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S4 DOES NOT HAVE ONE FIXED POINT ACTIONS

MASAHARU MORIMOTO
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1. Introduction

In this paper we mean smooth actions on manifolds of compact Lie groups
simply by actions.

Several authors found one fixed point actions on spheres [9] (or [10]), [12],
[13] and [14]. Those spheres have dimensions greater than 5. It is easy to
see that the spheres Sn of dimension n^2 do not have one fixed point actions
of compact Lie groups. Further it is conjectured among topologists dealing
with 3-dimensional manifolds that S3 has no one fixed point actions of compact
Lie groups. The purpose of this paper is to show:

Theorem A. The ^-dimensional homotopy spheres have no one fixed point
actions of compact Lie groups.

Special cases of this theorem were proved by M. Furuta and W.-Y. Hsiang-
E. Straume. Let 2 be an oriented 4-dimensional homotopy sphere.

Theorem (M. Furuta [4]). Any finite group G can not act on 2 in such a
way that (1) ΣG consists of exactly one point and (2) each element of G preserves
the orientation of Σ.

Corollary to Theorem 1 of W.-Y. Hsiang-E. Straume [6]. Any compact
connected Lie group can not act on Σ with exactly one fixed point.

Our proof of Theorem A goes on by showing the following lemmas. For
a compact manifold X and for an integer Λ^O, we denote by Xk the totality of
^-dimensional connected components of X. For a set Y, we denote by \Y\ the
cardinality of Y. Let H be an oriented 4-dimensional homology sphere.

Lemma B. If a compact Lie group G of dimensional acts effectively on
H, then B° is empty or diffeomorphic to Sn with n^2. Especially one has \ Hf | =0
or 2.

Lemma C. If a finite group G acts on B, then one has \ 3? | ̂ 2.
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For a G-action on B we define K=K(G, B) to be the subgroup of G of

elements preserving the orientation of H. If a finite group G acts on Σ4 with
I ΣG I = 1, then by Furuta's theorem we have G^pK, moreover we will see | Σ? | ̂  3
in Section 5. This contradicts Lemma C.

We wish to express our gratitude to M. Furuta for informing us of his
result.

2. Preliminary

Let G be a compact Lie group, H a subgroup of G and X a compact G-

manifold of dimension n. If X% is non-empty, then take an ίf-equivariant nor-
mal bundle of X% in X. The fibers of it are (n— &)-dimensional real ίf-repre-
sentations. We call them the normal representations of Xξ in X. We remark

that if the G-action on X is effective, then the normal representations are faithful.

We frequently use the following well known result.

Theorem (P. A. Smith [1, Theorem 5.1]). If G is a p-group (p prime) and
if it acts on a mod^> homology sphere X, then XG is empty or a mod p homology

sphere.

The following lemma is well known and easily proved.

Lemma 2.1. If a compact Lie group G acts on S" with n^2, then SG is

empty or dίffeomorphic to Sm with m^2.

3. Proof of Lemma B

Let G be a compact Lie group of dimensional and B an oriented 4-
dimensional homology sphere with G-action. Suppose that the G-action is ef-
fective. Let GO be the identity component of G.

Proposition 3.1. If G0 has an abelίan normal subgroup A^F {!}, then BG is
empty or dijjeomorphίc to Sm with m^2.

Proof. Each element of G0 preserves the orientation on B. Since the
G-action is effective, we have dimBβ^2 for any subgroup βφl of G0. Let C

be a cyclic subgroup of A of prime order. By Smith's theorem Bc is a sphere of

dimension ̂ 2. By Lemma 2.1 BG = (((Ξc)A)H)G

y H=G0y is empty or also a
sphere.

Proposition 3.2. It holds that

(1) if G0=5Ό(3), then BG is empty or dίffeomorphic to Sm with m^l,

(2) if G0=SU(2)y then |BG| -0 or 2, and
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(3) if GQ=SO(4), then |BG| -0 or 2.

Proof. The proof is done under the assumption BGΦφ and the notation

H=G0.

(1) Since 50(3) has no irreducible ^-dimensional representations for k=2
and 4, we have dimB^—1. Take a dihedral subgroup D ^of G0 of order 4.

Then we have dim'ΞD=l. By Smith's theorem BD is a circle. Thus Eff

coincides with BD. By Lemma 2.1 we have that BG=(BH)G is a sphere of
dimensional.

(2) Since SU(2) has no faithful representations of dimension ̂ 3, B^ is a

finite set. Furthermore the normal ίf-representations of B^ in B are unique up
to isomorphisms. For any cyclic subgroup C of H of prime order, Bc is a

sphere and includes B .̂ Observing the normal representations of S ,̂ we see
that Bc consists of exactly two points. For any non-trivial subgroup B of Hy

we have 1^|B5|^2. Let T be a maximal toral subgroup of H. We have
\BT\ =2 by Smith's theorem. If BΓ—E^ is non-empty, then denote the point
by x. There is a subgroup L of H such that (i) L has a normal subgroup Q of
order 8 and L\Q has order 3 and (ii) LΠΓΦ{1}. By Oliver's theorem [11,
Proposition 2] we have that |BL|=2, hence BL—BΓ. Sine the smallest sub-
group of H which includes T and L is Hy we have HX=H. This contradicts
the assumption {x}=ST~EίH. Thus 3Γ—B^ and BG also consists of exactly
two points.

(3) The conclusion follows from (2) and the fact that 50(4) has a normal
subgroup isomorphic to SU(2).

