GENERALIZATIONS OF NAKAYAMA RING VII
 (HEREDITARY RINGS)

Dedicated to Professor Takasi Nagahara on his 60th birthday

Manabu HARADA

(Received January 9, 1987)

We have studied left serial rings with $(*, 1)$ or $(*, 2)$ in [7] and [8] as a generalization of Nakayama ring (generalized uniserial ring).

In this note, we shall replace the assumption "left serial" to "hereditary", and give, in Sections 2~5, characterizations of an artinian hereditary ring with $(*, n)$ in terms of the structure of $R ; n \leqslant 3$. In Section 6 , we shall study another type of hereditary algebras over an algebraically closed field, i.e., right US-n hereditary algebras.

1. Hereditary rings

Throughout this paper we assume that a ring R is a left and right artinian ring with identity. We shall use the notations and terminologies given in [2]~ [8]

First we recall the definition of $(*, n)$.
$(*, n) \quad$ Every maximal submodule of a direct sum of n hollow modules is also a direct sum of hollow modules [2] and [4]

In this case we may restrict ourselves to a direct sum of hollow modules of a form $e R / K$, where e is a primitive idempotent and K is a submodule of $e R[4]$.

Let R be an artinian hereditary ring. Then R is isomorphic to the ring of generalized tri-angular matrices over simple rings [1]. We are interested in a hereditary ring with $(*, n)$, and so we may assume that R is basic. Then

$$
R \approx\left(\begin{array}{cccc}
\Delta_{1} & M_{12} & \cdots \cdots & M_{1 n} \tag{1}\\
& \Delta_{2} & M_{23} & \cdots
\end{array} M_{2 n}\right)
$$

where the Δ_{i} are division rings and the $M_{i j}$ are left Δ_{i} and right Δ_{j} modules. It is clear that $M_{i j}=e_{i} R e_{j}\left(e_{i}=e_{i i}\right.$ matrix units).

Lemma 1. Let R be a hereditary ring as above. Then for any t, $\sum_{j \geqslant t} \oplus R e_{j}\left(r e s p . \sum_{j \leqslant t} \oplus e_{j} R\right)$ is an ideal and $R / \sum_{j \geqslant t} \oplus R e_{j}\left(\right.$ resp. $\left.R / \sum_{j<t} \oplus e_{j} R\right)$ is also hereditary.

Proof. This is clear from [1], Theorem 1.
Lemma 2. Every non-zero element in $\operatorname{Hom}_{R}\left(e_{i} R, e_{j} R\right)(i \leqslant j)$ is a monomorphism.

Proof. Since $e_{i} R$ is indecomposable and $f\left(e_{i} R\right)$ is projective for $f \in \operatorname{Hom}_{R}$ ($e_{i} R, e_{j} R$), this is clear.

Let R be a ring as (1). We may study hollow modules $e_{i} R / A$ by the initial remark. Put $e=e_{i}$ and $H=\left\{h \mid M_{i h} \neq 0\right\}, J=\left\{j \mid M_{i j}=0\right\}$, and further put $E_{i}=$ $\sum_{h \in H} e_{h}, R_{i}=E_{i} R E_{i}$ and $X_{i}=\sum_{J} \oplus e_{j} R \oplus \sum_{k<i} \oplus e_{k} R$. Since R is hereditary, $e_{h} R e_{j}=0$ for $h \in H$ and $j \in J$ (cf. [1]), and so X_{i} is a two sided ideal in R by Lemma 1 and $R_{i} X_{i}=0$. If $e_{p} R e_{q} \neq 0$ for $p \in H$, then $0 \neq e_{i} R e_{p} e_{p} R e_{q} \subset e_{i} R e_{q}$ by [1], and so $q \in H$. Hence $e_{p} R=e_{p} R E_{i}$ and

$$
\begin{equation*}
R_{i}=E_{i} R \quad \text { and } \quad R_{i} X_{i}=0 \tag{2}
\end{equation*}
$$

It is clear that $R=R_{i} \oplus X_{i}$ as R-modules and R_{i} is hereditary (cf. [1]). Hence every R_{i}-submodule in R_{i} is nothing but an R-submodule in R_{i} from (2). Further let $h_{1}<h_{2}<\cdots<h_{p}\left(h_{i} \in H\right)$, then we note that $e_{h_{1}} R e_{h_{q}} \neq 0$ for all q. Therefore we obtain

Lemma 3. Let R be a hereditary ring as in (1) and let R_{i} be as above. Then $(*, n)$ holds for any n hollow modules if and only if, for any i, the same holds on any R_{i}-modules. Further R_{i} satisfies $e_{h_{1}} R e_{h_{q}} \neq 0$ for all $h_{q}>h_{1}$.

Next we shall observe a construction of hereditary (basic) rings. In order to make the observation clear, we shall first give an example.
Let

$$
R=\left(\begin{array}{llllllll}
K_{11} & 0 & K_{13} & K_{14} & 0 & K_{16} & 0 & K_{18} \\
& K_{22} & 0 & K_{24} & 0 & K_{26} & 0 & K_{28} \\
& & K_{33} & K_{34} & 0 & 0 & 0 & 0 \\
& & & K_{44} & 0 & 0 & 0 & 0 \\
& & & & K_{55} & K_{56} & 0 & K_{58} \\
& 0 & & & & K_{66} & 0 & K_{68} \\
& & & & & & K_{77} & K_{78} \\
& & & & & & & K_{88}
\end{array}\right),
$$

where $K_{i j}=K$ is a field.

We take non-zero entries in $e_{1} R$ and put

$$
R_{1}=\left(\begin{array}{lllll}
K_{11} & K_{13} & K_{14} & K_{16} & K_{18} \\
& K_{33} & K_{34} & 0 & 0 \\
& & K_{44} & 0 & 0 \\
& 0 & & K_{66} & K_{68}
\end{array}\right)
$$

Since K_{22} does not appear in R_{1} (since $M_{12}=0$), we take

$$
R_{2}=\left(\begin{array}{cccc}
K_{22} & K_{24} & K_{26} & K_{28} \\
& K_{44} & 0 & 0 \\
0 & & K_{66} & K_{68} \\
& & & K_{88}
\end{array}\right)
$$

Since K_{55} does not appear in R_{1} and R_{2}, put

$$
R_{5}=\left(\begin{array}{ccc}
K_{55} & K_{56} & K_{58} \\
0 & K_{66} & K_{68} \\
& & K_{88}
\end{array}\right)
$$

Similarly to the above, we put

$$
R_{7}=\left(\begin{array}{cc}
K_{77} & K_{78} \\
0 & K_{88}
\end{array}\right)
$$

Then

$$
A_{12}=\left(\begin{array}{ccc}
K_{44} & 0 & 0 \\
0 & K_{66} & K_{68} \\
0 & 0 & K_{88}
\end{array}\right)
$$

is the common components between R_{1} and R_{2}. Similarly we can define

$$
\begin{aligned}
& A_{15}=A_{25}=\left(\begin{array}{cc}
K_{66} & K_{68} \\
0 & K_{88} \\
A_{17} & =A_{27}=A_{57}=\left(K_{88}\right) .
\end{array} . .\right.
\end{aligned}
$$

We note that the products in R of two components in R_{i} and R_{j} not contained in $A_{i j}$ are zero. Now R_{1} and R_{2} are of right local type (see $\S 5$) and R_{3} and R_{4} are right serial. Further we know from the above note that R is the subring of $R_{1} \oplus R_{2} \oplus R_{5} \oplus R_{7}$ given by identifying elements in the same $K_{i j}$, namely in $A_{i j}$. If we carefully observe the above constructions, we know that only some right ideals contained in $\left(1_{i}-e_{1}^{(i)}\right) R_{i}$ are identified, where 1_{i} is the identity of R_{i} and
$e_{1}^{(i)}$ is the matrix unit in R_{i}.
We shall study the above fact in general. Let

$$
\left.R=\left(\begin{array}{c}
M_{11} M_{12} \tag{3}\\
\cdots
\end{array} \cdots M_{1 n}\right)\left(\begin{array}{ccc}
M_{22} & \cdots & M_{2 n} \\
& \ddots & \vdots \\
0 & & \ddots
\end{array}\right) \vdots \begin{array}{c}
M_{n n}
\end{array}\right)
$$

where $M_{i i}=\Delta_{i}$ are division rings. We define R_{i} as before Lemma 3 and express R_{i} as

$$
R_{i}=\left(\begin{array}{ccc}
M_{11}^{(i)} & \cdots & \cdots M_{1_{n}}^{(i)} \tag{4}\\
0 & \ddots & \vdots \\
& & \vdots \\
& & M_{n_{i} n_{i}}^{(i)}
\end{array}\right)
$$

where $M_{j k}^{(i)}$ is equal to some $M_{l m}$ in (3) $\left(M_{11}^{(i)}=M_{i i}\right.$ in (3)) and $M_{1 k}^{(i)} \neq 0$ for all k.
We note first the following fact: Assume $M_{a b} \neq 0$ for some a and b. Put $I_{a}=\left\{x \mid M_{a x} \neq 0\right\}$ and $I_{b}=\left\{y \mid M_{b y} \neq 0\right\}$. Since $M_{a b} R \approx e_{b} R^{(m)}$ (direct sum of m copies of $e_{b} R$),

$$
\begin{equation*}
I_{a} \subset I_{b} \tag{5}
\end{equation*}
$$

Starting with $R_{1}\left(=R_{t_{1}}\right)$, from the initial observation we can construct $R_{t_{h}}$ so that $M_{11}^{(i)}$ does not appear on the diagonal of $R_{t_{h^{\prime}}}$ for all $t_{h^{\prime}}<i=t_{h}$ and so that each component $M_{p q}$ in (3) appears at least once in some $R_{t_{s}}$. Take R_{i} and $R_{j}\left(t_{h}=i<j=t_{k^{\prime}}\right)$, and assume that $M_{k k^{\prime}}^{(i)}=M_{s s^{\prime}}^{(j)}\left(=M_{p q}\right.$ in (3)) are common components between R_{i} and R_{j}. Then $M_{k k}^{(i)}=M_{s s}^{(j)}=\left(M_{p p}\right.$ in (3)) are also common ones between R_{i} and R_{j} by the definition of $R_{t_{h}}$ and $R_{t_{h^{\prime}}}$. We shall consider those components in (3). It is clear from (5) that

$$
\begin{equation*}
e_{k}^{(i)} R_{i}=e_{p} R=e_{s}^{(j)} R_{j} \tag{6}
\end{equation*}
$$

