#### GENERALIZATIONS OF NAKAYAMA RING VII

(HEREDITARY RINGS)

Dedicated to Professor Takasi Nagahara on his 60th birthday

#### Manabu HARADA

(Received January 9, 1987)

We have studied left serial rings with (\*, 1) or (\*, 2) in [7] and [8] as a generalization of Nakayama ring (generalized uniserial ring).

In this note, we shall replace the assumption "left serial" to "hereditary", and give, in Sections  $2\sim5$ , characterizations of an artinian hereditary ring with (\*,n) in terms of the structure of R;  $n\leq3$ . In Section 6, we shall study another type of hereditary algebras over an algebraically closed field, i.e., right US-n hereditary algebras.

### 1. Hereditary rings

Throughout this paper we assume that a ring R is a left and right artinian ring with identity. We shall use the notations and terminologies given in [2] $\sim$ [8]

First we recall the definition of (\*, n).

(\*,n) Every maximal submodule of a direct sum of n hollow modules is also a direct sum of hollow modules [2] and [4]

In this case we may restrict ourselves to a direct sum of hollow modules of a form eR/K, where e is a primitive idempotent and K is a submodule of eR [4].

Let R be an artinian hereditary ring. Then R is isomorphic to the ring of generalized tri-angular matrices over simple rings [1]. We are interested in a hereditary ring with (\*,n), and so we may assume that R is basic. Then

(1) 
$$R \approx \begin{pmatrix} \Delta_1 & M_{12} \cdots M_{1n} \\ & \Delta_2 & M_{23} \cdots M_{2n} \\ & \ddots & \vdots \\ & \ddots & \vdots \\ & 0 & \ddots & \vdots \\ & & \Delta_n \end{pmatrix}$$

where the  $\Delta_i$  are division rings and the  $M_{ij}$  are left  $\Delta_i$  and right  $\Delta_j$  modules. It is clear that  $M_{ij} = e_i Re_j$  ( $e_i = e_{ii}$  matrix units).

**Lemma 1.** Let R be a hereditary ring as above. Then for any t,  $\sum_{j \geq t} \bigoplus Re_j (resp. \sum_{j \leq t} \bigoplus e_j R)$  is an ideal and  $R/\sum_{j \geq t} \bigoplus Re_j (resp. R/\sum_{j \leq t} \bigoplus e_j R)$  is also hereditary.

Proof. This is clear from [1], Theorem 1.

**Lemma 2.** Every non-zero element in  $\operatorname{Hom}_R(e_iR, e_jR)$   $(i \leq j)$  is a monomorphism.

Proof. Since  $e_iR$  is indecomposable and  $f(e_iR)$  is projective for  $f \in \operatorname{Hom}_R$   $(e_iR, e_iR)$ , this is clear.

Let R be a ring as (1). We may study hollow modules  $e_iR/A$  by the initial remark. Put  $e=e_i$  and  $H=\{h|M_{ih}\pm 0\}$ ,  $J=\{j|M_{ij}=0\}$ , and further put  $E_i=\sum_{h\in H}e_h$ ,  $R_i=E_iRE_i$  and  $X_i=\sum_J\bigoplus_{k< i}\bigoplus_{k< i}\bigoplus_{k< i}e_kR$ . Since R is hereditary,  $e_hRe_j=0$  for  $h\in H$  and  $j\in J$  (cf. [1]), and so  $X_i$  is a two sided ideal in R by Lemma 1 and  $R_iX_i=0$ . If  $e_pRe_q\pm 0$  for  $p\in H$ , then  $0\pm e_iRe_pe_pRe_q\subset e_iRe_q$  by [1], and so  $q\in H$ . Hence  $e_pR=e_pRE_i$  and

$$(2) R_i = E_i R and R_i X_i = 0.$$

It is clear that  $R=R_i \oplus X_i$  as R-modules and  $R_i$  is hereditary (cf. [1]). Hence every  $R_i$ -submodule in  $R_i$  is nothing but an R-submodule in  $R_i$  from (2). Further let  $h_1 < h_2 < \cdots < h_p$  ( $h_i \in H$ ), then we note that  $e_{h_1}Re_{h_q} \neq 0$  for all q. Therefore we obtain

**Lemma 3.** Let R be a hereditary ring as in (1) and let  $R_i$  be as above. Then (\*,n) holds for any n hollow modules if and only if, for any i, the same holds on any  $R_i$ -modules. Further  $R_i$  satisfies  $e_{h_1}Re_{h_4} \neq 0$  for all  $h_q > h_1$ .

Next we shall observe a construction of hereditary (basic) rings. In order to make the observation clear, we shall first give an example. Let

$$R = \begin{pmatrix} K_{11} & 0 & K_{13} & K_{14} & 0 & K_{16} & 0 & K_{18} \\ & K_{22} & 0 & K_{24} & 0 & K_{26} & 0 & K_{28} \\ & & K_{33} & K_{34} & 0 & 0 & 0 & 0 \\ & & & K_{44} & 0 & 0 & 0 & 0 \\ & & & K_{55} & K_{56} & 0 & K_{58} \\ & & & & K_{66} & 0 & K_{68} \\ & & & & & K_{77} & K_{78} \\ & & & & & & K_{88} \end{pmatrix},$$

where  $K_{ij} = K$  is a field.

We take non-zero entries in  $e_1R$  and put

$$R_1 = egin{pmatrix} K_{11} & K_{13} & K_{14} & K_{16} & K_{18} \ & K_{33} & K_{34} & 0 & 0 \ & & K_{44} & 0 & 0 \ & & & K_{66} & K_{68} \ & & & & K_{59} \ \end{pmatrix}$$

Since  $K_{22}$  does not appear in  $R_1$  (since  $M_{12}=0$ ), we take

$$R_{2} = \begin{pmatrix} K_{22} & K_{24} & K_{26} & K_{28} \\ & K_{44} & 0 & 0 \\ & & & K_{66} & K_{68} \\ & & & & K_{69} \end{pmatrix}$$

Since  $K_{55}$  does not appear in  $R_1$  and  $R_2$ , put

$$R_{ extsf{5}} = egin{pmatrix} K_{ extsf{55}} & K_{ extsf{56}} & K_{ extsf{58}} \ 0 & K_{ extsf{66}} & K_{ extsf{68}} \ & K_{ extsf{88}} \end{pmatrix}$$

Similarly to the above, we put

$$R_7 = \begin{pmatrix} K_{77} & K_{78} \\ 0 & K_{88} \end{pmatrix}$$

Then

$$A_{12} = \begin{pmatrix} K_{44} & 0 & 0 \\ 0 & K_{66} & K_{68} \\ 0 & 0 & K_{88} \end{pmatrix}$$

is the common components between  $R_1$  and  $R_2$ . Similarly we can define

$$A_{15} = A_{25} = \begin{pmatrix} K_{66} & K_{68} \\ 0 & K_{88} \end{pmatrix}.$$
  $A_{17} = A_{27} = A_{57} = (K_{88}).$ 

We note that the products in R of two components in  $R_i$  and  $R_j$  not contained in  $A_{ij}$  are zero. Now  $R_1$  and  $R_2$  are of right local type (see §5) and  $R_3$  and  $R_4$  are right serial. Further we know from the above note that R is the subring of  $R_1 \oplus R_2 \oplus R_5 \oplus R_7$  given by identifying elements in the same  $K_{ij}$ , namely in  $A_{ij}$ . If we carefully observe the above constructions, we know that only some right ideals contained in  $(1_i - e_1^{(i)})R_i$  are identified, where  $1_i$  is the identity of  $R_i$  and

 $e_1^{(i)}$  is the matrix unit in  $R_i$ .

We shall study the above fact in general.

