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Introduction

The notion of generalized Wiener functions (or "functionals" if the underly-
ing space is a function space) has been introduced in a development of the Mal-
liavin calculus ([17] [20] [21]). This is a natural infinite dimensional analogy of
the Schwartz distribution theory in which the role of the Lebesgue measure on
a Euclidean space Rn is now replaced by a Gaussian measure on a Banach space.
(Such a measure space is called an abstract Wiener space.) In this paper, we
will show that generalized Wiener functions which are positive, i.e., those which
yield non-negative values when they act upon positive test functions, are meas-
ures on the underlying Banach space. It is an analogue of the fact that positive
Schwartz distributions are measures.

The class of measures corresponding to positive generalized Wiener func-
tions contains many measures which are singular with respect to the original
Gaussian measure and yet, in contrast with finite dimensional cases, it con-
stitutes a rather small class in the totality of finite Borel measures on the Banach
space. Many properties of this class can be stated in terms of the potential
theory over the abstract Wiener space, particularly, in terms of capacities. Such
a potential theory has been discussed, among others, by Malliavin [10], Fuku-
shima [3], Fukushima-Kaneko [4] and Takeda [19]. We will show in this paper
that these measures can not have their mass in any set of capacities zero and
that, on the contrary, for any set of non-zero capacity, there exists a non-trivial
measure in this class which is supported on the closure of the set.

In many probelms of extending results in finite dimensional spaces to those
in infinite dimensional spaces, a difficulty usually occurs from the fact that an
infinite dimensional vector space is not locally compact. Indeed, this is the
case in our problem, too. However, this difficulty can be fortunately overcome
by the fact that a probability measure on a complete separable metric space is

1) Supported partially by the YUKAWA foundation.
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tight, i.e., for any 6>0, we can take a compact set whose measure is not less
than 1—£. Especially, in the case of a Gaussian measure on a separable Banach
space, a theorem of Gross (Lemma 1.1 below) is essential. In addition, we have
a powerful tool of the so-called Ornstein-Uhlenbeck semigroup by which we can
connect the Gross theorem to the Malliavin calculus. It will play an important
role throughout the present paper as something like a mollifier on the abstract
Wiener space (Lemma 2.1~2.5).

In section 1, we will introduce basic notions in the theory of abstract Wiener
spaces and the Malliavin calculus including the Gross theorem. In section 2,
we will establish several lemmas involving the Ornstein-Uhlenbeck semigroup.
In section 3, the properties of capacities will be summarized and, among others,
we will prove the capacitability of Borel sets, i.e., any Borel set can be approx-
imated in capacities by compact sets from below. In section 4, we will prove
that positive generalized Wiener functions are measures and that such measures
never have their mass in any set of capacities zero. In section 5, we will in-
vestigate the equilibrium measures of sets, which are special examples of our
measures. In the last section, we will discuss positive generalized Wiener func-
tions from viewpoints other than the potential theory. In conclusion, we can say
that the program of Fukushima [2] or Maz'ya-Khavin [11] in finite dimensional
cases could be realized in our infinite case as well.

Finally, the author wishes to thank Professors N. Ikeda, S. Kotani and M.
Takeda for their fruitful suggestions and hearty encouragement, and an anony-
mous referee for his kind advice. Above all, the author wishes to express his
deepest gratitude to Professor S. Watanabe for the careful proofreading of his
manuscript and for giving him many invaluable comments.

1. Preliminaries

General notation
"A: =B" or "B=:A" means "A is defined by B".
N: =the set of all positive integers.
R: =the set of all real numbers.
#Vj:=max(#, j>), x/\y: — min(#,j>), x,
If A and B are sets, A\B: = {x<=A\ x
3)(Rn) and 3)'(Rn) are the n-dimensional Schwartz spaces of test functions

and distributions respectively.
1B(X) is the topological cr-algebra of a topological space X.
If X is a Banach space, || ||* denotes its norm. But if X is a Hubert space,

the norm is denoted by | | x and the inner product by < , *yx. In particular, if
X is a Euclidean space R", they are denoted simply by | | and <•, •> respectively.

If X is a topological linear space, X* denotes its topological dual space, and
the pairing of X* and Xis denoted by ( , ).
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If V is a linear operator densely defined on a topological linear space, V*

is its dual operator.
A symbol "5." stands for a continuous imbedding.
Sometimes we omit the domain of integration, if it is the whole space.

Abstract Wiener space
First we have to make our framework clear. Let W be a real separable

Banach space. If v is a measure on a measurable space (W, <B(W)) and if £ is a
real separable Hubert space, we use the term "£"- valued ^-measurable mapping"

to mean "E- valued mapping defined on W which is

where <B(W)V stands for the completion of J$(W) by the measure v. We define
Lp(v\E}=Lp(v\ W-*Έ) for !^/><oo as the totality of ^-valued z -measurable
mappings F such that | F \ P

E are z>-integrable. As usual, two elements of Lp(v E)
which coincide z -a.e. are identified. Hence Lp(v\E) is a Banach space with a

norm | \F\\Lp(v ;ε)'> = i( I F(w) \ P

E v(dw)}}ίp, F<= Lp(v E). It is convenient to de-

fine Ll+(v £):= U Lp(v\ E) and £«,_(*; E):= Π Lp(v\E). In case E=R,
iO<~ ι<J<ς~

we simply denote Lp(y\ E) by Lp(v) for !^/><oo or p=l+, oo — . Note that

£oo-(z>) is an algebra.
Let μ be a Gaussian measure on (W7, <B(W)) with mean vector 0 whose to-

pological support spreads over the whole space W. Then there is a unique real
separable Hubert space H continuously and densely imbedded in W such that

11 ,̂ «0) μ(dι0)=exp(-\l\2

al2) holds for each l(ΞW*. (Since HdW

implies W*dH* and //* is identified with H by the Riesz theorem, an element
/ of W* is regarded as an element of H. It is readily seen that W*S^H and
that W* is dense in H.) The triplet (W, Hy μ) is called an abstract Wiener space.
Accordingly, E-valued /^-measurable mappings are called E-valued Wiener func-
tions (or (C functional^' when W is a function space). The following lemma is
crucial in our theory.

Lemma 1.1. There exists a separable Banach space W1 such that
(i) H .5. Wλ ̂  Wy where both imbeddings are compact y

(ϋ) μ(W1)=l, (iii) ||.|

For (i) and (ii), see [6]. As for (iii), we should notice that although IMIp^
is not defined for zu^W\W^ \\ \\Wl is defined μ-a.e. on account of (ii). Its
measurability is clear from the construction of W1 (indeed, it is J3(W^)-meas-
urable) and finally its integrability is due to Fernique [1]. See also an excellent
review of Kuo [8],

This lemma tells us that (Wly H, μ) is again an abstract Wiener space. Con-
sequently, the Banach space W is not essential for the Gaussian measure μ. It
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is merely a support of μ, and we can always replace it by a smaller support Wv

But anyway, we fix such a Wlfrom now on.

EXAMPLE 1.1. (The classical Wiener space) Let W{ be a Banach space

consisting of all continuous functions w of [0, T], Γ>0, into Rd such that zϋ(0)=

0 with the usual maximum norm, and H1 be a Hubert space consisting of all

absolutely continuous functions h of [0, T] into Rd such that λ(0)=0 and that

I k \ H ^ : = \ I h(t)\2dt<oo. Then together with the standard Wiener measure
Jo dt

P0 on Wi, the triplet (W*, H\ P0) forms an abstract Wiener space, which is

called the classical d-dίmensίonal Wiener space. Then a smaller Banach space W^

is taken, for example, as follows; Let 0<α<l/2 and m^N. We put

(1.1) W 2m: = {w^L2m(dt\ [0, T]) -> Rd)
ΓT f T ]cnfι\_onfβM2>* ~1^2m

<oo}

Suppose 2ma>l. Then each element of W*'2m has a continuous version and a

Banach space Wl : = {w e PF*»2wι ισ(0) = 0} with the norm 1 1 1 1 Wί : = \ \ | |Λ>2m is well-
defined as a subspace of Wd

Q. It can be shown that this Wλ plays the required

role in Lemma 1.1 (for the compact imbedding W-^Wi, see Muramatsu [14]).

Sobolev spaces over an abstract Wiener space

Now let us proceed to the definition of the Sobolev spaces over (W, H, μ).

First we introduce polynomials. We put

P: = {F: W '-> R\ there exist n^N, lly -•-, /Me W*, and a polynomial

f.Rn-*R such that F(«;) = /((/,, w), -., (4, w)),

and

JPn: — {FeP; the polynomial / in the above expression is of degree

at most n}y n — 0, 1, 2, •••.

