SPECTRAL PROPERTIES OF THE LAPLACE OPERATOR IN $L^p(R)$

Werner J. RICKER*

(Received January 28, 1987)

1. Introduction. One of the useful tools for analyzing a linear operator T in a Banach space X, if available, is a functional calculus. In general, no reasonable functional calculus may exist. If it is known that T is a closed operator then there is available a restricted functional calculus for T based on functions which are holomorphic in a neighbourhood of the spectrum $\sigma(T)$, of T, and have a limit at infinity, [4; Ch. VII]. To admit a richer functional calculus it would be expected that T should satisfy some additional properties. For $0 \le \alpha < \pi$, define the open cone $S_{\alpha} = \{x \in C \setminus \{0\}; |\arg(x)| < \alpha\}$. A closed operator T in X is said to be of type ω [12], where $0 \le \omega < \pi$, if $\sigma(T) \subseteq \overline{S}_{\omega}$ (the bar denotes closure and, by definition, $\overline{S}_0 = [0, \infty]$) and, for $0 < \varepsilon < (\pi - \omega)$ there is a positive constant c_{ε} such that

$$||R(\lambda; T)|| \le c_{\varepsilon} |\lambda|^{-1}, \qquad \lambda \notin \overline{S}_{\omega+\varepsilon}.$$

Here $R(\lambda; T)$ denotes the resolvent operator of T at λ . We remark that -T, for the case $0 \le \omega \le \pi/2$, is the infinitesimal generator of a holomorphic semigroup [12; Theorems 3.3.1 and 3.3.2].

In the case when X is a Hilbert space and T is of type ω there are results of A. Yagi [13] and more recently, of A. McIntosh [10], which give conditions equivalent to the existence of a functional calculus for T based on the algebra $H^{\infty}(S_{\omega+\varepsilon})$, for every $0 < \varepsilon < (\pi-\omega)$. For example, this is the case if the purely imaginary powers T^{iu} , $u \in \mathbb{R}$, exist as bounded operators in X or if T satisfies certain square function estimates. However, these results are specific to Hilbert space. The situation in Banach spaces, even reflexive ones, is less clear and more complex; some positive results in this setting can be found in [2].

Perhaps one of the simplest examples to consider is the Laplace operator $L=-d^2/dx^2$ in $L^p(\mathbf{R})$ for 1 . In this case, it turns out that <math>L is of type $\omega=0$ and, as indicated in Section 2, L has an $H^{\infty}(S_{\mathfrak{e}})$ -functional calculus for every $\varepsilon>0$. Another algebra of functions acting on L is the space $BV(\mathbf{R}^+)$ of functions on $[0, \infty)$ which are of bounded variation. We note that these

^{*} This paper is dedicated to the late Professor N. Dunford.

algebras are distinct. Indeed, the function $z \to z^i$ belongs to $H^{\infty}(S_{\epsilon})$ for every $0 < \varepsilon < \pi$ but its restriction to $[0, \infty)$ is surely not of bounded variation. It is just as easy to exhibit elements of $BV(\mathbb{R}^+)$ which are not the restriction to $[0, \infty)$ of any element of $H^{\infty}(S_{\epsilon})$ for any $\varepsilon > 0$; the characteristic function χ_I of any interval $J \subseteq [0, \infty)$, other than $[0, \infty)$ itself, will do.

The most desirable functional calculus is one admitting the largest possible class of functions defined on $\sigma(L) = [0, \infty)$. If p = 2, then L is self-adjoint and hence it is possible to form a continuous linear operator $\psi(L)$ for every bounded Borel function ψ on $[0, \infty)$. The question arises of whether this is still the case for $p \neq 2$, that is, whether L is a scalar-type spectral operator in the sense of N. Dunford [5]? As noted above an operator $\psi(L)$ exists whenever $\psi = \chi_J$ for some interval $J \subseteq [0, \infty)$. Since such sets generate the Borel subsets of $[0, \infty)$ one might be hopeful of a positive answer. Unfortunately, the main aim of this note is to show that L is not a scalar-type spectral operator in Dunford's sense if $p \neq 2$; see Theorem 1 below.

2. Some functional calculi for L. Unless stated otherwise it is assumed that $p \in (1, \infty)$. Consider the closed operator L in $L^p(\mathbf{R})$ given by $L = -d^2/dx^2$. The domain of L is taken to be the dense subspace of $L^p(\mathbf{R})$ specified by

$$\mathcal{D}(L) = \{ f \in L^p(\mathbf{R}); f' \in AC(\mathbf{R}), f'' \in L^p(\mathbf{R}) \}$$

where $AC(\mathbf{R})$ is the space of functions on \mathbf{R} which are absolutely continuous on bounded intervals. Then $\sigma(L) = [0, \infty)$ and -L is the infinitesimal generator of a strongly continuous C_0 -semigroup of contractions, namely the Gauss-Weierstrass semigroup given by

$$(G_t f)(u) = rac{1}{2} (\pi t)^{-1/2} \int_{-\infty}^{\infty} f(u-w) \mathrm{e}^{-w^2/4t} \, dw \; , \qquad f \in L^p(\mathbf{R}) \; ,$$

for each t>0 [7; § 21.4]. It is known that

$$(1) \qquad ||R(\lambda;L)|| \leq 1/|\lambda| \sin^2\left(\frac{1}{2}\arg(\lambda)\right), \qquad \lambda \in \rho(L) = \mathbf{C} \setminus [0, \infty),$$

[8; IX § 1.8], from which it follows that L is of type $\omega=0$. Let D=-id/dx denote the differentiation operator with domain

$$\mathcal{D}(D) = \{ f \in L^p(\mathbf{R}); f \in AC(\mathbf{R}), f' \in L^p(\mathbf{R}) \}.$$

Then D is closed, densely defined and $\sigma(D) = \mathbf{R}$.