Now let

$$
e_{k}^{(i)} R_{i}=\left(0 \cdots 0 M_{k k}^{(i)} 0 \cdots M_{k k_{2}}^{(i)} 0 \cdots M_{k k_{t}}^{(i)}\right)=e_{s}^{(j)} R_{j} ; \quad M_{k k_{l}}^{(i)} \neq 0 .
$$

Then $e_{k_{l}}^{(i)} R_{i}=e_{s_{l}}^{(j)} R_{j}$ for all $l \leqslant t$ from (5). By $A_{i j}$ we shall denote the right ideal whose components appear in R_{i} and R_{j}. Let I_{i} and I_{j} be as before (5) where $i=t_{h}$ and $j=t_{h^{\prime}}$ and put $I_{i} \cap I_{j}=\left\{\pi_{1}<\pi_{2}<\cdots<\pi_{s}\right\}$. Then we know from the argument above that
i) $A_{i j}=\sum \oplus e_{\pi_{k}} R$,
ii) $A_{i j} e_{p} R=0$ for $p \notin\left\{\pi_{1}, \cdots, \pi_{s}\right\}$, and so
iii) the lattice of right R-modules of $A_{i j}$ is equal to the lattice of right $A_{i j}$-modules of $A_{i j}$.

Finally we assume for some $b(1 \leqslant b \leqslant n)$ that $\left(M_{a b}\right.$ in (3)) $=M_{u v}^{(i)} \neq 0$ and ($M_{b c}$ in (3)) $=M_{x y}^{(j)} \neq 0$. Then $b \in I_{i} \cap I_{j}$ and so $M_{x y}^{(k)} \subset A_{i j}$ from (7)-i) and ii). Hence the product in R of an entry of R_{i} and one of R_{j} is zero if the latter (and hence two of them) is not contained in $A_{i j}$. Thus we can find a set $\left\{R_{i_{t}}\right\}$ of hereditary rings such that $e_{1}^{\left(i_{t}\right)} R_{i_{t}} e_{k}^{\left(i_{t}\right)} \neq 0$ for all k and a set $\left\{A_{i_{t}, i_{t}}\right\}$ of right ideals as (7), and R is the subring of $\Sigma \oplus R_{i_{t}}$ such that the entries in $A_{i_{t}, i_{t}^{\prime}}$ of $R_{i_{t}}$ are equal to the entries in $A_{i_{t}, i_{i}^{\prime}}$ of $R_{i_{t}}$. Conversely, let $\left\{R_{i}\right\}_{i=1}^{m}$ be a set of hereditary (basic) rings and $\left\{A_{i j}\right\}$ a set of right ideals in R_{i} and R_{j} which satisfy (7) where we replace R with R_{i} and R_{j}. Then we can easily show that the subring of $\Sigma \oplus R_{i}$ whose components in $A_{i j}$ are identified for all i, j is a hereditary ring. We shall call such a ring the patched ring of $\left\{R_{i}\right\}$ with respect to (briefly w.r.t.) $\left\{A_{i j}\right\}$, (the name comes from the following examples).

We shall give some examples of the patched ring. In the following examples, tri-angules and squares mean tri-angular matrices and matrices over a field K, respectively and straight lines do vector spaces over K.

$$
\text { and } A_{11}=\lceil\subset
$$

2
Then

is the patched ring of R_{1} and R_{2} w.r. t A_{11},

and $B_{11}=\sqrt{d}$

Then

is the patched ring of R_{3} and R_{4} w.r.t. B_{11}.

We note that R_{1} and R_{2} are left and right serial, but R is not left serial. R_{3} and R_{4} are of right local type, but R is not and (*,3) holds (see $\S \S 4$ and 5). We shall show in $\S 5$ that every hereditary (basic) algebras over an algebraically closed field with $(*, 3)$ is obtained as the patched ring of R_{1} 's and R_{3} 's above.

Thus we obtain
Proposition 1. Let R be a hereditary (basic) ring. Then R is the patched ring of hereditary rings $\left\{R_{i}\right\}$ such that $e_{1}^{(i)} R_{i} e_{k}^{(i)} \neq 0$ for all k, where $e_{p}^{(i)}$ is the matrix unit $e_{p p}$ in R_{i}.

Remark 1. Let R be a hereditary ring which is one of R_{i} given in Proposition 1. Since $e_{1} R e_{j} \neq 0, e_{j} R$ is monomorphic to $e_{1} R$. Hence, if the structure of $e_{1} R$ is known as right R-modules, then we can see those of $e_{i} R$ (cf. Theorem 2).

2. Hereditary rings with $(*, 1)$

We shall first give some remarks on ($*, 1$). If R satisfies $(*, 1)$, for $e J^{i} \supset C$ $e J / C=\sum_{i=1}^{n} \oplus A_{i}$, with A_{i} hollow. Since A_{i} is hollow, $A_{i} J=\sum \oplus B_{i j}$ with $B_{i j}$ hollow by (*, 1). Hence $e J^{2} / C=\sum_{i} \oplus A_{i} J=\sum_{i} \sum_{j} \oplus B_{i j}$. By induction
$e J^{i} / C$ is a direct sum of hollow modules.
In general, we assume that a module M is a direct sum of submodules M_{i}. For submodules N_{i} of M_{i}, we call $\sum_{i} \oplus N_{i}$ a standard submodule of M (with respect to the decomposition $\sum_{i} \oplus M_{i}$).

Proposition 2. Let N be a finitely generated R-module. Then the following are equivalent:

1) N is a direct sum of hollow modules.
2) Let P be a projective cover of $N(P \xrightarrow{f} N)$. Then ker f is a standard submodule of P with respect to a suitable direct decomposition of indecomposable modules.
3) Let P^{\prime} be projective and $f^{\prime}: P^{\prime} \rightarrow N$ an epimorphsim. Then ker f^{\prime} is a standard submodule of P^{\prime} as 2).

Proof. Every hollow module is of a form $e R / A$. Hence 1$) \leftrightarrow 2$) and 3) \rightarrow 2) are clear.
2) \rightarrow 3) Let

$$
0 \rightarrow K^{\prime} \rightarrow P^{\prime} \rightarrow N \rightarrow 0
$$

be exact with P^{\prime} projective. Since P is a projective cover of N, there exist $g: P \rightarrow P^{\prime}$ and $h: P^{\prime} \rightarrow P$ such that $h g=1_{p}$. Let $P=\sum \oplus P_{i}$ and ker $f=K=\Sigma \oplus K_{i}$ by 2), where the P_{i} are indecomposable and $K_{i} \subset P_{i}$. It is clear that $g(K) \oplus h^{-1}(0)$ $=\Sigma \oplus g\left(K_{i}\right) \oplus h^{-1}(0) \subset \operatorname{ker} f^{\prime}$ and $P^{\prime}=g(P) \oplus h^{-1}(0)$. Hence ker $f^{\prime}=\Sigma \oplus g\left(K_{i}\right) \oplus$ $h^{-1}(0) \subset \Sigma \oplus g\left(P_{i}\right) \oplus h^{-1}(0)=P^{\prime}$.

We shall study, in this section, a hereditary ring with $(*, 1)$ as a right R module. Hence we may assume that R is basic. We shall give a characterization of a hereditary ring with $(*, 1)$.

In the following, α, β, \cdots mean indices and $|i, \alpha, \beta, \cdots, \eta|$ means a natural number related with the index $(i, \alpha, \beta, \cdots, \eta)$. If R is a basic hereditary ring,

$$
\begin{align*}
& J\left(e_{i} R\right)=e_{i} J=N(i, \alpha) \oplus N(i, \beta) \oplus N(i, \gamma) \oplus \cdots \\
& \quad \text { where } \quad N(i, \alpha) \approx e_{|i, \alpha|} R, N(i, \beta) \approx e_{|i, \beta|} R, \cdots \\
& J(N(i, \alpha))=N\left(i, \alpha, \alpha_{1}\right) \oplus N\left(i, \alpha, \alpha_{1}^{\prime}\right) \oplus \cdots, \tag{9}\\
& \quad \text { where } \quad N\left(i, \alpha, \alpha_{1}\right) \approx e_{\left|i, \alpha, \alpha_{1}\right|} R, N\left(i, \alpha, \alpha_{1}^{\prime}\right) \approx e_{|i, \alpha, \alpha| 1} R
\end{align*}
$$

and so on. It is clear that $i<|i, \alpha|<\left|i, \alpha, \alpha_{1}\right|<\left|i, \alpha, \alpha_{1}, \alpha_{2}\right|$ and so on, and

$$
\begin{equation*}
e_{i} R e_{j}=M_{i j}=\sum_{|i,-, \gamma|=j} \oplus_{j} N(i, \cdots, \gamma) e_{j} \tag{10}
\end{equation*}
$$

Theorem 1. Let R be a hereditary (basic) ring and $N(i, \cdots, \gamma)$ be as in (9). Then the following conditions are equivalent:

1) $(*, 1)$ holds for any hollow right R-module.
2) The following conditions are satisfied.
i) Let $i<k=|i, \alpha| \leq j=|i, \beta|(\alpha \neq \beta)$, i.e., $e_{i} J$ contains two direct summands isomorphic to $e_{k} R$ and $e_{j} R$, respectively. If $N(i, \alpha, \cdots, \gamma)$ and $N\left(i, \beta, \cdots, \gamma^{\prime}\right)$ with $|i, \alpha, \cdots, \gamma|=\left|i, \beta, \cdots, \gamma^{\prime}\right|=h$ appear in (9), i.e., for some h, simultaneously $e_{k} R e_{h} \neq 0$ and $e_{j} R e_{h} \neq 0$, then $e_{j} R$ is uniserial, and hence $\left[M_{j p}: \Delta_{q}\right] \leqslant 1$ for $q>j$. Further if we denote exactly $N(i, \alpha, \cdots, \gamma)$ as $N\left(i, \alpha, \alpha_{2}, \cdots, \alpha_{t}=\gamma\right)$, there exists a (unique) s such that $\left|i, \alpha, \alpha_{2}, \cdots, \alpha_{s}\right|=j$.
ii) If $M_{j q}=x \Delta_{q}(q>j)$, there exists an isomorphism σ of Δ_{q} onto Δ_{j} such that $x \delta=\sigma(\delta) x$ for all δ in Δ_{q}.
3) For any submodule A in $e_{i} J^{k}$ for any k, there exists a direct decomposition $e_{i} J^{k}=\Sigma \oplus P_{\alpha}$ such that $A=\Sigma \oplus A_{\alpha} ; A_{\alpha} \subset P_{\alpha}$ and P_{α} is indecomposable, i.e., A is a standard submodule of $e_{i} J^{k}$ with respect to the decomposition $\Sigma \oplus P_{\alpha}$.
4) For any submodule A in $e_{i} J$, there exists a direct decomposition $e_{i} J=\sum_{\alpha} \oplus$ $N(i, \alpha)^{\prime}$ such that $A=\Sigma \oplus A_{\alpha} ; A_{\alpha} \subset N(i, \alpha)^{\prime}$ and $N(i, \alpha)^{\prime} \approx N(i, \alpha)$, i.e., A is a standard submodule of $e_{i} J$ with respect to the decomposition $\Sigma \oplus N(i, \alpha)^{\prime}$,

Proof. 1) $\rightarrow 2$) Assume (*, 1) and $i=1$ from Lemma 1. Put $i_{1}=|1, \alpha|$ and $i_{2}=|1, \beta|$. Assume $N(1, \alpha, \cdots, \gamma)$ and $N\left(1, \beta, \cdots, \gamma^{\prime}\right)$ appear in (9) for
$k=|1, \alpha, \cdots, \gamma|=\left|1, \beta, \cdots, \gamma^{\prime}\right|$. Then $M_{1 k} \neq 0, M_{i_{1} k} \neq 0$ and $M_{i_{2} k} \neq 0$. First we shall show $e_{i_{2}} R$ is monomorphic to $e_{i_{1}} R$ and $\left[M_{i_{2} k}: \Delta_{k}\right]=1$. If we can show that $e_{i_{1}} R$ contains a non-zero element y in $M_{i_{1} i_{2}}, e_{i_{2}} R \rightarrow y R \subset e_{i_{1}} R\left(e_{i_{2}} \rightarrow y\right)$ is a monomorphism from Lemma 2. Hence we may assume $\Delta_{k+1}=\cdots=\Delta_{n}=0$ from Lemma 1. We shall identify $N(1, \alpha)$ with $e_{i_{1}} R$ (resp. $N(1, \beta)$ with $\left.e_{i_{2}} R\right)$. From the above assumption let $M_{i_{2} k}=\sum_{j=1}^{n} \oplus A_{j}$; the A_{j} are simple R-modules and $\left[A_{j}: \Delta_{k}\right]=1$. Since $e_{i_{1}} R \supset M_{i_{1} k} \supset N(1, \alpha, \cdots, \gamma) \neq 0$, there exists a natural homomorphism

$$
f: M_{i_{2} k} / \sum_{j \geqslant 2} \oplus A_{j} \approx A_{1} \rightarrow M_{i_{1} k}
$$

From the assumption (*, 1), f is extendible to an element h^{\prime} in $\operatorname{Hom}_{R}\left(e_{i_{2}} R / \sum_{j \geqslant 2} \oplus\right.$ $A_{j}, e_{i_{1}} R$) by [6], Theorem 4 (note that $\operatorname{Hom}_{R}\left(e_{i_{1}} R, e_{i_{2}} R / \sum_{j \geqslant 2} \oplus A_{j}\right)=0$ by Lemma 2 in case of $i_{1}=i_{2}$ and $j \geqslant 2$ and that we identify $e_{i_{1}} R$ and $e_{i_{2}} R$ with $N(1, \alpha)$ and $N(1, \beta)$, respectively). Consider a homomorphism

$$
h: e_{i_{2}} R \rightarrow e_{i_{2}} R / \sum_{j \geqslant 2} \oplus A_{j} \xrightarrow{h^{\prime}} e_{i_{1}} R .
$$

Since $h \neq 0$ is a monomorphism by Lemma 2, $M_{i_{2} k}=A_{1}$. Therefore

$$
\begin{equation*}
e_{i_{2}} R \text { is monomorphic to } e_{i_{1}} R \text { and }\left[M_{i_{2} k}: \Delta_{k}\right]=1, \text { provided } M_{i_{2} k} \neq 0 \tag{11}
\end{equation*}
$$

We shall show similarly to (11) that $e_{i_{2}} R$ is uniserial. Put $e_{i_{2}}=e$ and $e J^{t} \approx \sum_{j=1}^{v} \oplus$ $e_{b(j)} R$ for some t, since R is hereditary. Let B be a simple submodule of $e_{b(1)} R$. Then we obtain a monomorphism of $\left(B \oplus \sum_{j \geqslant 2} \oplus e_{b(j)} R\right) / \sum_{j \geqslant 2} \oplus e_{b(j)} R \approx B$ to $e_{i_{1}} R$ (see (11)). From the argument before (11), $\sum_{j \geqslant 2} \oplus e_{b(j)} R=0$, and so $e J^{t} \approx e_{b(1)} R$ and $e J^{t} / e J^{t+1}$ is simple. Therefore $e R$ is uniserial. Next assume $M_{i_{2} k}=x \Delta_{k}$ and we show ii). Hence we may assume $\Delta_{k+1}=\cdots=\Delta_{n}=0$ from Lemma 1. For any δ in Δ_{k}, define an endomorphism φ of $M_{i_{2} k}$ by setting $\varphi\left(x \delta^{\prime}\right)=x \delta \delta^{\prime}$. We may regard φ as an isomorphism of $M_{i_{2} k}$ onto $N(1, \alpha, \cdots, \gamma)(|1, \alpha, \cdots, \gamma|=k)$. Further, for an extension g (in $\operatorname{Hom}_{R}\left(e R, e_{i_{1}} R\right) \subset \operatorname{Hom}_{R}\left(e R, e_{1} R\right)$) of φ by [6], Theorem 4, $g(e R e) \subset e_{1} R e_{i_{2}}=M_{i_{2}}=\Sigma \oplus N(1, \alpha, \cdots, \varepsilon) e_{i_{2}}$. Noting the structure (9) and $g\left(M_{i_{2} k}\right)=\varphi\left(M_{i_{2} k}\right)=N(1, \alpha, \cdots, \gamma)$, we obtain

$$
\begin{equation*}
\text { some } N\left(1, \alpha, \cdots, \varepsilon^{\prime}\right) \text { contains } N(1, \alpha, \cdots, \gamma) \text { and } N\left(1, \alpha, \cdots, \varepsilon^{\prime}\right) \approx e R \tag{12}
\end{equation*}
$$

Therefore φ is extendible to an element in $\operatorname{Hom}_{R}(e R, e R)=\Delta_{i_{2}}$ (take the projection to $N\left(1, \alpha, \cdots, \varepsilon^{\prime}\right)$), which implies that there exists δ^{*} in $\Delta_{i_{2}}$ such that $\delta^{*} x=x \delta$. It is clear that the mapping: $\delta \rightarrow \sigma(\delta)=\delta^{*}$ is a monomorphism. We shall show that σ is an isomorphism. Let $\delta^{* *}$ be an element in $\Delta_{i_{2}}$. Since
$M_{i_{2} k}=x \Delta_{k}$ is a left $\Delta_{i_{2}}$-module, $\delta^{* *} x=x \delta^{\prime \prime}$ for some $\delta^{\prime \prime}$ in Δ_{k}. Hence $\delta^{* *}=\sigma\left(\delta^{\prime \prime}\right)$. The last part of i) is clear from (12) and its argument.
$2) \rightarrow 1$) Assume that i) and ii) are satisfied. We shall show that the condition ii) of [6], Theorem 4 is fulfiled, and so we may study a case $e=e_{1}$ by Lemma 1 . Let

$$
e_{1} J=N(1, \alpha) \oplus N(1, \beta) \oplus \cdots
$$

and $C_{1} \supset D_{1}$ (resp. $C_{2} \supset D_{2}$) submodules in $N(1, \alpha) \approx e_{i_{1}} R$ (resp. $N(1, \beta) \approx e_{i_{2}} R$, $i_{1} \leq i_{2}$) such that C_{1} / D_{1} is simple and $f^{-1}: C_{1} / D_{1} \approx C_{2} / D_{2}$. We shall show that f is extendible to an element in $\operatorname{Hom}_{R}\left(N(1, \beta) / D_{2}, N(1, \alpha) / D_{1}\right)$. First we note for any R-module E in $e_{k} R$,

$$
\begin{equation*}
E=E\left(\sum_{j \geqslant k} e_{j}\right)=\sum_{j \geqslant k} \oplus E e_{j} \quad \text { and } \quad E e_{j} \subset M_{k j} \tag{13}
\end{equation*}
$$