Note that P is a dense subspace of Lp(μ), lίg/><oo. Let ZQ:=PQ= the space

of all constant functions, and ZH:=Pϊ*wf}PΪ-ι, n=l,2, ••• ("J_" stands for
the orthogonal complement). Then we get an orthogonal direct sum decomposi-
tion of L2(μ), known as the Wiener homogeneous chaos decomposition. The

Ornsteίn-Uhlenbeck operator L is defined by a spectral decomposition L:=ΣΓ=o
(—n)Jny where /„ is the orthogonal projection of L2(μ) onto Zn. Obviously, L

maps P into P. Furthermore, we define operators (/— L)r/2, r^R, mapping P

into P by (/— L)r/2: =ΣΓ=o(l+ft)r/2/w. In order to introduce ^-valued Sobolev
spaces, we define E- valued polynomials as finite sums of functions F(w) £, wEΞW,

and F^P. The totality of ^-valued polynomials is denoted by P(E). If
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S is a linear mapping from P into itself, it naturally induces a linear mapping S

from P(E) into itself defined by S(F( ) e) (w):=(SF) (w) e, w<=W, e£ΞE and

S will be denoted by the same letter S.

DEFINITION 1.1. For l<p<oo and r^R, we define a Sobolev space Dr

p(E)

of E- valued Wiener functions as the completion of P(E) with respect to a norm

INUs;*:HI(/-£)r/2HL^;*) For simplicity, we denote Dr

p(R) and || ||,.r. Λ
by Z>; and || |Lr> respectively.

p is of course the integrability index, while r can be interpreted as the dif-

ferentiability index. In fact, in case r is a positive integer, the norm || | !/>„,;£ is

equivalent to another Sobolev norm defined in terms of the H-differentίal ([16]).

To be precise, let M(E) be the set of all linear mappings H-*E of Hubert-Schmidt

type. It is a separable Hubert space with the Hubert-Schmidt norm. We in-

ductively define M*(E) by M(M*~l(E)\ n=l, 2, •••, where M\E)\=M(E). Since

M(R) is nothing but if*, it is usually identified with H. Now H-differential

operator D mapping P(E) into P(M(E)) is defined by

Z)F(f»)[A]: = Iim — (F(w+th)-F(w)\ w^W.h^H for F<=P(E) .

Obviously, w-times iteration of D, n^N, yields the mapping Dn: P(E)-+P(Mn

(E)). Then it is known that the norm || ||^w . E is equivalent to a norm || ||L (μ < E}

-\-\\jy Λ\Lp(ι> i M»(E)) I*1 other words, Dn

p(E) is again obtained by completing
P(E) with respect to the latter norm ([17], Th.2.4]).

Our Sobolev spaces have the following properties ([17] [21]).

(i) The system of norms {\ \ | \p>r . E 1 <p< o°,r^R} is compatible. Furthermore,

ifp^p' and r<^rf, zΰe have \\ \\Ptr E^ I I ll/,r' E and hence Dr^(E)^Dr

p(E).
(ii) For rtΞRand l<p, q<oo satisfying l/p+l/q=l, rte have (Dr

p(E)) *=Dϊr(E)

under the standard identification of (Lp(μ\ E))*=Lq(μ\ E). In particular, it holds
that (Φ, F)£\\Φ\\,t-rlE\\F\\p9f.Efor Φ^D~r(E) and F^Dr

p(E).

By the property (i), the following definitions make sense.

DEFINITION 1.2.

):= U U D'P(E), D—(E):= U U D~r(E) .
r>0 l<ί<~ r>0

D+00(R) and D~°°(K) are denoted simply by D+0° and D~°° respectively.

Giving D+00(E) the topology induced by the norms || | \n>n ,E, n=l,2, •••,

it is a complete countable normed space and then the property (ii) implies that

D~°°(E) is identified with (D+00(E))*. Hence it is natural to call an element of

D~°°(E) an E-valued generalized Wiener function (or "functional" when W is a

function space). The term "generalized Wiener funciton(-al)" will be abbre-
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viated to "GWF". It is important to notice that D+0° is an algebra.

Now, the operators defined on P(E) above are closable and hence, can be

extended uniquely to operators on D~~(E)\ Namely, L: D~~°°(E)-^D~00(E)9

(I-L)r/2\ D-~(E)-+Dr-(E) and D: D-~(E)-*D—(M(E)) are all well-defined
and L: Ds

p(E)-»Ds

p-
2(E), (I-L)''2: Ds

p(E)^Ds

p~
r(E)^ and D: Ds

p(E}-*Ds

p-\M(E)\
!<^><oo, s^R,r^R, are all continuous. In particular, the operator (/— L)~r/2

gives an isometry from Lp(μ\ E) onto Dr

p(E). By the duality, D*: Z>~°°(c^(£))~>

D—(E) is well-defined and D*: Ds

p(M(E})-+Ds

p-
l(E) is continuous for all

, s<=R. Furthermore, it holds that L=—D*D (cf. [17] [21]).

2. The Ornsteίn-Uhlenbeck semigroup

The Ornstein-Uhlenbeck semigroup {Tt}t>Q is a semigroup generated by the

operator L, i.e., Tt:=e*L=5E-o e~nt Jn. Obviously, Tt, *>0, maps P(E) and
L2(μ; £") into P(E) and L2(μ"> £"), respectively. For a bounded continuous func-
tion F: W-*R, the following expression is known;

(2.1) TtF(w) == J

The next lemma is nearly directly derived from this expression.

Lemma 2.1.
(i) Tt, £>0, is uniquely extended to a continuous linear operator on Lp(μ),

l^/><oo, with operator norm 1.

(ii) For each F^Lp(μ), l^p<°°> TtF converges to F in Lp(μ) as t \ 0.

(iii) If F is bounded and continuous, then TtF(w) is also bounded and con-

tinuous and it converges to F(w) for all w^ W as t \ 0.

(iv) TtJ t>0, is a positive operator, i.e., if F^Lp(μ) is non-negative μ-a.e.,
then so is TtF. Hence Tt is Markovίan, i.e., if O^F^M, μ-a.e. for some M>0,

then so is TtF.

(v) Tt, t>0, is μ-ίnvarίant, i.e., I TtFdμ=\Fdμ, F^L^μ).

Note that the equality (2.1) holds for all F^L^μ) that are continuous on

account of (i) in the lemma.
The role {Tt}t>0 will play in the sequel may be compared to the one that

the mollifier has played in the finite dimensional analysis. Namely we have the

following, in addition to Lemma 2.1 (it can be seen in [5] with an incomplete

proof).

Lemma 2.2.
(i) For any t>0, any !</><oo and any pair r<s, Tt maps DP(E) into

DP(E) continuously.
(ii) // ί>0 and F belongs to L^(μ\ E), then TtF belongs to D+~(E). In
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particular, if F: W-+R is μ-measurable and bounded, then TtF^D+0°.

Proof, (ii) is obvious from (i) and we show (i) only. For this, it is enough
to show when E=R ([17], Lem. 2.2). We first put %C\ : = {F: W-*R\ F(w)=
/((/i, 20), •••, (/„, «?)) for some n^N, Iί9 ••-, ln and /: Rn-*R of C^class bounded
with its derivatives} and prove that

(2.2)

for all FeΞFCj, where c is a positive constant independent of F and t.
Let {/, }Γ=ι be a complete orthonormal system (abbreviated to CONS) of H

each element l{ of which is taken from W*. We calculate the following;

<DTtF(w), O* = <D [ J F(e-< + v/T^F^) /.(A,)] (w),

= j <DF(c-'. + V~T=Ϊ=* v) (*), lί>H μ(dv}

= e-' J <(DF) (e-'w+VT=^v), /,->* μ(dv)

Noticing that (Z)*/, ) (»)=(/,-, w), we know {£)*/,-} Γ-i forms a CONS of the Wiener
homogeneous chaos Z1 of order one ([17], Th.3.3). Consequently, we have

\DT,F(w)\2

H = Σ

ΪΓ.i [ J F(β-'w+ N/T^?18 o) (llt vl-<r2

a-2t

Since Z,2(μ)-norm and Lί(/ί)-norm are equivalent on the subspace Zv and
since/j is a bounded operator also on Lp(μ), we can find c>0 so that
^c \\G\\LpW for all G<=Lp(μ) ([17], Lem. 1.1, Th. 2.3). Hence we have

J \DTtF(w) I fc

= c* [^JlL-J j μ (dw) j
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The last "=" is due to Lemma 2.1 (v). Thus (2.2) is proved.
Since ΞFCl is dense in Lp(μ), (2.2) implies that Tt maps Lp(μ) into D\

continuously. For any n^N, replacing t by t\n and using the semigroup
property, we see Tt maps Lp(μ) into Dn

p continuously. Now assertion (i) can be

concluded by recalling that Tt commutes with (I—L)±r/2. Q.E.D.

REMARK. By Meyer's result ([13] Th.2), the inequality (2.2) implies that

\\V-LTtF\\ίtm£c' VΊ=^Ϊ \\F\\Ltw, FeLM, where χ/-L=Σ3Γ-ι V»Λ

and c' is a certain positive constant. Therefore we have

\\(V~=L)kTtF\\Lp(lί) = \\(^'=LTt!kγF\\LP(μ^c'^\-fL^\\F\\LpW ,
* \ \. / \ Λ ί llR *

for F^Lp(μ). Then it follows from another Meyer's result ([13] Th.3) that

[ p-t/k ~\k

^A__J \\F\\LpW

W, FEΞLp(μ),

where c" and c'" are positive constants independent of t and F and we used here
an inequality e~Y(l— e~2t)1/2<(2t)-1/2 for

We present here two approximation lemmas. The former one is easily
derived from Lemma 2.1, Lemma 2.2 and the fact that Tt commutes with

Lemma 2.3. Let l<p<oo and r<=R. For each F<=Dr

p(E), TtF(<=Dί°

(E):= Π Dr

p(E)) converges to F in Dr

p(E) as t j 0.
r>0

Before proceeding to the next lemma, we give some remarks on the resolvents

(aI—L)~l

y #>0, or more generally, their fractional powers (aI—L)~r/2

y α>0,

r>0. Every theorem and lemma of this article involving approximation argu-

ments can be rewritten by using these operators instead of Tt, t>0. The op-

erator (aI—L)~r/2 has the following integral expression;

(2.4) (aI-L)-"* = — _o^-ιe--r sώ, α>0,r>0.