For ease of presentation we now assume that $p \in (1,2)$. Then it is possible to reformulate the domains of L and D in terms of the Fourier transform mapping $\hat{\cdot}: L^p(\mathbf{R}) \to L^q(\mathbf{R})$ where q is the conjugate index to p. Indeed,

$$\mathcal{D}(L) = \{ f \in L^p(\mathbf{R}); \, \xi^2 \hat{f}(\xi) = \hat{g}(\xi) \text{ for some } g \in L^p(\mathbf{R}) \}$$

and, for each $f \in \mathcal{D}(L)$, it turns out that Lf = g where $g \in L^p(\mathbf{R})$ satisfies $\hat{g}(\xi) = \xi^2 \hat{f}(\xi)$ [7; § 21.4]. Similarly,

$$\mathcal{D}(D) = \{ f \in L^p(\mathbf{R}); \xi \hat{f}(\xi) = \hat{g}(\xi) \text{ for some } g \in L^p(\mathbf{R}) \}$$

and, for each $f \in \mathcal{D}(D)$, it is the case that Df = g where $g \in L^p(\mathbf{R})$ satisfies $\hat{g}(\xi) = \xi \hat{f}(\xi)$.

Let the bounded measurable function $m: \mathbb{R} \to \mathbb{C}$ be a *p*-multiplier [11; IV § 3]. Then there exists a bounded operator in $L^p(\mathbb{R})$, say T_m , such that

$$(T_m f)^{\hat{}}(\xi) = m(\xi)\hat{f}(\xi), \qquad f \in L^p(\mathbf{R}) \cap L^2(\mathbf{R}).$$

Observing that $(Df)^{\hat{}}(\xi) = \xi \hat{f}(\xi)$, for each $f \in \mathcal{D}(D)$, it is natural to define m(D) to be the operator T_m . If $\gamma : C \to C$ is the function $\gamma(z) = z^2$, then $\gamma(D) = D^2 = L$ where D^2 is defined in the usual way for positive integral powers of an unbounded operator. So, if m is a bounded measurable function on $[0, \infty)$ such that $m \circ \gamma : R \to C$ is a p-multiplier, then we can define an operator m(L) by

$$m(L) = (m \circ \gamma)(D).$$

Since the linear space of bounded measurable functions $m: [0, \infty) \to \mathbb{C}$ such that $m \circ \gamma: \mathbb{R} \to \mathbb{C}$ is a p-multiplier forms an algebra under pointwise multiplication it follows that the action of such functions m on L as specified by (2) is multiplicative. It is the formula (2) which will imply that $H^{\infty}(S_{\mathfrak{e}})$ acts on L for each $\varepsilon > 0$.

The following result on multipliers will be needed. It is essentially Theorem 3 of [11; p. 96]. An examination of its proof shows that the constant A_p specified there has the form of the right-hand-side of (3) for some universal constant α_p .

Lemma 1. Let $1 . There exists a constant <math>\alpha_p$ such that if $m: \mathbf{R} \rightarrow \mathbf{C}$ is any C^1 -function in $\mathbf{R} \setminus \{0\}$ for which both m and $\xi \mapsto \xi m'(\xi)$, $\xi \neq 0$, are bounded, then m is a p-multiplier and the associated operator T_m , considered in $L^p(\mathbf{R})$, satisfies

$$||T_m|| = ||m(D)|| \leq \alpha_p \max\{||m||_{\infty}, ||\xi m'(\xi)||_{\infty}\}.$$

Now, fix $0 < \varepsilon < \pi$ and let $\psi \in H^{\infty}(S_{\varepsilon})$. Then $\psi \circ \gamma \in H^{\infty}(C_{\varepsilon/2})$ where, for any $0 \le \rho < \pi/2$, C_{ρ} is the open double cone $S_{\rho} \cup (-S_{\rho})$ and $-S_{\rho} = \{-z; z \in S_{\rho}\}$. Furthermore, the norm $||\psi \circ \gamma||_{\infty} = \sup\{|\psi(z^{2})|; z \in C_{\varepsilon/2}\}$ of $\psi \circ \gamma \in H^{\infty}(C_{\varepsilon/2})$ coincides with the norm $||\psi||_{\infty} = \sup\{|\psi(w)|; w \in S_{\varepsilon}\}$ of $\psi \in H^{\infty}(S_{\varepsilon})$. If ϕ is any element of $H^{\infty}(C_{\varepsilon/2})$, then it follows from the Cauchy integral formula that

$$|\phi'(x)| \le ||\phi||_{\infty}/|x|\sin(\varepsilon/2)$$
, $x \in \mathbb{R} \setminus \{0\}$,

and hence

$$(4) \qquad |(\psi \circ \gamma)'(x)| \leq ||\psi \circ \gamma||_{\infty}/|x|\sin(\varepsilon/2) = ||\psi||_{\infty}/|x|\sin(\varepsilon/2),$$

for each $x \in \mathbb{R} \setminus \{0\}$. Defining $(\psi \circ \gamma)(0)$ to be zero, say, it follows from Lemma 1 that the restriction to \mathbb{R} of $\psi \circ \gamma$, again denoted by $\psi \circ \gamma$, is a p-multiplier and hence the bounded operator $\psi(L) = (\psi \circ \gamma)(D)$ certainly exists. Noting that $1/\sin(\varepsilon/2) \ge 1$ it follows from (4) that

$$\max\{||\psi\circ\gamma||_{\infty},\,||\xi(\psi\circ\gamma)'(\xi)||_{\infty}\}=||\psi\circ\gamma||_{\infty}/\sin(\varepsilon/2)=||\psi||_{\infty}/\sin(\varepsilon/2)$$

and hence, (3) implies the continuity of the mapping $\psi \mapsto \psi(L) = (\psi \circ \gamma)(D)$ from $H^{\infty}(S_{\mathfrak{e}})$ into the space of bounded linear operators on $L^{\mathfrak{p}}(\mathbf{R})$ equipped with the uniform operator topology. Accordingly, L admits a $H^{\infty}(S_{\mathfrak{e}})$ functional calculus.