(3) 
$$R = \begin{pmatrix} M_{11}M_{12}\cdots\cdots M_{1n} \\ M_{22}\cdots\cdots M_{2n} \\ \ddots & \vdots \\ 0 & \ddots & \vdots \\ M_{nn} \end{pmatrix}$$

where  $M_{ii} = \Delta_i$  are division rings. We define  $R_i$  as before Lemma 3 and express  $R_i$  as

$$R_{i} = \begin{pmatrix} M_{11}^{(i)} \cdots M_{1n_{i}}^{(i)} \\ 0 \\ \vdots \\ M_{n_{i}n_{i}}^{(i)} \end{pmatrix}$$

where  $M_{ik}^{(i)}$  is equal to some  $M_{lm}$  in (3) ( $M_{11}^{(i)} = M_{ii}$  in (3)) and  $M_{1k}^{(i)} \neq 0$  for all k. We note first the following fact: Assume  $M_{ab} \neq 0$  for some a and b. Put  $I_a = \{x \mid M_{ax} \neq 0\}$  and  $I_b = \{y \mid M_{by} \neq 0\}$ . Since  $M_{ab}R \approx e_b R^{(m)}$  (direct sum of mcopies of  $e_b R$ ),

$$(5) I_a \subset I_b.$$

Starting with  $R_1$  (= $R_{t_1}$ ), from the initial observation we can construct  $R_{t_k}$  so that  $M_{11}^{(i)}$  does not appear on the diagonal of  $R_{th'}$  for all  $t_{h'} < i = t_h$  and so that each component  $M_{pq}$  in (3) appears at least once in some  $R_{t_s}$ . Take  $R_i$  and  $R_{j}$   $(t_{h}=i < j = t_{h'})$ , and assume that  $M_{kk'}^{(i)} = M_{ss'}^{(j)}$   $(=M_{pq}$  in (3)) are common components between  $R_i$  and  $R_j$ . Then  $M_{kk}^{(i)} = M_{ss}^{(j)} = (M_{pp}$  in (3)) are also common ones between  $R_i$  and  $R_j$  by the definition of  $R_{t_k}$  and  $R_{t_{k'}}$ . We shall consider those components in (3). It is clear from (5) that

(6) 
$$e_k^{(i)}R_i = e_b R = e_s^{(j)}R_j.$$

Now let

$$e_k^{(i)}R_i = (0\cdots 0 M_{kk}^{(i)} 0\cdots M_{kk_s}^{(i)} 0\cdots M_{kk_s}^{(i)}) = e_s^{(j)}R_i; \quad M_{kk_s}^{(i)} \neq 0.$$

Then  $e_{k_i}^{(i)}R_i = e_{s_i}^{(j)}R_j$  for all  $l \le t$  from (5). By  $A_{ij}$  we shall denote the right ideal whose components appear in  $R_i$  and  $R_j$ . Let  $I_i$  and  $I_j$  be as before (5) where  $i=t_h$  and  $j=t_{h'}$  and put  $I_i\cap I_j=\{\pi_1<\pi_2<\dots<\pi_s\}$ . Then we know from the argument above that

i) 
$$A_{ij} = \sum \bigoplus e_{\pi_k} R$$

(7) i) 
$$A_{ij} = \sum \bigoplus e_{\pi_k} R$$
,  
ii)  $A_{ij}e_p R = 0$  for  $p \notin \{\pi_1, \dots, \pi_s\}$ ,  
and so

the lattice of right R-modules of  $A_{ij}$  is equal to the lattice of right  $A_{ij}$ -modules of  $A_{ij}$ .

Finally we assume for some b ( $1 \le b \le n$ ) that  $(M_{ab} \text{ in } (3)) = M_{xy}^{(i)} \neq 0$  and  $(M_{be} \text{ in } (3)) = M_{xy}^{(i)} \neq 0$ . Then  $b \in I_i \cap I_j$  and so  $M_{xy}^{(b)} \subset A_{ij}$  from (7)-i) and ii). Hence the product in R of an entry of  $R_i$  and one of  $R_j$  is zero if the latter (and hence two of them) is not contained in  $A_{ij}$ . Thus we can find a set  $\{R_{i_i}\}$  of hereditary rings such that  $e_1^{(i_i)}R_{i_i}e_k^{(i_i)}\neq 0$  for all k and a set  $\{A_{i_i,i_{i'}}\}$  of right ideals as (7), and R is the subring of  $\sum \bigoplus R_{i_i}$  such that the entries in  $A_{i_i,i_{i'}}$  of  $R_{i_i}$  are equal to the entries in  $A_{i_i,i_{i'}}$  of  $R_{i_i'}$ . Conversely, let  $\{R_i\}_{i=1}^m$  be a set of hereditary (basic) rings and  $\{A_{ij}\}$  a set of right ideals in  $R_i$  and  $R_j$  which satisfy (7) where we replace R with  $R_i$  and  $R_j$ . Then we can easily show that the subring of  $\sum \bigoplus R_i$  whose components in  $A_{ij}$  are identified for all i,j is a hereditary ring. We shall call such a ring the patched ring of  $\{R_i\}$  with respect to (briefly w.r.t.)  $\{A_{ij}\}$ , (the name comes from the following examples).

We shall give some examples of the patched ring. In the following examples, tri-angules and squares mean tri-angular matrices and matrices over a field K, respectively and straight lines do vector spaces over K.



We note that  $R_1$  and  $R_2$  are left and right serial, but R is not left serial.  $R_3$  and  $R_4$  are of right local type, but R is not and (\*,3) holds (see §§4 and 5). We shall show in §5 that every hereditary (basic) algebras over an algebraically closed field with (\*,3) is obtained as the patched ring of  $R_1$ 's and  $R_3$ 's above.

Thus we obtain

**Proposition 1.** Let R be a hereditary (basic) ring. Then R is the patched ring of hereditary rings  $\{R_i\}$  such that  $e_1^{(i)}R_ie_k^{(i)} \neq 0$  for all k, where  $e_b^{(i)}$  is the matrix unit  $e_{pp}$  in  $R_i$ .

REMARK 1. Let R be a hereditary ring which is one of  $R_i$  given in Proposition 1. Since  $e_1Re_j \neq 0$ ,  $e_jR$  is monomorphic to  $e_1R$ . Hence, if the structure of  $e_1R$  is known as right R-modules, then we can see those of  $e_iR$  (cf. Theorem 2).

## 2. Hereditary rings with (\*,1)

We shall first give some remarks on (\*, 1). If R satisfies (\*, 1), for  $eJ^i \supset C$   $eJ/C = \sum_{i=1}^n \bigoplus A_i$ , with  $A_i$  hollow. Since  $A_i$  is hollow,  $A_iJ = \sum \bigoplus B_{ij}$  with  $B_{ij}$  hollow by (\*, 1). Hence  $eJ^2/C = \sum \bigoplus A_iJ = \sum \bigoplus B_{ij}$ . By induction

(8)  $eJ^i/C$  is a direct sum of hollow modules.

In general, we assume that a module M is a direct sum of submodules  $M_i$ . For submodules  $N_i$  of  $M_i$ , we call  $\sum_i \oplus N_i$  a standard submodule of M (with respect to the decomposition  $\sum_i \oplus M_i$ ).

**Proposition 2.** Let N be a finitely generated R-module. Then the following are equivalent:

- 1) N is a direct sum of hollow modules.
- 2) Let P be a projective cover of  $N(P \xrightarrow{f} N)$ . Then ker f is a standard submodule of P with respect to a suitable direct decomposition of indecomposable modules.
- 3) Let P' be projective and  $f': P' \rightarrow N$  an epimorphsim. Then ker f' is a standard submodule of P' as 2).

Proof. Every hollow module is of a form eR/A. Hence  $1)\leftrightarrow 2$ ) and  $3)\rightarrow 2$ ) are clear.

 $2)\rightarrow 3)$  Let

$$0 \to K' \to P' \to N \to 0$$

be exact with P' projective. Since P is a projective cover of N, there exist  $g: P \rightarrow P'$  and  $h: P' \rightarrow P$  such that  $hg = 1_p$ . Let  $P = \sum \bigoplus P_i$  and  $\ker f = K = \sum \bigoplus K_i$  by 2), where the  $P_i$  are indecomposable and  $K_i \subset P_i$ . It is clear that  $g(K) \oplus h^{-1}(0) = \sum \bigoplus g(K_i) \oplus h^{-1}(0) \subset \ker f'$  and  $P' = g(P) \oplus h^{-1}(0)$ . Hence  $\ker f' = \sum \bigoplus g(K_i) \oplus h^{-1}(0) \subset \sum \bigoplus g(P_i) \oplus h^{-1}(0) = P'$ .

We shall study, in this section, a hereditary ring with (\*, 1) as a right R-module. Hence we may assume that R is basic. We shall give a characterization of a hereditary ring with (\*, 1).