Most properties of this operator are derived from the above expression and the

properties of Tty t>0. For example, ar(aI—L)~r/2 is a positive Markovian

operator, bounded on Lp(μ) with operator norm 1 and it converges strongly to
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the identity operator on Lp(μ) as #-»oo. The only difference from Tt, ί>0, is
that it maps DS

P(E) into Ds

p+
r(E) continuously, but not into Dp°°(E).

Lemma 2.4. Let F^Dr

p, l<p<oo, r>0, be non-negative μ-a.e. Then for
any 8>0, there exists G^D+°° such that it is non-negative μ-a.e. and that
\\F-G\\ptr<8.

Proof. Put FM : = (/-L)~r/2 {((— Λf) V (I-L)r/2 F)/\M}, M> 0. Clearly
FM^Dp and FM converges to F in Dpy hence in Lp(μ), as M->oo. Because F^O

μ-a.e., .FMVO also converges to F in Lp(μ). Therefore we can take M>0 and
t>0 by Lemma 2.2 and Lemma 2.3 so that the two conditions below are fulfilled;

\\Tt(FMVO)-TtF\\p>r<8/2

\\TtF-F\\pt,<6/2

Thus we have \\Tt(FMVQ)—F\\ptr<6, but F M VO is bounded (due to the re-
marks just mentioned before this lemma) and non-negative, hence Γί(FMVθ)e
D+0° and it is non-negative μ-a.e. Q.E.D.

We will state one more rather interesting lemma. It asserts that any two
closed sets which are separated from each other with a positive distance can be
separated by a function in D+0°.

Lemma 2.5. Let A be an arbitrary closed set of W and 6 be an arbitrary
positive number. We put Az:={uΰ^W\ dist(z0, A)<β}y where dist (w, A) : =
inf{\\w—v\\w', v^A}. Then we can find a function Fe: W->R which satisfies the
following four conditions.
(i) Fε is continuous,

(ii) O^Ft(ϊo) ^ 1 for all WZΞ W,
(iii) Fz(w) = 1 if w e A and Fz(w) =Qifw<= W\A^
(iv) F^D+0°.

Proof. Step 1: The case of bounded A\ We define a function jF: W-+R
2

by .F(s0):=θV(l— — dist(zϋ, ^4)). Obviously, F has the following properties;
c

2
(2.5) F is Lipschitz continuous, i.e., \F(w)—F(v)\ ^ — 11^—^11^, w, v^W ,

c

(2.6)

(2.7) F(w) = 1 if wtΞA and F(w) = 0 if w^W\Ae/2 .

Now let R>0 be such that Aεd {w<= W\ \\vo\\w<R} . Then if w^A, we have

(2.8) I TtF(ιo)-l I ̂  j I F(e-* w+^l-e~2t v)-F(w) \ μ(dv)

^ A f ll^-^+v/l-^2' »— w|L μ(fo)
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-*-<) INIr +V I-*'2'

[(l-e-')R+v/Ί=e=s J Hvll, /*(*;)] .

Consequently, we can choose Tj>0 so small that 0<ί^τ! implies that TtF(w)>
2/3 for each zoe A

On the other hand, if zoe WV4,, we have

l-e~2' v) μ(dv)

where IA9/2 is the indicator function of the set Aΐ/2. Take τ2>0 so that

(2.9) Λ{exp(τ2)-l}<4 and exp(-T2)>A.
6 4

Then we see easily that dist («""'«?, ^4ε/2)>— for 0<ί^τ2 and we W\-4, Hence
we have

4

Suppose that R' is a positive number such that μ({v^W\\\v\\w^R'})<lβ.

Then taking τ3>0 so that 0<f^τ3 implies (1— e~2tylί2 ~^R' , we have TtF(ιo)
for 0<^τΛτ and 4

Therefore if 0<^τ1Λτ2Λτ3, it holds that TtF(w)>2β for w<ΞA and that
TtF(w)<\β for α>e PF\^48. Now we take a function φ: R-+R satisfying

(2 10) Γ Φ is of C~-class, 0^φ(*)^l, x(=R ,
( ' ' \ φ(x) = 1 if *>2/3 and φ(Λ) = 0 if *<l/3 .

We finally define JPβ by using this function as follows

F9(w): = φ(TtF(w)) , t: = τ1Λτ2Λτ3,

It is easy to see that Fz satisfies all the conditions (i)~(iv).
Step 2 : The general case Let An : = {w e A n— 1 <; | |eσ| |̂  <^

2
OV(1— — dist(w, An)). Since each ^4Λ is bounded, we can take ίw>0 so that

FΛtt(w):=φ(TtnFn(w)) satisfies all the required conditions (i)~(iv) for Any n=



POSITIVE GENERALIZED WIENER FUNCTIONS 675

1, 2, •••. It easily follows from (2.8) (2.9) in the proof of Step 1 that tn=O(lln)
will do for large n. Now we consider the following sum.

Note that it is actually a sum of finite terms for each w£ΞW. Clearly it is
bounded and continuous. Moreover we can show that it is an element of D+0°.

What we will prove for this is that Σ»-ι I l^«,βl \p,k< °° f°Γ eacrι l</><°° and

To this end, it is enough to see that

(2.Π) ΣΓ-ιl|F.fi|L,(μ)<oo,

(2.12) ΣΓ-ιl|β*^..ll£/μ;Λ*(Λ))<«>, K/Koo, kϊΞN

The latter condition may be replaced by the following.

(2.13) ΣΓ

Indeed, suppose (2.13) holds and let k=2 for example. (The same method
works for any other k.) By the chain rule,

Ut,=V(Tim F.) &Ttn Fn+φ"(Ttn F.) DTtn Fn®DTtn FH

and it holds by the Holder inequality that

(2.14) \\&Fn,t\\Lf(μ ;^(Λ),^||φ'(Γ/n Fn)\\L2pw\\D*Tta Fn\\Lίp(v,.,^(K>^

+ \\φ"(Ttn Fn)\\L3pW\\DTta FJIi,^;,, .

Observing that

\\Φ'(Tln FB)||i2ίW^sup I φ'(x) I , \\φ"(Tin FJIL^^sup | φ"(x) \

and that Σ?-ι||ί>Γ/.ί
1J|£M(W<oo implies ΣΓ-ι||O7'<.ΛIIi,ί(M)<00, we can con-

clude that Sr.il|02FB,8||£iW<^.
(2.11) is obvious. So we have to prove (2.13) only, but it is also easy.

In fact, the estimate (2.3) says that

</.'" V100 /-*
= ̂  2-in = l In

Since tn=O(l/n) and μ({α>e PF; ||w||pr>w-l-6})-O(^-Λw2) for some α>0 by
a theorem of Fernique [1] (cf. also [8]), the above sum is finite. Thus ΣΞΓ=ι Fn>t
<Ξ£>+~ is valid.

We finally define Fs by Ff(a;): = φ(Σ?-ι ι̂,f (w)), eσeϊF. It obviously
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satisfies all the required conditions. Q.E.D.

3. Capacities over an abstract Wiener space

In this section, we will summarize the properties of capacities which are

defined in accordance with our Sobolev spaces Dr

p. Let us start with their de-
finition following Malliavin [10], Fukushima-Kaneko [4] and others.

DEFINITION 3.1. Let !<^><oo and r>0. For an open set O of W, we

define its (p, r)-capacίty Cr

p(O) by

C'p(0): = mi { | | t/ | |J i Γ; C/e/>;, U^l μ-a.e. on O> .

For each subset A of W, we define its (p, r)-capacity Cr

p(A) by

C'P(A): = inf {Cr

p(O)\ O is open and

These capacities were originally introduced to discuss the regularity of
functions of Dr

p ([10]). They are more subtle scales to estimate the size of sets

than μ, i.e., a set of (p, r)-capacity zero is always /^-measure zero, but the con-
verse is false in general. Now let us introduce some terms and notations to

describe some known results exactly. We will use a term "(p, r)-quasί-every-
where" or simply "(p, r)-q.e." to mean "except on a set of (p, r)-caρacity zero".
If (py r)-caρacity of a set A vanishes for every l<p<oo and every r>0, the

set A is said to be slim. By "oo-quasi-everyvϋhere" or simply "oo-^.e.", we

mean "except on a slim set''. A function F: W-^R is said to be (p, r)-quasί-
contίnuous, if for any 8 >0 there exists an open set O with C£(O)<£ such that
F is continuous on the complement W\O of O. If F is (p, r)-quasi-continuous

for every l<p<oo and every r>0, F is said to be oo -quasi-continuous.

Lemma 3.1.