It is worth noting that this functional calculus includes the resolvent operators of L. Indeed, if $w \in \mathbb{C} \setminus [0, \infty)$, then there exists $u \in \mathbb{C} \setminus \mathbb{R}$ such that $u^2 = w$. Of course, the other square root of w is then -u. Let $R_w(z) = (z-w)^{-1}$ for $z \neq w$. Let $\mathcal{E} \in (0, \pi)$ be any number such that $R_w \in H^\infty(S_{\mathfrak{e}})$ in which case $R_w \circ \gamma \in H^\infty(C_{\mathfrak{e}/2})$. It follows from the definition that $R_w(L) = (R_w \circ \gamma)(D)$ since $R_w(x^2) = (x^2 - w)^{-1}$, $x \in \mathbb{R}$, is a p-multiplier. But, $R_w(x^2) = \psi_1(x) - \psi_2(x)$ for each $x \in \mathbb{R}$, where $\psi_1(x) = [2u(x-u)]^{-1}$, $x \in \mathbb{R}$, and $\psi_2(x) = [2u(x+u)^{-1}]$, $x \in \mathbb{R}$. Lemma 1 implies that both ψ_1 and ψ_2 are p-multipliers and so $R_w(L) = (R_w \circ \gamma)(D) = \psi_1(D) - \psi_2(D)$. But, noting that u and -u are in the resolvent set of D, it is easily checked from the definition of D in terms of the Fourier transform that $\psi_1(D) = (2u)^{-1}(D-uI)^{-1}$ and $\psi_2(D) = (2u)^{-1}(D+uI)^{-1}$. Since D is a closed operator it follows, for each $\lambda \in \rho(D)$, that the range of $D - \lambda I$ on $\mathfrak{D}(D)$ is all of $L^p(\mathbb{R})$, [7; Theorem 2.16.3], and hence, that the operator $(D - \lambda I)^{-1}$ is everywhere defined. Accordingly, $(D - \lambda I)^{-1} = \mathbb{R}(\lambda; D)$ and so the resolvent identities for D imply that

$$\psi_1(D) - \psi_2(D) = R(u; D)R(-u; D) = (D-u)^{-1}(D+u)^{-1}$$

= $(D^2 - u^2)^{-1} = (L-w)^{-1}$.

But, L is also a closed operator and hence $(L-w)^{-1}=R(w;L)$. It follows that $R_w(L)=(R_w\circ\gamma)(D)=R(w;L)$.

We remark that if $\psi(z)=f(z)/g(z)$ where f and g are polynomials such that $\deg(f) \leq \deg(g)$ and the zeros of g are in the resolvent set $C \setminus [0, \infty)$ of L, then it is natural to define a bounded operator $\widetilde{\psi}(L)$ by

$$\widetilde{\Psi}(L) = \sum_{n=1}^{k} \sum_{j=0}^{m_n} a_{nj} R(w_n; L)^j = \sum_{n=1}^{k} \sum_{j=0}^{m_n} a_{nj} [(L-w_n)^{-1}]^j$$

where $\psi(z) = \sum_{n=1}^{k} \sum_{j=0}^{m_n} a_{nj} (z - w_n)^{-j}$ is the partial fraction decomposition of ψ . Here

 $\{w_1, \dots, w_k\}$ are the zeros of g and, for each $1 \le n \le k$, the multiplicity of the zero w_n is m_n . Now if $\varepsilon \in (0, \pi)$ is any number such that $\{w_n\}_{n=1}^k \cap \overline{S}_{\varepsilon} = \emptyset$, then $\psi \in H^{\infty}(S_{\varepsilon})$ and hence there is also the operator $\psi(L)$ defined via (2). It is clear from the previous paragraph that the operators $\widetilde{\psi}(L)$ and $\psi(L)$ coincide.

We now outline, briefly, the action of $BV(\mathbf{R}^+)$ on L. If $f: \mathbf{R} \to \mathbf{C}$ is any function, then V(f) denotes the total variation of f. The linear space $BV(\mathbf{R})$ consists of all \mathbf{C} -valued functions on \mathbf{R} which have finite total variation. It is a Banach algebra with respect to pointwise multiplication and norm defined by

$$||f||_{BV} = ||f||_{\infty} + V(f), \quad f \in BV(\mathbf{R}).$$

Fix $1 . Then each <math>m \in BV(\mathbf{R})$ is a p-multiplier and the mapping $m \to m(D)$, $m \in BV(\mathbf{R})$, is a continuous algebra homomorphism for the uniform operator topology [1; pp. 208–209]. Define $BV(\mathbf{R}^+)$ to be the closed subalgebra of $BV(\mathbf{R})$ consisting of those functions f such that $f \equiv 0$ in $(-\infty, 0)$. Then, for each $f \in BV(\mathbf{R}^+)$, the function $f \circ \gamma \colon x \to f(x^2)$, $x \in \mathbf{R}$, belongs to $BV(\mathbf{R})$ and $V(f \circ \gamma) \leq 2V(f)$. Accordingly, the map

