CASSON-GORDON'S RECTANGLE CONDITION OF HEEGAARD DIAGRAMS AND INCOMPRESSIBLE TORI IN 3-MANIFOLDS

Tsuyoshi KOBAYASHI*

(Received January 20, 1987)

1. Introduction

Heegaard diagram of a 3-manifold [6] is one of the most fundamental description of the manifold. But it seems that little is known about it. For example, there is no efficient method to decide if the manifold with a given Heegaard diagram is aspherical or not. Recently, Casson-Gordon defined a generalized Heegaard diagram and gave a nice sufficient condition for the $\mathrm{He}-$ egaard splitting of being irreducible [3]. In fact, they showed that if a Heegaard diagram of a Heegaard splitting ($\left.V_{1}, V_{2}: F\right)$ satisfies a certain condition, say a rectangle condition, and $D_{i}\left(\subset V_{i}\right)(i=1,2)$ is an essential disk then $\partial D_{1} \cap \partial D_{2} \neq \phi$. This result together with the Haken's theorem [5, 7] implies that if the Heegaard diagram satisfies a rectangle condition then the manifold is irreducible. In this paper, firstly, we investigate the effect of a rectangle condition on incompressible tori in the 3-manifold. Actually we prove:

Theorem 1. Let M be a compact orientable 3-manifold, $\left(C_{1}, C_{2}: F\right)$ a He egaard splitting of M and \mathcal{I} a union of mutually disjoint essential tori in M. Suppose that $\left(C_{1}, C_{2}: F\right)$ satisfies a rectangle condition. Then \mathscr{I} is ambient isotopic to \mathfrak{I}^{\prime} such that $\mathfrak{I}^{\prime} \cap F$ is a union of essential loops on \mathfrak{I}^{\prime}.

As consequences of Theorem 1 we have:
Corollary 1. Let M be a Haken manifold which is closed or has incompressible toral boundary and \mathcal{I} a union of tori which gives the torus decomposition of M. Suppose that M admits a genus g Heegaard splitting $\left(C_{1}, C_{2}: F\right)$ which satisfies a rectangle condition. Then \mathscr{I} consists of at most $3 g-4$ components. Moreover, if \mathscr{I} consists of $3 g-4$ components then \mathscr{I} is ambient isotopic to \mathscr{I}^{\prime} such that each component of \mathcal{I}^{\prime} intersects C_{1} in a disk.

For the definition of the torus decomposition in this context, see Section 4

[^0]below.
Corollary 2. Let $M, \mathcal{I},\left(C_{1}, C_{2}: F\right)$ be as in Corollary 1. Then M is decomposed into at most $3 g-3-\beta_{1}(G)$ components by the torus decomposition, where $\beta_{1}(G)$ denotes the first Beetti number of the characteristic graph G of M. Moreover, if M is decomposed into $3 g-3-\beta_{1}(G)$ components then \mathscr{I} is ambient isotopic to \mathscr{I}^{\prime} as in Corollary 1.

In [8] the author showed that the Haken manifolds with Heegaard splittings of genus g are decomposed into at most $3 g-3$ components by the torus decomposition and that, for each $g(>1)$, there are infinitely many Haken manifolds with Heegaard splittings of genus g, which are decomposed into $3 g-3$ components by the torus decomposition. Corollary 2 shows that the above estimation can be sharpened if the Heegaard splitting satisfies a rectangle condition. In fact, in [8, Section 8], it is shown that there exist Haken manifolds which do not satisfy the inequality in Corollary 2, so that the tori which give the torus decompositions of them can not be isotoped to positions as in the conclusion of Theorem 1. In Section 7 we show that the estimations in Corollaries 1, 2 are best possible by giving infinitely many examples for each $g(>1)$.

Secondly, in Section 5, we define a strong version of a rectangle condition, say a strong rectangle condition, and show that if a Heegaard diagram satisfies a strong rectangle condition then the manifold does not contain an essential torus (Corollary 3). Moreover, we give a sufficient condition for a knot on a Heegaard surface of a 3 -manifold of being hyperbolic (Corollary 4).

A part of this work was carried out while I was a member of the Mathematical Science Research Institute, Berkeley. I would like to express my thanks to the hearty hospitality of the institute. I also thank to Andrew Casson and Cameron Gordon for helpful conversations.

2. Preliminaries

Throughout this paper we will work in the piecewise linear category. For the definitions of standard terms in the 3-dimensional topology, we refer to [6, 7]. A surface is a connected 2 -manifold. A (possibly closed) surface F properly embedded in a 3-manifold M is essential if it is incompressible and not parallel to a subsurface of ∂M. A simple loop is a connected closed 1-manifold.

Let F be a genus $g(>0)$ closed orientable surface. A genus g compression body C is a 3 -manifold obtained from $F \times[0,1]$ by attaching 2 -handles along mutually disjoint simple loops on $F \times\{1\}$ and then attaching some 3-handles so that ∂C does not contain 2 -spheres (cf. [1]). Then $\partial_{0} C$ denotes the component of ∂C corresponding to $F \times\{0\}$. We note that a handlebody V is a compression body with $\partial_{0} V=\partial V$. We say that a surface $S(\subset C)$ is normally embedded in C if $S \cap \partial_{0} C=\partial S . \quad\left(C_{1}, C_{2}: F\right)$ is a Heegaard splitting of a 3-manifold M if each C_{1} is
a compression body, $M=C_{1} \cup C_{2}$ and $C_{1} \cap C_{2}=\partial_{0} C_{1}=\partial_{0} C_{2}=F . \quad F$ is called a Heegaard surface of M and the genus of F is called the genus of the Heegaard splitting.

Then we have:
Lemma 2.1. Let \mathcal{A} be a union of mutually disjoint, normally embedded, essential annuli in a genus g compression body C. Suppose that no three components of $\partial \mathcal{A}$ are mutually parallel in $\partial_{0} C$. Then \mathcal{A} consists of at most $3 g-4$ components.

Proof. By [4, section 1], \mathcal{A} is boundary compressible in C, i.e. there is a disk Δ in C such that $\Delta \cap \mathcal{A}=\alpha$ is an essential arc in \mathcal{A} and $\Delta \cap \partial_{0} C=\beta$ an arc such that $\alpha \cup \beta=\partial \Delta$. Let A be the component of \mathcal{A} which intersects Δ. Then, by performing a surgery on A along Δ, we get an essential disk D properly embedded in C. By moving D by a tiny isotopy, we may suppose that $D \cap \mathcal{A}=$ ϕ. Since each component of \mathcal{A} is essential, no component of $\partial \mathcal{A}$ is parallel to ∂D in $\partial_{0} C$. We note that there are at most $3 g-3$ mutually disjoint non-parallel essential simple loops on $\partial_{0} C$. Then $\partial \mathcal{A}$ consists of at most $3 g-4$ parallel classes. Since no three components of $\partial \mathcal{A}$ are mutually parallel, we see that \mathcal{A} consists of at most $3 g-4$ components.

This completes the proof of Lemma 2.1.
Lemma 2.2. Let F be a closed incompressible surface in a compression body C. Then F is parallel to a component of $\partial C-\partial_{0} C$.

Proof. Let $C=(S \times I) \cup\left(2\right.$-handles) $\cup\left(3\right.$-handles) and l_{1}, \cdots, l_{m} a system of simple loops on $S \times\{1\}$ along which 2 -handles are attached. Then $\left(\cup l_{i}\right) \times$ $[0,1] \cup$ (the cores of the 2 -handles) is a system of disks D_{1}, \cdots, D_{m} normally embedded in C such that $\cup D_{i}$ cuts C into handlebodies and (surface) $\times[0,1]$'s. Since F is incompressible and C is irreducible [4], we may suppose that $F \cap$ $\left(\cup D_{i}\right)=\phi$. Hence F is contained in a component of C cut along $\cup D_{i}$ which is of the form (surface) $\times[0,1]$. Hence, by [5], F is parallel to a component of $\partial C-\partial_{0} C$.

