Kobayashi, S. Osaka J. Math. 26 (1989), 225-228

COMPLETIONS AND MAXIMAL QUOTIENT RINGS OVER REGULAR RINGS

Dedicated to Professor Hiroyuki Tachikawa for his 60th birthday

SHIGERU KOBAYASHI

(Received March 3, 1988)

Let R be a (Von Neumann) regular ring with rank function N. Then there exists the N-metric completion \overline{R} of R with respect to N. It is well known that \overline{R} is a right and left self-injective regular ring. On the other hand, we have always the maximal right quotient ring $Q_r^{\max}(R)$ of R, which is a right self-injective regular ring.

In this paper, we are concerned with the connection between the N-metric completion of R and the maximal right quotient ring of R.

In [1, Theorem 23.17], Goodearl has shown that if for any essential right ideal I of R, N(I)=1, then $Q_r^{\max}(R)$ is embedded in \overline{R} as a subring. Under this condition, we shall show that \overline{R} is isomorphic to the maximal left quotient ring of $Q_r^{\max}(R)$.

Furthermore, we shall show the simillar result with the above result to the case that N is a pseudo-rank function.

§1. Preliminaries

Throughout of this paper, we assume that all rings are associative with identity element and all modules are unitary.

Let R be a reuglar ring. A pseudo-rank function on R is a map $N: R \rightarrow [0, 1]$ such that

(1) N(1)=1 and N(0)=0

R.

(2) $N(xy) \leq Max \{N(x), N(y)\}$, for any x, y in R

(3) N(e+f)=N(e)+N(f), for each orthogonal idempotent elements e, f of

A rank function on R is a pseudo-rank function with additional property

(4) N(x)=0 implies x=0.

If N is a pseudo-rank function on R, the the rule $\delta(x, y) = N(x-y)$ defines a pseudo-metric on R. Clearly, δ is metric if and only if N is a rank function. The completion \overline{R} of R with respect to δ is a right and left self-injective regular ring which is complete with respect to the \overline{N} -metric, where \overline{N} is the unique extension of N to \overline{R} . If N is a pseudo-rank function, then we denote that $\ker N = \{x \in R | N(x) | = 0\}$.

We set P(R) is the set of pseudo-rank functions over R. We say that N of P(R) is an extreme point of P(R) provided that N can not be expressed as a positive convex combination of two distinct points of P(R).

Let *I* be a right ideal of *R*. Then we denote that $N(I) = \sup \{N(x) | x \in I\}$. Finally, if *A* and *B* are modules, then the notation $A \subseteq_{e} B$ means that *A* is an essential submodule of *B*.

§2. Completions over regular rings

In this section, we prove the following main theorem.

Theorem 1. Let R be a regular ring with rank function N. If for any essential right ideal I of R, N(I)=1, then the completion \overline{R} of R with respect to N-metric is isomorphic to the maximal left quotient ring of the maximal right quotient ring of R.

Proof. First we shall show that there exists a ring monomorphism ψ from the maximal right quotient ring Q of R to the completion \overline{R} of R. This is proved by the same idea of [1, Theorem 21.17], but we shall give a proof for completness. Since \overline{R} is right and left-self-injective regular ring, \overline{R} is a injective right R-module. Let x be any element of \overline{R} and I is an essential right idel ideal of R such that xI=0. Then since N(I)=1, for any positive number ε , there exists an idempotent e of I such that $N(e) > 1 - \varepsilon$. Now since $x=x-xe, \ \overline{N}(x)=\overline{N}(x-xe)\leq \overline{N}(1-e)=N(1-e)<\varepsilon.$ Thus $\overline{N}(x)=0.$ Since Nis a rank function, x=0. Therefore \overline{R} is a non-singular right *R*-module. Since R is essential right submodule of Q and R is an injective right R-module, the identity map on R extends to a right R-module monomorphism $\psi: Q \rightarrow R$. We claim that ψ is a ring homomorphism. Given any elements x, y in Q, we have $yJ \subseteq R$ for some essential right ideal J of R. Then $\psi(xy)r = \psi(xyr) = \psi(x)yr =$ $\psi(x)(y)r$ for all r in J. Whence $[\psi(x)\psi(y)-\psi(xy)]J=0$. Since \overline{R} is nonsingular right R-module, we obtain that $\psi(xy) = \psi(x)\psi(y)$, so that ψ is a ring homomorphism. Next we shall show that for any essential left ideal K of $Q, N_{\rho}(K) = 1$, where N_{ρ} is an extension of N. Let K be an essential left ideal of Q. Then by [1, Lemma 9.7], there exist orthogonal idempotents e_1, e_2, \dots , such that $\sum_{n=1}^{\infty} \bigoplus Qe_n \subseteq K \subseteq Q$. We set $J = \bigoplus_{n=1}^{\infty} Q_n Q$. We claim that J is an essential right ideal of Q. If $J \cap eQ = 0$, then $J \oplus eQ \subseteq_e Q$. On the other hand, since Q is a right self-injective regular ring, there exist orthogonal idempotents e'_n , e' such $a_k e_{n_k}$ be an any element of $\bigoplus_{n=1}^{\infty} Q e_n \cap Q e'$. Since $e_n = e'_n e_n$, $e'_n = e_n e'_n$, we have that