$$m \mapsto m(L) = (m \circ \gamma)(D), \qquad m \in BV(\mathbf{R}^+),$$

is a functional calculus for L. We remark that if $w \in \rho(L) = \mathbb{C} \setminus [0, \infty)$, then the restriction to $[0, \infty)$ of $R_w(z) = (z-w)^{-1}$, $z \neq w$, belongs to $BV(\mathbb{R}^+)$ since its derivative is an element of $L^1([0, \infty))$. As noted previously, the operator $R_w(L)$, defined to be $(R_w \circ \gamma)(D)$, agrees with the resolvent operator $R(w; L) = (L-wI)^{-1}$.

3. The non-spectrality of L. At this stage it is natural to inquire whether L admits a functional calculus based on some richer family of functions. Indeed, this is the case for p=2. Suppose that $J\subseteq [0,\infty)$ is an interval. Then $\chi_{J}\circ\gamma\in BV(\mathbf{R}^+)$ is the characteristic function of the set $\{t^{1/2};t\in J\}\cup\{-t^{1/2};t\in J\}$ which, with obvious notation, is the union of the two intervals $J^{1/2}$ and $J^{1/2}$. Accordingly, $\chi_{J}\circ\gamma=\chi_{J^{1/2}}+\chi_{-J^{1/2}}-\chi_{J}(0)\chi_{\{0\}}$ and so the operator $\chi_{J}(L)$ defined via (2) is just $\chi_{J^{1/2}}(D)+\chi_{-J^{1/2}}(D)$; it is a projection commuting with L. Furthermore, the family of projections $\{\chi_{J}(L); J \text{ an interval in } [0,\infty)\}$ is uniformly bounded in $L^p(\mathbf{R})$, [11; p. 100]. For the case p=2 this family of projections can be extended so that a projection is assigned to each Borel subset of $[0,\infty)$ and the so extended family forms the resolution of the identity for the self-adjoint operator L. However, if $p \neq 2$, then the state of affairs is quite different as seen by the following

Lemma 2. Let \mathcal{R}^+ denote the algebra of subsets of $(0, \infty)$ generated by all intervals in $[0, \infty)$, in which case the additive set function $J \to \chi_J(L)$ has a unique extension from the semi-algebra of all intervals in $[0, \infty)$ to \mathcal{R}^+ . If $p \in (1, \infty)$, but $p \neq 2$, then the family of projections $\{\chi_E(L); E \in \mathcal{R}^+\}$ is not uniformly bounded in $L^p(\mathbf{R})$.

404 W.J. Ricker

Proof. We proceed by contradiction. Suppose then that

(5)
$$\sup \{||\chi_E(L)||_b \colon E \in \mathcal{R}^+\} < \infty$$

where $\|\cdot\|_p$ denotes the operator norm considered with respect to the Banach space $L^p(\mathbf{R})$. Let \mathcal{R} denote the algebra of subsets of \mathbf{R} generated by the intervals in \mathbf{R} and let $\mathcal{R}_0 = \{F \in \mathcal{R}; F = -F\}$. If $F \in \mathcal{R}_0$, then it is clear that $F^2 = \{t^2; t \in F\}$ is an element of \mathcal{R}^+ . The discussion prior to Lemma 2 together with the finite additivity of $E \to \mathcal{X}_E(D)$, $E \in \mathcal{R}$ and $E \to \mathcal{X}_E(L)$, $E \in \mathcal{R}^+$ implies that $\mathcal{X}_{F^2}(L) = \mathcal{X}_F(D)$. It follows from (5) that

(6)
$$\sup \{||\chi_F(D)||_{\rho}; F \in \mathcal{R}_0\} < \infty.$$

Let $F \in \mathcal{R}$. Then $F_- = F \cap (-\infty, 0)$ is a finite disjoint union of intervals in $(-\infty, 0)$ and $F_+ = F \cap [0, \infty)$ is a finite disjoint union of intervals in $[0, \infty)$. Define $F(1) = F_- \cup (-F_-)$ and $F(2) = F_+ \cup (-F_+)$. Since both F(1) and F(2) are elements of \mathcal{R}_0 , it follows from (6), the identities $\chi_{F_-} = \chi_{F(1)} \chi_{(-\infty,0)}$, $\chi_{F_+} = \chi_{F(2)} \chi_{[0,\infty)}$ and $\chi_{F} = \chi_{F_+} + \chi_{F_-}$ and the finite additivity of $\chi_{(\cdot)}(D)$ that

$$\sup \{||\chi_F(D)||_p; F \in \mathcal{R}\} < \infty.$$

That this is not the case is well known.

Lemma 2 implies that the family of projections $\{\chi_E(L); E \in \mathcal{R}^+\}$ cannot be enlarged to form a spectral measure in $L^p(\mathbf{R})$, [5; XVII Lemma 3.3 and Corollary 3.10]. This point suggests that L ought not to be a scalar-type spectral operator. However, to make a precise argument along these lines would require showing that if there were some spectral measure in $L^p(\mathbf{R})$, say P, a priori having no connection what-so-ever with the projectors $\chi_f(L)$, for which $L = \int_0^\infty \lambda dP(\lambda)$, then necessarily P arises by extension of the set function $J \mapsto \chi_f(L)$, with domain all intervals J in $[0, \infty)$, to the collection of all Borel sets in $[0, \infty)$. That is, it would have to be established that $P(J) = \chi_f(L)$ for each such interval J. Rather than pursuing this approach directly we prefer a slightly different argument to establish the following result.