(A) Let l<p<oo and r>0.

(i) For each F^Dr

p, there exists a function F such that F=F μ-a.e. and F
is (p, r)-quasί-contίnuous. F is uniquely defined (p, r)-q.e.

(ii) Let F^Dp and Fn^Dr

p> n=l, 2, •••. If Fn converges to F in Dp, we

can take a suitable subsequence {Fnj} of {Fn} so that Fnj converges to F(p, r)-q.e.
(Here the symbol "~" stands for the (p, r)-quasi-continuous version stated in (i).)

(iii) If F^Dp is non-negative μ-a.e., then F is non-negative (p, r)-q.e.

(B) (i) For each F^D+0°, there exists a function F such that F=F μ-a.e. and
F is oo -quasi-continuous. F is uniquely defined °°-q.e.

(ii) Let F<=D-°° and Fn<=D+°°, n=l, 2, •••. If FH converges to F in D+0°,
we can take a suitable subsequence {Fnj} of {Fn} so that Fnj converges to F oo-q.e.
(Here the symbol "~" stands for the oo -quasi-continuous version stated in (i).)

(iii) If F^D+°° is non-negative μ-a.e., then F is non-negative oo-q.e.
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For the proof, see [2], [4] and [10].

From now on, the (p,r)-(or oo -) quasi-continuous version of F€ΞDP (or D+0°)
will be denoted by F as Lemma 3.1, and the pair of indices p and r will be arbitrarily
fixed so that !<^><oo and r>0.

The following is another result of Fukushima-Kaneko [4].

Lemma 3.2.
(i) For an arbitrary subset A of Wy it holds that

C;(,4) = mf {| |C/|β i Γ; U^Dr

pand U^l (ρ,r)-q.e. on A}.
(ii) There exists a unique element UA= UA p r^Dp such that

UA:>1 (p, r}-q.e. on A and Cr

p(A) = \\ UA\\^r.
(iii)

DEFINITION 3.2. UA of Lemma 3.2 is called the (p, r}-equilibrium potential
or the (p, r)-capacity potential of the set A.

UA is clearly non-zero if CP(A)>0. The equilibrium potentials will play
a fundamental role in the subsequent sections.

Now our next aim is to establish the capacίtabilίty of Borel sets by compact
sets. Namely, we will show the following.

Theorem 3.1. For B<=$(W}, it holds that

Cr

p(B) = sup{Cr

p(K)] KdB, K is compact} .

This theorem can not be proved by directly applying the general theory of
Choquet (cf. [11]), because W is not locally compact if dim W=oo. However,
we can instead apply the following lemma which asserts the tightness of capa-
cities, i.e., capacities are almost supported by compact sets. It can be seen in
[5] with an uncompleted proof. (In the case of the Dirichlet space, i.e., p=2
and r— 1, it has been rigorously proved by Kusuoka [9] and Takeda [19].)

Lemma 3.3. Given an arbitrary £>0, there exists a compact set K of W
such that Cr

p(W\K)<£.

Proof. Step 1 First we will construct a Wiener function F: W—*R U {°°}
(we allow7 the value oo for convenience's sake) satisfying the following condi-
tions.

(3.1)

(i)

(ϋ) For each M>0, the set {zee W; F(w)^M} is

relatively compact.

(iii) For each £>0, there exists M >0 such that

W; F(w)>M})<ε.



678 H. SUGITA

Actually, the function TJHI^, ί>0, (recall Lemma 1.1) is a candidate. It
belongs to D+0° by virtue of Lemma 1.1 (iii) and Lemma 2.2 (ii). t>0 being
fixed, let us specify one of its versions by

(3.2) F(w): =

Suppose Since we have

where we put Sί: = l--e't and S2: = \/l—e~2t ( \\v\\w μ(dv), it holds that
M 3

(3.3) (l-

Therefore we see that {w^W\ F(w)<LM} is contained in
(M+δ2)/(l— δj}, and hence it is relatively compact by Lemma 1.1 (i). On the
other hand, (3.3) also implies that {w^W\ F(w)>M} is contained in {w^W\
\\w\\Wί>(M— δ2)/(l+δ1)}, and hence it follows from Lemma 1.1 (ii) that
μ({w^W\ F(w)>M}} can be arbitrarily small if we take M sufficiently large.
Thus the function F satisfies all the required conditions (3.1).

Step 2; Take a family of functions iφR}R>0 so that

(3.4)
φR(x) =1 if

φsx = Q if

sup sup
*&R B>o

| >R+83 (δ3>0 being fixed),

= :Mn<oo, n = 1, 2, ••• ,

and define FR<=ΞD+°°, Λ>0, by

(3.5) FR(w): = φR(F(w)) ,

where F is the function defined by (3.2). Then we have the following estimate

(3.6) \\Fx\\t.t£c μ({w<aW F(w)>R}) .

Here k^N and £>0 is a constant independent of R. Let us prove (3.6) when
k=2y for example. (The same method works in other cases.) As was re-
marked in section 1, it is sufficient to show the following;

(3.7) C, μ({w<ΞW;F(w)>R}),
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(3.8) llίWJIi/μ : -*2c*» ̂  M({«e W F(w)>R}) .

The former is obvious for cl=\. To prove the latter, we use the chain rule and
the Holder inequality. That is, we get the following estimate in the same

way as (2.14).

^;*'̂ ^

Consequently, we have (3.8) for

Step 3; Now let KR be the topological closure of the set

KR is a compact set on account of (3.1) (ii). In addition, by the
definition of (/>, r) -capacity and its monotone property, we have Cr

p(W\KR)^
Cr

p({w<=W\ F(w)>R+S3})^\\FR\\p

Pir. Observe that this inequality is still valid
when we replace ||FΛ||ίfΓ by 1 1/^(1^ provided k is a positive integer not less than
r. On the other hand, (3.6) and (3.1) (iii) implies that ||.FΛ||jfΛ can be made
arbitrarily small by taking R sufficiently large. Q.E.D.

REMARK. In the case of the classical Wiener space (Example 1.1), it can
be verified that a functional F(w) defined by

> 0<α<l/2,

satisfies all the conditions of (3.1).

Corpllary. W\Wl is a slim set.

Proof. Obvious from Cr

p(W\W^Cr

p({u>Gι W\ F(w)>R+8^). Q.E.D.

Proof of Theorem 3.1. Let C be the set of all compact sets of W. The
followings hold.

(i) If K19 K2<=ΞC and K,c:K29 then Cr

p(K^Cr

p(K^.

(ii) If KntΞC, KndKn+1, n=l, 2, ..., then C;(U #.)=sup C'p(Kn).

(iii) IfKn<=C, Kn^Kn+ly n=l, 2, .-, then C;(n^)=inf C'p(Kn).

(i) is obvious and (ii) was proved by Fukushima-Kaneko [4] without compactness.
To show (iii), it is enough to see that Cr

p(Γ\ Kn)^tmf Cr

p(K^). For an arbitrary

£>0, we can find an open set O such that Oz> Π Kn and that CJ(O)^CJ( Π Kn)
-}-β. But since Kn's are compact, KndO holds for sufficiently large n. Con-
sequently, we have C;(n^»)^inf Cr

p(Kn).

Let B^^(W) and 6 be an arbitrary positive number again. We first take
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a compact set K so that Cr

p(W\K)<Bβ. Since B ΓΊ K is a Borel set of K in the
induced topology, it is ^-analytic. Therefore the properties (i) (ii) and (iii) stated
above assure that there exists a compact set K'c.Bf\K such that Cr

p(BΓ[K)^
Cr

p(K')+8β ([12], III, T19). Then we have, by the subadditivity of the ca-

pacity, Q(β)^C;(βnX')+C;(PF\^)<C;(^/)+^. which completes the proof.
Q.E.D.

4. Positive generalized Wiener functions

The following is well-known; Positive Schwartz distributions are measures.
Namely, let T(E3)'(Rn} satisfy that (Γ,/)^0 for each/e^/Z") which is non-
negative at every point. Then there exists a unique positive Radon measure v

on Rn such that ( Γ, /) = ί f(x) v(dx) for each f^3)(Rn) ([15]). In this section,

we will claim that an analogous theorem holds replacing T by a GWF Φ, posi-
tive in the sense of Definition 4. 1 below, and Rn by the Banach space W. Then
the corresponding measure will be a Borel measure on W. After proving it,
the relations between the capacities and measures corresponding to positive
GWF's will be revealed.

Before entering into the subject, let us fix one more notation; As in the
previous section, we assume that the indices p and r are given and fixed such that
l<p<oo and r>0 respectively. In addition, we will fix an index q, l<q<ooy

to denote the dual index of p, i.e., such that l/p+l/q—l from now on.

DEFINITION 4.1. Let Φ be a GWF (i.e., an element of D~°°). We say
Φ is positive, if it holds that (Φ, ̂ )^0 for each F^D+0° such that F(

Positive GWF is abbreviated to PGWF, and is denoted by Φ^O. We re-
mark that if Φ^Djr

y we have "Φ^>0 if and only if (Φ, F)^0 for each F^Dr

p

such that F(w) ̂  0 μ-a.e.w ̂ W" In particular, if Φ e Lq(μ\ then we have "Φ ̂  0
// and only if Φ(w)^>0 μ-a.e.w e W." For the proof, use Lemma 2.4.