226

 $e'e_n = e'(e'_n e_n) = 0$. Now $re'e_{n_i} = a_i e_{n_i}$, so re' = 0, as claimed. Thus e' = 0, so that e=0. This shows that $\bigoplus_{n=1}^{\infty} e_n Q$ is an essential right ideal in Q. Therefore by assumption, $N_{q}(I)=1$, which is concluded to that $N_{q}(K)=1$. In this case, the maximal left quotient ring of Q is embedded in \overline{R} as a subring. Now in order to prove this Theorem, it suffices to show that R is a left essential extension of Q. Let x be any element of \overline{R} . Since \overline{R} is complete, for any positive number ε , there exists an element x' of Q such that $\overline{N}(x-x') < \varepsilon/2$. We put x-x'=y, where y is an element of \overline{R} . With respect to y, there exists an element x_1 of Q such that $\overline{N}(y-x_1) < \varepsilon/2 \cdot 3$. Put $y-x_1=y_1$. In general, thre there exist elements x_n of Q such that $\overline{N}(y_{n-1}-x_n) < \varepsilon/2 \cdot 3^n$. We put $y_{n-1}-x_n = y_n$. Now we have that $\overline{N}(y - \sum_{i=1}^{n} x_i) < \varepsilon/2 \cdot 3^n$. Thus $\sum x_i$ is a Cauchy sequence. Since \overline{R} is complete, $\sum_{i=1}^{\infty} x_i = y$. Furthermore, $\sum_{i=1}^{\infty} \overline{N}(x_i) < \overline{N}(y) + 2\{\overline{N}(y) + \overline{N}(y_2) + \cdots\} < 0$ $\varepsilon/2 + \sum_{n=1}^{\infty} \varepsilon/3^n = \varepsilon/2 + \varepsilon/2 = \varepsilon$. Let *I* be a right ideal generated by x', x_1, \cdots . Since $\sum \overline{N}(x_i) < \varepsilon$, $\overline{N}(I) < \varepsilon$. On the other hand, since $\sum_{i=1}^{\infty} x_i = y \in \overline{R}$, y is in \overline{I} , where \overline{I} is the N_Q-closure of I. Let e be an idempotent element of Q such that $I \subseteq_{e}(1-e)Q$, then eI=0. And since $I \oplus eQ \subseteq_{e}Q$, $N_{Q}(I \oplus eQ) = N_{Q}(I) + N_{Q}(e) = 1$. Hence $N_{\varrho}(e) > 1 - \mathcal{E}$. Furthermore since $l_{\overline{R}}(I) = l_{\overline{R}}(\overline{I}), e\overline{I} = 0$, where $l_{\overline{R}}(I)$ means the left annhilator ideal. In particular, ey=0. Now since y=x-x', ex=ex'. Finally, we shall show that $ex' \neq 0$. Since ex = x - (1 - e)x, $\overline{N}(ex) > \overline{N}(x) - e^{-2x}$ $\overline{N}((1-e)x) > \overline{N}(x) - \overline{N}(1-e) > \overline{N}(x) - \varepsilon$. If we set ε as $\overline{N}(x) > \varepsilon$, then $N(ex) \neq 0$, so $ex = ex' \neq 0$. Therefore $\overline{R}x \cap Q \neq 0$, hence $\overline{R} \ \overline{R}$ is a left essential extention of Q. This completes the proof.