Theorem 1. If $1 and <math>p \neq 2$, then L is not a scalar-type spectral operator in $L^p(\mathbf{R})$.

Before indicating a proof we recall more precisely the notion of a scalar-type spectral operator, briefly, a scalar operator. So, let X be a Banach space and L(X) be the space of all continuous linear operators from X into itself. By a spectral measure in X is meant a set function $P: \Sigma \to L(X)$, where Σ is a σ -algebra of subsets of some set Ω , such that P is multiplicative (i.e. $P(E \cap F) = P(E)P(F)$ for every $E \in \Sigma$ and $F \in \Sigma$), $P(\Omega)$ is the identity operator I in X and P is countably additive for the strong operator topology in L(X). Given a

C-valued, Σ -measurable function on Ω , say ψ , it is possible to define a closed, densely defined operator $P(\psi)$ in X as follows: the domain $\mathcal{D}(P(\psi))$ of $P(\psi)$ consists of those elements $x \in X$ such that ψ is integrable with respect to the X-valued measure $P(\cdot)x$: $E \mapsto P(E)x$, $E \in \Sigma$ (in the usual sense [9]), in which case $P(\psi)x$ is defined to be the element $\int_{\Omega} \psi(w)dP(w)x$, denoted briefly by $\int_{\Omega} \psi dPx$. It turns out that $P(\psi) \in L(X)$ if and only if ψ is P-essentially bounded on Ω . A linear operator T in X is said to be a scalar operator if there exists a spectral measure $P: \Sigma \to L(X)$ and a Σ -measurable function ψ such that $T = P(\psi)$. This is the case if and only if there exists a spectral measure Q in X defined on the Borel sets $\mathcal{B}(\sigma(T))$ of $\sigma(T)$ such that $T = Q(\lambda)$. Here λ denotes the identity function in C. All of the above definitions and statements concerning scalar operators can be found in [3] and [5].

The idea of the proof of Theorem 1 is as follows. Since iD is the infinitesimal generator of the translation group in $L^p(\mathbf{R})$ given by $T_t f = f(t+\cdot)$, $t \in \mathbf{R}$, that is, $T_t = e^{itD}$, $t \in \mathbf{R}$, it follows from [6; Theorem 2] and [5; XVIII Theorem 2.17] that iD and hence, also D, is not a scalar operator if $p \neq 2$. Now, if L were a scalar-operator, then it ought to follow from $L = D^2$ that $D = L^{1/2}$ and hence, D would also be a scalar operator [5; XVIII Theorem 2.17] which is a contradiction. Although this is not quite correct (if it were, then $\sigma(D) = \sigma(L^{1/2})$ would be $[0, \infty)$!) it is the spirit in which the proof will proceed. The difficulty is that D is "not quite" a function of L (see (7)). So, it is necessary to identify the positive square root $L^{1/2}$, of L, more precisely.

Suppose again that $p \in (1, 2)$. Let $H \in L(L^p(\mathbf{R}))$ denote the Hilbert transform. That is, H is the operator corresponding to the p-multiplier $\xi \mapsto \operatorname{sgn}(\xi)$, $\xi \in \mathbf{R}$. Then $H^2 = I$ and so $\sigma(H) = \{-1, 1\}$. Define a closed operator S in $L^p(\mathbf{R})$ with dense domain

$$\mathcal{D}(S) = \{ f \in L^p(\mathbf{R}); |\xi| \hat{f}(\xi) = \hat{g}(\xi) \quad \text{for some } g \in L^p(\mathbf{R}) \}$$

by Sf=g, $f\in \mathcal{D}(S)$, where $g\in L^p(\mathbf{R})$ satisfies $\hat{g}(\xi)=|\xi|\hat{f}(\xi)$. To see that S is actually closed and densely defined we observe that -S is the infinitesimal generator of a strongly continuous C_0 -semigroup, namely the Poisson semigroup given by

$$(P_t f)(w) = t \pi^{-1} \int_{-\infty}^{\infty} f(w - u) (t^z + u^z)^{-1} du \; , \qquad f \in L^p(\pmb{R}) \; ,$$

for each t>0; see [7; § 21.4], for example. It is clear from the definition of L in terms of the Fourier transform that S is the natural candidate to be called the positive square root of L. Indeed, $S^2=L$ and, in addition, $\sigma(S)=[0, \infty)$. To see this, we note that if $f \in \mathcal{D}(S)$, then

406 W.J. Ricker

$$((S-\lambda I)f)^{\hat{}}(\xi) = (|\xi|-\lambda)\hat{f}(\xi), \qquad \lambda \in \mathbf{C}.$$

Since $\xi \mapsto (|\xi| - \lambda)^{-1}$, $\xi \in \mathbb{R}$, is a *p*-multiplier whenever $\lambda \notin [0, \infty)$ (cf. Lemma 1), it is clear that the corresponding operator is the resolvent operator of S at λ . This shows that $\sigma(S) \subseteq [0, \infty)$ and it is not difficult to show equality. If f is a "nice function", then a direct computation shows that

$$(Df)^{\hat{}}(\xi) = \xi \hat{f}(\xi) = |\xi| \hat{f}(\xi) \operatorname{sgn}(\xi) = (SHf)^{\hat{}}(\xi) = (HSf)^{\hat{}}(\xi),$$

a formula which suggests the known equality D=SH=HS [7; § 22.5], written more suggestively as

$$(7) D = HL^{1/2} = L^{1/2}H.$$

It is this identity, the correct version of " $D=L^{1/2}$ ", which will lead to a proof of Theorem 1.