This completes the proof of Lemma 2.2.

3. Rectangle conditions

In this section we introduce rectangle conditions of Heegaard splittings following Casson-Gordon [3] and prove Theorem 1.

Let S be a genus $g(>1)$ closed orientable surface and $P_{i}(i=1,2)$ a pants (: disk with two holes) embedded in S with $\partial P_{i}=l_{1}^{i} \cup l_{2}^{i} \cup l_{3}^{j}$. We suppose that ∂P_{1} and ∂P_{2} intersect transversely. We say that P_{1} and P_{2} are tight if:
(i) there is no 2-gon B in S such that $\partial B=a \cup b$, where a is a subarc of
∂P_{1} and b is a subarc of ∂P_{2},
(ii) for each pair $\left(l_{s}^{1}, l_{t}^{1}\right)$ with $s \neq t$ and $\left(l_{p}^{2}, l_{q}^{2}\right)$ with $p \neq q$, there is a rectangle R embedded in P_{1} and P_{2} such that Int $R \cap\left(\partial P_{1} \cup \partial P_{2}\right)=\phi$, and the edges of R are subarcs of $l_{s}^{1}, l_{t}^{1}, l_{p}^{2}$ and l_{q}^{2}.

Let $\left\{l_{1}, \cdots, l_{3 g-3}\right\}$ ($\left\{l_{1}^{\prime}, \cdots, l_{3 g-3}^{\prime}\right\}$ resp.) be a system of mutually disjoint simple loops on S such that $S-\operatorname{Int}\left(N\left(\cup l_{i}\right)\right)\left(S-\operatorname{Int}\left(N\left(\cup l_{i}^{\prime}\right)\right)\right.$ resp.) consists of $2 g-2$ pants $P_{1}, \cdots, P_{2 g-2}\left(P_{1}^{\prime}, \cdots, P_{2 g-2}^{\prime}\right.$ resp.), where $N($.$) denotes a regular$ neighborhood. We suppose $\cup l_{i}$ and $\cup l_{i}^{\prime}$ intersect transversely. We say that $\left\{l_{1}, \cdots, l_{3 g-3}\right\}$ and $\left\{l_{1}^{\prime}, \cdots, l_{3-3}^{\prime}\right\}$ are tight if, for each pair $(i, j), P_{i}$ and P_{j}^{\prime} are tight.

Let $\left(C_{1}, C_{2}: F\right)$ be a Heegaard splitting of a 3 -manifold M. We say that $\left(C_{1}, C_{2}: F\right)$ satisfies a rectangle condition if there are tight systems $\left\{l_{1}, \cdots, l_{3 g-3}\right\}$ and $\left\{l_{1}^{\prime}, \cdots, l_{3 g-3}^{\prime}\right\}$ on F such that each $l_{i}\left(l_{i}^{\prime}\right.$ resp.) is the boundary of a disk or a boundary component of an incompressible, boundary incompressible annulus properly embedded in C_{1} (C_{2} resp.).

Remark. By using the complete disk system of [4, section 1], we can show that if A is an incompressible, boundary incompressible surface properly embedded in a compression body C then either A is a disk normally embedded in C or A is an annulus such that one component of ∂A is contained in $\partial_{0} C$ and the other component is contained in $\partial C-\partial_{0} C$.

We say that a Heegaard splitting $\left(C_{1}, C_{2}: F\right)$ is strongly irreducible if there are no essential disks D_{1}, D_{2} normally embedded in C_{1}, C_{2} respectively such that $\partial D_{1} \cap \partial D_{2}=\phi$. Then Casson-Gordon proved:

Theorem 3.1 [3]. Suppose that a Heegaard splitting $\left(C_{1}, C_{2}: F\right)$ satisfies a rectangle condition. Then $\left(C_{1}, C_{2}: F\right)$ is strongly irreducible.

Let $M, \mathscr{I},\left(C_{1}, C_{2}: F\right)$ be as in Theorem 1. The proof of Theorem 1 is done by using the argument of hierarchy for a 2 -manifold, isotopy of type A, \cdots, which is an idea of Jaco's for proving the Haken's theorem ([7, Chapter II]) and was developed by Ochiai [10]. For the definitions of terminologies, see [7].

By the above remark, we may suppose that each component of $\mathscr{I}_{1}=\mathscr{I} \cap C_{1}$ is a disk and the number of the component is minimal. Then $\mathscr{I}_{2}=\mathscr{I} \cap C_{2}$ is a union of punctured tori. By [7, 8], there is a hierarchy $\left(\mathscr{I}_{2}^{(0)}, a_{0}\right), \cdots,\left(\mathscr{I}_{2}^{(n)}, a_{n}\right)$ for \mathscr{I}_{2} and a sequence of isotopies of type A which realizes the hierarchy in C_{2}. We may suppose that $a_{i} \cap a_{j}=\phi(i \neq j)$ and, hence, we can consider a_{0}, \cdots, a_{n} are mutually disjoint arcs on \mathscr{I}_{2}. We say that a_{i} is of type 1 if a_{i} joins distinct components of $\partial \mathscr{I}_{2}, a_{i}$ is of type 2 if a_{i} joins one component of $\partial \mathscr{I}_{2}$ and a_{i} separates the component of \mathscr{I}_{2} containing a_{i} and a_{i} is of type 3 if a_{i} joins one component of $\partial \mathscr{I}_{2}$ and a_{i} does not separate the component of \mathscr{I}_{2} containing a_{i} [9]. Then we have:

Lemma 3.2. Let $M, \mathscr{I}, \mathscr{I}_{i}(i=1,2),\left(\mathscr{F}_{2}^{(j)}, a_{j}\right)(j=1, \cdots, n)$ be as above.

Then:

(i) each a_{i} is not of type 2,
(ii) for each component of $\partial \mathscr{I}_{2}$, there is at least one type 3 arc which joins the component,
(iii) if two type 3 arcs meet a component of $\partial \mathscr{I}_{2}$ then $T \cap C_{1}$ consists of a disk, where T denotes the component of \mathscr{I} containing the arcs and
(iv) for each component of $\partial \mathscr{I}_{2}$, there is at most two type 1 arcs which meet the component. Moreover, if $a_{i}\left(a_{j}\right.$ resp.) is a type 1 (type 3 resp.) arc such that a_{i} and a_{j} meet the same component of $\partial \mathscr{I}_{2}$ then $j<i$.

Proof. See [8, section 3].
Proof of Theorem 1. Let $M, \mathscr{I}, \mathscr{I}_{i}(i=1,2),\left(\mathscr{I}_{2}^{(j)}, a_{j}\right)(j=1, \cdots, n)$ be as above. Suppose that \mathscr{I}_{1} consists of p components. By Lemma 2.2, we see that each component of \mathscr{I} intersects the Heegaard surface F. If a_{0}, \cdots, a_{p-1} are all of type 3 , which meet mutually distinct components of $\partial \mathscr{I}_{2}$ then, by taking the image of \mathscr{I} after the isotopy of type A at a_{p-1}, we have the conclusion of Theorem 1.

Assume that the above is not true. Then, by Lemma 3.2 (i), we have the following two cases.

