(£,
e EN) = 1=m EY—ET, denote b(p)=b(p, 1, ---, 1). Then b(p) is a polynomial
of order m—1 with positive coefficients. Put BZSPLZIP b(p):p ™ V. The

Cauchy-Kowalewski theorem in [5] implies that if ¢;, j=1, -+, m are analytic in
|x;] =<r,i=1, -+, n, then the formal power series solution of (1.2) converges
absolutely for sufficiently large p in

3.1) SVozl|x; | +p x| <r{l—x"""" MB|p} .

Put p=2A"""" MB and let 7 } oo, then (3.1) sweeps out the whole space for fixed
A. When r<Coo, it is difficult to check whether there exists a domain U in-
dependent of A such that every solution %, of (1.2) exists in U.

We shall use the same notation as in §2. Let Assumption 1.2 be satisfied
and B, be the open ball in Remark to Assumption 1.2. Since all o;(£") are
simple on the closure of B,, it implies that Dy(o, **+, o,’) 0 on the closure of
B,. For @ in F7(C7(B,))", denote

d(E’; Cb) = Dm’+1(‘71) Y O/l d;l’ RS} ¢A’m’+l)

and

g(E,; QD) = d(gl; qD)/Do(o'n ) a'm’) .
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Then d(£'; ®)=0 is equivalent to g(¢'; ®)=0. Denote for k=m’+1, ---m

Gy(x; @) = {j;ﬂ-F*(g(&'; @)-exp iy (E") %1)

and
G(x; @) = IIims1 Gi(x; @) IT1mr41(Gi (5 @) L™+ Gpay (x5 D)) .
Then Gy(x; @) and G(x; ®) are entire functions. Denote
UG)= {x€R"; G(x)*=0} , UG)"=U(G)NR:, and
UG)y=UG)NR-.
Assume that d(£’; @)=0. Then G40, »"; ®)==0 and (2.11) implies that

Gu(0, '3 B)FHE™ - Graa(0, s B) = 220 Fig(¢'; ) £0.
0

Thus G(x; ®)=%£0 and U(G(x; ®)) is a dense subset of R". There exists a data
@, such that d(§’; ,)=£0. For example, define ®, by

$i(x) = FHBE) oY )i =1, m,

where o,/,(£’) is a non-zero C”-function satisfying o ,/.,(§")+0 ('), j=1, -+,
m’ on the closure of B, and B(¢’) is a C7'(By)-function. Then d(£’; D,)=0.

Theorem. Let Assumption 1.2 be satisfied and B, be the open ball in Remark
to Assumption 1.2. Let the Cauchy data space be A=FCs(B,))". Put p=
D2olPro-

Case 1. The case when m—m'=3 or when m—m'=2 and p is not real or
p>0. If d(&'; ®)=£O0, then the analytic solutions u, of (1.2) diverge at every
point x in U(G(x; D)) when N\ 1 oo.

Case 2. The case when m—m'=2 and p<<0 or when m—m'=1 and p is
real, that is, the case when Condition 1.3 is satisfied. The Cauchy problems (1.2)
in R" with A is admissible with respect to (1.3).

Case 3. The case when m—m'=1 and Im p>0. The unilateral Cauchy
problems (1.2) in R with A is admissible with respect to (1.3). If d(¢'; ®)=0,
then the analytic solutions u, of (1,2) diverege at every point x in U(G(x; ®))*
when N\ 1 oo,

Case 4. The case when m—m'=1 and Im p<<0. The unilateral Cauchy
problems (1.2) in R with J is admissible with respect to (1.3). If d(&'; ®)=0,
then the analytic solutions u, of (1.2) diverege at every point x in U(G(x; D))~
when N\ 1 oo.

Proof. 'The partial Fourier transform with respect to x’ of (1.2) is
P(Dy, £ (%, £) =0 ;

3.2 ) . )
(3.2) DI (0, E) = di(ENj = 1, -y m.
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For fixed &', (3.2) is a one-parameter family of Cauchy problems of ordinary
differential equations. For @ in F~Y(C§(B,))", put

Ck(x’ £’ CI)) = Dk(le s Tms ‘ﬁl’ ) q'sm)/DO(Tl’ ) Ttn) .
The solution v,(x,, &’) of (3.2) is represented by
(3.3) (%, E') = a1 (N, E'; D) -exp iy (A, E') %y .

Put u,(x)=F"Y(v\(x;, £')). Then u, is the solution of (1.2). Lemma 2.3 im-
plies that for k=1, -+, m’

lim C,00, £ )
= Dk(a'l) tHOml §81’ oty qsm')/DO(o-b ) a'm’) ’
and for k=m’'+1, ---, m

(3.4)

(3-5) lim Cy(\, &5 @)™ = “b.g(t'; @).
Agoo Ao

Denote
M, = max {Im@r};j =m'+1, -, m} ,
M_ = min {Im @7}; j=m'+1, -, m} ,
2ni(j—m'—1)
P——

m—m

and the minimum are attained by one j or two j. It is useful for searching the
leading term to illustrate the points @rj=0¢ " -, j=m'+1, ---, m on the com-

where 7}:{""""’=ex , j=m’+1, «-, m. Both the maximum

I,

ey

et
et

Figure 1a
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Figure 1b

plex plane. For example, we illustrate the case when m—m’=4. In case of
Figure la (0<@<r), ©f® attains the minimum. In case of Figure 1b (§=r),
©¢? and O¢? attain the minimum. Thus, we have the following.
(1) If m—m'=3 or if m—m’'=2 and p=—@? is not real or p>>0, then M,>0
and M_<0.
(2) If m—m'=2 and p<<0 or if m—m’'=1 and p is real, then M,=M_=0.
(3) If m—m’'=1 and Im p=Im —8>0, then M,=M_<0.
4 If m—m'=1 and Im p=Im —O<0, then M, =M_>0.