So, suppose that L is a scalar operator. The first aim is to show that S is then also a scalar operator for which the following result is needed. The proof is immediate from the fact that $\sigma(L)=[0, \infty)$ and the estimates (1).

Lemma 3. If
$$A = -L$$
, then $R(\lambda; A)$ exists for $Re(\lambda) > 0$ and $\sup \{|Re(\lambda)| \cdot ||R(\lambda; A)||; Re(\lambda) > 0\} < \infty$.

It follows from Lemma 3 that

(8)
$$-\pi^{-1}\sin(\alpha\pi)\int_0^\infty \lambda^{\alpha-1}(\lambda I+L)^{-1}Lfd\lambda, \qquad f \in \mathcal{D}(L),$$

is defined for each $0<\alpha<1$ [14; Ch. IX, § 11 Theorem 3]. In the notation of § 11 of Chapter IX in [14] with A=-L, if \hat{A}_{α} is the infinitesimal generator of the holomorphic semigroup $\hat{T}_{\alpha,t}\equiv\hat{T}_t$ defined there, then for each $f\in\mathcal{D}(A)=\mathcal{D}(L)$ the value $\hat{A}_{\alpha}f$ is equal to (8); see [14; (3) and (4), p. 260]. Noting that $\hat{A}_{1/2}$ is precisely the generator of the Poisson semigroup [14; p. 268], that is, $\hat{A}_{1/2}=-S$, it follows from (8) with $\alpha=1/2$ that

(9)
$$Sf = -(-Sf) = \pi^{-1} \int_0^\infty \lambda^{-1/2} (\lambda I + L)^{-1} L f d\lambda, \quad f \in \mathcal{D}(L).$$

In particular, $\mathcal{D}(L) \subseteq \mathcal{D}(S)$.

Now, by assumption, $L = \int_0^\infty \mu dV(\mu) = V(\mu)$ for some spectral measure $V: \mathcal{B}([0,\infty)) \to L(L^p(\mathbf{R}))$. Accordingly, if $f \in \mathcal{D}(L)$, then the functional calculus for scalar operators implies that

$$(\lambda I + L)^{-1}Lf = \int_0^\infty \mu(\lambda + \mu)^{-1}dV(\mu)f, \qquad \lambda > 0.$$

Substituting this expression into (9) and using Fubini's theorem gives

(10)
$$Sf = \pi^{-1} \int_0^\infty \mu(\int_0^\infty \lambda^{-1/2} (\mu + \lambda)^{-1} d\lambda) dV(\mu) f =$$
$$= \pi^{-1} \int_0^\infty \mu(\pi \mu^{-1/2}) dV(\mu) f = \int_0^\infty \mu^{1/2} dV(\mu) f,$$

for each $f \in \mathcal{D}(L)$. To justify the use of Fubini's theorem it must be established that the function $\mu \mapsto \mu^{1/2}$, $\mu \geq 0$, is $V(\cdot)f$ -integrable whenever $f \in \mathcal{D}(L)$. But, if $f \in \mathcal{D}(L) = \mathcal{D}(V(\mu))$, then by definition of the operator $V(\mu)$ the identity function μ on $[0, \infty)$ is $V(\cdot)f$ -integrable and hence, so is $\mu \mapsto \mu^{1/2}\chi_{[1,\infty)}(\mu)$, $\mu \geq 0$; see [9; Ch. II, § 3 Theorem 1]. Since $\mu \mapsto \mu^{1/2}\chi_{[0,1)}(\mu)$, $\mu \geq 0$, is bounded on $[0, \infty)$ it is also $V(\cdot)f$ -integrable [9; Ch. II § 3 Lemma 1] and the desired conclusion follows.

Now, define a set function $P: \mathcal{B}([0, \infty)) \to L(L^p(\mathbf{R}))$ by $P(E) = V(\{\mu \ge 0; \mu^{1/2} \in E\})$ for each Borel set $E \subseteq [0, \infty)$. Then P is a spectral measure and $\tilde{S} = P(\lambda) = \int_0^\infty \lambda dP(\lambda)$ is a scalar operator such that

(11)
$$\tilde{S}f = \int_0^\infty \lambda dP(\lambda)f = \int_0^\infty \mu^{1/2} dV(\mu)f, \quad f \in \mathcal{D}(P(\lambda)) = \mathcal{D}(V(\lambda^{1/2}));$$

see [5; XVIII Theorem 2.17]. In particular, $\sigma(\tilde{S}) = [0, \infty)$, [5; XVIII Lemma 2.25]. The argument used above to justify the use of Fubini's theorem in (10) shows that $\mathcal{D}(L) \subseteq \mathcal{D}(\tilde{S})$.

The claim is that $S = \tilde{S}$. The formulae (10) and (11) show that

(12)
$$\tilde{S}f = Sf, \quad f \in \mathcal{D}(L).$$

Since $\sigma(S) = [0, \infty) = \sigma(\tilde{S})$, the resolvent sets $\rho(S)$ and $\rho(\tilde{S})$ also coincide. If λ belongs to this common resolvent set, then it follows from (12) that

$$(\tilde{S} - \lambda I) f = (S - \lambda I) f, \quad f \in \mathcal{D}(L).$$

Operate on the left with the bounded resolvent operator $R(\lambda; \tilde{S})$ gives

$$R(\lambda; \tilde{S})(S-\lambda I)f = f, \qquad f \in \mathcal{D}(L)$$
.