Case 1. There exists an $i(<p)$ such that a_{i} is of type 1.
By taking minimal i such that a_{i} is of type 1 , we may suppose that if $j<i$ then a_{j} is of type 3. Let \mathscr{I}^{\prime} be the image of \mathscr{I} after the isotopy of type A at a_{i}, i.e. $\mathscr{I}^{\prime} \cap C_{2}=\mathscr{I}_{2}^{(i+1)}$. Let S_{1}, S_{2} be the components of $\partial \mathscr{I}_{2}$ which a_{i} joins. Then, by Lemma 3.2 (ii), (iv), there are two type 3 arcs $a_{k}, a_{l}(k, l<i)$ such that $a_{k}\left(a_{l}\right.$ resp.) meets $S_{1}\left(S_{2}\right.$ resp.). Then $a_{k} \cup a_{l} \cup a_{i}$ cuts the component of \mathscr{I} containing a_{i} into a disk and an annulus with (possibly empty) holes. This shows that a component of $\mathscr{I}^{\prime} \cap C_{2}$ is a disk D. By the minimality of \mathscr{I}, we see that D is essential. Since $i<p$, some component of $\mathscr{I}^{\prime} \cap C_{1}$ is an essential disk D^{\prime}. Clearly we have $\partial D \cap \partial D^{\prime}=\phi$, contradicting Theorem 3.1.

Case 2. There exists a pair $i, j(i<j<p)$ such that a_{i}, a_{j} are of type 3 and meet the same component of $\partial \mathscr{I}_{2}$.

Let T be the component of \mathscr{I} which contains a_{i}, a_{j}. Then, by Lemma 3.2 (iii), we see that $T \cap C_{1}$ consists of a disk. Let \mathscr{I}^{\prime} be the image of the isotopy of type A at a_{j}. Then we have a contradiction as in Case 1.

This completes the proof of Theorem 1.

4. Proof of Corollaries 1,2

In this section we prove Corollaries 1,2 stated in section 1.

Let M be a Haken manifold which is closed or has incompressible toral boundary. Then, by [7], there is a maximal, perfectly embedded Seifert fibered manifold Σ, which is called a characteristic Seifert pair for M. Then $\mathrm{Fr}_{M} \Sigma$ consists of tori in $\operatorname{Int} M$, where $\mathrm{Fr}_{M} \Sigma$ denotes the frontier of Σ in M. If a pair of components of the tori are parallel in M then we remove one of them from the system of tori. If a component of the tori is parallel to a component of ∂M then we remove it from the sysetm of tori. By iterating these finitely many times, we get a system of tori \mathscr{I} in M the components of which are mutually non parallel and each component of which is not parallel to a component of ∂M. In this paper we call the decomposition of M by \mathcal{I}, the torus decomposition of M. Then, we get a graph G, where the edges of G correspond to the components of \mathscr{I} and the vertices of G correspond to the components of $M-\mathscr{I}$. G is called the characteristic graph for M.

Let $M, \mathscr{I},\left(C_{1}, C_{2}: F\right)$ be as in Corollary 1. By Theorem 1, we may suppose that \mathscr{I} intersects F in essential loops on \mathscr{I} and the number of the components of $\mathscr{I} \cap F$ is minimal among all surfaces which are ambient isotopic to \mathscr{I} and intersect F in essential loops. By the minimality, we see that each component of $\mathscr{I} \cap C_{i}(i=1,2)$ is an essential annulus normally embedded in C_{i}. Then we have:

Lemma 4.1. No three components of $\mathscr{I} \cap F$ are mutually parallel in F.

Proof. Assume that three components l_{1}, l_{2}, l_{3} of $\mathscr{I} \cap F$ are mutually parallel in F. We may suppose that $l_{1} \cup l_{2}\left(l_{2} \cup l_{3}\right.$ resp.) bounds an annulus $A_{1}\left(A_{2}\right.$ resp.) in F such that $A_{1} \cap A_{2}=l_{2}$. Let M_{1} (M_{2} resp.) be the closure of the component of M-Int $N(\mathscr{I})$ which contains $A_{1}^{\prime}=A_{1}$-Int $N(\mathscr{I})\left(A_{2}^{\prime}=A_{2}\right.$-Int $N(\mathscr{I})$ resp.). We note that it is possible that $M_{1}=M_{2}$. By the minimality of \mathfrak{I}, we see that $A_{i}^{\prime}(i=1,2)$ is an essential annulus in M_{i}. Then, by [7], M_{i} admits a Seifert fibration such that A_{i} is a union of fibers. Hence a Seifert fibration on M_{1} can be extended to M_{2} through the component of $N(\mathscr{I})$ which contains l_{2}. But this contradicts the definition of the torus decomposition.

This completes the proof of Lemma 4.1.
Proof of Corollary 1. By Lemma 4.1, we see that the system of annuli $\mathcal{I} \cap C_{i}(i=1,2)$ in C_{i} satisfies the assumption of Lemma 2.1. Hence we have the conclusion of Corollary 1.

Proof of Corollary 2. By Corollary 1, we see that the characteristic graph G of M contains at most $3 g-4$ edges. Hence, by the Euler characteristic formula, we see that G contains at most $3 g-3-\beta_{1}(G)$ vertices so that we have the conclusion of Corollary 2.

5. Strong rectangle condition

In this section we give the definition of the strong rectangle condition and prove an analogy to Theorem 3.1 for essential annuli normally embedded in compression bodies. In fact, we prove:

Theorem 2. Suppose that a Heegaard splitting $\left(C_{1}, C_{2}: F\right)$ satisfies the strong rectangle condition. Then there are no essential annuli A_{1}, A_{2} normally embedded in C_{1}, C_{2} respectively such that $\partial A_{1} \cap \partial A_{2}=\phi$.

As a consequence of Theorem 2 we have:
Corollary 3. If a Heegaard splitting satisfies a strong rectangle condition then the manifold does not contain an essential torus.

First of all, we give the definition of the strong rectangle condition. Let C be a genus $g(>1)$ compression body, and $l_{1}, \cdots, l_{3 g-3}$ a system of mutually disjoint, non-parallel essential simple loops contained in $\partial_{0} C$ such that each l_{i} is a boundary component of a disk or an incompressible, boundary-incompressible annulus. Then $\partial_{0} C-\operatorname{Int}\left(N\left(\cup l_{i}: \partial_{0} C\right)\right)$ consists of $2 g-2$ pants $P_{1}, \cdots, P_{2 g-2}$, where $N\left(\cdot: \partial_{0} C\right)$ denotes a regular neighborhood in $\partial_{0} C$. Moreover, when we talk about a strong rectangle condition, we assume that there are two different pants which intersects $N\left(l_{i}: \partial_{0} C\right)$ for each i. It is easy to see that this condition is equivalent to:

Each l_{i} does not separate $\partial_{0} C$ into a genus 1 surface and a genus $g-1$ surface.

Let $l \subset \partial_{0} C$ be a simple loop which intersects the above $l_{1} \cup \cdots \cup l_{3 g-3}$ in transverse points. We say that l is complicated with respect to $l_{1}, \cdots, l_{3 g-3}$ (or simply complicated) if l satisfies:
(i) there is no 2-gon B in $\partial_{0} C$ such that $\partial B=a \cup b$, where a is a subarc of l and b is a subarc of $U l_{i}$ and
(ii) for any two boundary components of each pants P_{i}, there is a subarc a of l joining them in P_{i}.