Proof of Lemma B. Suppose that |BG| ΦO nor 2. Then G is a subgroup
of O(4) and G0 is a subgroup of 5O(4). By Proposition 3.1 G0 does not have an
abelian normal subgroup except {!}. Hence G0 is isomorphic to either one of

5O(3), SU(2) and 5O(4). This contradicts Proposition 3.2.

4. Proof of Lemma C

Let G be a finite group, B an oriented 4-dimensional homology sphere
with G-action and K=K(Gy B) the subgroup of G defined in Section 1. Our
proof of Lemma C is done under the assumption that the G-action on B is ef-

fective and BGΦφ.
First we note that G is a subgroup of O(4), K a subgroup of *SO(4) and

dimBjy^2 for any non-trivial subgroup H of K.

Proposition 4.1. Let H be a subgroup of K. Then it holds that

(1) if Bf Φ φ, then H is cyclic, and
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(2) if Bf φ φ, then Bf = φ #w^ if w dihedral or ίsomorphic to one of A4, S4 and A5.

Here S4 stands for the symmetric group on four letters, and An> n= 4 and
5, stand for alternating groups on n letters.

Proof. (1) It follows from the fact that a finite subgroup of SO(2) is cyclic.
(2) A finite subgroup of 50(3) is cyclic, dihedral or isomorphic to one

of AI, S4 and A5 (see [5]). Suppose that H is cyclic. Then the normal H-
representations have even dimensions. This contradicts Ef Φφ.

Proposition 4.2. Let H be a non-trivial solvable subgroup of K. Then &
is (empty or) diffeomorphίc to Sm with m^2.

Proof. Take a normal series of subgroups H(i) of H: {l}=
•••^LH(n) = H with H(i)/H(i—l) of prime order. By Smith's theorem and

Proposition 4.1, B^(1) is a sphere of dimension^. Since saw=(Ba(i~l))aw

9 by
induction on / Bff™ are spheres of dimension ̂ 2.

Proposition 4.3. Let H be a subgroup of K and suppose H is isomorphic to
AS. Then it holds that

(1) if Bf Φ φ, then \ E* | = 1 or 2, and

(2) */ E*φ φ and Bf- φ, then Ξff is diffeomorphic to S1.

Proof. (1) Let V be a normal representation of Bf in B. Since V is
faithful, Vff=0 and dim F=4, V is an irreducible //-representation. Let C be

a cyclic subgroup of H of order 5. Then we have Fc=0, hence B^DBf (Φφ).
By Proposition 4.2, Bc consists of exactly two points. The relation E^E* im-

plies that |B*|=1 or 2.
(2) In the case B^ is a disjoint union of circles. Let D be a dihedral

subgroup of H of order 4. Then B^ is a circle by Smith's theorem. Im-
mediately we have *ΞH— B^/S1.

Proposition 4.4. Provided |B*|Ξ>3, ίAew e^ry Sylozϋ subgroup of K is
either cyclic or dihedral.

Proof. Let P be a Sylow subgroup of K. Since P is solvable, Bp is a
sphere of dimension 1 or 2 by Proposition 4.2. The conclusion follows from
Proposition 4.1.

Now we prove Lemma C. We suppose that |Bc?| ^3, and we will meet
with a contradiction.

We note that ^Φ {1} and | Bκ\ ^3. If K is solvable, then B* is a sphere,
hence BG = (EK)G is also a sphere. We have | Bf | = 0 or 2. This contradicts
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the above assumption. Thus K is non-solvable. By Suzuki's theorem [15,
p. 671, Theorem B] and Proposition 4.4, there exist subgroups H, L and Z of K
such that (1) [K: H]<^2, (2) H=ZχL, (3) Z is solvable and (4) L is isomorphic
to PSL(2y q). Here q is a prime greater than 4. Since L is non-solvable and
HLΦφ, L has an irreducible representation of dimension 3 or 4. By Tables
3 and 4 of [8], PSL(2, q)^L is nothing but PSL(2, 5). In other words, L is
isomorphic to A$. By Proposition 4.3 it holds that HL^ S1 or | BL| ̂ 2. From

the assumption that |E?|Ξ>3, we have H^^S1. Since EH = (EiL)H, it is iso-
morphic to 5° or S1, so is H*. Then HG is also diffeomorphic to Sm, m^l.
This is a contradiction.

5. Proof of Theorem A

By Lemma B, it is sufficient to prove the case in which G is a finite group
acting effectively on Σ, an oriented 4-dimensional homotopy sphere. The fol-
lowing arguments go on in this case.

Proposition 5.1. Provided |ΣG|=1, then |Σ*| is finite and an odd number y

where K is the subgroup of G defined in Section 1.

Proof. Suppose |ΣG| — 1. By Proposition 4.2, K is non-solvable. It
follows from Proposition 4.1 that Σ^Σί Π Σf . It holds that

G) + %((Σf )G)

)G) (mod. 2)

ΞΞ %(2f) (mod. 2) .

Thus |2f I is an odd number. Especially Σf is non-empty. If Σf is non-
empty, then K is isomorphic to A5 by Proposition 4.1. In this case, Proposition
4.3 gives that either Σf or Σf is empty. This is a contradiction. Hence we

have Σ'=Σf .

Now we prove Theorem A. Provided |ΣG | — 1, then by Furuta's theorem
and Proposition 5.1 we have |Σf|^3. This, however, contradicts Lemma C.
Thus we get the conclusion of Theorem A.
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