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FIBERED 2-KNOTS AND LENS SPACES
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1. Introduction

In 1965, E.G. Zeeman [IS] introduced the twisting spun knots. His main
theorem states that any twisting spun knot is fibered. In particular, the 2-twist-
spun knot of the 2-bridge knot K(p, q) is a fibered 2-knot in /S4 with fiber a
punctured lens space L(p, q)°. Throughout the paper, we denote by M a

r

connected sum of lens spaces ΦL(pi} gv) (r^l), and assume that pi is odd

and pi>qi>0 (cf. [10], [13]). The punctured manifold M° means the space
obtained from M by removing an open 3-ball. We consider fibered 2-knoΐs in
S4 with fiber M°, which we call M°-fibered 2-knots. For example, a connected
sum of 2-twist-spun knots of 2-bridge knots is such a fibered 2-knot. We
shall determine possible M°-fibered 2-knots in S4 (or more generally, a homology
4-sρhere Σ) for all M. There are two reasons for selecting these fibered 2-knots:

(1) Any 2-knot with Seifert manifold a connected sum of lens spaces is de-
termined by its exterior [3], [4]. In particular, any fibered 2-knot with fiber a
connected sum of lens spaces is determined by its monodromy (precisely, the
class of its monodromy in the diίfeotopy group of the fiber).

(2) The diffeotopy groups of all lens spaces are computed by Bonahon
[1] and Hodgson-Rubinstein [7].

In section 3, we prove that any fibered 2-knot with fiber a punctured lens
space L(p, q)° is the 2-twist-spun knot of K(p} q). In general, we show in
section 4 that any M°-fibered 2-knot with cyclic monodromy is a cable knot
about the 2-twist-spun knot of a 2-bridge knot. In section 5, we consider
branched covering spaces of cable knots, and observe, for each odd r>l, the
existence of a 2-knot which is the same fixed point set of many inequivalent
semi-free ^-actions on S4 (cf. [2], [5], [14]).

I would like to express my gratitude to Professor Akio Kawauchi for
suggesting the problem, Professor Fujitsugu Hosokawa and Professor Yasutaka
Nakanishi for leading me throughout.

2. Preliminaries

We work in the smooth category. By using the unique decomposition
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theorem [12], [6], we can assume that for a diffeomorphism h: M°-»M°, h is the
identity on 9M° and h permutes lens space factors of M°. Thus we can con-
sider that h is corresponding to a permutation with respect to lens space factors.
Of course, h cannot permute lens space factors which are not diίfeomorphic.
Hence, it is sufficient to consider the case that M is homogeneous, that is

r > r

M=^L(pt #), (For this case, we write M=ΦL, .) and h corresponds to a
ι=l ί=l

cyclic permutation of order r, that is,

λ(L?) = Lσ(°0 for i=l,.2, , r ,

where σ: {1, 2, •• ,r}-»{l, 2, « ,r} is a cyclic permutation of order r. Then
we call h cyclic. In fact, any two such permutations are conjugate in the sym-
metric group of degree r. Hence, we may assume that

L?+1 for ί=l,2,.. ,r,

where Lr+1=L1.

The diffeotopy groups of lens spaces are known.

Theorem (Hodgson-Rubinstein [7], Bonahon [1]). The diffeotopy group
of lens space L(p, q) is given by

Z2 if <f^±\orq=±\ (mod/))

Z2@Z2 if <f=landq3Ξ±l (moάp)

Zt if ^Ξ-l (mod/))

As the representatives τΰe can take:

{I, A} if q2=£ ± 1 or q= ± 1 (mod/))

{/, A, C, CA} if f=landq^±l (moάp)

{/, D, D2, D3} if <?=-l (moάp)

where I is the identity, and A, C and D are defined in [7]. Here A and C are
involutions, and D has period 4. Note that D2=A. These induced automorphisms
ofHλ (L(p, q))ezZp are given by:

A*: multiplication by —1 ,

C*: multiplication by —q ,

D*: multiplication by —q .

REMARK. A classical knot whose 2-fold branched covering space is L
(p, q) is the 2-bridge knot K(p, q). Then A is the canonical covering trans-
formation (see [7], [13]).
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3. The special case

In this section, we prove the following.