Let C, l_{i}, P_{j} be as above. Let $R_{i}(i=1, \cdots, 3 g-3)$ be the double pants (:disk with three holes) $P_{s_{i}} \cup N\left(l_{i}: \partial_{0} C\right) \cup P_{t_{i}}$, where $s_{i} \neq t_{i}, P_{s_{i}} \cap N\left(l_{i}: \partial_{0} C\right) \neq \phi$ and $P_{t_{i}}$ $\cap N\left(l_{i}: \partial_{0} C\right) \neq \phi$. We note that there are six ways of making pair of boundary components of R_{i}. We say that a simple loop $l\left(\subset \partial_{0} C\right)$ intersecting $\cup l_{i}$ in transverse points is sufficiently complicated with respect to $l_{1}, \cdots, l_{3 g-3}$ (or simply sufficiently complicated) if l satisfies the above condition (i) and:
(iii) for any two boundary components of each R_{i}, there is a subarc a
of l joining them in R_{i}.
Then we have:
Lemma 5.1. If l is sufficiently complicated with respect to $l_{1}, \cdots, l_{3 g-3}$ then l is complicated with respect to $l_{1}, \cdots, l_{3 g-3}$.

Proof. Let $P_{i}(i=1, \cdots, 2 g-2), R_{j}(j=1, \cdots, 3 g-3)$ be as sbove. Assume that l is not complicated with respect to $l_{1}, \cdots, l_{3 g-3}$. Then there is a pants P_{k} and a pair of boundary components m_{1}, m_{2} of P_{k} such that no subarc of l properly embedded in P_{k} joins m_{1} and m_{2}. Let l_{s} be the simple loop such that $N\left(l_{s}: \partial_{0} C\right) \cap P_{k}$ $\neq \phi$ and $m_{i} \cap N\left(l_{s}: \partial_{0} C\right)=\phi(i=1,2)$. Let P_{t} be the pants such that $P_{t} \neq P_{k}, P_{t} \cap$ $N\left(l_{s}: \partial_{0} C\right) \neq \phi$, i.e. $R_{s}=P_{t} \cup N\left(l_{s}: \partial_{0} C\right) \cup P_{k}$. Since l is sufficiently complicated, there is a subarc a of l properly embedded in R_{s} such that a joins m_{1} and m_{2}. Hence there is a subarc a^{\prime} of a which is an essential arc properly embedded in P_{t} and $\partial a^{\prime} \subset \partial N\left(l_{s}: \partial_{0} C\right)$. Let l_{u} be a simple loop such that $l_{u} \neq l_{s}$ and $N\left(l_{u}: \partial_{0} C\right)$ $\cap P_{t} \neq \phi$. Then a^{\prime} separates R_{u} into an annulus and a pants. Hence there is a pair of boundary components of R_{u} separated by a^{\prime}. But this contradicts to the fact that l is sufficiently complicated.

This completes the proof of Lemma 5.1.
Now we give the definition of the strong rectangle condition. Let S be a genus $g(>1)$ closed orientable surface and $R_{i}(i=1,2)$ a double pants embedded in S with $\partial R_{i}=l_{1}^{i} \cup l_{2}^{i} \cup l_{3}^{i} \cup l_{4}^{i}$. We suppose that ∂R_{1} and ∂R_{2} intersect transversely. We say that R_{1} and R_{2} are tight if:
(i) there is no 2 -gon B in S such that $\partial B=a \cup b$, where a is a subarc of ∂R_{1} and b is a subarc of ∂R_{2},
(ii) for each pair $\left(l_{s}^{1}, l_{t}^{1}\right)$ with $s \neq t$ and $\left(l_{p}^{2}, l_{q}^{2}\right)$ with $p \neq q$, there is a rectangle R embedded in R_{1} and R_{2} such that, Int $R \cap\left(\partial R_{1} \cap \partial R_{2}\right)=\phi$, and the edges of R are subarcs of $l_{s}^{1}, l_{t}^{1}, l_{p}^{2}$ and l_{q}^{2}.

Let $\left\{l_{1}, \cdots, l_{3 g-3}\right\}\left(\left\{l_{1}^{\prime}, \cdots, l_{3 g-3}^{\prime}\right\}\right.$ resp.) be a system of mutually disjoint simple loops such that $\cup l_{i}$ ($\cup l_{i}^{\prime}$ resp.) cuts S into $2 g-2$ pants. Let $R_{1}, \cdots, R_{3 g-3}\left(R_{1}^{\prime}, \cdots\right.$, $R_{3 g-3}^{\prime}$ resp.) be a system of double pants obtained from $\left\{l_{1}, \cdots, l_{3 g-3}\right\}\left(\left\{l_{1}^{\prime}, \cdots\right.\right.$, $\left.l_{3 g-3}^{\prime}\right\}$ resp.) as above. We say that $\left\{l_{1}, \cdots, l_{3 g-3}\right\}$ and $\left\{l_{1}^{\prime}, \cdots, l_{3 g-3}^{\prime}\right\}$ are strongly tight if, for each pair $(i, j), R_{i}$ and R_{j} are tight.

Let $\left(C_{1}, C_{2}: F\right)$ be a Heegaard splitting of a 3 -manifold M. We say that $\left(C_{1}, C_{2}: F\right)$ satisfies a strong rectangle condition if there are strongly tight systems $\left\{l_{1}, \cdots, l_{3 g-3}\right\}$ and $\left\{l_{1}^{\prime}, \cdots, l_{3 g-3}^{\prime}\right\}$ on F such that each $l_{i}\left(l_{i}^{\prime}\right.$ resp.) is the boundary of a disk or a boundary component of an incompressible, boundary incompressible annulus properly embedded in $C_{1}\left(C_{2}\right.$ resp.).

Then we have:
Lemma 5.2. Let $\left(C_{1}, C_{2}: F\right)$ be a Heegaard splitting of a 3-manifold. If
two systems of simple loops on F give a strong rectangle condition for $\left(C_{1}, C_{2}: F\right)$ then they also give a rectangle condition for $\left(C_{1}, C_{2}: F\right)$.

The proof is essentially the same as in Lemma 5.1. So we omit it.
Proof of Theorem 2. Let $\left\{l_{1}, \cdots, l_{3 g-3}\right\},\left\{l_{1}^{\prime}, \cdots, l_{3 g-3}^{\prime}\right\}$ be systems of simple loops on F which give a strong rectangle condition for ($\left.C_{1}, C_{2}: F\right)$. Let $F_{i}\left(F_{i}^{\prime}\right.$ resp.) ($i=1, \cdots, 3 g-3$) be a disk or an incompressible, boundary incompressible annulus properly embedded in $C_{1}\left(C_{2}\right.$ resp.) such that $l_{i} \subset \partial F_{i}\left(l_{i}^{\prime} \subset \partial F_{i}^{\prime}\right.$ resp. $)$. We may suppose that $F_{1}, \cdots, F_{3 g-3}\left(F_{1}^{\prime}, \cdots, F_{3 g-3}^{\prime}\right.$ resp.) are mutually disjoint. Then $C_{1}-\operatorname{Int}\left(N\left(\cup F_{i}\right)\right)\left(C_{2}-\operatorname{Int}\left(N\left(\cup F_{i}^{\prime}\right)\right)\right.$ resp. $)$ consists of $2 g-2$ components $Q_{1}, \cdots, Q_{2 g-2}\left(Q_{1}^{\prime}, \cdots, Q_{2 g-2}^{\prime}\right.$ resp.). Then let $P_{i}=Q_{i} \cap \partial_{0} C_{1}, P_{i}^{\prime}=Q_{i}^{\prime} \cap \partial_{0} C_{2}$. Let $S_{i}=Q_{m_{i}} \cup N\left(l_{i}: C_{1}\right) \cup Q_{k_{i}}\left(S_{i}^{\prime}=Q_{n_{i}}^{\prime} \cup N\left(l_{i}^{\prime}: C_{2}\right) \cup Q_{p_{i}}^{\prime}\right.$ resp. $)$, where $m_{i} \neq k_{i}$ and $Q_{m_{i}} \cap N\left(l_{i}: C_{1}\right) \neq \phi, Q_{k_{i}} \cap N\left(l_{i}: C_{1}\right) \neq \phi\left(n_{i} \neq p_{i}\right.$ and $Q_{n_{i}}^{\prime} \cap N\left(l_{i}^{\prime}: C_{2}\right) \neq \phi, Q_{p_{i}}^{\prime} \cap N$ ($\left.l_{i}^{\prime}: C_{2}\right) \neq \phi$ resp.). Then let $R_{i}=S_{i} \cap \partial_{0} C_{1}\left(R_{i}^{\prime}=S_{i}^{\prime} \cap \partial_{0} C_{2}\right.$ resp.).