But, $f = R(\lambda; S)(S - \lambda I)f$ whenever $f \in \mathcal{D}(L) \subseteq \mathcal{D}(S)$ and it follows that $R(\lambda; \tilde{S})g = R(\lambda; S)g$ for all g in the range of the operator $(S - \lambda I)$ restricted to $\mathcal{D}(L)$. Assume for the moment that the space of all such functions g is dense in $L^p(\mathbf{R})$ whenever $\lambda < 0$. Then $R(\lambda; S) = R(\lambda; \tilde{S})$ for all $\lambda < 0$. Both S and \tilde{S} are closed operators and so $R(\lambda; S) = (S - \lambda I)^{-1}$ and $R(\lambda; \tilde{S}) = (\tilde{S} - \lambda I)^{-1}$ for each $\lambda \in \rho(S) = \rho(\tilde{S})$. Accordingly, the equality $R(\lambda; S) = R(\lambda; \tilde{S})$, valid for each $\lambda < 0$, implies that

$$\mathcal{Q}(S) = \operatorname{Range}(S - \lambda I)^{-1} = \operatorname{Range}(\tilde{S} - \lambda I)^{-1} = \mathcal{Q}(\tilde{S})$$
.

Fix $\lambda < 0$. If $f \in \mathcal{D}(S) = \mathcal{D}(\tilde{S})$, then

$$(S-\lambda I)^{-1}(S-\lambda I)f = f = (\tilde{S}-\lambda I)^{-1}(\tilde{S}-\lambda I)f = (S-\lambda I)^{-1}(\tilde{S}-\lambda I)f$$

from which $Sf = \tilde{S}f$ follows by injectivity of $(S - \lambda I)^{-1}$. Accordingly, $S = \tilde{S}$. So, it remains to establish the following

Lemma 4. Let $\lambda < 0$. Then the space of functions $\{(S-\lambda I)f; f \in \mathcal{D}(L)\}$ is dense in $L^p(\mathbf{R})$.

Proof. The aim is to show that the stated space of functions contains the set $\mathcal{D}(S-\lambda I)=\mathcal{D}(S)$ and hence, it will be dense in $L^p(\mathbf{R})$. So, if $h\in\mathcal{D}(S-\lambda I)$, then it is to be shown that $h=(S-\lambda I)f$ for some $f\in\mathcal{D}(L)$.

By definition of $\mathcal{D}(S-\lambda I)$ there is $g \in L^p(\mathbf{R})$ such that $(|\xi|-\lambda)\hat{h}(\xi)=\hat{g}(\xi)$ and hence, $\hat{h}(\xi)=(|\xi|-\lambda)^{-1}\hat{g}(\xi)=(|\xi|-\lambda)(|\xi|-\lambda)^{-2}\hat{g}(\xi)$. Since $\xi \mapsto (|\xi|-\lambda)^{-2}$ is a p-multiplier (cf. Lemma 1) there is $f \in L^p(\mathbf{R})$ such that $(|\xi|-\lambda)^{-2}\hat{g}(\xi)=\hat{f}(\xi)$. In particular, $\hat{h}(\xi)=(|\xi|-\lambda)\hat{f}(\xi)$ and so it remains to show that $f \in \mathcal{D}(L)$. But, $\xi^2\hat{f}(\xi)=\xi^2(|\xi|-\lambda)^{-2}\hat{g}(\xi)$. Since $\xi \mapsto \xi^2(|\xi|-\lambda)^{-2}$ is also a p-multiplier (by Lemma 1 again) there is $\psi \in L^p(\mathbf{R})$ such that $\xi^2(|\xi|-\lambda)^{-2}\hat{g}(\xi)=\hat{\psi}(\xi)$ and hence $\xi^2\hat{f}(\xi)=\hat{\psi}(\xi)$. This shows that $f \in \mathcal{D}(L)$ and completes the proof of the lemma.

So, we are at the stage of having established that $S = \tilde{S} = \int_0^\infty \lambda dP(\lambda)$ is a scalar operator if L is a scalar operator.

Now, the Hilbert transform H is equal to Q_1-Q_2 where Q_1 is the projection corresponding to the p-multiplier $\chi_{[0,\infty)}$ and Q_2 is the projection corresponding to the p-multipler $\chi_{(-\infty,0)}$. In particular, $Q_1Q_2=0=Q_2Q_1$ and $Q_1+Q_2=I$. If we define $Q(E)=\chi_E(1)Q_1+\chi_E(-1)Q_2$ for each $E\in \mathcal{B}(C)$, then Q is a spectral measure in $L^p(\mathbf{R})$ such that $H=\int_{\mathbf{C}}\mu dQ(\mu)$. Since H and S commute, it follows that HP(E)=P(E)H for each $E\in \mathcal{B}([0,\infty))$, [5; XVIII Corollary 2.4]. But, H is also a scalar operator, with Q its resolution of the identity, and hence $Q_jP(E)=P(E)Q_j$ for each $j\in\{1,2\}$ and $E\in \mathcal{B}([0,\infty))$, [5; XV Corollary 3.7].