Lemma 1. Let K be an MQ- fibered 2-knot in a homology ^-sphere Σ wίίA
M=L(p, q). Then Σ^ S4 and K is the 2-twist-spun knot of the 2-bridge knot

K(p, q).

Proof. Let h be the monodromy of the fibered 2-knot J£cΣ For the
induced automorphism t=h% of

suppose that ta=ma. Then (p,m)=\. Since t— 1 is an automorphism,
(/>, m— 1)=1. Let

φ:H1(JVΓ)xHl(M)-*QIZ

be the linking pairing given by

φ(α, a) = q/ρ .

Since h is an orientation-preserving diffeomorphism, φ is a ί-isometry [11].
Then

φ(α, a) = φ(ta, to) — φ(ma, ma) = m2q/ρ .

It implies that nf=\ (mod p), hence (m— 1) (m-\~l) = 0 (mod p). But p and
tfz— 1 are relatively prime, so we have m= — 1 (mod/>).

Any diίfeomorphism of M inducing the (— ̂ -multiplication on H^M) is
diffeotopic to Ay which is just the monodromy of the 2-twist-spun knot of K
(p,q). Hence Σ— ̂ 4 and K is the 2-twist-sρun knot of K(p, q). This
completes the proof.

4. The general case

We consider the case M=ΦL(p, q). Let / and K be 2-knots in 54, with
K trivial. For an integer r>0 and the meridian generator xG.π^S*— K),
let V be a tubular neighbourhood of a simple closed curve representing xr in
S*—K. Note that there is a natural diffeomorphism h: S4 — lntV-+N(J),
where N(J) is a tubular neighbourhood of/ in S4. Then the 2-knot h(K)d
(N(J)a)S4 is called the r-cable knot about J and denote by C(/; r) [8]. In

particular, C(J\ !)=/.

Proposition ([9; Theorem 2.3]). If J is a fibered knot vΰίth fiber F, then
C(J\ r) is a fibered knot with fiber a disk sum of r-copies Fiy i= I, 2, •••, r, of F.

The proof is direct. (See [9]. Kanenobu's theorem is stated for more
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general high-dimensional satellite knots.) In the Proposition, we can see eas-
ily that the monodromy/ of C(/; r) is cyclic, i.e.,

for ί=l,2, ,r,

where Fr+l=FΓ

Lemma 2. Let K be an M*-fibered 2-knot in a homology ^-sphere
M the r-fold connected sum of L(p, q) for r^2. If the monodromy h is cyclic, then
Σ^54 and K is the r -cable knot about the 2-twist-spun knot of the 2-bridge knot
K(p, q).

r

Proof. Writing M=ΦLi9 we may assume that

A(L?) = L?+1 for ί=l,2,-,r,

where Lr+l=Lί. Let H^L^^^a^^Zp for ί= 1, 2, « ,r. Suppose that the
induced automorphism t=h* of H^M^^H^M) is represented by the matrix

0 m9

• . mr

Ό

with respect to the generators {a}. Then (p, mi)=lί i=l,2, ,r. Since
t— 1 is an automorphism, the matrix

— 1 m2

-i

must be invertible on Zp. Hence the determinant (—l)r~1 (ml ••• mr— 1) and
are relatively prime, i.e., (p, Wj ••• mr—l)=l. Let

φ: Hl(M)xH1(M)-+QIZ

be the linking pairing given by

φ(ah aέ) = q/ρ for i = 1, 2, •••, r ,

φ(tf, , ofy) = 0 for ίjj' = 1, 2, •••, r (z'Φy).

Since φ is t-isometry,
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for ι= 1, 2, •••, r, where mr+1^=m1. It follows that m} = \ (mod^>). Since
m\m22 m2

r = l (mod^>), we have (ml ••• wr— 1)̂  •• wr+l) = 0 (mod^). Since
(/>, TWj ••• mr— 1)=1, it implies m: ••• mr= — 1 (mod^p).