Theorem 4.1. For each PGWF Φ, there exists a unique finite positive
measure vφ on (W, <£(W}) such that

w(4.1) (Φ, F) = j F(

for all F^^FCT- Here the space £FCΓ is defined by

:= {F(ΞD+00 F(w) =/((/!, «σ), -,(/«,»)), we Wy for some n<=N ,

/!,-•-, 4 e W* and f : Rn-+R which is bounded and of C°° -class} .

REMARK. ffCΓ is a dense subspace of D+°°.
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Proof. Without a loss of generality, we may assume that (Φ, 1)— 1 and
then we can use the probabilistic terminology. (Note that l^D+0° and that
the condition (Φ, 1)=1 assures the total mass of v^ to be equal to one, if it

exists.)
Let 4, , 4 e W* be arbitrarily chosen. For /, /, <Ξ 3)(R*), j= 1 , 2, - , we

put

F(w) :=/((/!, «0, , (/«»)),

*»= = //((A, w), -,(/.,»)), «>eW, j = l , 2 ,

It is clear that F, Fj^D+0° and that if /; converges to / in <£(Rn) as y->oo, jpv

converges to .F in Z>+0°. Then since Φ is a GWF, it follows that (Φ, F; ) con-

verges to (Φ, F), which in turn implies the continuity of a mapping Φ: <3)(Rn)^

f\-> (Φ, F)^R. Of course (Φ, F)^0 for/^0 and hence Φ is a positive distri-
bution. Therefore it follows from the Schwartz theorem that there exists a

unique Radon measure vφ . ilt...jn on Rn such that

(4.2)
Rn

for all G(w)=g((lly w), •••, (/„, w)),g^3)(Rn). It is easy to see that (4.2) holds

for all G(w)= g((l^ w), •••, (/Λ, ^))e£FCΓ, by means of a smooth partition of

unity over Rn.
Thus we obtained a family of finite dimensional probability distributions

ί^Φ / ! , - , / „ » ^ι> '"> ^«^ W*, n£ΞN} , which is obviously consistent. That is to say,
i/Φ is realized as a cylindrical measure on J/Γ. In order for z>φ to be countably ad-

ditive on *B(W), it is sufficient to show the following ([6] [8]).

[ For an arbitrary £>0, there exists a compact set Kz

1 such that vφ(C)<6 for any cylinder set C with CΓ\Kt=φ .

Now let us assume Φ€ΞD^k for a positive integer k. Let jF and FR be the func-

tions defined in the proof of Lemma 3.3. Then take R sufficiently large so that

(4.4) IIΦIL-JÎ IU*^-

This is possible by virtue of (3.6). We know from (3.3) and (3.4) that taking
sufficiently large R'(R'>(l + δ2) (R+S2+S3)l(l — δ1)+S2 will do), the two sets

{w£ΞW F(w)^R+S3} and {w^W\ F(w)>R'} are separated by two H^-balls
both centered at the origin but with distinct radii. Namely, the former lies inside

the smaller W^-ball, say B19 and the latter lies outside the bigger W^-ball, say B2.

Let Kz be the closure of the set {w^. W\ F(w)^R'} . We already know that

Kζ is compact. Suppose that a cylinder set C with an expression C—{w^W\

((/i, w), •"> (/., w))^En},En^^(Rn), /„ •••, /,e IF*, does not intersect K,. Let
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Cp= {w^ W\ ((/!, w), •••, (/„, w))eJS;}, where Ep<=33(Rn) is the p-neighborhood

of En, p>0. Then we have Cpn{w<=W; F(w)^R+S3}=φ for sufficiently
small p. (This follows from the fact that the interior of the ball B1 and the
exterior of the ball B2 are separated from each other with a positive distance when

restricted to a finite dimensional subspace.) Now taking a function
(Rn-+K) with properties

all its derivatives are bounded,

ψ(*) - 1 if *e£M ,

ψ(*) = 0 if x<=R"\Ep,

we put G(«σ):=ψ((/1, «σ), ••-, (/„, «σ)). Obviously GeΞFCΓ Therefore we see

*ι> " , xn) *Φ ; ,,..../„ (dx^'dxn) = (Φ, G) .

On the other hand, that FΛ(W^)^G(zϋ), w^W, and the positivity of Φ imply that

(Φ, G)^(Φ, FR)^\\Φ\\qt-k\\Fs\\ptk. But the last term is smaller than 8, hence we

have ι>φ(C)<£. Q.E.D.

The measure corresponding to a PGWF Φ by this theorem will be denoted by

vφ in the sequel.

REMARK (i). In the case of the classical Wiener space (Example 1.1), the

countable additivity of z>φ on <B(W) can be directly proved by the following

inequality.

(4.5)

where ι/ φ ; / l f ί 2 denotes the joint distribution of (w^), w(t2))^RdxRd under the

cylindrical measure vφ, and c>0 is a constant independent of tλ and t2. To show
(4.5), we first claim that the left-hand side of (4.5) is equal to (Φ, | wfa)— w(t2) \ 4).
Then noting that |^(^)— w(t2)\4^P4, we have

Here the constants cl9 c2 and ^3 are all positive and independent of tλ and t2.

(For the proof of these inequalities, see [17] Lem. 1.1, Th. 2.3.)

REMARK (ii). If a PGWF Φ is an element of -Dj"1, we need not take the

regularization Tt\\ \\Wί of IHI^, because IHI^ itself belongs to Dl

p ([9][18]).
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Therefore we can proceed the above proof replacing (3.5) by

Now, note that μ need not be Gaussian in this case. Namely, only Lemma

1.1 (i) (ii) and (3.5)' are needed to prove (4.3). Particularly, in the case of

Dirichlet spaces over infinite dimensional spaces discussed by Kusuoka [9], we
obtain the following.

Let ((?, £F) be a Dirichlet space over a Banach space B with a probability
measure v on it (not necessarily Gaussian) satisfying all the conditions of Theorem

2 of Kusuoka [9]. Then, for each positive bounded linear functional Φ on £F with

respect to a bilinear form 6^=8+^ inner product of L2(v\ J3->/£)), there exists a

unique positive finite Borel measure vφ on B such that an analogy of Theorem 4. 1
holds.

EXAMPLE 4.1. Let F=(F\ •••, Fd)^D+00(Rd). If F is non-degenerate in

Malliavin's sense, i.e,, det«ZλF', DFjyff)~1^L00_(μ), we can give a rigorous
meaning to the pull back ToF^D~°° of any rf-dimensional Schwartz tempered
distribution T under the mapping F ([20] [21]). Then if T is positive, and hence
a positive measure, the pull back TΌJF is a PGWF. If, in particular , 8 yoF =$=(), the

probability measure corresponding to a PGWF ΦFty,y^Rd

y defined by

(4.6) ΦF,y: = 8yoF/(SyoF, 1) ,

where 8y is the Dίrac measure concentrated at y, is nothing but the conditional

probability measure μ( \F=y) given F=y. Of course, this measure is singular

with respect to μ.

Lemma 4.1. Let {ΦJ Γ.i be a sequence of PGWF' s belonging to D^r. We

assume (Φny 1)=1, n= 1, 2, •••.
(i) If sup ||ΦJ| ί f_ r<oo, then the family of probability measures {vφn}»=ι is

uniformly tight.

(ii) // ΦM converges to some Φ^D^r weakly in D^r (i.e., (Φn,F) converges to

(Φ, F) for each F€Ξ Dr

p], then Φ is positive and z>φn converges to v® weakly.

(iii) /f sup ||Φn||ίf-r<00 and vφn converges to some v weakly, then there exists a
n

unique PGWF Φ^D^r such that V=VQ and Φn converges to Φ in D^r weakly.

Proof, (i) Taking an integer k^r, we have sup HΦJI^-^sup ||ΦJ| ί f_r

<oo. For an arbitrary £>0, take R>Q so large that sup||ΦJ|ff i_ jk||FΛ||^ jk<e,

where FR is given by (3.2) and let Kε be the compact set defined in the proof of

Theorem 4.1. Then we have vΦn(C)<β in the same way as Theorem 4.1 for
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any n^N and any cilynder set C with CΓ\Ks=φ. Thus the family of the

probability measures {z>Φn}Γ»ι is uniformly tight .(ii) Φ^O is obvious. Since
sup ||ΦJ| ίt_r<oo follows from the weak convergence of Φn in D^r, we see

{pφJ Γ-i is uniformly tight by (i). Therefore we have only to check the
convergence of each finite dimensional distribution of {vφn}n=ι But it is easy,
because we can approximate any bounded continuous function defined on a
finite dimensional space by C°°-functions which are bounded together with their
all derivatives, (iii) Since D^r is a reflexive Banach space, every bounded
set of it is weakly compact. Consequently, we can take an appropriate sub-
sequence of {Φ«}»=ι which converges to some ΦeZ>^r weakly. Then v=vφ

follows from (ii). Now the weak convergence of Φn to Φ in D^r is clear.
Q.E.D.

