CERTAIN ASPECTS OF TWISTED LINEAR ACTIONS

Dedicated to Professor Hirosi Toda on his 60th birthday

Fuichi UCHIDA*)

(Received February 18, 1987)

0. Introduction

In the previous paper [2], we have introduced the concept of a twisted linear action which is an analytic action of a non-compact Lie group on a sphere, and we have shown as an example that there have been uncountably many topologically distinct analytic actions of $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ on the ($2 n-1$)-sphere.

In this paper, we shall show another aspect of twisted linear actions. In particular, we shall show that there are uncountably many C^{1}-differentiably distinct but topologically equivalent analytic actions of $\boldsymbol{S} \boldsymbol{L}(\boldsymbol{n}, \boldsymbol{R})$ on a k-sphere for each $k \geqq n \geqq 2$.

1. Twisted linear actions

Throughout this paper, a matrix means only the one with real coefficients.
1.1. Let $\boldsymbol{u}=\left(u_{i}\right)$ and $\boldsymbol{v}=\left(v_{i}\right)$ be column vectors in \boldsymbol{R}^{n}. As usual, we define their inner product by $\boldsymbol{u} \cdot \boldsymbol{v}=\sum_{i} u_{i} v_{i}$ and the length of \boldsymbol{u} by $\|\boldsymbol{u}\|=\sqrt{\boldsymbol{u} \cdot \boldsymbol{u}}$. Let $M=\left(m_{i j}\right)$ be a square matrix of degree n. We say that M satisfies the condition (\boldsymbol{T}) if the quadratic form

$$
\boldsymbol{x} \cdot M \boldsymbol{x}=\sum_{i, j} m_{i j} x_{i} x_{j}
$$

is positive definite. It is easy to see that M satisfies (\boldsymbol{T}) if and only if
$\left(\boldsymbol{T}^{\prime}\right) \frac{d}{d t}\|\exp (t M) \boldsymbol{x}\|>0 \quad$ for each $\quad \boldsymbol{x} \in \boldsymbol{R}_{0}^{n}=\boldsymbol{R}^{n}-\{0\}, t \in \boldsymbol{R}$.
If M satisfies (\boldsymbol{T}^{\prime}), then

$$
\lim _{t \rightarrow+\infty}\|\exp (t M) \boldsymbol{x}\|=+\infty \quad \text { and } \quad \lim _{t \rightarrow-\infty}\|\exp (t M) \boldsymbol{x}\|=0
$$

for each $\boldsymbol{x} \in \boldsymbol{R}_{0}^{n}$, and hence there exists a unique real valued analytic function $\boldsymbol{\tau}$

[^0]on $\boldsymbol{R}_{0}^{\boldsymbol{n}}$ such that
$$
\|\exp (\tau(\boldsymbol{x}) M) \boldsymbol{x}\|=1 \quad \text { for } \quad \boldsymbol{x} \in \boldsymbol{R}_{0}^{n} .
$$

Therefore, we can define an analytic mapping π^{M} of \boldsymbol{R}_{0}^{n} onto the unit ($n-1$)sphere S^{n-1} by

$$
\pi^{M}(\boldsymbol{x})=\exp (\tau(\boldsymbol{x}) M) \boldsymbol{x} \quad \text { for } \quad \boldsymbol{x} \in \boldsymbol{R}_{0}^{n},
$$

if M satisfies the condition (\boldsymbol{T}).
1.2. Let G be a Lie group, $\rho: G \rightarrow \boldsymbol{G} \boldsymbol{L}(n, \boldsymbol{R})$ a matricial representation, and M a square matrix of degree n satisfying ($\boldsymbol{T})$. We call (ρ, M) a $T C$-pair of degree n, if $\rho(g) M=M \rho(g)$ for each $g \in G$. For a $T C$-pair (ρ, M) of degree n, we can define an analytic mapping

$$
\xi: G \times S^{n-1} \rightarrow S^{n-1} \quad \text { by } \quad \xi(g, x)=\pi^{M}(\rho(g) x),
$$