Next we consider the exterior £=Σ — IntΛΓ(X"), which is the mapping

torus of h, (M° X I)/h. We shall show that E is diffeomorphic to the exterior E1

of the r-cable knot about the 2-twist-spun knot of K(p, q).
Note that E and Eλ are fiber bundles over S1 with the same fiber M° and

cyclic monodromies h and /, respectively. Consider the cylinders on lens space
factors L?χ/ (ί=l, - ,r) in M°x/. When we identify them by h, these
cylinders form a circular tube in E=(M°xI)lh, winding r times around
S ^factor of E. We can regard the circular tube as (L(p3 ?)°X/)/£, which is

embedded in E, where g is the diffeomorphism induced by h. The auto-
morphism g* induces the (ml ••• mr) -multiplication on Hλ (L(p, q)). Since
ttj ••• mr=— 1 (mod/)), £ is equal to A which is the unique diffeomorphism of
L(p, q) inducing the (— ̂ -multiplication on Hl (L(p, q)). Considering a similar
tube in E1=(M0xI)/f9 we see that E is diffeomorphic to Eλ. Hence Σ=S4

and K is the r-cable knot about the 2-twist-spun knot of K(p, q). This com-
pletes the proof.

We call the 2-twist-spun knot of a 2-bridge knot a fibered 2-knot of type L,
and the r-cable knot about a fibered 2-knot of type L with r^2 a flbered 2-knot
of type L*. Let K be an Λf°-fibered 2-knot in a homology 4-sphere Σ with

M=ΦL(phqi). We assume that h preserves a disk sum M\ \\ Ml of M°,

where h is the monodromy of K. Then ./£cΣ is a connected sum of MJ-
fibered 2-knots ̂  in a homology 4-sρhere 2ί with monodromy A|M°, /=!, 2.
Together with Lemmas 1 and 2, we obtain the following:

Theorem. Lei K be an MQ -fibered 2-knot in a homology ^-sphere Σ Then
Σ=54 and K splits, as a connected sum, into fibered 2-knots of type L or L* so
that the disk sum of the fibers is M°.

5. Branched covering spaces

In this section, we consider the branched covering spaces of r-cable knots,
giving counterexamples to the higher-dimensional Smith conjecture. Our next
theorem is an extension of a special case of Kanenobu's theorem [8]. In our
case, we only observe the monodromies, hence the proof is simple.

Let M=ΦL(p, q) and K=C(J\ r) the r-cable knot about the 2-twist-sρun
knot / of K(p, q). Then as observed before, K is an M°-fibered 2-knot in S4

with cyclic monodromy h.

Assertion. For any odd n^l, let Σ»r be the nr-fold cyclic branched covering
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space of S4 branched over K, and K the lift of K. Then *Σnr^S4 an& R w the
r-fold connected sum of the 2-twist-spun knot of K(p> q).

Proof. The monodromy h% is represented by the matrix

0 m2

0

Obviously, E=^Σnr-lnt N(K) is the mapping torus of hnr

y (M°xl)/hnr. The
monodromy h* and hence h*r are represented by the matrix

-1

0

0

-1

Hence, E is just the exterior of the r-fold connected sum of the 2-twist-sρun
knot of K(p, q). This completes the proof.

Corollary. For any integers n, r> 1 with r odd, there is a 2-knot in S4 which
is the same fixed point set of n inequivalent semi-free Z^actions on S4.

Proof. Let K be a fibered 2-knot of type L. Let Ki9 *=0, 1, •••, n— 1, be
the connected sum of i-copies of C(K\ r) and (n — i—1) r-copies of K. We take
the r-fold cyclic branched covering space of S4 branched over K{. By the Asser-
tion, all KfdS4 lift to the same knot, namely, the (n— 1) r-fold connected sum of

KdS4. We show that Kh i=Q, 1, •• ,n—1, belong to mutually distinct knot
types. To see this, we use the 1-st Alexander module, Ah of Kif which is

ZXO-isomorphic to (®Zp<fyi(f+ΐ))®f~® ' Zp<t>/(t+l)). We see that
(t-\-l)Ai9 i=Q, 1, •••, n—1, are not mutually ^<ί>-isomorphic. This completes

the proof.

This corollary has been suggested by Professor Akio Kawauchi.
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