Since $C_{1} / D_{1} \approx C_{2} / D_{2}, N(1, \alpha, \cdots, \gamma)$ and $N\left(1, \beta, \cdots, \gamma^{\prime}\right)$ appear in $e_{1} R$ for some $|1, \alpha, \cdots, \gamma|=\left|1, \beta, \cdots, \gamma^{\prime}\right|=h$ from (13). Hence $N(1, \beta)\left(\approx e_{i_{2}} R\right)$ is uniserial by i) and $C_{2}=M_{i_{2} h} \oplus M_{i_{2} h_{1}} \oplus \cdots \oplus M_{i_{2} h_{t}} \supset D_{2}=M_{i_{2} h_{1}} \oplus \cdots \oplus M_{i_{2} h_{t}}$ from (13), where $h<h_{1}<\cdots<h_{t}$. We may identify $N(1, \alpha)$ with $e_{i_{1}} R$. Let $M_{i_{2} h}=x \Delta_{h}$ and take a representative $f(x)$ of $f\left(x+D_{1}\right)$ in $M_{i_{1} h}$ from (13); $f(x)=\sum x_{p} ; 0 \neq x_{p} \in N(1, \alpha, \cdots$, γ_{p}) from (10) $\left(\left|1, \alpha, \cdots, \gamma_{p}\right|=h\right)$. Since $x_{p} \neq 0, N\left(1, \alpha, \cdots, \gamma_{p}\right) \subset N\left(1, \alpha, \cdots, \delta_{p}\right)$ ($\left.\left|i, \alpha, \cdots, \delta_{p}\right|=i_{2}\right)$ from i), and $N\left(1, \alpha, \cdots, \delta_{p}\right) \neq N\left(1, \alpha, \cdots, \delta_{p^{\prime}}\right)$ if $p \neq p^{\prime}$, since $e_{i_{2}} R$ is uniserial. Put $N=\sum \oplus N\left(1, \alpha, \cdots, \delta_{p}\right) \subset N(1, \alpha), C_{1}^{\prime}=C_{1} \cap N$ and $D_{1}^{\prime}=D_{1} \cap N, f(x)$ being in C_{1}^{\prime} and $f(x) \notin D_{1}, C_{1}=C_{1}^{\prime}+D_{1}$, and so $C_{1} / D_{1} \approx$ $C_{1}^{\prime} /\left(C_{1}^{\prime} \cap D_{1}\right)=C_{1}^{\prime} / D_{1}^{\prime}$. On the other hand, $x_{p}=x_{p} e_{h}$ for all p. Hence the mapping: $x_{1} \rightarrow x_{p}$ is extendible to an element g_{p} in $\operatorname{Hom}_{R}\left(N\left(1, \alpha, \cdots, \delta_{1}\right), N(1,, \alpha\right.$ $\left.\left.\cdots, \delta_{p}\right)\right)\left(\approx \Delta_{i_{2}}\right)$ from i) and ii). Then $N=N\left(1, \alpha, \cdots, \delta_{1}\right)\left(\sum_{q \geqslant 2} g_{q}\right) \oplus \sum_{q \geqslant 2} \oplus$ $N\left(1, \alpha, \cdots, \delta_{q}\right)$ and $f(x) \in N\left(1, \alpha, \cdots, \delta_{1}\right)\left(\sum_{q \geqslant 2} g_{q}\right)\left(=N^{*}\right)$, where $T(u)$ means the graph of a module T with respect to a homomorphism u. Further $C_{1} / D_{1} \approx$ $\left(C_{1}^{\prime} \cap N^{*}\right) /\left(D_{1}^{\prime} \cap N^{*}\right)$ as above. Now $C_{1}^{\prime} \subset N^{*} \subset N^{*}\left(\approx e_{i_{2}} R\right) \subset N \subset N(1, \alpha)$ and $D_{1}^{\prime} \cap N^{*}=J\left(C_{1}^{\prime} \cap N^{*}\right) \approx D_{2}$. Hence we obtain the natural homomorphism

$$
\begin{aligned}
& N(1, \beta) / D_{2} \xrightarrow{u} N^{*} /\left(D_{1}^{\prime} \cap N^{*}\right) \rightarrow N(1, \alpha) /\left(D_{1}^{\prime} \cap N^{*}\right) \rightarrow \\
& \left(x+D_{2}\right) \rightarrow f(x)+\left(D_{1}^{\prime} \cap N^{*}\right) \rightarrow f(x)+\left(D_{1}^{\prime} \cap N^{*}\right) \rightarrow \\
& N(1, \alpha) / D_{1}, \\
& \quad\left(f(x)+D_{1}\right)
\end{aligned}
$$

where u is an extension of f given by i) and ii),
which is an extension of f.
$4) \rightarrow 1$ This is clear from the definition of $(*, 1)$.
3) $\rightarrow 4$) This is trivial.
$1) \rightarrow 3$) This is clear from (8) and Proposition 2.

Remark 2. We shall study the situation of 2)-ii) of Theorem 1. Let $e_{k} R$ and $e_{j} R$ be as in i). Assume

$$
e_{j_{1}} R=\left(0 \cdots \Delta_{j} 0 M_{j_{1} j_{2}} 0 \cdots M_{j_{1} j_{3}} 0 \cdots M_{j_{1} j_{t}} 0\right), \quad\left(j=j_{1} \text { and } M_{p q} \neq 0\right) .
$$

Then

$$
\left.\begin{array}{rl}
e_{j_{2}} R & =\left(\begin{array}{llll}
0 \cdots \cdots 0 & \Delta_{j_{2}} & 0 \cdots \cdots M_{j_{2} j_{3}} \cdots \cdots M_{j_{2} j_{t}} & 0
\end{array}\right) \\
& \approx\left(\begin{array}{llll}
0 \cdots \cdots 0 & M_{j_{1} j_{2}} & 0 \cdots \cdots M_{j_{1} j_{3}} \cdots \cdots M_{j_{1} j_{t}} & 0
\end{array}\right) \tag{14}\\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots
\end{array}\right)
$$

since $e_{j_{1}} R$ is uniserial. Further $M_{j_{1} j_{s}}=m_{j_{1} j_{s}}^{\prime} \Delta_{j_{s}}$. In order to simplify the notations, we express j_{i} by i. Then $M_{i j} \neq 0$ for $i \leqslant j$. Every element in $\operatorname{End}_{R}\left(M_{15} R / M_{1 s+1} R\right)$ is extendible to an element in $\operatorname{End}_{R}\left(e_{1} R / M_{1 s+1} R\right)$ by the proof after (12). Further, since ($\left.0 \cdots 0 M_{l s} \cdots M_{l t}\right) \approx\left(0 \cdots M_{1 s} \cdots M_{1 t}\right)$ for all l and s, every element in $\operatorname{End}_{R}\left(M_{l s} R / M_{l s+1} R\right)=\Delta_{s}$ is extendible to an element in $\operatorname{End}_{R}\left(e_{l} R / M_{l s+1} R\right)=\Delta_{l}$. Hence there exists an isomorphism $\phi_{l s}^{\prime}: \Delta_{s} \rightarrow \Delta_{l}$ (since $M_{l s}=m_{l s}^{\prime} \Delta_{s}, \varphi_{l s}^{\prime}$ is an epimorphism) such that

$$
\begin{equation*}
m_{l s}^{\prime} x=\varphi_{l s}^{\prime}(x) m_{l s}^{\prime}, \quad \text { where } \quad x \in \Delta_{s} \text { and } M_{l s}=m_{l s}^{\prime} \Delta_{s} \tag{15}
\end{equation*}
$$

from the proof of Theorem 1. We fix generators $m_{i, i+1}$ of $M_{i, i+1}$ for all i and $\varphi_{i, i+1}: \Delta_{i+1} \rightarrow \Delta_{i}$ related with the fixed $m_{i, i+1}$ in (15). Then $m_{i, i+1} m_{i+1, i+2} \cdots$ $m_{i+k, i+k+1}=m_{i, i+k+1}$ is a generator of $M_{i, i+k+1}$ and $\varphi_{i, i+k+1}=\varphi_{i, i+1} \cdots \varphi_{i+k, i+k+1}$: $\Delta_{i+k+1} \rightarrow \Delta_{i}$ is an isomorphism and satisfies (15) (cf [1], Lemma 13). Hence we may assume

$$
\left(e_{j_{1}}+\cdots+e_{j_{t}}\right) R\left(e_{i_{1}}+\cdots+e_{j_{t}}\right) \approx\left(\begin{array}{cccc}
\Delta_{j_{1}} & \Delta_{j_{1}} & \cdots \cdots & \Delta_{j_{1}} \tag{16}\\
& \Delta_{j_{1}} & \cdots \cdots & \Delta_{j_{1}} \\
& \ddots & \vdots \\
0 & \ddots & \vdots \\
& & \Delta_{j_{1}}
\end{array}\right)
$$

Next assume that $e_{j} R$ is uniserial only as in (14). Then by the similar argument as above, we obtain

$$
\left(e_{j_{1}}+\cdots+e_{j_{t}}\right) R\left(e_{j_{1}}+\cdots+e_{j_{t}}\right) \approx\left(\begin{array}{ccc}
\Delta_{j_{1}} & \Delta_{j_{2}} & \cdots \cdots \Delta_{j_{t}} \tag{16'}\\
& \Delta_{j_{2}} & \cdots \cdots \\
& \ddots & \Delta_{j_{t}} \\
0 & & \ddots \\
& & \Delta_{j_{t}}
\end{array}\right)
$$

and the $\varphi_{i j}: \Delta_{i} \rightarrow \Delta_{j}(i<j)$ are monomorphisms (cf. [1], Lemma 13). By $\mathrm{T}_{t}\left(\Delta_{j_{1}}\right)$ and $\mathrm{T}_{t}\left(\Delta_{j_{1}}, \Delta_{j_{2}}, \cdots, \Delta_{j_{t}}\right)$ we denote the above rings (16) and (16'), respectively.