and we see that ξ is an analytic G-action on S^{n-1}. We call $\xi=\xi^{(\rho, M)}$ a twisted linear action of G on S^{n-1} determined by the $T C$-pair (ρ, M), and we say that ξ is associated to the matricial representation ρ.
1.3. For a given Lie group G, we introduce certain equivalence relations on $T C$-pairs. Let (ρ, M) and (σ, N) be $T C$-pairs of degree n. We say that (ρ, M) is algebraically equivalent to (σ, N) if there exist $A \in \boldsymbol{G} \boldsymbol{L}(n, \boldsymbol{R})$ and a positive real number c satisfying
$\left(^{*}\right) \quad c N=A M A^{-1} \quad$ and $\quad \sigma(g)=A \rho(g) A^{-1} \quad$ for each $g \in G$.
We say that (ρ, M) is C^{r}-equivalent to (σ, N) if there exists a C^{r}-diffeomorphism f of S^{n-1} onto itself such that the following diagram is commutative:

We call f a G-equivariant C^{r}-diffeomorphism.
Lemma. If (ρ, M) is algebraically equivalent to (σ, N), then (ρ, M) is C^{ω}-equivalent to (σ, N).

Proof. It has been proved in the previous paper [2], but we give a proof for completeness. Suppose that there exist $A \in \boldsymbol{G} \boldsymbol{L}(n, \boldsymbol{R})$ and a positive real number c satisfying (*). Define analytic mappings h_{A} and k_{A} of S^{n-1} into itself by

$$
h_{A}(x)=\pi^{N}(A x) \quad \text { and } \quad k_{A}(y)=\pi^{M}\left(A^{-1} y\right) .
$$

Then the composites $h_{A} k_{A}$ and $k_{A} h_{A}$ are the identity mapping on S^{n-1} by the condition $c N=A M A^{-1}$, and hence h_{A} is a C^{ω}-diffeomorphism. Furthermore, the equality

$$
h_{A}\left(\xi^{(\rho, M)}(g, x)\right)=\xi^{(\sigma, N)}\left(g, h_{A}(x)\right)
$$

holds for each $g \in G$ and $x \in S^{n-1}$, by the condition (*).
q.e.d.

Theorem ([2], Theorem 3.3). Let G be a compact Lie group and $\rho: \boldsymbol{G} \rightarrow$ $\boldsymbol{G L}(n, \boldsymbol{R})$ a matricial representation. Then any $T C$-pairs (ρ, M) and (ρ, N) are C^{ω}-equivalent.

2. First typical examples

Here we shall study twisted linear actions of $G=\boldsymbol{S L}(n, \boldsymbol{R})$ on the ($n k-1$)sphere associated to a representation $\rho=\rho_{n} \otimes I_{k}$, that is, $\rho(A)=A \otimes I_{k}$.
2.1. Let A and $B=\left(b_{i j}\right)$ be square matrices of degrees n and k, respectively. Denote by $A \otimes B$ the Kronecker product written in the form

$$
A \otimes B=\left(\begin{array}{ccc}
b_{11} A & \cdots & b_{1 k} A \\
\vdots & & \vdots \\
b_{k 1} A & \cdots & b_{k k} A
\end{array}\right) .
$$

Let $\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{k}$ be column vectors in \boldsymbol{R}^{n}. Then the correspondence

$$
\left(\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{k}\right) \rightarrow\left(\begin{array}{c}
\boldsymbol{u}_{1} \\
\vdots \\
\boldsymbol{u}_{k}
\end{array}\right)
$$

defines a linear isomorphism $\iota: M(n, k ; \boldsymbol{R}) \rightarrow \boldsymbol{R}^{n k}$. Let X and Y be $n \times k$ matrices. As usual, we define their inner product by

$$
\langle X, Y\rangle=\operatorname{trace}\left({ }^{t} X Y\right),
$$

and the length of X by $\|X\|=\sqrt{\langle X, X\rangle}$. Then ι is an isometry. Furthermore, the equality

$$
(A \otimes B) \iota(X)=\iota\left(A X^{t} B\right)
$$

holds, where A and B are square matrices of degrees n and k, respectively, and X is an $n \times k$ matrix. In the following, we shall identify $\boldsymbol{R}^{n k}$ with $M(n, k ; \boldsymbol{R})$ via the isometry ι.
2.2. We obtain the following lemma directly.