In the following,  $\alpha$ ,  $\beta$ ,  $\cdots$  mean indices and  $|i, \alpha, \beta, \cdots, \eta|$  means a natural number related with the index  $(i, \alpha, \beta, \cdots, \eta)$ . If R is a basic hereditary ring,

$$J(e_{i}R) = e_{i}J = N(i, \alpha) \oplus N(i, \beta) \oplus N(i, \gamma) \oplus \cdots,$$
where  $N(i, \alpha) \approx e_{|i,\alpha|}R, N(i, \beta) \approx e_{|i,\beta|}R, \cdots,$ 

$$J(N(i, \alpha)) = N(i, \alpha, \alpha_{1}) \oplus N(i, \alpha, \alpha'_{1}) \oplus \cdots,$$
where  $N(i, \alpha, \alpha_{1}) \approx e_{|i,\alpha,\alpha_{1}|}R, N(i, \alpha, \alpha'_{1}) \approx e_{|i,\alpha,\alpha_{1}|}R,$ 

and so on. It is clear that  $i < |i, \alpha| < |i, \alpha, \alpha_1| < |i, \alpha, \alpha_1, \alpha_2|$  and so on, and

(10) 
$$e_i R e_j = M_{ij} = \sum_{\substack{i, \dots, \gamma = j \\ i \neq i}} N(i, \dots, \gamma) e_j.$$

**Theorem 1.** Let R be a hereditary (basic) ring and  $N(i, \dots, \gamma)$  be as in (9). Then the following conditions are equivalent:

- 1) (\*,1) holds for any hollow right R-module.
- 2) The following conditions are satisfied.
- i) Let  $i < k = |i, \alpha| \le j = |i, \beta| (\alpha + \beta)$ , i.e.,  $e_i J$  contains two direct summands isomorphic to  $e_k R$  and  $e_j R$ , respectively. If  $N(i, \alpha, \dots, \gamma)$  and  $N(i, \beta, \dots, \gamma')$  with  $|i, \alpha, \dots, \gamma| = |i, \beta, \dots, \gamma'| = h$  appear in (9), i.e., for some h, simultaneously  $e_k R e_k = 0$  and  $e_j R e_k = 0$ , then  $e_j R$  is uniserial, and hence  $[M_{jp}: \Delta_q] \le 1$  for q > j. Further if we denote exactly  $N(i, \alpha, \dots, \gamma)$  as  $N(i, \alpha, \alpha_2, \dots, \alpha_t = \gamma)$ , there exists a (unique) s such that  $|i, \alpha, \alpha_2, \dots, \alpha_s| = j$ .
- ii) If  $M_{jq}=x\Delta_q$  (q>j), there exists an isomorphism  $\sigma$  of  $\Delta_q$  onto  $\Delta_j$  such that  $x\delta=\sigma(\delta)x$  for all  $\delta$  in  $\Delta_q$ .
- 3) For any submodule A in  $e_iJ^k$  for any k, there exists a direct decomposition  $e_iJ^k=\sum \bigoplus P_{\alpha}$  such that  $A=\sum \bigoplus A_{\alpha}$ ;  $A_{\alpha}\subset P_{\alpha}$  and  $P_{\alpha}$  is indecomposable, i.e., A is a standard submodule of  $e_iJ^k$  with respect to the decomposition  $\sum \bigoplus P_{\alpha}$ .
- 4) For any submodule A in  $e_i J$ , there exists a direct decomposition  $e_i J = \sum_{\alpha} \oplus N(i, \alpha)'$  such that  $A = \sum_{\alpha} \oplus A_{\alpha}$ ;  $A_{\alpha} \subset N(i, \alpha)'$  and  $N(i, \alpha)' \approx N(i, \alpha)$ , i.e., A is a standard submodule of  $e_i J$  with respect to the decomposition  $\sum_{\alpha} \oplus N(i, \alpha)'$ ,

Proof. 1) $\rightarrow$ 2) Assume (\*, 1) and i=1 from Lemma 1. Put  $i_1=|1,\alpha|$  and  $i_2=|1,\beta|$ . Assume  $N(1,\alpha,\dots,\gamma)$  and  $N(1,\beta,\dots,\gamma')$  appear in (9) for

 $k=|1,\alpha,\cdots,\gamma|=|1,\beta,\cdots,\gamma'|$ . Then  $M_{1k}\pm 0$ ,  $M_{i_1k}\pm 0$  and  $M_{i_2k}\pm 0$ . First we shall show  $e_{i_2}R$  is monomorphic to  $e_{i_1}R$  and  $[M_{i_2k}:\Delta_k]=1$ . If we can show that  $e_{i_1}R$  contains a non-zero element y in  $M_{i_1i_2}$ ,  $e_{i_2}R\to yR\subset e_{i_1}R$  ( $e_{i_2}\to y$ ) is a monomorphism from Lemma 2. Hence we may assume  $\Delta_{k+1}=\cdots=\Delta_n=0$  from Lemma 1. We shall identify  $N(1,\alpha)$  with  $e_{i_1}R$  (resp.  $N(1,\beta)$  with  $e_{i_2}R$ ). From the above assumption let  $M_{i_2k}=\sum\limits_{j=1}^n \oplus A_j$ ; the  $A_j$  are simple R-modules and  $[A_j:\Delta_k]=1$ . Since  $e_{i_1}R\supset M_{i_1k}\supset N(1,\alpha,\cdots,\gamma)\pm 0$ , there exists a natural homomorphism

$$f: M_{i_2k}/\sum_{j\geq 2} \bigoplus A_j \approx A_1 \rightarrow M_{i_1k}$$
.

From the assumption (\*, 1), f is extendible to an element h' in  $\operatorname{Hom}_R(e_{i_2}R/\sum_{j\geqslant 2} \oplus A_j, e_{i_1}R)$  by [6], Theorem 4 (note that  $\operatorname{Hom}_R(e_{i_1}R, e_{i_2}R/\sum_{j\geqslant 2} \oplus A_j) = 0$  by Lemma 2 in case of  $i_1 = i_2$  and  $j \geqslant 2$  and that we identify  $e_{i_1}R$  and  $e_{i_2}R$  with  $N(1, \alpha)$  and  $N(1, \beta)$ , respectively). Consider a homomorphism

$$h: e_{i_2}R \to e_{i_2}R/\sum_{j\geqslant 2} \oplus A_j \xrightarrow{h'} e_{i_1}R.$$

Since  $h \neq 0$  is a monomorphism by Lemma 2,  $M_{i_2k} = A_1$ . Therefore

(11) 
$$e_{i_2}R$$
 is monomorphic to  $e_{i_1}R$  and  $[M_{i_2k}:\Delta_k]=1$ , provided  $M_{i_2k}\pm 0$ .

We shall show similarly to (11) that  $e_{i_2}R$  is uniserial. Put  $e_{i_2}=e$  and  $eJ^t\approx\sum_{j=1}^v\oplus e_{b(j)}R$  for some t, since R is hereditary. Let B be a simple submodule of  $e_{b(1)}R$ . Then we obtain a monomorphism of  $(B\oplus\sum_{j\geqslant 2}\oplus e_{b(j)}R)/\sum_{j\geqslant 2}\oplus e_{b(j)}R\approx B$  to  $e_{i_1}R$  (see (11)). From the argument before (11),  $\sum_{j\geqslant 2}\oplus e_{b(j)}R=0$ , and so  $eJ^t\approx e_{b(1)}R$  and  $eJ^t/eJ^{t+1}$  is simple. Therefore eR is uniserial. Next assume  $M_{i_2k}=x\Delta_k$  and we show ii). Hence we may assume  $\Delta_{k+1}=\cdots=\Delta_k=0$  from Lemma 1. For any  $\delta$  in  $\Delta_k$ , define an endomorphism  $\varphi$  of  $M_{i_2k}$  by setting  $\varphi(x\delta')=x\delta\delta'$ . We may regard  $\varphi$  as an isomorphism of  $M_{i_2k}$  onto  $N(1, \alpha, \cdots, \gamma)$  ( $|1, \alpha, \cdots, \gamma|=k$ ). Further, for an extension g (in  $\operatorname{Hom}_R(eR, e_{i_1}R) \subset \operatorname{Hom}_R(eR, e_1R)$ ) of  $\varphi$  by [6], Theorem 4,  $g(eRe) \subset e_1Re_{i_2}=M_{1i_2}=\sum \oplus N(1, \alpha, \cdots, \varepsilon)e_{i_2}$ . Noting the structure (9) and  $g(M_{i_2k})=\varphi(M_{i_2k})=N(1, \alpha, \cdots, \gamma)$ , we obtain

(12) some 
$$N(1, \alpha, \dots, \mathcal{E}')$$
 contains  $N(1, \alpha, \dots, \gamma)$  and  $N(1, \alpha, \dots, \mathcal{E}') \approx eR$ .

Therefore  $\varphi$  is extendible to an element in  $\operatorname{Hom}_R(eR, eR) = \Delta_{i_2}$  (take the projection to  $N(1, \alpha, \dots, \varepsilon')$ ), which implies that there exists  $\delta^*$  in  $\Delta_{i_2}$  such that  $\delta^*x = x\delta$ . It is clear that the mapping:  $\delta \to \sigma(\delta) = \delta^*$  is a monomorphism. We shall show that  $\sigma$  is an isomorphism. Let  $\delta^{**}$  be an element in  $\Delta_{i_2}$ . Since

 $M_{i_2k}=x\Delta_k$  is a left  $\Delta_{i_2}$ -module,  $\delta^{**}x=x\delta''$  for some  $\delta''$  in  $\Delta_k$ . Hence  $\delta^{**}=\sigma(\delta'')$ . The last part of i) is clear from (12) and its argument.