By the general position argument and cut and paste method [6], we may suppose that $F_{i} \cap A_{1}$ ($F_{i}^{\prime} \cap A_{2}$ resp.) consists of (possibly empty) arcs properly embedded in $F_{i}\left(F_{i}^{\prime}\right.$ resp. $)$ and that $\partial A_{1} \cap P_{i}\left(\partial A_{2} \cap P_{i}^{\prime}\right.$ resp.) consists of essential arcs in $P_{i}\left(P_{i}^{\prime}\right.$ resp.).

Suppose that there are components of $\left(\cup F_{i}\right) \cap A_{1}$ and $\left(\cup F_{i}^{\prime}\right) \cap A_{2}$, say α and α^{\prime}, which are inessential arcs in A_{1} and A_{2}. Let β (β^{\prime} resp.) be the subarc of $\partial A_{1}\left(\partial A_{2}\right.$ resp.) such that $\partial \beta=\partial \alpha\left(\partial \beta^{\prime}=\partial \alpha^{\prime}\right.$ resp.) and $\alpha \cup \beta$ ($\alpha^{\prime} \cup \beta^{\prime}$ resp.) bounds a disk in A_{1} (A_{2} resp.). We may suppose that $\beta \subset P_{1}$ and $\beta^{\prime} \subset P_{1}^{\prime}$. Let b_{1}, b_{2} ($b_{1}^{\prime}, b_{2}^{\prime}$ resp.) be the boundary components of $P_{1}\left(P_{2}\right.$ resp.) such that $\left(b_{1} \cup b_{2}\right)$ $\cap \beta=\phi\left(\left(b_{1}^{\prime} \cup b_{2}^{\prime}\right) \cap \beta^{\prime}=\phi\right.$ resp. $)$. Then, by Lemma 5.2, we see that there is a rectangle R in F such that $R \subset P_{1}, R \subset P_{1}^{\prime}$ and the edge of R consists of subarcs of $b_{1}, b_{2}, b_{1}^{\prime}$ and b_{2}^{\prime}. Moreover, a subarc of $\beta^{\prime}(\beta$ resp.) is properly embedded in R and connects b_{1} and b_{2} (b_{1}^{\prime} and b_{2}^{\prime} resp.), so that $\beta \cap \beta^{\prime} \neq \phi$. Hence, we may suppose that each component of $\left(\cup F_{i}^{\prime}\right) \cap A_{2}$ is an essential arc in A_{2}.

By [2], we see that there is a train track τ on F such that ∂A_{2} is carried by τ and $\tau \cap P_{i}^{\prime}, \tau \cap N\left(l_{j}: F\right)$ look as in Figure 5.1. Since each component of $\left(\cup F_{i}^{\prime}\right) \cap A_{2}$ is an essential arc in A_{2}, we can isotope A_{2} so that $\partial A_{2} \subset N(\tau: F)$ and each component of $Q_{i}^{\prime} \cap A_{2}$ looks like the bottom of a ditch (Figure 5.2).

Let D be a component of $N\left(F_{i}^{\prime}: C_{2}\right) \cap A_{2}$. We say that D is of type a if the two arcs $D \cap F$ are carried by a path in $\tau \cap N\left(l_{i}^{\prime}: F\right), D$ is of type b if the two arcs $D \cap F$ are carried by pairwise different paths in $\tau \cap N\left(l_{i}^{\prime}: F\right)$ (Figure 5.3). Assume that all components of $A_{2} \cap\left(\cup N\left(F_{i}^{\prime}: C_{2}\right)\right)$ are of type a. Then A_{2} is parallel to an annulus in $\partial_{0} C$, a contradiction. Hence we have:

Assertion. There exists a component of $A_{2} \cap\left(\cup N\left(F_{i}^{\prime}: C_{2}\right)\right)$ which is of type b .

We may suppose that $A_{2} \cap N\left(F_{1}^{\prime}: C_{2}\right)$ contains a type b disk D. Let D^{\prime}

Figure 5.1

Figure 5.2

type a

type b
Figure 5.3
be the component of $A_{2} \cap S_{1}^{\prime}$ which contains D. Then $D^{\prime} \cap F$ consists of two arcs a_{1}, a_{2} properly embedded in R_{1}^{\prime}. Since D is of type $b, a_{1} \cup a_{2}\left(\subset R_{1}^{\prime}\right)$ separates a pair of boundary components l_{1}, l_{2} of R_{1}^{\prime} (Figure 5.4). Hence, if a is an arc properly embedded in R_{1}^{\prime}, which joins l_{1} and l_{2}, then a intersects $a_{1} \cup a_{2}$. Then, by the definition of the strong rectangle condition, we see that a component l of ∂A_{2}^{\prime} is sufficiently complicated with respect to $l_{1}, \cdots, l_{3 g-3}$. Now, we have the following two cases.

Figure 5.4
Case 1. There is a component a of $A_{1} \cap\left(\cup F_{i}\right)$ which is an inessential arc in A_{1}.

We may suppose that a is innermost, i.e. there is a disk D in A_{1} such that $c l\left(\partial D-\partial A_{1}\right)=a$ and $\operatorname{Int} D \cap\left(\cup F_{i}\right)=\phi$. Moreover we may suppose that $a \subset F_{1}, D \subset Q_{1}$. Let $b=c l(\partial D-a)$. Then b is an arc properly embedded in P_{1}, which meets one boundary component of P_{1}. By Lemma $5.1, l$ is complicated with respect to $l_{1}, \cdots, l_{3 g-3}$ so that $l \cap b \neq \phi$. Hence $\partial A_{1} \cap \partial A_{2} \neq \phi$.

Case 2. Every component of $A_{1} \cap\left(\cup F_{\boldsymbol{i}}\right)$ is an essential arc in A_{1}.
In this case, by the argument as above, there are a double pants R_{i} and a component E of $A_{1} \cap S_{i}$ such that $E \cap F$ consists of two arcs properly embedded in R_{i}, which separate a pair of boundary components m_{1}, m_{2} of R_{i}. Since l is sufficiently complicated, there is a subarc b of l properly embedded in R_{i}, which connects m_{1} and m_{2}. Hence $b \cap \partial A_{1} \neq \phi$, so that $\partial A_{1} \cap \partial A_{2} \neq \phi$.

This completes the proof of Theorem 2.
Proof of Corollary 3. Let $\left(C_{1}, C_{2}: F\right)$ be a Heegaard splitting of a 3-manifold M, which satisfies a strong rectangle condition. Assume that M contains an essential torus T. By Lemma 2.2, we see that $T \cap F \neq \phi$. By Theorem 1, Lemma 5.2, we may suppose that each component of $T \cap C_{i}(i=1,2)$ is an es-
sential annulus in C_{i}. Hence there are essential annuli A_{1}, A_{2} in C_{1}, C_{2} respectively such that $\partial A_{1} \cap \partial A_{2}=\phi$, contradicting Theorem 2.

6. Hyperbolic knots

In this section we give a sufficient condition for a given knot embedded in a Heegaard surface of a 3-manifold is atoroidal by using the concept of sufficiently complicated simple loops defined in section 5.