Lemma 2.2. Let \bar{M} be a square mtarix of degree $n k$. Then

$$
\bar{M}\left(A \otimes I_{k}\right)=\left(A \otimes I_{k}\right) \bar{M}
$$

for each $A \in \boldsymbol{S L}(\boldsymbol{n}, \boldsymbol{R})$, if and only if $\bar{M}=I_{n} \otimes M$ for some square matrix M of degree k. Furthermore, $I_{n} \otimes M$ satisfies the condition (\boldsymbol{T}) if and only if M satisfies (\boldsymbol{T}).

Consequently, $\left(\rho_{n} \otimes I_{k}, I_{n} \otimes M\right)$ is a $T C$-pair for any square matrix M of degree k satisfying (\boldsymbol{T}), and any $T C$-pair ($\rho_{n} \otimes I_{k}, \bar{M}$) is written in such a form. Furthermore, $T C$-pairs ($\rho_{n} \otimes I_{k}, I_{n} \otimes M$) and ($\rho_{n} \otimes I_{k}, I_{n} \otimes N$) are algebraically equivalent, if and only if there exist $A \in \boldsymbol{G} \boldsymbol{L}(k, \boldsymbol{R})$ and a positive real number c satisfying $c N=A M A^{-1}$.
2.3. Let M be a square matrix of degree k satisfying (\boldsymbol{T}). Denote by ζ^{M} the twisted linear $\boldsymbol{S L}(n, \boldsymbol{R})$ action on the $(n k-1)$-sphere determined by the $T C$ pair $\left(\rho_{n} \otimes I_{k}, I_{n} \otimes M\right)$. Identifying $\boldsymbol{R}^{n k}$ with $M(n, k ; \boldsymbol{R})$ via the isometry ι, we can describe

$$
\zeta^{M}: \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R}) \times S^{n k-1} \rightarrow S^{n k-1}
$$

as follows. That is, $S^{n k-1}$ can be viewed as the set of all $n \times k$ matrices X with $\|X\|=1$, and ζ^{M} is written in the form

$$
\zeta^{M}(A, X)=A X \exp \left(\theta^{t} M\right)
$$

for a real number θ which is uniquely determined by the condition

$$
\left\|A X \exp \left(\theta^{t} M\right)\right\|=1
$$

Let $I(M)$ and $O(M)$ denote the isotropy group at

$$
\frac{1}{\sqrt{k}}\binom{I_{k}}{0}
$$

and the orbit through that point, respectively, with respect to the twisted linear action ζ^{M}. We obtain the following lemma.

Lemma 2.3. Suppose $n>k \geqq 2$. Then the isotropy group $I(M)$ is written in the form

$$
I(M)=\left\{\left(\begin{array}{c|c}
\exp \left(\theta^{t} M\right) & * \\
\hline 0 & *
\end{array}\right): \theta \in \boldsymbol{R}\right\}
$$

and the orbit $O(M)$ is an open dense subset consisting of all $n \times k$ matrices X with rank $X=k$ and $\|X\|=1$.
2.4. Suppose that $n>k \geqq 2$ and there exists an $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$-equivariant homeomorphism f of $S^{n k-1}$ with a twisted linear action ζ^{M} onto $S^{n k-1}$ with a twisted linear action ζ^{N}. Then we obtain $f(O(M))=O(N)$, and hence $I(M)$ and $I(N)$
are conjugate in $\boldsymbol{S L}(\boldsymbol{n}, \boldsymbol{R})$. Finally, we see that there exist $A \in \boldsymbol{G} \boldsymbol{L}(k, \boldsymbol{R})$ and a positive real number c satisfying $c N=A M A^{-1}$, by making use of the fact that M and N satisfy the condition (\boldsymbol{T}) and the group $I(M)$ contains a subgroup written in the form

$$
\left\{\left(\frac{I_{k}}{0} \left\lvert\, \frac{*}{I_{n-k}}\right.\right)\right\}
$$

Summing up the above discussion, we obtain the following result.
Theorem 2.4. Suppose $n>k \geqq 2$. Then any two of TC-pairs in the form $\left(\rho_{n} \otimes I_{k}, \bar{M}\right)$ are algebraically equivalent if and only if they are C^{0}-equivalent.

Consequently, we see that if $n>k \geqq 2$ then there are uncountably many topoloically distinct twisted linear actions of $\boldsymbol{S L}(n, \boldsymbol{R})$ on $S^{n k-3}$ associated to the matricial representation $\rho_{n} \otimes I_{k}$. This is a generalization of a result studied in the previous paper [2].