2) $\rightarrow$ 1) Assume that i) and ii) are satisfied. We shall show that the condition ii) of [6], Theorem 4 is fulfiled, and so we may study a case  $e=e_1$  by Lemma 1. Let

$$e_1 I = N(1, \alpha) \oplus N(1, \beta) \oplus \cdots$$

and  $C_1 \supset D_1$  (resp.  $C_2 \supset D_2$ ) submodules in  $N(1, \alpha) \approx e_{i_1} R$  (resp.  $N(1, \beta) \approx e_{i_2} R$ ,  $i_1 \leq i_2$ ) such that  $C_1/D_1$  is simple and  $f^{-1}$ :  $C_1/D_1 \approx C_2/D_2$ . We shall show that f is extendible to an element in  $\operatorname{Hom}_R(N(1, \beta)/D_2, N(1, \alpha)/D_1)$ . First we note for any R-module E in  $e_k R$ ,

(13) 
$$E = E(\sum_{i \ge k} e_i) = \sum_{i \ge k} \bigoplus Ee_i \text{ and } Ee_i \subset M_{kj}.$$

Since  $C_1/D_1 \approx C_2/D_2$ ,  $N(1, \alpha, \dots, \gamma)$  and  $N(1, \beta, \dots, \gamma')$  appear in  $e_1R$  for some  $|1, \alpha, \dots, \gamma| = |1, \beta, \dots, \gamma'| = h$  from (13). Hence  $N(1, \beta) (\approx e_{i_2}R)$  is uniserial by i) and  $C_2 = M_{i_2h} \oplus M_{i_2h_1} \oplus \cdots \oplus M_{i_2h_l} \supset D_2 = M_{i_2h_1} \oplus \cdots \oplus M_{i_2h_l}$  from (13), where  $h < h_1 < \dots < h_t$ . We may identify  $N(1, \alpha)$  with  $e_i R$ . Let  $M_{i > t} = x \Delta_h$  and take a representative f(x) of  $f(x+D_1)$  in  $M_{i,h}$  from (13);  $f(x) = \sum x_p$ ;  $0 \neq x_p \in N(1, \alpha, \dots, \alpha)$  $\gamma_p$ ) from (10) ( $|1, \alpha, \dots, \gamma_p| = h$ ). Since  $x_p \neq 0$ ,  $N(1, \alpha, \dots, \gamma_p) \subset N(1, \alpha, \dots, \delta_p)$  $(|i, \alpha, \dots, \delta_p| = i_2)$  from i), and  $N(1, \alpha, \dots, \delta_p) \neq N(1, \alpha, \dots, \delta_{p'})$  if  $p \neq p'$ , since  $e_{i_2}R$  is uniserial. Put  $N = \sum \bigoplus N(1, \alpha, \dots, \delta_p) \subset N(1, \alpha), C_1' = C_1 \cap N$  and  $D_1'=D_1\cap N$ , f(x) being in  $C_1'$  and  $f(x)\notin D_1$ ,  $C_1=C_1'+D_1$ , and so  $C_1/D_1\approx$  $C_1'/(C_1' \cap D_1) = C_1'/D_1'$ . On the other hand,  $x_p = x_p e_h$  for all p. Hence the mapping:  $x_1 \rightarrow x_p$  is extendible to an element  $g_p$  in  $\operatorname{Hom}_{\mathbb{R}}(N(1, \alpha, \dots, \delta_1), N(1, \alpha, \alpha, \dots, \delta_n))$  $(\cdots, \delta_p)(\approx \Delta_{i_2})$  from i) and ii). Then  $N = N(1, \alpha, \cdots, \delta_1)$   $(\sum_{q \ge 2} g_q) \oplus \sum_{q \ge 2} \oplus \sum_{q \ge 2} g_q \oplus \sum_{q \ge 2} g_$  $N(1, \alpha, \dots, \delta_q)$  and  $f(x) \in N(1, \alpha, \dots, \delta_1)$   $(\sum_{g>2} g_q)$   $(=N^*)$ , where T(u) means the graph of a module T with respect to a homomorphism u. Further  $C_1/D_1 \approx$  $(C_1' \cap N^*)/(D_1' \cap N^*)$  as above. Now  $C_1' \subset N^* \subset N^*$  ( $\approx e_{i_2}R$ )  $\subset N \subset N(1, \alpha)$  and  $D'_1 \cap N^* = J(C'_1 \cap N^*) \approx D_2$ . Hence we obtain the natural homomorphism

$$\begin{split} N(1,\,\beta)/D_2 &\stackrel{u}{\rightarrow} N^*/(D_1'\cap N^*) \rightarrow N(1,\,\alpha)/(D_1'\cap N^*) \rightarrow \\ (x+D_2) &\rightarrow f(x) + (D_1'\cap N^*) \rightarrow f(x) + (D_1'\cap N^*) \rightarrow \\ N(1,\,\alpha)/D_1\,, \\ (f(x)+D_1) \end{split}$$

where u is an extension of f given by i) and ii), which is an extension of f.

- 4)→1) This is clear from the definition of (\*, 1).
- 3) $\rightarrow$ 4) This is trivial.
- 1) $\rightarrow$ 3) This is clear from (8) and Proposition 2.

REMARK 2. We shall study the situation of 2)—ii) of Theorem 1. Let  $e_k R$  and  $e_i R$  be as in i). Assume

$$e_{j,R} = (0\cdots\Delta_j \ 0 \ M_{j_1j_2} \ 0\cdots M_{j_1j_3} \ 0\cdots M_{j_1j_t} \ 0), \qquad (j=j_1 \ \text{and} \ M_{pq} \neq 0).$$

Then

since  $e_{j_1}R$  is uniserial. Further  $M_{j_1j_s} = m'_{j_1j_s}\Delta_{j_s}$ . In order to simplify the notations, we express  $j_i$  by i. Then  $M_{ij} \neq 0$  for  $i \leq j$ . Every element in  $\operatorname{End}_R(M_{1s}R/M_{1s+1}R)$  is extendible to an element in  $\operatorname{End}_R(e_1R/M_{1s+1}R)$  by the proof after (12). Further, since  $(0\cdots 0\ M_{ls}\cdots M_{lt})\approx (0\cdots M_{1s}\cdots M_{1t})$  for all l and s, every element in  $\operatorname{End}_R(M_{ls}R/M_{ls+1}R) = \Delta_s$  is extendible to an element in  $\operatorname{End}_R(e_lR/M_{ls+1}R) = \Delta_l$ . Hence there exists an isomorphism  $\varphi'_{ls} \colon \Delta_s \to \Delta_l$  (since  $M_{ls} = m'_{ls}\Delta_s$ ,  $\varphi'_{ls}$  is an epimorphism) such that

(15) 
$$m'_{ls}x = \varphi'_{ls}(x)m'_{ls}$$
, where  $x \in \Delta_s$  and  $M_{ls} = m'_{ls}\Delta_s$ 

from the proof of Theorem 1. We fix generators  $m_{i,i+1}$  of  $M_{i,i+1}$  for all i and  $\varphi_{i,i+1}$ :  $\Delta_{i+1} \to \Delta_i$  related with the fixed  $m_{i,i+1}$  in (15). Then  $m_{i,i+1}m_{i+1,i+2}\cdots m_{i+k,i+k+1} = m_{i,i+k+1}$  is a generator of  $M_{i,i+k+1}$  and  $\varphi_{i,i+k+1} = \varphi_{i,i+1} \cdots \varphi_{i+k,i+k+1}$ :  $\Delta_{i+k+1} \to \Delta_i$  is an isomorphism and satisfies (15) (cf [1], Lemma 13). Hence we may assume

$$(16) (e_{j_1} + \cdots + e_{j_t})R(e_{i_1} + \cdots + e_{j_t}) \approx \begin{pmatrix} \Delta_{j_1} & \Delta_{j_1} \cdots \cdots \Delta_{j_1} \\ & \Delta_{j_1} \cdots \cdots \Delta_{j_1} \\ & \ddots & \vdots \\ & 0 & \ddots \vdots \\ & & \Delta_{j_1} \end{pmatrix}$$

Next assume that  $e_jR$  is uniserial only as in (14). Then by the similar argument as above, we obtain

(16') 
$$(e_{j_1} + \dots + e_{j_t})R(e_{j_1} + \dots + e_{j_t}) \approx \begin{pmatrix} \Delta_{j_1} & \Delta_{j_2} \dots \dots \Delta_{j_t} \\ & \Delta_{j_2} \dots \dots \Delta_{j_t} \\ & \ddots & \vdots \\ & 0 & \ddots \vdots \\ & & \Delta_{j_t} \end{pmatrix}$$

and the  $\varphi_{ij}$ :  $\Delta_i \rightarrow \Delta_j$  (i < j) are monomorphisms (cf. [1], Lemma 13). By  $T_t(\Delta_{i_1})$  and  $T_t(\Delta_{i_1}, \Delta_{i_2}, \dots, \Delta_{i_t})$  we denote the above rings (16) and (16'), respectively.