We shall show that M_<0 and d(&'; ®)=%=0 imply that », diverge at every
point x in U(G(x; ®))*. Assume that only / attains the minimum. Fix a
point x in R}. Denote

B\, 35) = FHCUN, E'5 @)X wexp i(my(h, E)—AO7) 1),

for k=1, ---, m and j=m'+1, ---;m. Then

(3.6) () = A" eexp (INOT] #,)» 1 Ex(N, 3 1)
Lemma 2.1 implies that for k=1, «--, m’

3.7) Im (74(A, E)—AB7)) = Im ay(')—AM_+O(17Y),
for k=m’'41, -+, 1—1,141, .-, m

(3.8) Im (Ts(N, ) —AB71) = A(Im B7;—M_)+0(1),
and

3.9 Im (7;(A, £")—2AO71) = Im 7,,(E")+O(\7Y).
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Hence

A"+ lexp i(Ti(hy E)—AOT)) &y |, k=1, +o, m’
and

lexp i(mi(N, E)—AOT) x|, k= m'+1, -, m

remain bounded when A 1 oo on the closure of B, for fixed x,>0. By (3.4)
and (3.5), Lebesgue’s bounded convergence theorem implies that for k=1, ---,
I—1,141, -, m

(3.10) lim E\, x;1)=0,
foo
and
(3.11) 1'\im E(\, x5 1) = Gi(x; D).
*m
On the other hand,

A" exp iA@7] &, | =A"" -exp (—AM_ x,)

diverge for fixed x,>0. Since G,(x; ®)=*0 in U(G(x; P))*, it implies that u, (x)
diverge at every point x in U(G(x; ®))™.

Assume that / and /41 attain the minimum. Put L=Re O7},;. Then
L>0 and Re 87/=—L. Denote

K\, %5 1) = 3o i-n042,0m Ex(0y 25 1)
Then }\1&1 K\, x; 1)=0 and
u () = A" -exp (INO7] x;) - (E\(N, 5 1) +Epa(N, x5 D)+HK (N, x5 1))
Put
Au(%)) = 7 (nt-m'[(m—m"))| Lz, ,

for fixed x,>0. Then exp 2in, Lx,=¢™. Since

&ig} E (x5 14+1) = Gryy(x; 9)

Ei (0, %35 1) = Ejpy(N, x5 14+1)-exp 20N L, ,
and A4;/A;,,=t", it implies that

lim (Ey (A, %5 1) +Bria(hs 23 1))

(3.12) = Gy(x; D)+L" - Gra(; D)

- %'F“l(g(g'; D) (exp 171, (") x;+exp i7141,,(E") %,)) -
0
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Obviously, (3.12)%0 in U(G(x; ®))*. Thus u,, diverge when 7 { oo.

By the same argument, M,>0 and d(¢'; ®)=%=0 imply that u, diverge at
every point x in U(G (x; ®))~.

We shall show that M_=0 implies the admissibility of the unilateral Cauchy
problems in R%. Fix a point x in R}. Lemma 2.1 implies that for k=1, .-,

!’

m
(3.13) |exp ii(N, E') %y | =exp (—Im a,,(ff)—I—O()\.“l)) X
and for k=m’+1, .-, m

|exp iTi(N, E') %y |

(3.14) = exp (—A+Im B7i—Im 7,4(§')+O (A7) x,
<exp (—AM_—Im 7,y (£)+ONT) 2, .

Hence (3.13) and (3.14) remain bounded on B, when A 1 co. Denote

_ m’ -1 Dk(o-l’ *ty O’y $1) ) qgm'). , ’
#y(x) = 2% F [ Dl 0.0) exp toy(€ )xl] .
Then u, is the solution of (1.3). By (3.4) and (3.5), Lebesgue’s bounded con-
vergence theorem implies that

lklglo u(x) = 25 F! (1}\1:2 Ci(\, &7 @) cexp imi(h, E7) %) = u(x) .

Obviously, this convergence remains true in C(R%).

By the same argument, M, <0 implies the admissibility of the unilateral
Cauchy problems in R? and M,=M_=0 implies the admissibility of the
Cauchy problems in R". [QE.D.]

The divergent property can not be removed by any localization in x-space
and this property remains true for wider Cauchy data spaces. Thus we have
the following:

Corollary 1. Let Assumption 1.2 be satisfied and F~(C5(By,))" be naturally
included in the Cauchy data space A. Assume that for every ® in A, there exists
a unique continuous solution u, of (1.1) in [—8,8)X U’'. Then Condition 1.3 is
necessary for the admissibility of the Cauchy problems (1.1) in [—8, 81X U’ with
A with respect to (1.3).

Even when Condition 1.3 is not satisfied, there exists a data @, such that
the solutions #,(x; ®,) converge in C(R"), for example, ®;=(0, -+, 0) is a trivial
one. The proof of Theorem implies the following:

Corollary 2. Let Assumption 1.2 be satisfied and the Cauchy data space be
A=F"YCF(By))". Assume that Condition 1.3 is not satisfied. Then it is neces-
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sary for the convergence of u,(x; ®,) in C(R") that the data D,=(¢,, ***, pp)
satisfies

d(EI; q:’1) = Dm’-H(o'lr *tt 0'm’+1;$1’ HAR) (ﬁm’+l) =0.

This implies that ¢, is represented as a linear combination of $;, j=1, -+, m'.
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