3. Second typical examples

Here we shall stduy twisted linear actions of $G=\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ on the ($n+k-1$)sphere associated to a representation $\rho=\rho_{n} \oplus I_{k}$, that is, $\rho(A)=A \oplus I_{k}$.
3.1. Let A and B be square matrices of degrees n and k, respectively. We denote by $A \oplus B$ the matrix

$$
\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)
$$

of degree $n+k$. We obtain the following lemma.
Lemma 3.1. Let $n \geqq 2$ and $k \geqq 1$. Let \bar{M} be a square matrix of degree $n+k$. Then

$$
\bar{M}\left(A \oplus I_{k}\right)=\left(A \oplus I_{k}\right) \bar{M}
$$

for each $A \in \mathbf{S L}(n, \boldsymbol{R})$, if and only if $\bar{M}=c I_{n} \oplus M$ for some square matrix M of degree k and a real number c. Furthermore, $\bar{M}=c I_{n} \oplus M$ satisfies the condition ($\boldsymbol{T})$, if and only if c is positive and M satisfies ($\boldsymbol{T})$.
3.2. Let M be a square matrix of degree k satisfying (\boldsymbol{T}). Denote by χ^{M} the twisted linear $\boldsymbol{S L}(n, \boldsymbol{R})$ action on the $(n+k-1)$-sphere determined by the $T C$-pair $\left(\rho_{n} \oplus I_{k}, I_{n} \oplus M\right)$. Then χ^{M} is written in the form

$$
\chi^{M}(A, \boldsymbol{u} \oplus \boldsymbol{v})=e^{\theta} A \boldsymbol{u} \oplus e^{\theta M} \boldsymbol{v}
$$

for a real number θ which is uniquely determined by the condition

$$
\left\|e^{\theta} A \boldsymbol{u}\right\|^{2}+\left\|e^{\theta M} \boldsymbol{v}\right\|^{2}=1
$$

where \boldsymbol{u} is a column vector in $\boldsymbol{R}^{\boldsymbol{n}}$ and \boldsymbol{v} is a column vector in $\boldsymbol{R}^{\boldsymbol{k}}$ satisfying $\|u\|^{2}+\|v\|^{2}=1$.
3.3. Let us define closed subgroups $L(n)$ and $N(n)$ of $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ by the forms

$$
L(n)=\left\{\left(\begin{array}{c|c}
1 & * \cdots * \\
\hline 0 & * \\
\vdots & *
\end{array}\right)\right\}, N(n)=\left\{\left(\begin{array}{c|c}
\lambda & * \cdots * \\
\hline 0 & * \\
\vdots & *
\end{array}\right): \lambda>0\right\} .
$$

Denote by $F(M)$ the fixed point set of $L(n)$ with respect to the twisted linear action χ^{M}. Then we obtain the following lemma.

Lemma 3.3. With respect to the twisted linear action χ^{M},

$$
F(M)=\left\{a e_{1} \oplus \boldsymbol{v}: a^{2}+\|\boldsymbol{v}\|^{2}=1\right\}
$$

where $\boldsymbol{e}_{1}=\boldsymbol{t}(1,0, \cdots, 0) \in \boldsymbol{R}^{n}$. The isotropy group at $\mathbf{0} \oplus \boldsymbol{v}$ coincides with $\boldsymbol{S L}(n, \boldsymbol{R})$, the one at $\pm \boldsymbol{e}_{1} \oplus 0$ coincides with $N(n)$, and if a\|v\|$=0$, then the one at ae $\boldsymbol{e}_{1} \oplus \boldsymbol{v}$ coincides with $L(n)$.
3.4. Notice that the normalizer $N(L(n))$ of $L(n)$ acts on $F(M)$ naturally via χ^{M}, the identity component of $N(L(n))$ coincides with $N(n)$, and the factor group $N\left(L(n) / L(n)\right.$ is naturally isomorphic to the multiplicative group \boldsymbol{R}^{\times}consisting of non-zero real numbers.