### 3. Hereditary rings with (\*, 2)

We shall give a characterization of hereditary rings with (\*, 2).

**Theorem 2.** Let R be a hereditary (basic) ring. Then (\*, 2) holds for any two hollow right R-modules if and only if, for each  $e_i$  ( $=e_{ii}$ ),

- $e_i J = \sum_{k=1}^{n_i} \bigoplus A_k$ , where the  $A_k$  are uniserial modules, which satisfy the following conditions:
- i) If  $A_k \approx A_{k'}$  for  $k \neq k'$ , any sub-factor modules of  $A_k$  are not isomorphic to ones of  $A_{k'}$ .
- ii) If  $A_k \approx A_{k'}$ ,  $(\approx e_j R)$   $(k \neq k')$  and  $M_{jp} = x \Delta_p$  (j < p), there exists an isomorphism  $\delta: \Delta_p \rightarrow \Delta_j$  as in 2)-ii) of Theorem 1.

Proof. Assume that (\*,2) holds. Then the  $A_i$  are uniserial by [8], Propoistion 7. As in the proof of Theorem 1, we consider a case i=1 from Lemma 1. Let

(17) 
$$e_{1}J = N_{11} \oplus N_{12} \oplus \cdots \oplus N_{1t_{1}} \oplus N_{21} \oplus N_{22} \oplus \cdots \oplus N_{2t_{2}}$$

$$\oplus N_{q1} \oplus N_{q2} \oplus \cdots \cdots \oplus N_{qt_q}$$
 ,

where  $N_{j1} \approx N_{js} \approx e_{ij}R$  for all j, s and  $N_{j1} \approx N_{j'1}$  if  $j \neq j'$  and  $i_1 < i_2 < \cdots < i_q$ .

Assume that  $N_{21}$  contains a non-zero sub-factor module isomorphic to one of  $N_{11}$ . Then  $N_{21}$  is monomorphic (via g) to  $N_{11}$  by (13) and Theorem 1. It is clear that  $N_{21}(g) \oplus N_{22} \oplus \cdots \oplus N_{2t_2} (\approx N_{21} \oplus \cdots \oplus N_{2t_2})$  is a direct summand of  $e_1 J$ . Hence from the assumptions (17) above and [8], Proposition 12, there exists jin  $e_1 J e_1 (=0)$  such that  $(e+j)(N_{21} \oplus \cdots \oplus N_{2t_2}) = N_{21}(g) \oplus N_{22} \oplus \cdots \oplus N_{2t_2}$ . Hence g must be zero. ii) is clear from Theorem 1, since (\*, 1) holds. Conversely, we assume i) and ii). Then (\*, 1) holds by Theorem 1. We shall quote here the similar argument given in [8], Proposition 8. Let e be a primitive idempotent and let  $eR/E_1 \oplus eR/E_2$  be a direct sum of two hollow modules. We may consider only a maximal submodule M' ( $\supset E_1 \oplus E_2$ ) in  $F = eR \oplus eR$  (see [8], Proposition 8). There exists a unit x in eRe such that  $F=eR(f)\oplus eR\supset M'=$  $eR(f) \oplus eI$ , where f(r) = xr for  $r \in eR$ . We shall define  $g' : eR(f) \rightarrow eR$  by setting g'(r+xr) = -xr. Then  $E_1 \oplus E_2 = E_1(f)(g') \oplus E_2$ . Let  $\varphi: F \to eR(f) \oplus eR/E_2$  be the natural epimorphism. Then  $M=M'/(E_1\oplus E_2)=(eR(f)\oplus eJ/E_2)/(E_1(f)(g'))$ . If we identify eR(f) with eR,  $M = (eR \oplus eJ/E_2)/\varphi(E_1(g))$ , where g = -f. First we consider the structure of  $\varphi(E_1(g))$ . If  $eR/E_1$  is simple, either  $M'/(E_1 \oplus E_2) \supset$  $eR/E_1$  or  $M'/(E_1 \oplus E_2) \oplus eR/E_1 = F/(E_1 \oplus E_2)$ . Hence  $M'/(E_1 \oplus E_2)$  is a direct sum of hollow modules, since (\*, 1) holds. Therefore we may assume  $E_1 \subseteq eJ$ .  $eJ = \sum_{i=1}^{m} \bigoplus A_i$ ; the  $A_i$  are hollow. From i) of the theorem, we can express the index set  $I = \{1, \dots, m\}$  as the disjoint union  $I = I_1 \cup I_2 \cup \dots \cup I_n$  such that

$$A_i \approx A_j \text{ if } i, j \in I_t, \text{ and } A_i \approx A_j \text{ if } i \in I_t, j \in I_{t'} \text{ and } t \neq t'.$$

430 M. Harada

We put  $F_i = \sum_{I_i} \bigoplus A_k$  then  $eJ = \sum_{i=1}^p \bigoplus F_i$ , (cf. (17)). Since these  $F_i$  have the particular property above,  $E_1 = \sum_{i=1}^p \bigoplus C_i$ ;  $C_i \subset F_i$ ,  $E_2 = \sum_{i=1}^p \bigoplus G_i$ ;  $G_i \subset F_i$  and  $g(C_i) \subset F_i/G_i$ , where  $\overline{g}$  is induced from g. Hence

(18) 
$$M \approx (eR \oplus eJ/E_2)/\sum \oplus C_i(\bar{g}).$$

Next we consider  $C_1(\vec{g})$ . Assume that  $A_1$  has the structure given in ii) of the theorem. Now  $A_1$  has the structure of  $e_{j_1}R$  in (16), and so every element in the endomorphism ring of sub-factor module T/L of  $A_1$  is extendible to an element in  $\operatorname{End}(A_1/L)$ . Further  $T_1/L_1 \approx T'_1/L'_1$  for sub-factor modules  $T_1/L_1$ ,  $T'_1/L'_1$  if and only if  $T_1 = T'_1$  (and  $L_1 = L'_1$ ). From this remark and the following fact: since  $C_1(\vec{g}) \subset eJ \oplus F_1/G_1$ , for any submodule L in  $eJ \oplus F_1$ ,  $(eRJ \oplus F_1)/L \approx eR/X'_1 \oplus F_1/G'_1$ , where  $G'_1$  is a (standard) submodule of  $F_1$  and  $X'_1$  is a submodule of eJ (cf. [8], Proposition 8), we can find an isomorphism:

(19) 
$$(eR \oplus eJ/E_2)/C_1(\overline{g}) \approx eR/X_1' \oplus F_1/G_1' \oplus \sum_{k \neq 1} \oplus F_k/G_k$$
 and 
$$\sum \oplus C_i(\overline{g})/C_1(\overline{g}) \subset eR/X_1' \oplus \sum_{k \neq 1} \oplus F_k/G_k ,$$

(see the proof of Theorem 5 below and [8], Proposition 8).

Finally assume  $F_1 = A_1$ , i.e.,  $I_1$  is a singlton. Then  $C_1/X_1 \approx \overline{g}(C_1)$ , where  $X_1 = \overline{g}^{-1}(0) \cap C_1$ . Since g is an isomorphism of  $A_1$  to  $F_1$  and  $A_1$  is uniserial,  $g(X_1) = G_1$ . Hence we have the same situation as above (take  $g^{-1}$ ). Accordingly we finally obtain from (19)

$$M \approx eR/\sum_i X_i' \oplus \sum_i \oplus F_i'/G_i'$$
:  $F_i' \approx F_i$ ,

which is a direct sum of hollow modules by Theorem 1.