Lemma 4.2. Let Φ^D~r be positive. Putting Φn: = T1/nΦ, n=l,2, ,
we have

(i) Φ.e£f(/*),Φ.(«0^0 μ-a.ewtΞW, Λ=l,2, ,
(ii) Φn converges to Φ in D^r (i.e., in the norm \\ ||9t_r),
(iii) (Φ., 1)=(Φ, 1), 11=1,2,-.

Proof. That Φn^Lq(μ) and (ii) were already proved in Lemma 2.2 and
Lemma 2.3 respectively. So we have to prove the positivity of Φn and (iii) only.
We first prove ΦΛ^0. Let F^D+0° be non-negative μ-a.e. Since Tl/n is a

symmetric operator on L2(μ), it holds that (ΦM, jF)=(Φ, T1/nF). In addition, the
positivity of T1/Λ leads us to conclude that (Φ, Γ1/nF)^0. Therefore Φn is a
PGWF, which means ΦΛ(^)^0 μ-a.e. (iii) is also proved using the symmetry of
Γ1/n, i.e., (ΦM, 1)=(Γ1/.Φ, 1)=(Φ, Γ1/M1)=(Φ, 1). Q.E.D.

Lemma 4.1 and Lemma 4.2 give us a method to approximate the measure
vφ corresponding to a PGWF Φ by a sequence of measures which are ab-
solutely continuous relative to the measure μ. Namely, let Φ^D^r be positive
and {Φ»}ίΓ=ι be as in Lemma 4.2. Then we have the followings.

(4.7) Φn^Lq(μ) are non-negative μ-a.e. and vφn(dw) = Φn(zv) μ(dw) .

(4.8) Φn converges to Φ in D^r .

(4.9) vφn converges to z/φ weakly.

As an easy consequence of this, we can show that if F^Dr

p is continuous and

bounded, we have (Φ, ̂ =1 F(w)vφ(dw). Indeed, it is sufficient to note that

(ΦΛ, F)->(Φ, F)y \ F(w) Vφn(dw)-+( F(w) vφ(dw) and that (Φn, F)= \ F(w) Φn(w)

μ(dw)=\ F(zϋ) vφn(dw). This assertion is an improvement of Theorem 4.1, but

it will be fully improved in the coming Theorem 4.3.
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The following theorem is another consequence of the above argument,

which directly connects PGWF's with the potential theory.

Theorem 4.2. Let Φ^D^r be positive. Then its corresponding measure vφ

has no mass in any set of (p, r)-capacity zero. More precisely, we have

(4.ιo) p.(^)^IIΦ|lf.-r(c;(^))v*

for any set A of W, where $φ denotes the outer measure induced by z/φ. In parti-

cular, a measure corresponding to a PGWF never has its mass in slim sets.

Proof. Let Φn: = T1/nΦ, n=l, 2, •••. We already know (4.7)~(4.9) hold.

Let O and U0 be an arbitrary open set and its (p, r)-equilibrium potential re-

spectively. By (4.7) and Lemma 3.2 (ii) (iii), we have

(Φ,, U
0
) = \ Φ

n
 U

0
dμ^ ( Φ

n
 U

0
dμ^ \ Φ

n
dμ =

JW JO JO

On account of (4.9) and since O is open, we see lim z/Φn(O)^z>φ(O). On the

other hand, (4.8) implies that

lim (ΦH, u0) = (Φ, ί/0)^l|Φ||ft-r||£/olUr=IIΦII..-r(c;(θ))v> .

Thus we have proved (4.10) for an open O. And hence (4.10) holds for any

set A by Definition 3.1. Q.E.D.

Recall that W\ W1 is a slim set (Corollary to Lemma 3.3). This fact together

with Theorem 4.2 implies that Vφ(W\W1)=Q, i.e., vφ is actually supported by

W^ But of course it is quite trivial, because (Wly H, μ) is again an abstract

Wiener space. Thus vφ is always supported by a Banach space contained in

W which supports μ. So we can say z;φ is very close to μ in a sense, although

it may be singular with respect to μ. In fact, in the case of the classical 1-

dimensional Wiener space, Takeda [19] proved that oo -quasi-all paths have

nowhere differentiability, Lόvy's Holder continuity and they obey the law of

iterated logarithm at t=0. Consequently, z>φ-almost all paths should possess

all these properties as almost all Brownian paths do. Therefore, the class of

measures corresponding to PGWF's is a rather small class in the totality of

finite Borel measures on the path space W\.

Let ΦeZ>7r be positive. Since vφ may fail to be absolutely continuous

with respect to μ, a Wiener function F need not be ^-measurable. However

the pairing (Φ, F) for F^Dr

p has a definite value, hence it is natural to guess

that the integration of F by vφ should be rigorously defined in a certain manner,

and that its value should be equal to (Φ, F). In fact, this idea is realized in
the following theorem.
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Theorem 4.3.

(A) Let Φ^D^r be positive. Then for each F^Dr

pί any (p, r)-quasi-con-

tinuous version F of F is v ̂ -measurable and integrable. In addition, it holds that

(4.11) (Φ, F) = j F(w) v*(dw) .

(B) Let Φ be a PGWF. Then for each F^D+0°, any ^-quasi-continuous

version F of F is v^-measurable and integrable, and in addition, (4.11) holds.

Proof. It is enough to prove (A) only.

Step 1: The v^-measur ability of F\ By the definition of (p, r)-quasi-con-

tinuity, there exists a decreasing sequence of open sets {On}n=\ such that Cr

p(On)
converges to zero and that F is continuous on W\On, n= 1, 2, ••-. Putting

Fn(w)\=F(w)Iw\0n(w), we see Fn is ^(W^-measurable. Because the (p,r)-

capacity is a monotonous set function, we have CJ( ΓΊ OΛ)=0 and hence vφ( Π On)
=0 by Theorem 4.2. Therefore the convergence of Fn to F on W\( Γ\ OM) is a
z/φ-a.e. convergence. Thus F is vφ-measurable.

Step 2: For F<=D+0° which is bounded μ-a.e. We first note that \F\ <M

μ-a.e. implies \F\ <M oo-q.e. (Lemma 3.1 (B) (in)), and hence \F\ <M z>φ-a.e.

Let {/f.}Γ-ι be a CONS of H each /,. of which is taken from W* and &n be a sub
σ-algebra of H)(W) generated by linear functions {(/,-, a>); ι=l, 2, ••-, n}. Now
we put FΛ:=E[F\'Sί]9 w=l, 2, ••-, i.e., Fn is the conditional expectation of F
with respect to <g% under the probability μ. Then each Fn has a version Fn

which belongs to ίJCΓ. (This is due to the Sobolev imbedding theorem.) Hence

we have I Fndvφ=(Φ, Fn). On the other hand, we can prove that Fn converges

to F in D+0° by the convergence theorem of martingales and the fact that LFn=

E[LF\18Ϊ] (see [10]). This implies that (Φ, Fn) converges to (Φ, F) and also
that some subsequence Fnj of Fn converges to F oo-q.e. (Lemma 3.1 (B) (ii)).

Then it holds that I Fnjdvφ converges to I Fdv9 by the bounded convergence

theorem. Thus, we have (4.11) for F^D+0° which is bounded μ-a.e.

Step 3: For F<=Dr

p which is bounded μ-a.e.\ Let Fn: = T1/nF, w=l, 2, —.

Since F is bounded, each Fn is an element of D+0° (Lemma 2.2 (ii)) and if

\F\<ZM A6-a.e., then \Fn\<LM /^-a.e. (Lemma 2.1 (iv)) and hence \Fn\^M

(p,r)-q.e. (Lemma 3.1 (A) (iii)). Consequently, by the bounded convergence
theorem, Lemma 3.1 (A) (ii), Lemma 2.3 and Step 2 above, (4.11) is valid for

F^Dr

p which is bounded μ-a.e.
Step 4: For general F^ Dr

p We put

F+: = (/-L)-r/2((/-L)r/2F V O ) , F-: = (I-L)'^2 ((/-L)r/2 F Λθ).

The positivity of the operator (I—L)~r/2 implies that F+^0 and F~^0 μ-a.e.

Of course we have F=F++F~, hence \F\^F+—F~. Now let us show z>φ-
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integrability of F+ and (4.11) for F+. To this end, we put F^\=(I-Lγr/2

{((I—L)rί2F\/ϋ)/\n},n=\, 2, •••. It is easy to see that Fϊ converges to F+ in
Dp. Moreover, the positivity of (/— L)"r/2 again implies that Q^FΪ^n, Fj^
F£+ι^F+, μ-a.e., w=l, 2, •••. Therefore Fn converges non-decreasingly to F+

z>φ-a.e., and hence \ Fndv® converges to \ F+dvφ (—possibly °o). On the other

hand, because Fn is bounded, it follows from Step 3 that (4.11) holds for Fn.
Combining these two with the convergence of (Φ, F» ) to (Φ, F+), we conclude
that F+ is z>φ-integrable and (4.11) holds for F+. Getting the same result for
jP", we finish the proof. Q.E.D.

EXAMPLE 4.2. Let C: = C([0, oo)-+Rn) be the space of all ^-dimensional
continuous paths with the usual topology of uniform convergence on bounded

time intervals. A continuous w-dimensional stochastic process X, defined on an
abstract Wiener space (Wy H, μ), is nothing but a C-valued ^-measurable
function. X is said to be oo -quasi-continuous if for every l<p<o°, r>0 and
6 >0, there exists an open set O in W such that Cr

p(O)<6 and W\O^w\->
X(w) €Ξ C is continuous.