Let us investigate the induced $N(L(n)) / L(n)$ action on $F(M)$ via χ^{M}. Leaving fixed any point $a e_{1} \oplus v$ of $F(M)$ satisfying $a\|v\| \neq 0$, we have a real valued analytic function $\theta=\theta(\alpha)$ on \boldsymbol{R}^{\times}determined by

$$
\chi^{M}\left(\left(\begin{array}{c|c}
\frac{\alpha}{0} & * \cdots * \\
\vdots & * \\
0 & *
\end{array}\right), a e_{1} \oplus \boldsymbol{v}\right)=e^{\theta} \alpha a e_{1} \oplus e^{\theta M} \boldsymbol{v}
$$

and $\left(e^{\theta} \alpha a\right)^{2}+\left\|e^{\theta M} \boldsymbol{v}\right\|^{2}=1$. Then $\theta(-\alpha)=\theta(\alpha)$ and

$$
\frac{d \theta}{d \alpha}<0<\frac{d}{d \alpha}\left(e^{\theta} \alpha\right)
$$

for $\alpha>0$. Furthermore, we obtain

$$
\lim _{\alpha \rightarrow+\infty} \theta(\alpha)=-\infty, \quad \lim _{\alpha \rightarrow+\infty} e^{\theta} \alpha=|a|^{-1}, \quad \lim _{\alpha \rightarrow+\infty}\left\|e^{\theta M} v\right\|=0
$$

and

$$
\lim _{\alpha \rightarrow 0+} e^{\theta} \alpha=0, \lim _{\alpha \rightarrow 0+} e^{\theta M} \boldsymbol{v}=\pi^{M}(\boldsymbol{v})
$$

3.5. Here we shall show the following result.

Theorem 3.5. Let M, N be any square matrices of degree k satisfying the condition (\boldsymbol{T}). Then there exists an $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$-equivariant homeomorphism f of S^{n+k-1} with a twisted linear action χ^{M} onto S^{n+k-1} with a twisted linear action χ^{N}.

Proof. By the above investigation, we can construct uniquely an $N(L(n)) /$ $L(n)$-equivariant homeomorphism f_{0} of $F(M)$ onto $F(N)$ satisfying the following conditions

$$
f_{0}\left(a e_{1} \oplus v\right)=a e_{1} \oplus v \quad \text { for } \quad|a|=1 \quad \text { or } \quad 1 / \sqrt{2}
$$

and

$$
f_{0}\left(\mathbf{0} \oplus \pi^{M}(\boldsymbol{v})\right)=\mathbf{0} \oplus \pi^{N}(\boldsymbol{v}) \quad \text { for } \quad\|\boldsymbol{v}\|=1 / \sqrt{2} .
$$

Next we consider the following diagram

$$
\begin{array}{rlll}
\mathbf{S O}(n) & \times F(M) & \xrightarrow{\psi_{1}} S^{n+k-1} \\
& \downarrow & \times f_{0} & \\
& & f \\
\mathbf{S O}(n) & \times F(N) \xrightarrow{\psi_{2}} & S^{n+k-1},
\end{array}
$$

where

$$
\begin{aligned}
& \psi_{1}(K, x)=\chi^{M}(K, x)=\left(K \oplus I_{k}\right) x, \\
& \psi_{2}(K, x)=\chi^{N}(K, x)=\left(K \oplus I_{k}\right) x .
\end{aligned}
$$

By the construction of f_{0}, we see that $\psi_{1}(K, x)=\psi_{1}\left(K^{\prime}, x^{\prime}\right)$ if and only if ψ_{2} $\left(K, f_{0}(x)\right)=\psi_{2}\left(K^{\prime}, f_{0}\left(x^{\prime}\right)\right)$, and hence we obtain a unique bijection f of S^{n+k-1} onto itself satisfying

$$
f \circ \psi_{1}=\psi_{2} \circ\left(1 \times f_{0}\right)
$$

Then f is a homeomorphism, because ψ_{1} and ψ_{2} are closed continuous mappings. Finally, we show that f is $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$-equivariant. Let $A \in \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R}), K \in \boldsymbol{S O}(n)$ and $x \in F(M)$. Then, there are $B \in \mathbf{S O}(n)$ and $U \in N(n)$ such that $A K=B U$, and hence

$$
\begin{aligned}
f\left(\chi^{M}\left(A, \psi_{1}(K, x)\right)\right) & =f\left(\chi^{M}(A K, x)\right)=f\left(\chi^{M}(B U, x)\right) \\
& =f\left(\psi_{1}\left(B, \chi^{M}(U, x)\right)\right)=\psi_{2}\left(B, f_{0}\left(\chi^{M}(U, x)\right)\right) \\
& =\psi_{2}\left(B, \chi^{N}\left(U, f_{0}(x)\right)\right)=\chi^{N}\left(B U, f_{0}(x)\right) \\
& =\chi^{N}\left(A K, f_{0}(x)\right)=\chi^{N}\left(A, \psi_{2}\left(K, f_{0}(x)\right)\right) \\
& =\chi^{N}\left(A, f\left(\psi_{1}(K, x)\right)\right) .
\end{aligned}
$$