Theorem 3. Let K be a simple loop embedded in the Heegaard surface of a Heegaard splitting $\left(C_{1}, C_{2}: F\right)$ of a 3-manifold M. If K is sufficiently complicated with respect to C_{1} and C_{2} then $M-\operatorname{Int} N(K)$ is irreducible and does not contain an essential torus.

By using Theorem 3 and a theorem of Thurston [11], we prove:
Corollary 4. Let K be a simple loop embedded in the Heegaard surface of a Heegaard splitting $\left(C_{1}, C_{2}: F\right)$ of a 3-manifold M which is closed or has (not necessarily incompressible) toral boundary. If K is sufficiently complicated with respect to C_{1} and C_{2} then K is a hyperbolic knot, i.e. Int $(M-K)$ admits a complete hyperbolic structure of finite volume.

Lemma 6.1. Let C be a genus $g(>1)$ compression body and $l\left(\subset \partial_{0} C\right) a$ simple loop. If l is complicated then $\partial_{0} C$ - $\operatorname{Int} N(l)$ is incompressible in C.

Proof. Let $l_{1}, \cdots, l_{3 g-3}$ be a system of simple loops on $\partial_{0} C$, with respect to which l is complicated, and let $F_{1}, \cdots, F_{3 g-3}$ be a system of mutually disjoint incompressible, boundary incompressible surfaces such that $F_{i} \cap \partial_{0} C=l_{i}(i=1, \cdots$, $3 g-3$).

Assume that $\partial_{0} C$-Int $N(l)$ is compressible in C. Let D be a compressing disk. Then we may suppose that D intersects $\cup F_{i}$ transversely. By cut and paste argument, we may suppose that D intersects $\cup F_{i}$ in arcs. Moreover we may suppose that there is no 2 -gon B in $\partial_{0} C$ such that $\partial B=a \cup b$, where a is a subarc of ∂D and b is a subarc of $\cup l_{i}$. Suppose that $\partial D \cap\left(\cup l_{i}\right)=\phi$. Then ∂D is parallel to some l_{i} so that ∂D intersects l, a contradiction. Hence $D \cap\left(\cup F_{i}\right)$ $\neq \phi$. Let $\Delta(\subset D)$ be one of the innermost disks, i.e. $\Delta \cap\left(\cup F_{i}\right)=\partial \Delta \cap\left(\cup F_{i}\right)=$ α an arc and $\Delta \cap \partial_{0} C=\beta$ an arc such that $\alpha \cup \beta=\partial \Delta$. Let P be the closure of the component of $C-N\left(\cup F_{i}\right)$ such that $\Delta^{\prime}=\Delta-\operatorname{Int}\left(N\left(\cup F_{i}\right)\right)$ is contained in P. Let $\beta^{\prime}=\beta$-Int $\left(N\left(\cup F_{i}\right)\right)$. Then β^{\prime} is an arc properly embedded in the pants $P \cap\left(\partial_{0} C\right)$ and β^{\prime} separates two boundary components of $P \cap\left(\partial_{0} C\right)$. On the other hand, since l is complicated, there is a subarc γ of l properly embedded in $P \cap\left(\partial_{0} C\right)$ such that γ joins the two boundary components. Hence $\beta^{\prime} \cap \gamma \neq \phi$ so that $\partial D \cap l \neq \phi$, a contradiction.

This completes the proof of Lemma 6.1.

As a consequence of Lemma 6.1, we have:
Lemma 6.2. Let $K,\left(C_{1}, C_{2}: F\right), M$ be as in Theorem 3. If K is complicated with respect to C_{1} and C_{2} then M-Int $N(K)$ is irreducible.

Proof. Assume that M-Int $N(K)$ contains an essential 2-sphere S. Since C_{i} is irreducible [4], $S \cap(F-\operatorname{Int} N(K)) \neq \phi$. We may suppose that the number of the components of $S \cap(F$-Int $N(K))$ is minimal among all essential 2 -spheres in M-Int $N(K)$. Let $D(\subset S)$ be one of the innermost disks, i.e. $\partial D \subset F$, Int $D \cap F=\phi$. Then, by Lemma 6.1, we see that ∂D is contractible in F-Int $N(K)$. Hence, D can be pushed into the other compression body, contradicting the minimality of S.

This completes the proof of Lemma 6.2.
The next lemma is proved implicitly in section 5 . So we will just see how the proof proceeds.

Lemma 6.3. Let C, l be as in Lemma 6.1. If l is sufficiently complicated then $\left(C, \partial_{0} C\right.$-Int $\left.N(l)\right)$ does not contain an essential annulus, i.e. if A is an incompressible annulus properly embedded in $\left(C, \partial_{0} C\right.$-Int $N(l)$) then A is boundary parallel.

Outline of proof. Assume that there is an incompressible annulus A properly embedded in ($C, \partial_{0} C$-Int $N(l)$) such that A is not parallel to an annulus in $\partial_{0} C$. Let $l_{1}, \cdots, l_{3 g-3}, F_{1}, \cdots, F_{3 g-3}$ be as in the proof of Lemma 6.1. Then, by the proof of Lemma 6.1 and Lemma 5.1, we may suppose that each component of $A \cap\left(\cup F_{i}\right)$ is an essential arc in A. By Assertion of section 5, we see that there is a component S of $C-\operatorname{Int}\left(N\left(\cup F_{i}\right)\right)$, for a suitable subset \mathcal{L} of $\{1, \cdots, 3 g-3\}$, such that $R=S \cap \partial_{0} C$ is a double pants and a pair of components of $A \cap R$ separates a pair of boundary components of R, a contradiction.

As a consequence of Lemma 6.3, we have:
Lemma 6.4. Let C, l be as in Lemma 6.1. If l is sufficiently complicated then C is not homeomorphic to the total space of $[0,1]$-bundle over a surface such that $\partial_{0} C$-Int $N(l)$ corresponds to the associated $\{0,1\}$-bundle.

Proof. Assume that C is homeomorphic to the total space of [0,1]-bundle $C \xrightarrow{P} F$ such that $\partial_{0} C$-Int $N(l)$ corresponds to the associated $\{0,1\}$-bundle. Then F is a genus $g / 2$ orientable surface with one hole or a genus g non-orientable surface with one hole. It is easy to see that there is an essential simple loop l in F. Then $p^{-1}(l)$ is an essential annulus properly embedded in $\partial_{0} C$-Int $N(l)$, contradicting Lemma 6.3.

This completes the proof of Lemma 6.4.

Proof of Theorem 3. By Lemmas 5.1, 6.2, we see that M-Int $N(K)$ is irreducible. Let T be an incompressible torus in M-Int $N(K)$. Since F-Int $N(K)$ is incompressible in M-Int $N(K)$ (Lemma 6.1), we may suppose that T intersects F-Int $N(K)$ by loops which are essential on T. Moreover we may suppose that the number of the components of $T \cap(F-\operatorname{Int} N(K))$ is minimal among all tori which are ambient isotopic to T and intersecting F-Int $N(K)$ by loops which are essential on them. Then, by Lemma 6.3, we see that each component of $T \cap C_{i}(i=1,2)$ is an annulus which is parallel to $N(K: F)$. Hence T is parallel to $\partial N(K)$.

This completes the proof of Theorem 3.
Proof of Corollary 4. By Theorem 3, we see that M-Int $N(K)$ does not contain an essential torus. Hence, by [11], it is enough to show that M does not admit a Seifert fibration for the proof of Corollary 4. Assume that M admits a Seifert fibration. Then, by Lemma 6.1 and [7, Theorem VI. 34], we see that $C_{i}(i=1,2)$ is homeomorphic to the total space of a [0,1]-bundle over a surface, where F-Int $N(l)$ corresponds to the associated $\{0,1\}$-bundle, contradicting Lemma 6.4.