Let (Wo, H1, P0) be the classical rf-dimensional Wiener space (Example 1.1)

and V09 V19 - , Vd be vector fields on Rn \ F-(Λ)=ΣΪ?-I V'Λ (Λ?)— , α=0, 1, -, rf,
d%i

where the coefficients V#(x) are C°°-functions whose derivatives of orders ^ 1 are
all bounded. Given x^R", an /z-dimensional continuous process Xt is defined
by the solution of the following stochastic differential equation (SDE);

ί dXt = ΣLi VΛ(Xt) dw°!+V0(Xt) dt, w= («,}, .-, wd

t)^Wί ,

Then the following assertion holds.
X=(Xt) has an oo -quasi-continuous version X as a C-valued μ-measurable

function. X is uniquely defined oo-q.e.
To show this assertion, let T>0 be arbitrarily fixed. We define Cτ: =

C([0, T]-*Rn) and Bτ: = WΛ 2m(W 2m and || |L,2Wί below are those defined in

Example 1.1. We also assume 0<α< — , m^N and 2ma>l). Cτ with the

maximum norm and Bτ with a norm || | | JBr : = =[llβlli lϊm+llβll«!2»] 1 / 2 m are Banach
spaces. As we mentioned in Example 1.1, we can regard Bτ as a continuously

imbedded dense subspace of Cτ. Then we can verify that X is a l?Γ-valued μ-
measurable function and moreover, that the function ||JY"( •)!!!/![,: W-+R is an
element of D+0°. Let {Xn} = {(Xn>t)} be a sequence of J5Γ-valued continuous
functions such that \\X( )—Xn( )\\2^τ converges to 0 in D+0° (for example, take
polygonal approximations, cf. [7] [21]). Then, for any pair of integers m>n,
Xm — Xn is continuous and hence we have the following Chebyshev-type ine-
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quality

Hence applying the similar argument of Fukushima [2], we can show that X
has an oo -quasi-continuous version X as a Unvalued function, and therefore as

a CΓ-valued function.

Now assume further that, for a fixed Γ>0, Xτ is non-degenerate in the

sense of Malliavin (cf. [21] for a sufficient condition in terms of the vector fields

VΛ). Then a PGWF Sy°XT, y<ΞRd, is well-defined and, if furthermore 8y°XT*

0, we have a Borel probability measure vφ on W* corresponding to Φ=Sy°Xτl
(Sy°XT, 1). Clearly, every C- valued oo -quasi-continuous function is z/φ-measur-

able, that is, it is a continuous process on the probability space (W*, z>Φ). Hence,
for any solution Y of an SDE with regular coefficients as above, the process X=
(Xt) in particular, its oo -quasi-continuous version Fis a continuous process on

the probability space (Wi, z>φ). This remark will give a new approach to pinned

processes. Indeed, the process j? on (W*, vφ) is just the pinned process of X
conditioned by Xτ=y.

5. Equilibrium measures

Let ΦeZ>^r be positive. A function U^DP defined by (5.1) below is

called the (py r)-potential of Φ or of z>φ.

(5.1) U = (I-L)-r/2 {(/-L)-'/2 Φ}*-1 .

Observing that (I—L)~r/2Φ^Lq(μ) and it is non-negative μ-a.e., we know U

is well-defined as a non-negative element of Dr

p. If ρ=q=2 and r=l, (5.1)
becomes U=(I—L)~1Φ, which is well-known as a 1-ρotential in the usual po-

tential theory ([2]). If ρ=q=2 but r=j=l , the potential U is expressed as U=

(/— L)~r/2Φ, which is an infinite dimensional analogue of the Riesz potential.

In these cases, the equation (5.1) is linear and hence the potential theory is said

to be linear, otherwise it is said to be non-linear ([11]).
Let Φ^D^r be positive and U be its (p, r)-potential. We readily see that

I J7έfoφ=||ί7|||fr=l|Φ|lί.-r, the common value of which is called the (p, r)-energy

of U or Φ or z>φ. In this context, vφ is called a measure of finite (p,r)-energy

([Π]).
We first claim that a (p, r)-equilibrium potential introduced in Definition

3.2 is actually a (p, r)-potential. Namely, we have the following.

Theorem 5.1. Let UA= UA ; Ptf be the (p, r)-equilibrium potential of a set A.

Then there exists a unique PGWF ΦA=ΦA; pίr^D~r such that UA is the (p,r)-
potential of ΦA or of its corresponding measure VA—VA. p>r=vφA. Furthermore, the
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ΐopological support of VA is contained in the topological closure A of A.

Proof. Although the proof is merely a paraphrase of [11] Lem. 4.1, we
will present it for completeness.

First we extend (5.1) for all Φ^D^r that are not necessarily positive as
follows.

(5.2) U = (I-L)-r*i\ (7-L)-r/2 Φ I *-2 (I-LYr/2 Φ}

Then (5.2) turns out to be a one-to-one mapping from D^r onto Dr

p, and its
inverse is written down explicitly as

(5.3) Φ = (I-Lγί2{ I (I-L)r/2 U I p-2 (I-L)'/2 U} .

Therefore what we must show is the positivity of ΦA^D^r

y where ΦA is defined
by (5.3) for £7=17,.

Take an arbitrary F^ Dr

p such that F ̂  0 μ-a.e. Recall that F:>Q(p, r)-q.e.
by virtue of Lemma 3.1 (A) (iii). A parameter λ being assumed to be non-
negative, Lemma 3.2 implies that the quantity \\UA+\F\\^r takes its minimum

at λ=0. Therefore if it is differentiable in λ, we must have - 1| UA+\F\\p

Ptr \ λ=0d\
2^0. In fact, it is differentiable, because we can easily justify the commutation

of I and - in the following calculation.
J d\

= -j- j I (I-LY* UA+\ (I-L)"* F\*dμ

-\ (I-LY* UA+\ (I-L)"* F\*dμ

= p J (I-LY'2 F I (I-Ly'2 UA+\ (I-L)r/2 F \ ̂ 2{(/-i)r/2 UΛ+

Here we used — | x \ p=p \x\p~2 x. Substituting λ=0, we get
dx

- \\UΛ+\F\\ίt,\^ = p (I-L)«* F I (I-L)'<* UA\*-*(I-LY* UA dμ

= p J (I-LY» F(I-L)-'<* ΦA dμ

= P(ΦA,F).

Consequently, we have (Φ^, ̂ )^0, which shows the positivity of Φ^.
Clearly, the same reasoning applies to F^Dr

p satisfying F^O, (p, r)-q.e.
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only on A: We can still conclude that I Fdvφ=(ΦA, F)^0. In particular, if
~ r ^ J
F=0 (p, r)-q.e. on A, then I FdvA=0 holds, because both (ΦA9 F)^0 and

(ΦA, — F)^0 should hold. Take an arbitrary w0^W\A. Put 6:=— dist

(zϋQ,A), which is strictly positive, and B: — {w^W; \\w—zuQ\\w^6}. By virtue
of Lemma 2.5, we can take a function F^D+0° such that F is non-negative, con-

tinuous, F(w)=Q for zoe^ί and F(zϋ)=l for α>e5. Then I FdvA=Q and this

implies vA(B) = 0. Thus we conclude that the topological support of VA is con-
tained in A. Q.E.D.

DEFINITION 5.1. The measure vA=vA ptr in the above theorem is called
the (p, r}-equίlibrium measure or the (p, r}-capacity measure of the set A.

Combining Theorem 3.1 with this theorem, we obtain the following theo-
rem, which characterizes Borel slim sets by means of PGWF's.

Theorem 5.2. Let

(A) B is of (py r)-capacity zero, if and only if B is of v^measure zero for
each PGWF ΦςΞD~r.

(B) B is slim, if and only if B is of v ̂ -measure zero for each PGWF Φ.

(B) is an immediate consequence of (A), while (A) is proved in the same way
as [2] Th. 3.3.2.

EXAMPLE 5.1. Let /lf ••-, ld^W* be such that the matrix V=(<Jh /,->#) is

non-singular. Put F(w) :=((/ι, «f), ••-, ((*> w))^Rd, w ̂ W, and define a closed
set AF>,,yGR*, by AFfy:=F~\y). Then provided that r/2^[d/2] + l ([dβ]
denotes the smallest integer not exceeding rf/2), the (2, r) -equilibrium measure
of AFty is a constant times the measure corresponding to a PGWF δ^oF, or

equivalently, a constant times the Gaussian probability measure μ( \F=y).
More precisely, we have

In particular, when y—Q (then AFtQ is a closed linear subspace of W), vAptQ is

nothing but μ( 1-^=0).

In the remainder of the section, we will verify the above example. For
this, we need the following lemma which presents a sufficient condition for a

(2, r)-ρotential to be equilibrium one.

Lemma 5.1. Let ΦeZ)i~r be positive and U^Dr

2 be the (2, r)-potential of
Φ. Suppose that a v ̂ -measurable set A is a support of v^, i.e., Vφ(W\A)= 0, and
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that U=l, (2, r)-q.e. on A. Then v® and U are the (2, r)-equίlibrium measure and
the (2, r)-equilibrium potential of A, respectively.