Let R be a hereditary ring with (\*,2). We shall assume  $e_1R = (\Delta_1 M_{12} M_{13} \cdots M_{1n})$  and  $M_{1j} = 0$  for all j from Lemma 3.  $e_1J = (0 M_{12} \cdots M_{1n}) = \sum_{i=1}^{q} \bigoplus F_i$  as in the proof of Theorem 2. Following  $\{F_i\}_{i=1}^{q}$  we divide the index set  $\{2,3,\cdots,n\}$  into q-parts  $I = I_1 \cup I_2 \cup \cdots \cup I_q$  such that  $F_ie_j = 0 \leftrightarrow j \in I_i$ . Then  $I_i \cap I_j = \phi$  if  $i \neq j$  by i) of Theorem 2. Put  $|F_i/F_iJ| = p_i$ . If  $p_i = 1$ ,  $F_i$  is uniserial, and so  $F_i = m_{1i_1} \Delta_{i_1} \oplus m_{1i_2} \Delta_{i_2} \oplus \cdots \oplus m_{1i_1} \Delta_{i_1}$ , where the  $i_s$  runs through over  $I_i$  and  $A_1 \subset A_{i_1} \subset \cdots \subset A_{i_t}$  are division rings (see (16')). If  $p_i \geqslant 2$ ,  $F_i = (m_{1i_1} \Delta_{i_1})^{(P_i)} \oplus (m_{1i_2} \Delta_{i_1}^{(P_i)}) \oplus \cdots \oplus (m_{1i_1} \Delta_{i_1})^{(P_i)}$ , where  $(m_{1i_1} \Delta_{i_1}^{(P_i)})$  means a direct sum of p copies of  $m_{1i_1} \Delta_{i_1}$ . Since  $e_1Re_i \neq 0$  and R is hereditary,  $e_iR$  is monomorphic to  $e_1R$  by Lemma 2. On the other hand, the image of  $e_iR$  is a submodule of  $F_i$  for some  $F_i$  by i) of Theorem 2. Hence  $F_i \approx m_{1j_1} \Delta_{j_1} \oplus m_{1j_2} A_{j_3} \oplus m_{1j_3} A_{j_4} \oplus m_{1j_{k+1}} \Delta_{j_{k+1}} \oplus \cdots \oplus m_{1j_i} A_{j_i}$  or  $m_{1i_1} A_{i_1} \oplus m_{1i_{k+1}} A_{i_k} \oplus m_{1i_{k+1}} A_{i_k} \oplus \cdots \oplus m_{1j_i} A_{j_i} \oplus m_{1j_{k+1}} A_{j_k} \oplus m_{1j_{k+1}} A_{j_k} \oplus \cdots \oplus m_{1j_i} A_{j_i} \oplus m_{1j_{k+1}} A_{j_k} \oplus \cdots \oplus m_{1j_i} A_{j_i} \oplus m_{1j_{k+1}} A_{j_k} \oplus \cdots \oplus m_{1j_i} A_{j_i} \oplus m_{1j_{k+1}} A_{j_k} \oplus m_{1j_{k+1}} A_{j_k} \oplus \cdots \oplus m_{1j_i} A_{j_i} \oplus m_{1j_{k+1}} A_{j_k} \oplus m_{1j_{k+1}} A_{j_{k+1}} \oplus \cdots \oplus m_{1j_{k+1}} A_{j_{k+1}} \oplus m_{1j_{k+1}} A_{j_{k+1}$ 

if  $l \in I_i$  and  $m \in I_j$   $(i \neq j)$ .

Next let  $R_0$  be a hereditary ring as in (1) and assume  $R_0 \approx \sum \bigoplus S_i$  as rings. Then after renumbering  $\{e_i = e_{ii}\}$ , we may assume

$$R_0 = egin{pmatrix} S_1 & 0 & & \ S_2 & 0 & \ & \ddots & \ 0 & \ddots & \ & & S_t \end{pmatrix}.$$

By  $E_i$  we denote the identity element in  $S_i$ . On the other hand, for any here-ditary ring R as in (1)

$$R = e_1 R \oplus R'_0$$
 as R-modules,

where  $R'_0=(1-e_1)R(1-e_1)$  and  $e_1R$  is a two-sided ideal of R by Lemma 1. If  $R'_0\approx\sum\bigoplus S_i$  as above,  $e_1J=\sum\bigoplus e_1RE_j$ . Put  $A_j=e_1RE_j$ , and  $A_j$  is a right ideal in  $e_1R$ . We use those notations in the following theorem. Thus we obtain

**Theorem 3.** Let R be a (basic) hereditary ring such that  $e_1Re_j \neq 0$  for all j. Then the following conditions are equivalent:

- 1) (\*, 2) holds for any two hollow modules.
- 2)  $R/e_1R$  is a direct sum of right serial rings  $S_j$ ; 1)  $S_j = T_r(\Delta_{j_1}, \Delta_{j_2}, \dots, \Delta_{j_r})$  or 2)  $T_r(\Delta_j)$  and  $A_j = (\Delta_{j_1}, \Delta_{j_2}, \dots, \Delta_{j_r})$  in Case 1),  $A_j = (\Delta_j^{(\rho_j)}, \dots, \Delta_j^{(\rho_j)})$  is a left  $\Delta (=e_1Re_1)$  and right  $\Delta_j$ -modules in Case 2), where  $\Delta \subset \Delta_{j_1} \subset \dots \subset \Delta_{j_r}$  are division rings.
  - 3) R is isomorphic to

(20) 
$$\begin{pmatrix} \Delta & A_1 \cdots A_1 \\ S_1 & 0 \\ S_2 & \ddots \\ & S_r \end{pmatrix}.$$

where  $S_k = T_{r_k}(\Delta_{k1}, \Delta_{k2}, \dots, \Delta_{kr_k})$  or  $T_{r_k}(\Delta_k)$ .

**Theorem 3'.** Let R be a (basic) hereditary ring. Then (\*,2) holds if and only if R is a patched ring of hereditary rings given in (20).

**Lemma 4.** Let R be a hereditary and connected (basic) ring. 1) If R is a left serial ring, then  $e_1Re_j \neq 0$  for all j > 1. 2) Conversely, if  $e_1Re_j \neq 0$  for all j, and  $[M_{ij}: \Delta_j] \leq 1$ ,  $[M_{ij}: \Delta_i] \leq 1$  for all i and j, then R is left serial.

Proof. 1) Let  $e_1R = e_1\Delta \oplus M_{12} \oplus \cdots \oplus M_{1n}$ . We divide the index set  $\{2, 3, \dots, n\}$  into two sets I, J such that  $M_{1i} = 0$  provided  $i \in I$  and  $M_{1j} = 0$  provided  $j \in J$ . Take  $M_{1i}$  and consider  $M_{ji}$ . If  $M_{ji} = 0$  for  $j \in J$ ,  $RM_{ji} \supset M_{1i}$ ,

since  $M_{1j}=0$ . Hence  $M_{ji}=0$  for all  $i \in J$  by assumption. Hence  $R=(e_{11}R \oplus \sum_{k\in I} \oplus e_k R) \oplus (\sum_{k'\in I} \oplus e_{k'}R)$  as rings from (2). Therefore  $J=\phi$  by assumption.

2) Assume  $0 \neq e_1 R e_j = \Delta_1 m_{1j} = m_{1j} \Delta_j$  for all j. Since R is hereditary,  $e_1 J = \sum \bigoplus A_i$ ; the  $A_i$  are hollow and no sub-factor modules of  $A_i$  are isomorphic to any ones of  $A_j$   $(i \neq j)$  from (13) and the assumption  $[M_{1j}: \Delta_j] \leq 1$ . Similarly  $J(A_i) = \sum \bigoplus A_{ij}$  and so on (cf. [7]). Hence any indecomposable (projective) module in  $e_J$  is equal to some  $A_{i_1 i_2 \cdots i_l}$ . Let  $M_{it} = m_{it} \Delta_t = \Delta_i m_{it}$  and  $M_{jt} = m_{jt} \Delta_t = \Delta_j m_{jt}$  (i < j) for a fixed t. Then  $m_{1i} e_i R$  and  $e_{1j} e_j R$  have a common sub-factor module in  $e_1 R$ . Hence  $e_j R$  is monomorphic to  $e_1 R$  from the initial remark, and so  $e_i R e_j \neq 0$ , which implies  $R m_{it} \subset R m_{jt}$ . Therefore R is left serial.

**Theorem 4.** Let R be a connected (basic) hereditary ring. Then R is a left serial ring with (\*,2) as right R-modules if and only if R is isomorphic to

$$\begin{pmatrix} \Delta & \Delta & \cdots & \Delta & \Delta & \cdots & \Delta \\ & T_{r_1}(\Delta_1) & & & & \\ & & T_{r_2}(\Delta_2) & 0 & & \\ & & & \ddots & & \\ & & & & T_{t_r}(\Delta_r) \end{pmatrix}$$

where  $\Delta_i \subset \Delta$  are division rings.