3. Hereditary rings with $(*, 2)$

We shall give a characterization of hereditary rings with (*, 2).

Theorem 2. Let R be a hereditary (basic) ring. Then (*,2) holds for any two hollow right R-modules if and only if, for each $e_{i}\left(=e_{i i}\right)$,
$e_{i} J=\sum_{k=1}^{n_{i}} \oplus A_{k}$, where the A_{k} are uniserial modules, which satisfy the following conditions:
i) If $A_{k} \approx A_{k^{\prime}}$ for $k \neq k^{\prime}$, any sub-factor modules of A_{k} are not isomorphic to ones of $A_{k^{\prime}}$.
ii) If $A_{k} \approx A_{k^{\prime}},\left(\approx e_{j} R\right)\left(k \neq k^{\prime}\right)$ and $M_{j p}=x \Delta_{p}(j<p)$, there exists an isomorphism $\delta: \Delta_{p} \rightarrow \Delta_{j}$ as in 2)-ii) of Theorem 1.

Proof. Assume that (*,2) holds. Then the A_{i} are uniserial by [8], Propoistion 7. As in the proof of Theorem 1, we consider a case $i=1$ from Lemma 1. Let

$$
\begin{gather*}
e_{1} J=N_{11} \oplus N_{12} \oplus \cdots \cdots \oplus N_{1 t_{1}} \\
\oplus N_{21} \oplus N_{22} \oplus \cdots \cdots \oplus N_{2 t_{2}} \tag{17}\\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\oplus N_{q 1} \oplus N_{q 2} \oplus \cdots \cdots \oplus N_{q t_{q}}
\end{gather*}
$$

where $\quad N_{j 1} \approx N_{j s} \approx e_{i_{j}} R$ for all j, s and $N_{j 1} \approx N_{j^{\prime} 1}$ if $j \neq j^{\prime}$ and $i_{1}<i_{2}<\cdots<i_{q}$.
Assume that N_{21} contains a non-zero sub-factor module isomorphic to one of N_{11}. Then N_{21} is monomorphic (via g) to N_{11} by (13) and Theorem 1. It is clear that $N_{21}(g) \oplus N_{22} \oplus \cdots \oplus N_{2 t_{2}}\left(\approx N_{21} \oplus \cdots \oplus N_{2 t_{2}}\right)$ is a direct summand of $e_{1} J$. Hence from the assumptions (17) above and [8], Proposition 12, there exists j in $e_{1} J e_{1}(=0)$ such that $(e+j)\left(N_{21} \oplus \cdots \oplus N_{2 t_{2}}\right)=N_{21}(g) \oplus N_{22} \oplus \cdots \oplus N_{2 t_{2}}$. Hence g must be zero. ii) is clear from Theorem 1 , since ($*, 1$) holds. Conversely, we assume i) and ii). Then $(*, 1)$ holds by Theorem 1 . We shall quote here the similar argument given in [8], Proposition 8. Let e be a primitive idempotent and let $e R / E_{1} \oplus e R / E_{2}$ be a direct sum of two hollow modules. We may consider only a maximal submodule $M^{\prime}\left(\supset E_{1} \oplus E_{2}\right)$ in $F=e R \oplus e R$ (see [8], Proposition 8). There exists a unit x in $e R e$ such that $F=e R(f) \oplus e R \supset M^{\prime}=$ $e R(f) \oplus e J$, where $f(r)=x r$ for $r \in e R$. We shall define $g^{\prime}: e R(f) \rightarrow e R$ by setting $g^{\prime}(r+x r)=-x r$. Then $E_{1} \oplus E_{2}=E_{1}(f)\left(g^{\prime}\right) \oplus E_{2}$. Let $\varphi: F \rightarrow e R(f) \oplus e R / E_{2}$ be the natural epimorphism. Then $M=M^{\prime} /\left(E_{1} \oplus E_{2}\right)=\left(e R(f) \oplus e J / E_{2}\right) /\left(E_{1}(f)\left(g^{\prime}\right)\right)$. If we identify $e R(f)$ with $e R, M=\left(e R \oplus e J / E_{2}\right) / \varphi\left(E_{1}(g)\right)$, where $g=-f$. First we consider the structure of $\varphi\left(E_{1}(g)\right)$. If $e R / E_{1}$ is simple, either $M^{\prime} /\left(E_{1} \oplus E_{2}\right) \supset$ $e R / E_{1}$ or $M^{\prime} /\left(E_{1} \oplus E_{2}\right) \oplus e R / E_{1}=F /\left(E_{1} \oplus E_{2}\right)$. Hence $M^{\prime} /\left(E_{1} \oplus E_{2}\right)$ is a direct sum of hollow modules, since $(*, 1)$ holds. Therefore we may assume $E_{1} \subsetneq e J$. Let $e J=\sum_{i=1}^{m} \oplus A_{i}$; the A_{i} are hollow. From i) of the theorem, we can express the index set $I=\{1, \cdots, m\}$ as the disjoint union $I=I_{1} \cup I_{2} \cup \cdots \cup I_{p}$ such that

$$
A_{i} \approx A_{j} \text { if } i, j \in I_{t}, \quad \text { and } \quad A_{i} \approx A_{j} \text { if } i \in I_{t}, j \in I_{t^{\prime}} \text { and } t \neq t^{\prime} .
$$

We put $F_{i}=\sum_{I_{i}} \oplus A_{k}$ then $e J=\sum_{i=1}^{p} \oplus F_{i}$, (cf. (17)). Since these F_{i} have the particular property above, $E_{1}=\sum_{i=1}^{p} \oplus C_{i} ; C_{i} \subset F_{i}, E_{2}=\sum_{i=1}^{p} \oplus G_{i} ; G_{i} \subset F_{i}$ and $g\left(C_{i}\right) \subset$ F_{i} / G_{i}, where g is induced from g. Hence

$$
\begin{equation*}
M \approx\left(e R \oplus e J / E_{2}\right) / \Sigma \oplus C_{i}(g) \tag{18}
\end{equation*}
$$

Next we consider $C_{1}(\bar{g})$. Assume that A_{1} has the structure given in ii) of the theorem. Now A_{1} has the structure of $e_{j_{1}} R$ in (16), and so every element in the endomorphism ring of sub-factor module T / L of A_{1} is extendible to an element in $\operatorname{End}\left(A_{1} / L\right)$. Further $T_{1} / L_{1} \approx T_{1}^{\prime} / L_{1}^{\prime}$ for sub-factor modules $T_{1} / L_{1}, T_{1}^{\prime} / L_{1}^{\prime}$ if and only if $T_{1}=T_{1}^{\prime}$ (and $L_{1}=L_{1}^{\prime}$). From this remark and the following fact: since $C_{1}(g) \subset e J \oplus F_{1} / G_{1}$, for any submodule L in $e J \oplus F_{1},\left(e R J \oplus F_{1}\right) / L \approx e R / X_{1}^{\prime} \oplus$ F_{1} / G_{1}^{\prime}, where G_{1}^{\prime} is a (standard) submodule of F_{1} and X_{1}^{\prime} is a submodule of $e J$ (cf. [8], Proposition 8), we can find an isomorphism:

$$
\begin{align*}
& \left(e R \oplus e J / E_{2}\right) / C_{1}(\bar{g}) \approx e R / X_{1}^{\prime} \oplus F_{1} / G_{1}^{\prime} \oplus \sum_{k \neq 1} \oplus F_{k} / G_{k} \tag{19}\\
& \quad \text { and } \quad \Sigma \oplus C_{i}(\bar{g}) / C_{1}(g) \subset e R / X_{1}^{\prime} \oplus \sum_{k \neq 1} \oplus F_{k} / G_{k}
\end{align*}
$$

(see the proof of Theorem 5 below and [8], Proposition 8).
Finally assume $F_{1}=A_{1}$, i.e., I_{1} is a singlton. Then $C_{1} / X_{1} \approx g\left(C_{1}\right)$, where $X_{1}=g^{-1}(0) \cap C_{1}$. Since g is an isomorphism of A_{1} to F_{1} and A_{1} is uniserial, $g\left(X_{1}\right)=G_{1}$. Hence we have the same situation as above (take g^{-1}). Accordingly we finally obtain from (19)

$$
M \approx e R / \sum X_{i}^{\prime} \oplus \sum \oplus F_{i}^{\prime} / G_{i}^{\prime}: F_{i}^{\prime} \approx F_{i}
$$