This completes the proof of Corollary 4.

7. Examples

In this section we will show that for each $g(>1)$ there exist infinitely many closed Haken manifolds which admit genus g Heegaard splittings with rectangle conditions, each of which admits a torus decomposition which satisfies the equality in Corollary 2 (Examples 1,2,3). It is clear that such examples show that the estimation in Corollary 1 is best possible. Then we will give examples satisfying the assumptions of Theorems 2, 3 and Corollaries 3, 4 (Examples 4, 5).

Example 1. Let V_{1} be a genus 2 handlebody, A_{1}^{1}, A_{2}^{1} be a pair of essential annuli properly embedded in V_{1} as in Figure 7.1. Let V_{2} be a copy of V_{1}, A_{1}^{2}, A_{2}^{2} the annuli in V_{2} corresponding to A_{1}^{1}, A_{2}^{1} and $h: \partial V_{1} \rightarrow \partial V_{2}$ the homeomorphism induced from the identification of V_{1} and V_{2}. Then $V_{1} \bigcup_{h} V_{2}$ is the connected sum of two $S^{2} \times S^{1 \prime}$ s. Let $l\left(\subset \partial V_{1}\right)$ be the simple loop in Figure 7.1 and $T: \partial V_{1} \rightarrow \partial V_{1}$ the right hand Dehn twist along l. For each integer n, set $M_{2}^{(n)}=$ $V_{1} \bigcup_{h \circ} T^{n} V_{2}$. Then $A_{1}^{1} \cup A_{1}^{2}, A_{2}^{1} \cup A_{2}^{2}$ become tori $T_{1}^{(n)}, T_{2}^{(n)}$ in $M^{(n)}$. $T_{i}^{(n)} \cup T_{1}^{(n)}$ separates $M^{(n)}$ into two components $N_{1}^{(n)}, N_{2}^{(n)}$, where $N_{2}^{(n)}$ admits a Seifert fibration with the orbit manifold an annulus with two exceptional fibers of index two such that A_{k}^{l} is a union of the fibers and $N_{1}^{(n)}$ is homeomorphic to the exterior of $(2,2 n)$ torus link such that the core of A_{k}^{l} corresponds to a meridian loop [9 , section 4]. Hence if $|n|>1$ then $N_{1}^{(n)}$ admit a Seifert fibration with the orbit
manifold an annulus and one exceptional fiber of index $|n|$, whose regular fiber in $\partial N_{1}^{(n)}$ intersects the core of A_{k}^{l} transversely in one point. By [7, Theorem VI. 18], we see that if $|n|>1$ then the Seifert fibration on $N_{2}^{(n)}$ does not extend to $N_{1}^{(n)}$. Hence $M^{(n)}=N_{1}^{(n)} \cup N_{2}^{(n)}$ is the torus decomposition of $M^{(n)}$ provided $|n|>1$. By the uniqueness of the torus decomposition, we see that $M^{(n)}$ is not homeomorphic to $M^{(m)}$, provided $|n| \neq|m|$.

Let $F^{(n)}=\partial V_{1}=\partial V_{2}\left(\subset M^{(n)}\right)$. Clearly $F^{(n)}$ is a Heegaard surface of $M^{(n)}$. We will show that the Heegaard splitting $\left(V_{1}, V_{2}: F^{(n)}\right)$ satisfies the rectangle condition of if $|n|>1$. Let $l_{i}, l_{i}^{\prime}(i=1,2,3)$ be simple loops on $F^{(n)}$ in Figure 7.2. We note that each simple loop bounds a disk in V_{1}. Recall that T is a right hand Dehn twist along l. Set $l_{i}^{(n)}=T^{n}\left(l_{i}^{\prime}\right)$. Then, for the proof of the fact that ($V_{1}, V_{2}: F^{(n)}$) satisfies the rectangle condition, it is enough to show that

Figure 7.1

Pigure 7.2

Figure 7.3
$\left\{l_{1}, l_{2}, l_{3}\right\}$ and $\left\{l_{1}^{(n)}, l_{2}^{(n)}, l_{3}^{(n)}\right\}$ are tight. Let N be a regular neighborhood of l in $F^{(n)}$. We may suppose that $\left.T\right|_{F^{(n)}-\operatorname{Int}(N)}=i d_{F^{(n)}-\operatorname{Int}(N)}$. Then, by seeing the configuration in N, we see that $\left\{l_{1}, l_{2}, l_{2}\right\}$ and $\left\{l_{1}^{(n)}, l_{2}^{(n)}, l_{3}^{(n)}\right\}$ are tight, provided $|n|>1$ (Figure 7.3).

Example 2. Let V_{1}, A_{j}^{1}, l be as in Example 1. Let W be another genus two handlebody, A_{3}^{1}, A_{4}^{1} be a pair of essential annuli properly embedded in W as in Figure 7.4, A_{5}^{1} be an annulus embedded in ∂W as in Figure 7.4. Then we get a genus three handlebody V_{1}^{3} from V_{1} and W by identifying $N\left(l: \partial V_{1}\right)$ and A_{5}^{1}. We shall denote the image of $A_{j}^{1}(j=1, \cdots, 5)$ in V_{1}^{3} also by A_{j}^{1}. Let m_{3} be the image of m in ∂V_{1}^{3}, where m is the simple loop on ∂W in Figure 7.4. Let V_{2}^{3} be

Figure 7.4
a copy of $V_{1}^{3}, A_{j}^{2}(j=1, \cdots, 5)$ the annuli in V_{2}^{3} corresponding to A_{j}^{1} and $h: \partial V_{1}^{3} \rightarrow$ ∂V_{2}^{3} the homeomorphism induced from the identification of V_{1}^{3} and V_{2}^{3}. Let $T_{3}: \partial V_{1}^{3} \rightarrow \partial V_{1}^{3}$ be the right hand Dehn twist along m_{3}. For each integer n, set $M_{3}^{(n)}=V_{1}^{3} \cup \cup_{h}^{n} V_{3}^{3}$. Then $A_{i}^{1} \cup A_{i}^{2}(i=1, \cdots, 5)$ becomes a torus $T_{i}^{(n)}$ in $M_{3}^{(n) .}$. It is directly seen that $T_{1}^{(n)} \cup \cdots \cup T_{5}^{(n)}$ separates $M_{3}^{(n)}$ into four components $N_{1}^{(n)}$, $N_{2}^{(n)}, N_{3}^{(n)}$ and $N_{4}^{(n)}$, where $N_{4}^{(n)}$ admits a Seifert fibration with the orbit manifold an annulus and two exceptional fibers of index two, $N_{i}^{(n)}(i=2,3)$ admits a Seifert fibration with the orbit manifold a disk with two holes and no exceptional fiber and $N_{i}^{(n)}$ is homeomorphic to the exterior of $(2,2 n)$ torus link. It is easily seen that this gives a torus decomposition of $M^{(n)}$, provided $|n|>1$ such that the characteristic graph is as in Figure 7.5.

Let $F^{(n)}=\partial V_{1}^{3}=\partial V_{2}^{3}\left(\subset M^{(n)}\right)$. We can show that the Heegaard splitting ($V_{1}^{3}, V_{2}^{3}: F^{(n)}$) satisfies the rectangle condition, provided $|n|>1$, by considering the simple loops l_{1}, \cdots, l_{6} in Figure 7.6 and the argument in Example 1.