Proof. Assume that R is a left serial ring with (\*,2) as right R-modules. Then R is isomorphic to the ring in (20) by Theorem 3 and Lemma 4. Since R is left serail, the  $A_i$  in (20) are isomorphic to  $\Delta$  as left  $\Delta$ -modules and  $\Delta_{k1} = \Delta_{k2} = \cdots = \Delta_{kr_k}$  in (20). If we take a generator of  $A_i$ , we know  $\Delta_i \subset \Delta$ . The converse is clear from the structure of the diagram.

# 4. Hereditary rings with (\*, 3)

We have already obtained a characterization of artinian rings with (\*,3) and  $|eJ/eJ^2| \le 2$  in [5]. As is seen in [5], Theorem 1, the structure of such artinian rings is a little complicated. However if R is a hereditary ring with  $|e_{ii}J/e_{ii}J^2| \le 2$ , we obtain the following theorem.

We quote here a particular property of a vector space (cf. [2] and [7]).

(#, m) Let  $\Delta_1$  and  $\Delta_2$  be division rings and V a left  $\Delta_1$ , right  $\Delta_2$ -space. For any two right  $\Delta_2$ -subspaces  $V_1$ ,  $V_2$  with  $|V_1| = |V_2| = m$ , there exists x in  $\Delta_1$  such that  $xV_1 = V_2$ .

**Theorem 5.** Let R be a hereditary (basic) ring with  $|eJ|eJ^2| \leq 2$  for each  $e=e_i$ . Then (\*,3) holds for any three hollow modules if and only if  $eJ=A_1 \oplus A_2$  such that

1) The  $A_i$  are as in Theorem 2, and further if  $A_1 \approx A_2$ , 2)  $[\Delta : \Delta(A_1)] = 2$  and

3)  $eJ/eJ^2$  satisfies  $(\sharp, 1)$  as a left  $\Delta$ -module and right  $\Delta'$ -module, where  $A_1 \approx e_j R$ ,  $\Delta = eRe$ ,  $\Delta' = e_j Re_j$ , and  $\Delta(A_1) = \{x \mid \in \Delta, xA_1 \subset A_1\}$ .

Proof. Assume  $eJ=A_1\oplus B_1$  as in the theorem. If  $A_1 \not\approx B_1$ ,  $\Delta(C)=\Delta$  for every submodule C in eJ by i) of Theorem 2. Assume  $A_1 \approx B_1$  ( $\approx e_j R$ ). Then  $A_1$  and  $B_1$  have the structure of eR as in (16). For any C, there exists submodules  $C_1 \supset D_1$  in  $A_1$  and  $C_2 \supset D_2$  in  $B_1$  such that  $f: C_1/D_1 \approx C_2/D_2$  and  $C = \{x+D_1+f(x)+D_2 | x \in C_1\}$ . From (16), f is extendible to an element  $g: A_1/D_1 \rightarrow B_1/D_2$ . Since ( $\sharp$ , 1) is satisfied for  $eJ/eJ^2 = u_1\Delta_j \oplus v_1\Delta_j$ , there exist  $\alpha$  in  $\Delta$  and  $\alpha$  in  $\alpha$  such that  $\alpha = u_1 + \alpha = u_1$ 

As in Lemma 3, if  $e_1Re_1 \neq 0$  for all j, R in Theorem 5 is isomorphic to

$$\begin{pmatrix} \Delta & \Delta_1 & \Delta_2 & \cdots & \Delta_r & \Delta_{r+1} & \cdots & \Delta_{r+s} \\ & T_r & (\Delta_1 & \Delta_2 & \cdots & \Delta_r) & 0 \\ 0 & 0 & T_s (\Delta_{r+1} & \cdots & \Delta_{r+s}) \end{pmatrix},$$

where  $\Delta \subset \Delta_1 \subset \cdots \subset \Delta_r$  and  $\Delta \subset \Delta_{r+1} \subset \cdots \subset \Delta_{r+s}$ , or

$$\begin{pmatrix} \Delta & \Delta_1^{(2)} & \Delta_1^{(2)} \cdots \cdots \Delta_1^{(2)} \\ 0 & T_r(\Delta_1) \end{pmatrix}.$$

where  $\Delta_1^{(2)}$  is a left  $\Delta$  and right  $\Delta_1$  space satisfying  $(\sharp, 1)$  and  $[\Delta: \Delta(\Delta_1, \dots, \Delta_1)]=2$ .

In the former ring,  $eJ = A_1 \oplus A_2$  and  $A_1 \approx A_2$ . Hence (\*, n) holds for all n by [5], Theorem 3. We do not know this fact for the latter ring.

### 5. Hereditary algebras

In this section we consider particular algebras over a field K such that

(21) 
$$e_i Re_i / e_i Je_i = \bar{e}_i K$$
 ([2], Condition II"). (e.g. an algebraically closed field.)

Under the assumption (21), every  $\Delta_i$  in (1) is equal to K. In this case, if eR is uniserial,  $[eRe':K] \leq 1$  (cf. (14)). Hence

(22) 
$$\operatorname{End}_{R}(A/A') \approx K \approx \operatorname{End}_{R}(eR/A')$$

434 M. Harada

for any submodules  $A \supset A'$  in eR. Accordingly, from the proof of Theorem 2 (cf. [8], Theorem 2) we obtain

**Theorem 6.** Let R be a hereditary K-algebra satisfying (21). Then the following conditions are equivalent:

- 1) (\*, 2) holds for any two hollow modules.
- 2) Every factor module of  $eR \oplus eJ^{(m)}$  is a direct sum of hollow modules for each primitive idempotent e and any integer m. (It is sufficient in case m=1.)

If every finitely generated R-module is a direct sum of hollow modules, R is called a ring of right local type [10]. It is clear from the definition that (\*,n) holds for a ring of right local type. By  $T_n(\Delta)$  we denoted the ring of upper tri-angular matrices over a division ring  $\Delta$  (see (14)).

**Theorem 7.** Let R be a hereditary (basic) K-algebra satisfying (21). Then the following are equivalent:

- 1) (\*,3) holds for any three hollow modules, and  $e_1Re_j \neq 0$  for all j, (and hence (\*, n) holds for all n).
  - 2) R is isomorphic to  $\begin{pmatrix} T_{m_1}(K) & K & K \cdots K \\ 0 & T_{m_2}(K) \end{pmatrix}$ .
  - 3) R is of right local type and connected.

Proof. 1) $\rightarrow$ 2). Since  $|eJ/eJ^2| \le 2$  from [4], Theorem 3, we obtain it from the remark after (21) and the last part in §4.

- 2)-3). It is clear that the ring in 2) is connected and of right local type from Lemma 4 and [10] (see [9]).
- 3) $\rightarrow$ 1). (\*, 3) holds for any three hollow modules. Since R is left serial by [10], and connected,  $M_{1j} \neq 0$  by Lemma 4.

**Theorem 8.** Let R be a hereditary algebra as above. Then the following conditions are equivalent:

- 1) (\*, 3) holds for any three hollow right R-modules.
- 2)  $eJ = A_1 \oplus A_2$ , where the  $A_i$  are uniserial, and any non-trivial sub-factor modules of  $A_1$  are not isomorphic to ones of  $A_2$ . In this case (\*, n) holds for all n.
- 3) Let  $\{N_i\}_{i=1}^k$  be any set of submodules in eR. Then every factor module of  $\sum \bigoplus N_i^{(n_i)}$  is a direct sum of hollow modules.
- 4) Every factor modules of  $eR^{(n)} \oplus eJ^{(m)}$  is a direct sum of hollow modules for any integers n and m. (It is sufficient in case n=2 and m=1).

Proof. 1)↔2) This is clear from Theorem 5 and [2], Theorem 2'.

1) $\rightarrow$ 3). Let  $e=e_i$  and let  $R_i$  and  $X_i$  be as before Lemma 3. Then  $R_i$  is of a right local type by Theorem 7. Since  $R_iX_i=0$  and  $R/X_i=R_i$ , every submodule in eR is an  $R_i$ -module. Hence every factor module of  $\sum \bigoplus N_i^{(n_i)}$  is also

an  $R_i$ -module. Therefore it is a direct sum of  $R_i$ -hollow (and hence R-hollow) modules.

3) $\rightarrow$ 4). This is clear. (We can show directly 1) $\rightarrow$ 4) in the similar manner to [8], Theorem 2, cf. the proof of Theorem 2.)

3) $\rightarrow$ 1). Let  $D=\sum\limits_{i=1}^3 \bigoplus eR/E_i$  and M a maximal submodule in D. Then  $D'=eR^{(3)}$  contains the submodule M' such that  $M'\supset\sum\limits_{i=1}^3 \bigoplus E_i$  and  $M'/\sum \bigoplus E_i=M$ . Since D' has the lifting property of simple modules modulo the radical, D' has a decomposition  $\sum\limits_{i=1}^3 \bigoplus F_i$  such that  $F_i\approx eR$  and  $M'=F_1\bigoplus F_2\bigoplus J(F_3)$ . Hence M is a factor module of  $eR^{(2)}\bigoplus eJ$ . Therefore M is a diect sum of hollow modules from 3).