which is a direct sum of hollow modules by Theorem 1.
Let R be a hereditary ring with ($*, 2$). We shall assume $e_{1} R=\left(\Delta_{1} M_{12} M_{13} \cdots\right.$ $\left.M_{1 n}\right)$ and $M_{1 j} \neq 0$ for all j from Lemma 3. $e_{1} J=\left(0 M_{12} \cdots M_{1 n}\right)=\sum_{i=1}^{q} \oplus F_{i}$ as in the proof of Theorem 2. Following $\left\{F_{i}\right\}_{i=1}^{q}$ we divide the index set $\{2,3, \cdots, n\}$ into q-parts $I=I_{1} \cup I_{2} \cup \cdots \cup I_{q}$ such that $F_{i} e_{j} \neq 0 \leftrightarrow j \in I_{i}$. Then $I_{i} \cap I_{j}=\phi$ if $i \neq j$ by i) of Theorem 2. Put $\left|F_{i}\right| F_{i} J \mid=p_{i}$. If $p_{i}=1, F_{i}$ is uniserial, and so $F_{i}=m_{1 i_{1}} \Delta_{i_{1}} \oplus m_{1 i_{2}} \Delta_{i_{2}} \oplus \cdots \oplus m_{1 i_{t}} \Delta_{i t}$, where the i_{s} runs through over I_{i} and $\Delta_{1} \subset \Delta_{i_{1}}$ $\subset \cdots \subset \Delta_{i t}$ are division rings (see (16')). If $p_{i} \geqslant 2, F_{i}=\left(m_{1 i_{1}} \Delta_{i_{1}}\right)^{\left(P_{i}\right)} \oplus\left(m_{1 i_{2}} \Delta_{i_{1}}{ }^{\left(P_{i}\right)}\right)$ $\oplus \cdots \oplus\left(m_{1 i_{t}} \Delta_{i_{1}}\right)^{\left(P_{i}\right)}$, where $\left(m_{1 i_{1}} \Delta_{i_{1}}{ }^{\left(P_{i}\right)}\right)$ means a direct sum of p copies of $m_{1 i_{1}} \Delta_{i_{1}}$. Since $e_{1} R e_{i} \neq 0$ and R is hereditary, $e_{i} R$ is monomorphic to $e_{1} R$ by Lemma 2. On the other hand, the image of $e_{i} R$ is a submodule of F_{j} for some j by i) of Theorem 2. Hence $e_{i} R \approx m_{1 j_{k}} \Delta_{j_{k}} \oplus m_{1 j_{k+1}} \Delta_{j_{k+1}} \oplus \cdots \oplus m_{1 j_{t}} \Delta_{j_{t}}$ or $\approx m_{1 j_{k}} \Delta_{j_{k}} \oplus m_{1 j_{k+1}} \Delta_{j_{k}}$ $\oplus \cdots \oplus m_{1 j_{t}} \Delta_{j_{k}}\left(1<i=j_{k}\right)$ from Lemma 2. Therefore R is determined by $\left\{F_{i}\right\}$, provided $e_{1} R e_{i} \neq 0$ for all i. Since R is hereditary and $I_{i} \cap I_{j}=\phi(i \neq j), \quad M_{l m}=0$
if $l \in I_{i}$ and $m \in I_{j}(i \neq j)$.
Next let R_{0} be a hereditary ring as in (1) and assume $R_{0} \approx \sum \oplus S_{i}$ as rings. Then after renumbering $\left\{e_{i}=e_{i i}\right\}$, we may assume

$$
R_{0}=\left(\begin{array}{cccc}
S_{1} & & & \\
& S_{2} & & 0 \\
& & \ddots & \\
& 0 & & \ddots \\
& & & S_{t}
\end{array}\right)
$$

By E_{i} we denote the identity element in S_{i}. On the other hand, for any hereditary ring R as in (1)

$$
R=e_{1} R \oplus R_{0}^{\prime} \quad \text { as } R \text {-modules }
$$

where $R_{0}^{\prime}=\left(1-e_{1}\right) R\left(1-e_{1}\right)$ and $e_{1} R$ is a two-sided ideal of R by Lemma 1 . If $R_{0}^{\prime} \approx \sum \oplus S_{i}$ as above, $e_{1} J=\sum \oplus e_{1} R E_{j}$. Put $A_{j}=e_{1} R E_{j}$, and A_{j} is a right ideal in $e_{1} R$. We use those notations in the following theorem. Thus we obtain

Theorem 3. Let R be a (basic) hereditary ring such that $e_{1} R e_{j} \neq 0$ for all j. Then the following conditions are equivalent:

1) $(*, 2)$ holds for any two hollow modules.
2) $R / e_{1} R$ is a direct sum of right serial rings S_{j};1) $S_{j}=\mathrm{T}_{r}\left(\Delta_{j_{1}}, \Delta_{j_{2}}, \cdots, \Delta_{j_{r}}\right)$ or 2) $\mathrm{T}_{r}\left(\Delta_{j}\right)$ and $A_{j}=\left(\Delta_{j_{1}}, \Delta_{j_{2}}, \cdots, \Delta_{j_{r}}\right)$ in Case 1$), A_{j}=\left(\Delta_{j}^{\left(p_{j}\right)}, \cdots, \Delta_{j}^{\left(p_{j}\right)}\right)$ is a left $\Delta\left(=e_{1} R e_{1}\right)$ - and right Δ_{j}-modules in Case 2$)$, where $\Delta \subset \Delta_{j_{1}} \subset \cdots \subset \Delta_{j_{r}}$ are division rings.
3) R is isomorphic to

$$
\left(\begin{array}{cccc}
\Delta & A_{1} & \cdots & \cdots \tag{20}\\
& S_{1} & A_{1} \\
& & S_{2} & 0 \\
& 0 & & \ddots \\
& & & \\
& & S_{r}
\end{array}\right)
$$

where $S_{k}=\mathrm{T}_{r_{k}}\left(\Delta_{k 1}, \Delta_{k 2}, \cdots, \Delta_{k r_{k}}\right)$ or $\mathrm{T}_{r_{k}}\left(\Delta_{k}\right)$.
Theorem 3'. Let R be a (basic) hereditary ring. Then (*,2) holds if and only if R is a patched ring of hereditary rings given in (20).

Lemma 4. Let R be a hereditary and connected (basic) ring. 1) If R is a left serial ring, then $e_{1} R e_{j} \neq 0$ for all $j>1$. 2) Conversely, if $e_{1} R e_{j} \neq 0$ for all j, and $\left[M_{i j}: \Delta_{j}\right] \leqslant 1,\left[M_{i j}: \Delta_{i}\right] \leqslant 1$ for all i and j, then R is left serial.

Proof. 1) Let $e_{1} R=e_{1} \Delta \oplus M_{12} \oplus \cdots \oplus M_{1 n}$. We divide the index set $\{2,3, \cdots, n\}$ into two sets I, J such that $M_{1 i} \neq 0$ provided $i \in I$ and $M_{1 j}=0$ provided $j \in J$. Take $M_{1 i}$ and consider $M_{j i}$. If $M_{j i} \neq 0$ for $j \in J, R M_{j i} \not M_{1 i}$,
since $M_{1 j}=0$. Hence $M_{j i}=0$ for all $i \in J$ by assumption. Hence $R=\left(e_{11} R \oplus\right.$ $\left.\sum_{k \in I} \oplus e_{k} R\right) \oplus\left(\sum_{k^{\prime} \in J} \oplus e_{k^{\prime}} R\right)$ as rings from (2). Therefore $J=\phi$ by assumption.
2) Assume $0 \neq e_{1} R e_{j}=\Delta_{1} m_{1 j}=m_{1 j} \Delta_{j}$ for all j. Since R is hereditary, $e_{1} J=$ $\Sigma \oplus A_{i}$; the A_{i} are hollow and no sub-factor modules of A_{i} are isomorphic to any ones of $A_{j}(i \neq j)$ from (13) and the assumption $\left[M_{1 j}: \Delta_{j}\right] \leqslant 1$. Similarly $J\left(A_{i}\right)=\sum \oplus A_{i j}$ and so on (cf. [7]). Hence any indecomposable (projective) module in $e J$ is equal to some $A_{i_{1} i_{2} \cdots i_{i}}$. Let $M_{i t}=m_{i t} \Delta_{t}=\Delta_{i} m_{i t}$ and $M_{j t}=m_{j t} \Delta_{t}=$ $\Delta_{j} m_{j t}(i<j)$ for a fixed t. Then $m_{1 i} e_{i} R$ and $e_{1 j} e_{j} R$ have a common sub-factor module in $e_{1} R$. Hence $e_{j} R$ is monomorphic to $e_{1} R$ from the initial remark, and so $e_{i} R e_{j} \neq 0$, which implies $R m_{i t} \subset R m_{j t}$. Therefore R is left serial.

Theorem 4. Let R be a connected (basic) hereditary ring. Then R is a left serial ring with $(*, 2)$ as right R-modules if and only if R is isomorphic to

$$
\left(\begin{array}{cccc}
\Delta \Delta \cdots \cdots \Delta & \Delta \cdots \cdots \Delta & \Delta \cdots \cdots \Delta \\
\mathrm{T}_{r_{1}}\left(\Delta_{1}\right) & \mathrm{T}_{r_{2}}\left(\Delta_{2}\right) & 0 \\
0 & & \ddots & \\
& & & \mathrm{~T}_{t_{r}\left(\Delta_{r}\right)}
\end{array}\right)
$$

where $\Delta_{i} \subset \Delta$ are division rings.
Proof. Assume that R is a left serial ring with ($*, 2$) as right R-modules. Then R is isomorphic to the ring in (20) by Theorem 3 and Lemma 4. Since R is left serail, the A_{i} in (20) are isomorphic to Δ as left Δ-modules and $\Delta_{k 1}=$ $\Delta_{k 2}=\cdots=\Delta_{k r_{k}}$ in (20). If we take a generator of A_{i}, we know $\Delta_{i} \subset \Delta$. The converse is clear from the structure of the diagram.

4. Hereditary rings with (*,3)

We have already obtained a characterization of artinian rings with $(*, 3)$ and $\left|e J / e J^{2}\right| \leqslant 2$ in [5]. As is seen in [5], Theorem 1, the structure of such artinian rings is a little complicated. However if R is a hereditary ring with $\left|e_{i i} J / e_{i i} J^{2}\right| \leqslant 2$, we obtain the following theorem.

We quote here a particular property of a vector space (cf. [2] and [7]).
(\#, m) Let Δ_{1} and Δ_{2} be division rings and V a left Δ_{1}, right Δ_{2}-space. For any two right Δ_{2}-subspaces V_{1}, V_{2} with $\left|V_{1}\right|=\left|V_{2}\right|=m$, there exists x in Δ_{1} such that $x V_{1}=V_{2}$.