Figure 7.5

Figure 7.6
Example 3 (general construction). We shall construct a family of examples for each $g(>2)$ inductively. The first step of the induction is Example
2. Then suppose that we have:

Induction hypothesis. Let V_{1}^{g-1} be a genus $g-1$ handlebody, \mathcal{A}_{1}^{g-1} a union of $3 g-7$, mutually disjoint, essential annuli in V_{1}^{g-1}, and let V_{2}^{g-1} be a copy of V_{1}^{g-1}, and \mathcal{A}_{2}^{g-1} the union of annuli in V_{2}^{g-1} corresponding to \mathcal{A}_{1}^{g-1} and $h: \partial V_{1}^{g-1} \rightarrow$ ∂V_{2}^{g-1} the homeomorphism induced from the identification of V_{1}^{g-1} and V_{2}^{g-1}. Suppose that there is a simple loop m_{g-1} on ∂V_{1}^{g-1}, which satisfies:
(i) $m_{g-1} \cap \mathcal{A}_{1}^{\xi-1}=\phi$,
(ii) let $T_{g-1}: \partial V_{1}^{3} \rightarrow \partial V_{1}^{3}$ be the right hand Dehn twist along m_{g-1}. Set $M_{g-1}^{(n)}=V_{1}^{g-1} \underset{h \circ T_{g-1}^{n}}{\subset} V_{2}^{g-1}$. Then $M_{g-1}^{(n)}$ is a Haken manifold and $\mathscr{I}^{g-1}=\mathcal{A}_{1}^{g-1} \cup \mathcal{A}_{2}^{g-1}$ gives a torus decomposition of $M_{8-1}^{(n)}$ into $2 g-4$ components and
(iii) there exists a union of mutually disjoint $3 g-6$ disks \mathscr{D}^{g-1} properly embedded in V_{1}^{g-1} such that $\partial \mathscr{D}^{g-1}$ cuts ∂V_{1}^{g-1} into $2 g-4$ pants $P_{1}, \cdots, P_{2 g-4}$ and, for each pair of boundary components of P_{i}, there is a subarc of m_{g-1} properly embedded in P_{i}, which joins the boundary components.

It is easy to see that the above condition (iii) together with the argument in Example 1 shows that the Heegaard splitting ($V_{1}^{g-1}, V_{2}^{g-1}: F^{(n)}$) of $M_{g-1}^{(n)}$ satisfies the rectangle condition provided $|n|>1$.

Construction. Let $W, A_{3}^{1}, A_{4}^{1}, A_{5}^{1}, m$ be as in Example 2. Then we get a genus g handlebody from V_{1}^{g-1} and W by identifying $N\left(m_{g-1}: \partial V_{1}^{g-1}\right)$ and A_{5}^{1}. We shall denote the image of $A_{3}^{1}, A_{4}^{1}, A_{5}^{1}, \mathcal{A}_{1}^{g-1}$ in V_{1}^{g} also by $A_{3}^{1}, A_{4}^{1}, A_{5}^{1}, \mathcal{A}_{1}^{g-1}$. Then let $\mathcal{A}_{1}^{g}=A_{3}^{1} \cup A_{4}^{1} \cup A_{5}^{1} \cup \mathcal{A}_{1}^{g-1}$ and $m_{g}\left(\subset \partial V_{1}^{g}\right)$ be the image of m. Let V_{2}^{g} be a copy of V_{1}^{g} and \mathcal{A}_{2}^{g} the union of annuli in V_{2}^{g} corresponding to \mathcal{A}_{1}^{g}. Then it is easily checked that $V_{i}^{g}, \mathcal{A}_{i}^{g}, m_{g}$ satisfy the above conditions (i), (ii). Moreover, we easily find a union of mutually disjoint $3 g-3$ disks \mathscr{D}^{g}, which satisfy the condition (iii). See Figure 7.7.

Figure 7.7
Example 4. Let V be a genus two handlebody and τ the train track on ∂V as in Figure 7.8. We note that τ is complete, i.e. each component of $\partial V-\tau$ is a 3-gon. Hence τ determines an open set of the projective lamination space of ∂V [2]. Let l be a simple loop which is carried by τ with all weights positive.

Then it is easy to see that l is sufficiently complicated with respect to $\left\{D_{1}, D_{2}, D_{3}\right\}$ in Figure 7.8. Let V^{\prime} be a copy of V and $h: \partial V \rightarrow \partial V^{\prime}$ the homeomorphism induced from the identification. Let $T: \partial V \rightarrow \partial V$ be the Dehn twist along l. Then, by seeing the configuration of $T^{n}\left(\partial D_{1} \cup \partial D_{2} \cup \partial D_{3}\right)$ and $\partial D_{1} \cup \partial D_{2} \cup \partial D_{3}$ in a regular neighborhood of l in ∂V, we see that the Heegaard splitting (V, V^{\prime} : $F)$ of the manifold $V \cup_{h \circ T^{n}} V^{\prime}$ satisfies the strong rectangle condition if $|n|$ is sufficiently large (Figure 7.3). Moreover it is easily verified that if all the weights are greater than two then $\left(V, V^{\prime}: F\right)$ satisfies the strong rectangle condition provided $|n| \neq 0$.

Figure 7.8
Example 5. Let ($V, V^{\prime}: F$) be a genus two Heegaard splitting of the 3sphere S^{3}. We draw a picture of F as in Figure 7.9. Let τ be the complete

Figure 7.9

Figure 7.10
train track on F as in Figure 7.9 and $\left\{D_{1}, D_{2}, D_{3}\right\}$ ($\left\{D_{1}^{\prime}, D_{2}^{\prime}, D_{3}^{\prime}\right\}$ resp.) be a system of disks in $V\left(V^{\prime}\right.$ resp.) as in Figure 7.10. We note that Figure 7.9 is obtained from Figure 7.8 by applying Dehn twists twice along $\partial D_{1}, \partial D_{2}$ and ∂D_{3} in Figure 7.8. Let l be a simple loop which is carried by τ with all weights positive. Then l is sufficiently complicated with respect to $\left\{D_{1}, D_{2}, D_{3}\right\}$ and $\left\{D_{1}^{\prime}, D_{2}^{\prime}, D_{3}^{\prime}\right\}$ in Figure 7.10. Hence, by Theorem $4, l$ is a hyperbolic knot.

References

[1] F. Bonahon: Cobordism of automorphisms of surfaces, Ann. Sci. Ecole Norm. Sup. (4) 16 (1983), 237-270.
[2] A.J. Casson: Automorphisms of surfaces after Nielsen and Thurston, Lecture note, University of Texas at Austin.
[3] A.J. Casson and C. McA Gordon: Manifolds with irreducible Heegaard splittings of arbitrarily high genus, to appear.
[4] —: Reducing Heegaard splittings, Topology Appl. 27 (1987), 275-283.
[5] W. Haken: Some results on surfaces in 3-manifolds, Studies in Modern Topology, Math. Assoc. Amer., Prentice Hall, 1968.
[6] J. Hempel: 3-manifolds, Ann. of Math. Studies 86, Princeton University Press, Princeton N.J., 1976.
[7] W. Jaco: Lectures on three-manifold topology, CBMS Regional Conf. Ser. in Math. 43 (1980).
[8] T. Kobayashi: Structures of full Haken manifolds, Osaka J. Math. 24 (1987),

173-215.
[9] -: Non-separating incompressible tori in 3-manifolds, J. Math. Soc. Japan 36 (1984), 11-22.
[10] M. Ochiai: On Haken's theorem and its extension, Osaka J. Math. 20 (1983), 461-468.
[11] W. Thurston: Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.

Department of Mathematics Osaka University, Toyonaka, Osaka, 560
Japan

[^0]: * Partially supported by the Educational Project for Japanese Mathematical Scientists