**Theorem 9.** Let R be as in Theorem 8. Then (\*,3) holds for any three hollow modules if and only if R is the patched ring of serial rings  $T_r(K)$  and rings of right local type  $T_{r'}(K)$  K  $K \cdots K$   $T_{r''}$ ,  $T_{r''}$ 

Proof. This is clear from Proposition 1 and Theorem 7.

## 6. US-n algebras

We have studied special types of hereditary algebras in §5. We shall show, in this section, that they are related with US-n algebras defined in [4].

As another generalization of right serial ring (cf. (\*, n)), we considered

(\*\*,n) Every maximal submodule in a direct sum D of n hollow modules contains a non-zero direct summand of D [4].

It is clear that if D/J(D) is not homogeneous, D satisfies (\*\*,n). Hence we may restrict ourselves to hollow modules of a form eR/E, where e is a primitive idempotent and E is a submodule of eR. If (\*\*,n) holds for any direct sum of n hollow modules, we call R a right US-n ring [4]. We showed in [4] that R is right US-1 (resp. US-2) if and only if R is semisimple (resp. right uniserial). On the other hand,

**Proposition 3** ([6], Proposition 8). Let R be a right artinian ring. Then R is a right US-m ring for some m if and only if the number of isomorphism classes of hollow modules eR|A is finite and  $[\Delta:\Delta(A)]<\infty$ .

If R is an algebra of finite dimension over a field K,  $[\Delta:\Delta(A)]<\infty$ . Hence from Proposition 3, we know that an algebra of finite representation type is a US-n algebra for some n. Further we note that if K is a finite field, R is a finite ring. Then, since there are only finite non-isomorphic hollow modules,

R is a US-n algebra. Hence we may assume that K is an infinite field.

From now on we assume that R is a K-algebra satisfying (21). Let e be a primitive idempotent in R. Let  $\{A_1, A_2, \dots, A_t\}$  be a set of submodules in eR such that  $A_i \sim A_j$  for any pair i and j, where  $A_i \sim A_j$  means that there exists a unit element x in eRe such that  $xA_i \subset A_j$  or  $xA_i \supset A_j$ . Let m(e) be the maximal number t among the above sets.

**Proposition 4.** Let R be an algebra over K satisfying (21). Then R is a right US-m if and only if  $m=\max\{m(e)\}+1<\infty$ .

Proof. This is clear from [3], Corollaries 1 and 2 of Theorem 2.

**Theorem 10.** Let R be as above. We assume further  $J^2=0$ . Then R is a right US-m algebra if and only if eJ is square-free for each primitive idempotent e.

Proof. Assume that R is right US-m. Since  $J^2=0$ ,  $eJ=\sum \bigoplus A_i$  the  $A_i$  are simple, i.e.  $A_i\approx \bar{e}_iK$ , (R is basic). If  $A_i\approx A_j$ ,  $(a_i+a_jk)K\approx A_i$  and  $(a_i+a_jk)K\approx (a_i+a_jk')K$  for any  $k\neq k'$  in K, where  $A_i=a_iK$  ([6], Lemma 15). Then R is not right US-m for any m. Hence eJ is square-free. Conversely if eJ is square-free, every submodule in eJ is a sum of some  $A_i$ . Hence the number of hollow modules is finite, and so R is right US-m for some m from Proposition 4.

**Corollary.** Let R be as above. If R is right US-m,  $eJ^{i}/eJ^{i+1}$  is square-free for all i.

Proof. It is clear that if R is right US-m, so is  $R/J^t$  for any t (cf. [4], Lemma 1). If  $J^{n+1}=0$ ,  $eJ^n$  is semisimple and hence we can employ the same argument given above. Therefore we obtain the corollary by induction on n and the initial remark.

It is clear that the converse is not true provided  $J^2 \neq 0$ .

Finally we study the ring of generalized tri-angular matrices over division rings  $\Delta_j$  as (1). If R is a (basic) hereditary ring (more generally if  $gl \dim R/J^2 < \infty$ ), R has the structure of (1) [1].

**Theorem 11.** Let R be a (basic) algebra satisfying (21). Assume gl dim  $R/J^2 < \infty$ . Then R is a US-m algebra for some m if and only if  $[e_iRe_j: K] \le 1$  for all i, j.

Proof. Assume that R is a US-m algebra for some m. We may assume that  $\Delta_{k+1} = \cdots = \Delta_k = 0$  in (1) by [4], Lemma 1. Let  $M_{ik} = x_1 K \oplus x_2 K \oplus \cdots$ . Then  $[M_{ij}:K] \leq 1$  as the proof of Theorem 10. Conversely, if  $[M_{ik}:K] \leq 1$ ,  $e_i R$  contains only finitely many right ideals. Hence R is a US-m algebra for

some m.

### 7. Examples

We shall give several examples of hereditary algebras with (\*, n). Let  $K \subset L$  be fields.

1.  $\binom{K}{0} \binom{L}{K}$  is a hereditary ring with (\*, 2) and hence (\*, 1). (If  $L \neq K$ , (\*, 3) does not hold from Theorem 8.)

2. 
$$\begin{pmatrix} K & K \\ K \end{pmatrix} & K \\ 0 & K \\ 0 & 0 & K \\ 0 & 0 & 0 & K \end{pmatrix}$$

is a hereditary ring with (\*, 1) but not (\*, 2). In this ring, eJ is a direct sum of uniserial modules (cf. [8], Theorem 3).

3. 
$$\begin{pmatrix} K & L & L \\ 0 & L & 0 \\ 0 & 0 & L \end{pmatrix}$$
 is a hereditary ring satisfying  $(*, n)$  for all  $n$  by Theorem 8

$$\begin{pmatrix} K & K & K & K & K & K & K & K \\ 0 & K & K & K & K & K \\ 0 & K & K & K & K & K \\ 0 & 0 & K & K & K & K \\ 0 & 0 & 0 & K & K & K \\ 0 & 0 & 0 & 0 & K & K \end{pmatrix}$$

satisfies all conditions in Theorem 1 except the last one of i).

5. Let R be an algebra satisfying (21), and gl dim  $R/J^2 < \infty$ . Then if R is right US-n, R is left US-m from Theorem 10 for some m. However  $n \neq m$  in general. For example  $R = \begin{pmatrix} K & 0 & K \\ K & K \end{pmatrix}$ . Then R is right US-2 and left US-3.

If R does not satisfy (21), then the above fact is not true. Let  $L\supset K$  be fields with [L:K]=5 (not small) and  $R=\begin{pmatrix} K & L \\ 0 & L \end{pmatrix}$ . Then R is right US-2 but not left US-n for any n.

6. Let K be a field. We can give the complete list of connected algebras given in Theorem 11, provided that R is hereditary and |R/J| is enough small. For instance, let |R/J| = 6. We shall give some samples of them.

where  $e=e_1$ .

We do not have US-9 and US-10 algebras under the assumption |R/I|=6.

#### References

- [1] M. Harada: Semiprimary hereditary rings and generalized triangular matrix rings, Nagoya Math. J. 27 (1966), 463-489.
- [2] ——: On maximal submodules of a finite direct sum of hollow modules III, Osaka J. Math. 21 (1984), 81–98.
- [3] ——— and Y. Yukimoto: On maximal submodules of a finite direct sum of hollow modules IV, Osaka J. Math. 22 (1985), 321-326.
- [4] M. Harada: Generalizations of Nakayama ring I, Osaka J. Math. 23 (1986), 181–200.
- [5] ——: Generalizations of Nakayama ring II, Osaka J. Math. 23 (1986), 509-521.
- [6] ——: Generalizations of Nakayama ring III, Osaka J. Math. 23 (1986), 523-539.
- [7] ——— and Y. Baba: Generalizations of Nakayama ring IV, Osaka J. Math. 24 (1987), 139-145.
- [8] M. Harada: Generalizations of Nakayama ring V, Osaka J. Math. 24 (1987), 373-389.
- [9] T. Sumioka: Tachikawa's theorem on algebras of left colocal type, Osaka J. Math. 21 (1984), 629-648.
- [10] H. Tachikawa: On rings for which every indecomposable right module has a unique maximal submodule, Math. Z. 71 (1959), 200-222.

Department of Mathematics Osaka City University Sugimoto-3, Sumiyoshi-Ku Osaka 558, Japan