Proof. Take an arbitrary F^D2 whose (2, r) -quasi-continuous version F is

non-negative (2, r)-q.e. on A. We have —\\U+\F\\I r \^0=2(Φ, F) as before,
d\ - _' T

and this is non-negative because it coincides with 2 \ Fdv®. Thus we have -
J d\

|| E/+χF||lfr I λ=0^0. It follows from this that the quantity || Z7+λF|||,r decreases
as λ I 0 in some neighborhood of λ— 0. However since it is a polynomial in λ

of degree two (provided F is non-zero), it holds that ||t7||v^||t/+λF||2fr for all
λ>0, particularly, \\U\\I ιr^\\U+F\\2

2tr. Therefore we conclude that U is the
(2, r)-equilibrium potential of A by referring to Lemma 3.2. Q.E.D.

Now let us verify Example 5.1. We define

AΛ: = {w^ W ,y*--<(li9 «,)<y+ -, i = 1, -, 4, n = 1, 2,
2.U ZM

Here y* denotes the z'-th component of the vector y^Rd. We put

Φn(w): = IAn(w)/μ(An)ί w<=W, n = l , 2 > - . .

First we note that

(5.5) dvφn — Φndμ converges to μ( \F = y) weakly.

Next, we calculate the following (cf. (2.4)).

,"" e- T, /„(.) *

= Γ(rβ)μ(A,) I". f"" '" I ''-I'"

For s>09 putting ji:-{y-^"5(/, , v)±-}/(l-e~2s)1/2, we have

IAn(e-* w+ V^=^ β) μ(do)

= (2* det F)-"2 . exp (-.<V* ξ, ξ» dξ
Jy— Jy- Δ

^(2π det V)-"2 n-^-e-^'2 .

Therefore it holds that

ΰ)<:(2πdetVϊ~d/2n~d Γ s''2'1 e-'ίl-e-2'}-1"2 ds ,/ •— τ~ι/ /o\ / /i \ i ^ 'Γ(r/2) /i(4,) Jo
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for all w&W. The integral of the last term is finite if r/2 — l^[i/2]. Since

(2π det V)'d/2 n~d converges to exp (— <F"] J>,;y» as w->oo, we see that
2

sup sup |(/-L)-r/2ΦM(ίί?)|<oo and hence sup ||Φj|2>-r<00

> if r/2^
»ejV "'ΞTΓ «e#

Then according to Lemma 4.1 (iii) and (5.5), we know that there exists a unique

ΦeZ>Γr such that Φ^O, μ( | F= y) = z>Φ and that Φn converges to Φ in D7r

weakly. Obviously, we have Φ=ΦF y (Example 4.1 (4.6)). Furthermore Φn

actually converges to Φ in the norm || ||2,-r Indeed, it is not hard to see that
(/— L)~r/2 Φn(w) converges to

(5-6)

X J~ s'*-1 exp [-s-^V-^y-e- F(w)), y-e'* F(w)>/(l-e-2s)] ds ,

for all w^W. Since sup sup |(7— L)~r/2ΦB(ίo)| <oo, we can regard this con-
n iv

vergence as the convergence in L2(μ). Therefore Φn is convergent in || |k-r>
and of course the limit is nothing but ΦF,r Namely, (5.6) is equal to (/— L)"r/2

ΦFty(w). Replacing r/2 by r, we explicitly have the (2, r)-potential UFty corres-

ponding tO Φp,y as follows.

X Γ s"-1 exp \-s-^<y-\y~e-s F(w)), y-e~s F(zo)>/(l-e-2s)] ds ,

. Now suppose w^AFty, i.e., F(vi)=y, then we have

Ur* = W) 5 " ίr" exp ("'-ι=ϊS '<F"ly J>) Λ

Hence the assertion of Example 5.1 follows from Lemma 5.1.

6. Other properties of PGWFs

In this section, we will survey properties of PGWF's and their correspond-
ing measures from viewpoints other than the potential theory.

Since the space of the polynomials P is dense in each Sobolev space Dr

p

by the definition, a linear functional over P which is continuous in the norm

INUr will t>e uniquely extended to an element of (Dp)*, or equivalently of D^r.
Therefore we can characterize the measures corresponding to PGWF's as fol-
lows.

Theorem 6.1. Let v be a positive finite measure over (W,ίB(W)). Then
(A) (B) and (C) below are equivalent to each other.
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(A) There exists a PGWF Φ such that v=vφ.

(B) PcZr^i/) and there exist l<p<oot r>0 and c<0 such that

I ί F(w) v(dιo) I ̂ c\\F\\ptr for each

(C) (i) v has no mass in any slim set,
(ii) for each F^D+00

) any w -quasi-continuous version F of F is an element

ofLM,
(iii) there exist ί<p<oot r>0 and c>0 such that

I J F(zu) v(dw] I ̂ c \\F\\ptr for each F<=D+0° .

Proof. (A)<-»(B) is just mentioned. (A)«->(C) is clear by the previous
section. Q.E.D.

As we consider the product of elements of 3)(R") and 3)'(Rn), we can define
the product GΦ6Ξ/r~ of G<=ΞD+°° and ΦeΞZT~ by (GΦ, F):=(Φ, GF), Fe
D+0°. But in case Φ is positive, we are allowed to define the product GΦEΞ/?"00

when G belongs to a certain space much wider than D+0°. Namely;

Theorem 6.2. Let Φ be a PGWF and G&L1+(vφ). Then the product

GΦeZ>-°° is well-defined by (GΦ, F): = ( F(w) G(w) vφ(dw), F<=D+0°.

Proof. It is obvious that the measure G(w) vφ(dvϊ) (in general, a signed
measure) has no mass in any slim set and that F is Gz>Φ-measurable for each
F^D+OC. Since D+°° is an algbera, F belongs to Loo_(z>Φ), and hence it is | G | vφ-
integrable. So let us verify the condition of Theorem 6.1 (C) (iii) for the meas-

ure |G|z/φ .
We may assume GeL1+8(z;φ) for some 0<£5Π. By the Holder inequality,

we have | \ FG dvφ\ ^||^|Lm(vΦ)l|G||£wι/(vφ), where m is an even integer not less

than (!+£)/£ and m': = m/(m-l) (£!+€). Similarly we get ||F||L|iιcvΦ> =

Γ( f*dv<^fM=(Φ, Fm)ϊ/m^\\Φ\\l^k\\Fm\\l

p^. Here indices q, -k are chosen so

that Φ^D~k and k^N. Recalling that \\Fm\\ptk^c \\F\\"p>k for a suitable con-
stant c>0 independent of F ([17] Th.3.1), we see, with the help of the above

inequalities, that | f FG dv* \ ^cl/m\\G\\Lm,^\\Φ\\l

q'™k \\F\\mptk, which completes the
proof. " Q.E.D.

EXAMPLE 6.1. Let X(w)=(Xt(w)) be the solution of the SDE discussed in
Example 4.2. Here we also assume that Xτ is non-degenerate in Malliavin's
sense for a fixed Γ>0. We define cr^^inf {^>0; Xs(w)tΞD}, DeΞ$(Rd),
where J^=(Xt) is an oo -quasi-continuous version of X=(Xt) in the sense of
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Example 4.2. Then the product I[Vj)>T)(w) (8y^Xτ)yy^Rd

ί is well-defined as a
PGWF by Theorem 6.2. This is because I[(FD>T}(vi) is measurable with respect
to the measure corresponding to the PGWF δy<>Xτ.

We mentioned after the proof of Theorem 4.2 that the measures corres-
ponding to PGWF's are very close to μ in a sense, though they may be singular
relative to μ. The following theorem shows an example of this similarity con-
cerning the integrability or, equivalently, the order of decay of the tail.

Theorem 6.3 (Fernίque-type theorem). Let Φ be a PGWF. Then there
exists /3>0 such that a function exp (/3||^||^), w€ΞW, is vφ-integrable.

Proof. It is enough to show the following.

There exist £>0, #>0 and <z0>0 such that
(6.1)
V ' ' - if a>a0 .

Let £>0 and a family of functions {φ^}Λ>0 satisfy the conditions of (3.4). As
we saw in the proof of Lemma 3.3, we have

f
(o.Z) <

; Tt\\w\\w>a}c{n<=W', |HU>(«-δ2)/(l+S1)} .

where δ^l-e-' and S^v7!-*-2' j||»Hιr μ(dv). Putting Fκ(w): = φκ(Tt\\w\\w),
we have by (3.6) that

(6.3) \\FK\\p^c'f,^({wGW;Tt\\w\\w>R\), \<p<~>,k<=N ,

where c£ji6>0 is a certain constant independent of R. Then it follows from
(6.2) and (6.3) that

Here we assumed ΦeZ>7* and
On the other hand, Fernique's theorem [1] says that there exist c'>0 and

α'>0 such that

(6.4) μ({w^W; \\w\\w>a}}^,c' e-»'°\ α>0 .
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Therefore we have

*<^' exp -

from which (6.1) easily follows. Q.E.D.

REMARK. By taking *>0 and δ3>0 sufficiently small, a of (6.1) can be

taken arbitrarily close to a' of (6.4).
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