Let $\Omega = [0, \infty) \times \{-1, 1\}$ and let Σ denote the Borel subsets of Ω . Define a set function $\Lambda \colon \Sigma \to L(L^p(\mathbf{R}))$ by

$$\Lambda(U) = Q_1 P(\{t \ge 0; (t, 1) \in U\}) + Q_2 P(\{t \ge 0; (t, -1) \in U\}), \qquad U \in \Sigma.$$

Then it is routine to check that Λ is a spectral measure which may be considered as being defined on all of $\mathcal{B}(C)$ with Ω as its support. Let $\psi \colon \Omega \to C$ be the Σ -measurable function defined by $(\lambda, \mu) \mapsto \lambda \mu$ for each $(\lambda, \mu) \in \Omega$. The corresponding scalar operator $\Lambda(\psi)$ that is so induced has domain given by

$$\mathcal{D}(\Lambda(\psi)) = \{ f \in L^p(\mathbf{R}); \ \psi \ \text{is} \ \Lambda(\cdot)f \text{-integrable} \}.$$

Since, for each $U \in \Sigma$, we have the identity

$$\Lambda(U)f = Q_1 P(\{t \ge 0; (t, 1) \in U\}) f + Q_2 P(\{t \ge 0; (t, -1) \in U\}) f$$

whenever $f \in L^p(\mathbf{R})$, it is clear that ψ is $\Lambda(\cdot)f$ -integrable if and only if the identity function λ , on $[0, \infty)$, is $P(\cdot)f$ -integrable. Accordingly,

$$\mathcal{Q}(\Lambda(\psi)) = \{ f \in L^p(\mathbf{R}); \lambda \text{ is } P(\cdot) f\text{-integrable} \} = \mathcal{Q}(S),$$

where we have used the fact that $S=P(\lambda)$. But, (7) implies that $\mathcal{D}(S)=\mathcal{D}(D)$. Hence, if $f \in \mathcal{D}(\Lambda(\psi))=\mathcal{D}(D)$, then

$$\begin{split} \Lambda(\psi)f &= \int_{\Omega} \lambda \mu d\Lambda(\lambda, \mu)f = Q_1 \int_{0}^{\infty} \lambda dP(\lambda)f - Q_2 \int_{0}^{\infty} \lambda dP(\lambda)f = \\ &= Q_1 Sf - Q_2 Sf = HSf = Df \end{split}$$

which shows that $D=\Lambda(\psi)$. Accordingly, D is a scalar operator. This is the desired contradiction and completes the proof of Theorem 1 for the case when 1 .

For $2 we proceed via duality. Indeed, noting that the dual operator <math>L^*$, of L (when L is considered in $L^p(R)$), is just L in $L^q(R)$, it sufficies to establish the fact that in a reflexive Banach space X the dual operator T^* of a scalar operator T is a scalar operator in X^* . But, if $T = P(\psi)$ where $P: \Sigma \to L(X)$ is a spectral measure and ψ is a Σ -measurable function, then it is an easy consequence of the reflexivity of X and the Orlicz-Pettis lemma that the set function $P^*: \Sigma \to L(X^*)$ defined by $P^*(E) = P(E)^*$, $E \in \Sigma$, is a spectral measure and hence $P^*(\psi)$ is a scalar operator in X^* . It remains only to verify the identity $T^* = P^*(\psi)$. But, this follows from the reflexivity of X and [5; XVIII Theorem 2.11 (i)]. The proof of Theorem 1 is thereby complete.

Acknowledgement. The author wishes to thank Professors M. Cowling, B. Jefferies, A. McIntosh and A. Yagi for valuable discussions. The support of a Queen Elizabeth II Fellowship is gratefully acknowledged.

References

- [1] I. Colojoara & C. Foias: Theory of generalized spectral operators, Mathematics and its Application Vol. 9, Gordon and Breach, New York-London-Paris, 1968.
- [2] M. Cowling: Square functions in Banach spaces, Miniconference on linear analysis and function spaces (Canberra), 1984, Proc. Centre Math. Anal., Australian National University 9 (1985), 177–184.
- [3] P.G. Dodds, & W. Ricker: Spectral measures and the Bade reflexivity theorem, J. Funct. Anal. 61 (1985), 136-136.
- [4] N. Dunford & J.T. Schwartz: Linear operators I: General theory, Wiley-Interscience, New York, 1964.
- [5] N. Dunford & J.T. Schwartz: Linear operators III: Spectral operators, Wiley-Interscience, New York, 1971.

- [6] T.A. Gillespie: A spectral theorem for L^p translations, J. London Math. Soc. (2) 11 (1975), 499-508.
- [7] E. Hille & R.S. Phillips: Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ. 31 (4th revised ed.), Providence, 1981.
- [8] T. Kato: Perturbation theory for linear operators, Grundlehren Math. Wiss. 132, Springer-Verlag, Berlin-Heidelberg (Corrected printing of 2nd ed.), 1980.
- [9] I. Kluvánek & G. Knowles: Vector measures and control systems, North-Holland, Amsterdam, 1976.
- [10] A. McIntosh: Operators which have an H[∞] functional calculus, Miniconference on Operator Theory and Partial Differential Equations (Macquarie University), 1986, Proc. Centre Math. Anal., Australian National University 14 (1986), 210– 231.
- [11] E.M. Stein: Singular integrals and differentiability properties of functions, Princeton Math. Ser. 30, Princeton University Press, Princeton, 1970.
- [12] H. Tanabe: Equations of evolution, Monographs and Studies in Mathematics 6, Pitman, London, 1979.
- [13] A. Yagi: Coincidence entre des espaces d'interpolation et des domaines de puissances fractionnaires d'opérateurs, C.R. Acad. Sci. Paris (Ser. I) 299 (1984), 173– 176.
- [14] K. Yosida: Functional analysis, Grundlehren Math Wiss. 123, Springer-Verlag, Berlin-Heidelberg-New York (6th ed. printed in Tokyo), 1980.

School of Mathematics and Physics Macquarie University N.S.W. 2109 Australia

Current address
Fachbereich Mathematik
Universität des Saarlandes
D-6600 Saarbrücken
Federal Republic of Germany