REMARK. Recently, H. Kambara [2] constructed the counter example of Roos conjecture (=Is every directly finite regular right self-injective ring necessary left self-injective?). He constructed the simple regular ring which is directly finite right self-injective and satisfies the assumption of above Theorem 1, but not left self-injective. By virtue of this example, Theorem 1 is not abstruct non-sensce.

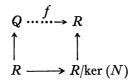
If N is a pseudo-rank function, then we have the following theorem.

Theorem 2. Let R be a regular ring with pseudo-rank function N. If for any essential right ideal I of R, N(I)=1 and ker (N) is a prime ideal, then N is an extreme point and is extended to the maximal right quotient ring Q. In this case, $Q/kerN_Q$ is the maximal right quotient ring of R/kerN, where N_Q is the extension N. Furthermore, the completion of R is isomorphic to the left maximal quotient ring of the right maximal quotient ring of R/ker(N).

Proof. Let \overline{R} be the N-completion of R. Then since \overline{R} is a right and

S. Kobayashi

left self-injective regular ring, \overline{R} is injective as a right *R*-module. Now there exists a *R*-module homomorphism f from Q to \overline{R} such that the following diagram commute,



In this case, by using the same proof of Theorem 1, we can see that \overline{R} is a nonsingular right R-module and f is a ring homomorphism. We extend N to Qas follows, for any element x of Q, we define that $N_Q(x) = N(f(x))$. Note that ker (f) = ker N and ker $N_Q \cap R$ = ker N. Clearly R/ker N has a rank function \tilde{N} which is induced by N. We note that $\tilde{N}(K)=1$ for any essential right ideal K of $R/\ker N$. Therefore we apply Theorem 1 to $R/\ker N$, that is R is the maximal lef quotient ring of the maximal right quotient ring of $R/\ker N$. Next we claim that $Q/\ker N_Q$ is a right essential extension of $R/\ker N$. Given non-zero element \bar{x} of $Q/\ker N_Q$, since x is in Q, there exists essential right ideal J of R such that $xJ \subseteq R$. Assume that $xJ \subseteq \ker N$, then $x\overline{J} = \overline{0}$. In this case, we have that x=0, which is a contradiction. Therefore $xI \not\equiv \ker N$, that is for some non-zero element t of $J, \bar{0} \neq x\bar{t} \in R/\ker N$. So $Q/\ker N$ is essential right extention of $R/\ker N$. Note that ker N_Q is a prime ideal of Q. Since Q is a self-injective regular ring, there exists a central idempotent e of Q such that ker $N_{Q} \subseteq_{e} eQ$. Thus ker $N_{Q} \oplus$ (1-eQ) is an essential ideal of Q, so $N_Q(\ker N_Q \oplus (1-e)Q) = 1$. This shows that $N_{Q}((1-e)Q) = 1$. Now $N_{Q}(e) = 0$, hence ker $N_{Q} = eQ$. Therefore $Q/\ker N_{Q} =$ Q/eQ is a regular right self-injective ring. Consequently, $Q/\ker N_Q$ is a maximal right quotient ring of $R/\ker N$. Thus $Q/\ker N_q$ is a prime regular self-injective ring with rank function. In this case, [1, Proposition 8.6] shows that $Q/\ker N_Q$ is a simple ring. Therefore $R/\ker N$ is also a simple ring. Now [1, Theorem 19.14] implies that N is an extreme point of P(R). Thus the proof is complete.

References

- [1] K.R. Goodearl: Von Neumann regular rings, Pitman, London, 1979.
- [2] H. Kambara: Example of a D.F right self-injective regular ring which is not left self-injective, to appear.

Department of Mathematics Naruto University of Education Naruto, 772, Japan

228