Consequently, we see that f is an $\boldsymbol{S L}(n, \boldsymbol{R})$-equivariant homeomorphism of S^{n+k-1} with the action χ^{M} onto S^{n+k-1} with the action χ^{N}.
q.e.d.
3.6. Next we shall show the following result.

Theorem 3.6. Let M, N be square matrices of degree k satisfying the condition (\boldsymbol{T}). If there exists an $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$-equivariant C^{1}-diffeomorphism f of S^{n+k-1} with a twisted linear action χ^{M} onto S^{n+k-1} with a twisted linear action χ^{N}, then

$$
N=P M P^{-1}
$$

for some $P \in \boldsymbol{G} \boldsymbol{L}(k, \boldsymbol{R})$.
Proof. By the existence of such an equivariant C^{1}-diffeomorphism f, we obtain an $N(L(n)) / L(n)$-equivariant C^{1}-diffeomorphism $f_{0}: F(M) \rightarrow F(N)$. Considering points whose isotropy groups coincide with $N(n) / L(n)$, we can assume

$$
f_{0}\left(\boldsymbol{e}_{1} \oplus 0\right)=\boldsymbol{e}_{1} \oplus 0
$$

Then we obtain an isomorphism

$$
d f_{0}: T_{e_{1} \oplus 0} F(M) \rightarrow T_{e_{1} \oplus 0} F(N)
$$

of tangential representation spaces of the isotropy group $N(n) / L(n)$.
Here we consider the representation space $T_{e_{1} \oplus 0} F(M)$. Denote by $F(M)_{+}$ an open subset of $F(M)$ consisting of $a e_{1} \oplus v$ with $a>0$, and define

$$
\psi^{M}: F(M)_{+} \rightarrow \boldsymbol{R}^{k} \quad \text { by } \quad \psi^{M}\left(a e_{1} \oplus \boldsymbol{v}\right)=\exp (-(\log a) M) \boldsymbol{v}
$$

Then ψ^{M} is a C^{ω}-diffeomorphism satisfying $\psi^{M}\left(e_{1} \oplus 0\right)=0$. Considering the C^{ω}-diffeomorphism ψ^{M}, we see that the tangential representation of the isotropy $\operatorname{group} N(n) / L(n) \cong \boldsymbol{R}$ on $T_{e_{1} \oplus 0} F(M)$ is equivalent to a representation

$$
\sigma^{M}: \boldsymbol{R} \rightarrow \boldsymbol{G} \boldsymbol{L}(k, \boldsymbol{R}) \quad \text { defined by } \quad \sigma^{M}(\lambda)=\exp (-\lambda M) .
$$

The existence of the isomorphism $d f_{0}$ of tangential representation spaces assures that the representations σ^{M} and σ^{N} are equivalent, and hence the equality $N=P M P^{-1}$ holds for some $P \in \boldsymbol{G} \boldsymbol{L}(k, \boldsymbol{R})$.
q.e.d.

Notice that the twisted linear actions χ^{M} are new concrete examples for analytic $\boldsymbol{S L}(n, \boldsymbol{R})$-actions on a sphere investigated in [1].

4. Concluding remark

With respect to the first typical examples, we obtain a classification theorem only for the case $n>k \geqq 2$ in $\S 2$. It seems to be difficult to obtain a similar result for the remaining case $k \geqq n \geqq 2$ in general. Here we consider the case $n=k=3$.