Theorem 5. Let R be a hereditary (basic) ring with $\left|e J / e J^{2}\right| \leqslant 2$ for each $e=e_{i}$. Then (*,3) holds for any three hollow modules if and only if $e J=A_{1} \oplus A_{2}$ such that

1) The A_{i} are as in Theorem 2, and further if $A_{1} \approx A_{2}$, 2) $\left[\Delta: \Delta\left(A_{1}\right)\right]=2$ and
2) $\mathrm{eJ} / \mathrm{eJ}^{2}$ satisfies $(\#, 1)$ as a left Δ-module and right Δ^{\prime}-module, where $A_{1} \approx e_{j} R$, $\Delta=e R e, \Delta^{\prime}=e_{j} R e_{j}$, and $\Delta\left(A_{1}\right)=\left\{x \mid \in \Delta, x A_{1} \subset A_{1}\right\}$.

Proof. Assume $e J=A_{1} \oplus B_{1}$ as in the theorem. If $A_{1} \approx B_{1}, \Delta(C)=\Delta$ for every submodule C in $e J$ by i) of Theorem 2. Assume $A_{1} \approx B_{1}\left(\approx e_{j} R\right)$. Then A_{1} and B_{1} have the structure of $e R$ as in (16). For any C, there exists submodules $C_{1} \supset D_{1}$ in A_{1} and $C_{2} \supset D_{2}$ in B_{1} such that $f: C_{1} / D_{1} \approx C_{2} / D_{2}$ and $C=\{x+$ $\left.D_{1}+f(x)+D_{2} \mid x \in C_{1}\right\}$. From (16), f is extendible to an element $g: A_{1} / D_{1} \rightarrow B_{1} / D_{2}$. Since (\#, 1) is satisfied for $e J / e J^{2}=u_{1} \Delta_{j} \oplus v_{1} \Delta_{j}$, there exist α in Δ and z in Δ_{j} such that $u_{1}+g\left(u_{1}\right)=\alpha u_{1} z+w, w \in e J^{2}$. However, since u_{1}, v_{1} are in $e J-e J^{2}$ and $u_{1} e_{j}=$ $u_{1}, v_{1}=v_{1} e_{j}, w=0$. Hence $C=C_{1}(f)+D_{1} \oplus D_{2}=\alpha\left(C_{1} \oplus D_{2}\right)$, (note that $D_{1} \approx D_{2}$ and $\alpha\left(D_{1} \oplus D_{2}\right)=D_{1} \oplus D_{2}$ and that A_{1} is uniserial). It is clear that $\Delta\left(A_{1}\right) \subset \Delta\left(C_{1}\right.$ $\left.\oplus D_{1}\right)=\Delta\left(\alpha^{-1} C\right)=\alpha^{-1} \Delta(C) \alpha$ and so $[\Delta: \Delta(C)] \leqslant 2$. Thus the conditions in [5], Theorem 1 are fulfiled, and hence ($*, 3$) holds by [5]. Theorem 2. Conversely, assume ($*, 3$) holds. Then 1) and 2) are clear from Theorem 2 and [5], Theorem 1. We shall show 3). We may assume from Lemma 1 and [2], Lemma 1 that $\Delta_{j+1}=\cdots=\Delta_{n}=0$. Then 2) of [2], Theorem 1 is nothing but (\#, 1).

As in Lemma 3, if $e_{1} R e_{j} \neq 0$ for all j, R in Theorem 5 is isomorphic to

$$
\left(\begin{array}{cccc}
\Delta & \Delta_{1} \Delta_{2} \cdots \cdots \Delta_{r} & \Delta_{r+1} \cdots \cdots \cdots \cdots \Delta_{r+s} \\
& \mathrm{~T}_{r}\left(\Delta_{1}\right. & \left.\Delta_{2} \cdots \Delta_{r}\right) & 0 \\
0 & 0 & \mathrm{~T}_{s}\left(\Delta_{r+1} \cdots \Delta_{r+s}\right)
\end{array}\right)
$$

where $\Delta \subset \Delta_{1} \subset \cdots \subset \Delta_{r}$ and $\Delta \subset \Delta_{r+1} \subset \cdots \subset \Delta_{r+s}$, or

$$
\left(\begin{array}{ll}
\Delta & \Delta_{1}^{(2)} \\
0 & \Delta_{1}^{(2)} \cdots \cdots \cdots \cdot \Delta_{1}^{(2)} \\
0 & \mathrm{~T}_{r}\left(\Delta_{1}\right)
\end{array}\right)
$$

where $\Delta_{1}^{(2)}$ is a left Δ and right Δ_{1} space satisfying $(\#, 1)$ and $\left[\Delta: \Delta\left(\Delta_{1}, \cdots, \Delta_{1}\right)\right.$ $]=2$.

In the former ring, $e J=A_{1} \oplus A_{2}$ and $A_{1} \not \approx A_{2}$. Hence $(*, n)$ holds for all n by [5], Theorem 3. We do not know this fact for the latter ring.

5. Hereditary algebras

In this section we consider particular algebras over a field K such that

$$
\begin{equation*}
e_{i} R e_{i} / e_{i} J e_{i}=\bar{e}_{i} K \quad\left([2], \text { Condition } \mathrm{II}^{\prime \prime}\right) \tag{21}
\end{equation*}
$$

(e.g. an algebraically closed field.)

Under the assumption (21), every Δ_{i} in (1) is equal to K. In this case, if $e R$ is uniserial, $\left[e R e^{\prime}: K\right] \leqslant 1$ (cf. (14)). Hence

$$
\begin{equation*}
\operatorname{End}_{R}\left(A / A^{\prime}\right) \approx K \approx \operatorname{End}_{R}\left(e R / A^{\prime}\right) \tag{22}
\end{equation*}
$$

for any submodules $A \supset A^{\prime}$ in $e R$. Accordingly, from the proof of Theorem 2 (cf. [8], Theorem 2) we obtain

Theorem 6. Let R be a hereditary K-algebra satisfying (21). Then the following conditions are equivalent:

1) (*,2) holds for any two hollow modules.
2) Every factor module of $e R \oplus e J^{(m)}$ is a direct sum of hollow modules for each primitive idempotent e and any integer m. (It is sufficient in case $m=1$.)

If every finitely generated R-module is a direct sum of hollow modules, R is called a ring of right local type [10]. It is clear from the definition that $(*, n)$ holds for a ring of right local type. By $\mathrm{T}_{n}(\Delta)$ we denoted the ring of upper tri-angular matrices over a division ring Δ (see (14)).

Theorem 7. Let R be a hereditary (basic) K-algebra satisfying (21). Then the following are equivalent :

1) $(*, 3)$ holds for any three hollow modules, and $e_{1} R e_{j} \neq 0$ for all j, (and hence ($*, n$) holds for all n).
2) R is isomorphic to $\left(\begin{array}{lr}\mathrm{T}_{m_{1}}(K) & K \\ 0 & K \cdots K \\ 0 & \mathrm{~T}_{m_{2}}(K)\end{array}\right)$.
3) R is of right local type and connected.

Proof. 1) $\rightarrow 2$). Since $\left|e J / e J^{2}\right| \leqslant 2$ from [4], Theorem 3, we obtain it from the remark after (21) and the last part in §4.
$2) \rightarrow 3$). It is clear that the ring in 2) is connected and of right local type from Lemma 4 and [10] (see [9]).
$3) \rightarrow 1)$. $(*, 3)$ holds for any three hollow modules. Since R is left serial by [10], and connected, $M_{1 j} \neq 0$ by Lemma 4.

Theorem 8. Let R be a hereditary algebra as above. Then the following conditions are equivalent:

1) ($*, 3$) holds for any three hollow right R-modules.
2) $e J=A_{1} \oplus A_{2}$, where the A_{i} are uniserial, and any non-trivial sub-factor modules of A_{1} are not isomorphic to ones of A_{2}. In this case $(*, n)$ holds for all n.
3) Let $\left\{N_{i}\right\}_{i=1}^{k}$ be any set of submodules in eR. Then every factor module of $\Sigma \oplus N_{i}^{\left(n_{i}\right)}$ is a direct sum of hollow modules.
4) Every factor modules of $e R^{(n)} \oplus e J^{(m)}$ is a direct sum of hollow modules for any integers n and m. (It is sufficient in case $n=2$ and $m=1$).

Proof. 1) $\leftrightarrow 2$) This is clear from Theorem 5 and [2], Theorem 2'.
$1) \rightarrow 3$). Let $e=e_{i}$ and let R_{i} and X_{i} be as before Lemma 3. Then R_{i} is of a right local type by Theorem 7. Since $R_{i} X_{i}=0$ and $R / X_{i}=R_{i}$, every submodule in $e R$ is an R_{i}-module. Hence every factor module of $\sum \oplus N_{i}^{\left(n_{i}\right)}$ is also
an R_{i}-module. Therefore it is a direct sum of R_{i}-hollow (and hence R hollow) modules.
$3) \rightarrow 4$). This is clear. (We can show directly 1) $\rightarrow 4$) in the similar manner to [8], Theorem 2, cf. the proof of Theorem 2.)
$3) \rightarrow 1$). Let $D=\sum_{i=1}^{3} \oplus e R / E_{i}$ and M a maximal submodule in D. Then $D^{\prime}=e R^{(3)}$ contains the submodule M^{\prime} such that $M^{\prime} \supset \sum_{i=1}^{3} \oplus E_{i}$ and $M^{\prime} / \Sigma \oplus E_{i}=$ M. Since D^{\prime} has the lifting property of simple modules modulo the radical, D^{\prime} has a decomposition $\sum_{i=1}^{3} \oplus F_{i}$ such that $F_{i} \approx e R$ and $M^{\prime}=F_{1} \oplus F_{2} \oplus J\left(F_{3}\right)$. Hence M is a factor module of $e R^{(2)} \oplus e J$. Therefore M is a diect sum of hollow modules from 3).

Theorem 9. Let R be as in Theorem 8. Then (*,3) holds for any three hollow modules if and only if R is the patched ring of serial rings $\mathrm{T}_{r}(K)$ and rings of right local type $\left(\begin{array}{ccc}\mathrm{T}_{r^{\prime}}(K) & K & K \cdots K \\ 0 & \mathrm{~T}_{r^{\prime \prime}},(K)\end{array}\right)$.

Proof. This is clear from Proposition 1 and Theorem 7.

6. US-n algebras

We have studied special types of hereditary algebras in $\S 5$. We shall show, in this section, that they are related with US- n algebras defined in [4].

As another generalization of right serial ring (cf. ($*, n$)), we considered
(**, n) Every maximal submodule in a direct sum D of n hollow modules contains a non-zero direct summand of D [4].

It is clear that if $D / J(D)$ is not homogeneous, D satisfies $(* *, n)$. Hence we may restrict ourselves to hollow modules of a form $e R / E$, where e is a primitive idempotent and E is a submodule of $e R$. If ($* *, n$) holds for any direct sum of n hollow modules, we call R a right US- n ring [4]. We showed in [4] that R is right US-1 (resp. US-2) if and only if R is semisimple (resp. right uniserial). On the other hand,

Proposition 3 ([6], Proposition 8). Let R be a right artinian ring. Then R is a right US-m ring for some m if and only if the number of isomorphism classes of hollow modules $e R / A$ is finite and $[\Delta: \Delta(A)]<\infty$.

If R is an algebra of finite dimension over a field $K,[\Delta: \Delta(A)]<\infty$. Hence from Proposition 3, we know that an algebra of finite representation type is a US- n algebra for some n. Further we note that if K is a finite field, R is a finite ring. Then, since there are only finite non-isomorphic hollow modules,
R is a US- n algebra. Hence we may assume that K is an infinite field.
From now on we assume that R is a K-algebra satisfying (21). Let e be a primitive idempotent in R. Let $\left\{A_{1}, A_{2}, \cdots, A_{t}\right\}$ be a set of submodules in $e R$ such that $A_{i} \uparrow A_{j}$ for any pair i and j, where $A_{i} \sim A_{j}$ means that there exists a unit element x in $e R e$ such that $x A_{i} \subset A_{j}$ or $x A_{i} \supset A_{j}$. Let $m(e)$ be the maximal number t among the above sets.

Proposition 4. Let R be an algebra over K satisfying (21). Then R is a right $U S-m$ if and only if $m=\max _{e}\{m(e)\}+1<\infty$.

Proof. This is clear from [3], Corollaries 1 and 2 of Theorem 2.
Theorem 10. Let R be as above. We assume further $J^{2}=0$. Then R is a right $U S-m$ algebra if and only if eJ is square-free for each primitive idempotent e.

Proof. Assume that R is right US-m. Since $J^{2}=0, e J=\Sigma \oplus A_{i}$ the A_{i} are simple, i.e. $A_{i} \approx \bar{e}_{i} K,\left(R\right.$ is basic). If $A_{i} \approx A_{j},\left(a_{i}+a_{j} k\right) K \approx A_{i}$ and $\left(a_{i}+a_{j} k\right) K \nsim\left(a_{i}+a_{j} k^{\prime}\right) K$ for any $k \neq k^{\prime}$ in K, where $A_{i}=a_{i} K$ ([6], Lemma 15). Then R is not right US- m for any m. Hence $e J$ is square-free. Conversely if $e J$ is square-free, every submodule in $e J$ is a sum of some A_{i}. Hence the number of hollow modules is finite, and so R is right US- m for some m from Proposition 4.

Corollary. Let R be as above. If R is right $U S-m, J^{i} / e J^{i+1}$ is squarefree for all i.

Proof. It is clear that if R is right US- m, so is R / J^{t} for any t (cf. [4], Lemma 1). If $J^{n+1}=0, e J^{n}$ is semisimple and hence we can employ the same argument given above. Therefore we obtain the corollary by induction on n and the initial remark.

It is clear that the converse is not true provided $J^{2} \neq 0$.
Finally we study the ring of generalized tri-angular matrices over division rings Δ_{j} as (1). If R is a (basic) hereditary ring (more generally if $\mathrm{gl} \operatorname{dim} R / J^{2}$ $<\infty), R$ has the structure of (1) [1].

Theorem 11. Let R be a (basic) algebra satisfying (21). Assume gl dim $R / J^{2}<\infty$. Then R is a US-m algebra for some m if and only if $\left[e_{i} R e_{j}\right.$: $K] \leqslant 1$ for all i, j.

Proof. Assume that R is a US- m algebra for some m. We may assume that $\Delta_{k+1}=\cdots=\Delta_{k}=0$ in (1) by [4], Lemma 1. Let $M_{i k}=x_{1} K \oplus x_{2} K \oplus \cdots$. Then $\left[M_{i j}: K\right] \leqslant 1$ as the proof of Theorem 10. Conversely, if $\left[M_{i k}: K\right] \leqslant 1$, $e_{i} R$ contains only finitely many right ideals. Hence R is a US- m algebra for
some m.

7. Examples

We shall give several examples of hereditary algebras with $(*, n)$.
Let $K \subset L$ be fields.

1. $\left(\begin{array}{cc}K & L \\ 0 & K\end{array}\right)$ is a hereditary ring with $(*, 2)$ land hence $(*, 1)$. (If $L \neq K$, $(*, 3)$ does not hold from Theorem 8.)
2.

$$
\left(\begin{array}{cccc}
K & \binom{K}{K} & \binom{K}{0} & \binom{K}{K} \\
0 & K & 0 & 0 \\
0 & 0 & K & K \\
0 & 0 & 0 & K
\end{array}\right)
$$

is a hereditary ring with $(*, 1)$ but not $(*, 2)$. In this ring, $e J$ is a direct sum of uniserial modules (cf. [8], Theorem 3).
3. $\left(\begin{array}{ccc}K & L & L \\ 0 & L & 0 \\ 0 & 0 & L\end{array}\right)$ is a hereditary ring satisfying $(*, n)$ for all n by Theorem 8
4.
satisfies all conditions in Theorem 1 except the last one of \mathbf{i}).
5. Let R be an algebra satisfying (21), and $\operatorname{gl} \operatorname{dim} R / J^{2}<\infty$. Then if R is right US- n, R is left US- m from Theorem 10 for some m. However $n \neq m$ in general. For example $R=\left(\begin{array}{ccc}K & 0 & K \\ K & K \\ & K\end{array}\right)$. Then R is right US-2 and left US-3.
If R does not satisfy (21), then the above fact is not true. Let $L \supset K$ be fields with $[L: K]=5$ (not small) and $R=\left(\begin{array}{rr}K & L \\ 0 & L\end{array}\right)$. Then R is right US-2 but not left US- n for any n.
6. Let K be a field. We can give the complete list of connected algebras given in Theorem 11, provided that R is hereditary and $|R / J|$ is enough small. For instance, let $|R / J|=6$. We shall give some samples of them.

$$
\begin{aligned}
& \text { US-11 (and (*, 2)) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { US-7 (and (*, 1)) US-6 (and (*, 2)) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { US-5 (and (*, 2)) } \\
& \text { US-4 (and (*, 3)) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { US-3 (and (*, 3)) } \\
& \text { US-2 (and (*, 3)) } \\
& \left(\begin{array}{cccccc}
K & K & K & K & K & K \\
& K & 0 & 0 & 0 & 0 \\
& K & K & K & K \\
0 & & K & K & K \\
0 & & & K & K \\
& & & & K
\end{array}\right) \quad \begin{array}{c}
\\
\end{array} \\
& \text { US-1 (and (} *, 3 \text {)) } \\
& \left(\begin{array}{lllll}
{ }^{K} & & & & \\
& K & & & \\
& & K & & \\
& 0 & & K & \\
& & & & K \\
& & & & K
\end{array}\right) \text {, }
\end{aligned}
$$

where $e=e_{1}$.
We do not have US-9 and US-10 algebras under the assumption $|R| J \mid=6$.

References

[1] M. Harada: Semiprimary hereditary rings and generalized triangular matrix rings, Nagoya Math. J. 27 (1966), 463-489.
[2] -: On maximal submodules of a finite direct sum of hollow modules III, Osaka J. Math. 21 (1984), 81-98.
[3] and Y. Yukimoto: On maximal submodules of a finite direct sum of hollow modules IV, Osaka J. Math. 22 (1985), 321-326.
[4] M. Harada: Generalizations of Nakayama ring I, Osaka J. Math. 23 (1986), 181200.
[5] -: Generalizations of Nakayama ring II, Osaka J. Math. 23 (1986), 509-521.
[6] -: Generalizations of Nakayama ring III, Osaka J. Math. 23 (1986), 523-539.
[7] and Y. Baba: Generalizations of Nakayama ring IV, Osaka J. Math. 24 (1987), 139-145.
[8] M. Harada: Generalizations of Nakayama ring V, Osaka J. Math. 24 (1987), 373-389.
[9] T. Sumioka: Tachikawa's theorem on algebras of left colocal type, Osaka J. Math. 21 (1984), 629-648.
[10] H. Tachikawa: On rings for which every indecomposable right module has a unique maximal submodule, Math. Z. 71 (1959), 200-222.

Department of Mathematics Osaka City University
Sugimoto-3, Sumiyoshi-Ku
Osaka 558, Japan