The following matrices satisfy the condition (\boldsymbol{T}).
$\begin{array}{ll}\text { (Type 1) } & M_{1}(a, b)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b\end{array}\right) ; 1 \leqq a \leqq b \\ \text { (Type 2) } & M_{2}(a, b)=\left(\begin{array}{rrr}1 & a & 0 \\ -a & 1 & 0 \\ 0 & 0 & b\end{array}\right) ; a>0, b>0 \\ \text { (Type 3) } & M(a)=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & a\end{array}\right) ; a>0 \\ \text { (Type 4) } & M_{0}=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right) .\end{array}$
Furthermore, if a matrix M of degree 3 satisfy the condition ($\boldsymbol{T})$, then M is similar to only one of the above matrices up to positive scalar multiplication. Here we say that M is similar to N up to positive scalar multiplication if there exist a non-singular matrix A and a positive real number c such that $A M A^{-1}=$ $c N$.

Denote by $S(M)$ the 8 -sphere with the twisted linear $\boldsymbol{S} \boldsymbol{L}(3, \boldsymbol{R})$ action ζ^{M} (see $\S 2.3$), where M is a square matrix of degree 3 satisfying the condition (\boldsymbol{T}). We obtain the following result.

Theorem. (0) If $S(M)$ and $S\left(M^{\prime}\right)$ are equivariantly C^{1}-diffeomorphic, then M is similar to M^{\prime} up to positive scalar multiplication.
(1) If $S(M)$ and $S\left(M^{\prime}\right)$ are equivariantly homeomorphic, then M and M^{\prime} have the same type in the above sense.
(2) If $S\left(M_{1}(a, b)\right)$ and $S\left(M_{1}\left(a^{\prime}, b^{\prime}\right)\right)$ are equivariantly homeomorphic, then $\left(a^{\prime}, b^{\prime}\right)=(a, b)$ or $\left(a^{\prime}, b^{\prime}\right)=\left(a^{-1} b, b\right)$.
(3) If $S\left(M_{2}(a, b)\right)$ and $S\left(M_{2}\left(a^{\prime}, b^{\prime}\right)\right)$ are equivariantly homeomorphic, then $a=a^{\prime}$.
(4) If $S(M(a))$ and $S\left(M\left(a^{\prime}\right)\right)$ are equivariantly homeomorphic, then $a=a^{\prime}$ or $a a^{\prime}=1$.

Proof. We give only an outline of the proof. The fixed point set $S(M)^{L(3)}$ of the restricted $L(3)$-action is a 2 -sphere and the fixed point set $S(M)^{N(3)}$ of the restricted $N(3)$-action is a disjoint union of low dimensional spheres, where $L(3)$ and $N(3)$ are closed subgroups of $\boldsymbol{S} \boldsymbol{L}(3, \boldsymbol{R})$ defined in $\S 3.3$.

If we consider homeomorphism classes of $S(M)^{N(3)}$, we can distinguish a matrix of (Type i) from that of (Type j) except for the case $(i, j)=(2,4)$. Fur-
thermore, we can prove (0) by considering a tangential representation of $N(3) / L(3)$ on the tangent space of the 2 -sphere $S(M)^{L(3)}$ at isolated fixed points of the restricted $N(3)$-action.

Denote by $H(P)$ a closed subgroup of $\boldsymbol{S} \boldsymbol{L}(3, \boldsymbol{R})$ consisting of all matrices in the form

$$
\left(\begin{array}{c|c}
e^{\theta P} & * \\
\hline 0 & *
\end{array}\right), \theta \in \boldsymbol{R}
$$

where P is a square matrix of degree 2 . We can prove the remaining part of the theorem by considering homeomorphism classes of the fixed point sets $S(M)^{H(P)}$ of the restricted $H(P)$-action. For $P=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, we see that $S\left(M_{0}\right)^{H(P)}$ is a 1 -sphere but $S\left(M_{2}(a, b)\right)^{H(P)}$ is a 0 -sphere, and hence we can distinguish M_{0} from any matrix of (Type 2). By $P=\left(\begin{array}{rr}1 & c \\ -c & 1\end{array}\right)$ for $c>0$, we can prove (3). By $P=\left(\begin{array}{ll}1 & 0 \\ 0 & c\end{array}\right)$ for $c>0$, we can prove (2) and (4).

References

[1] F. Uchida: Real analytic $\mathbf{S L}(n, \mathbf{R})$ actions on spheres, Tohoku Math. J. 33 (1981), 145-175.
[2] F. Uchida: On a method to construct analytic actions of non-compact Lie groups on a sphere, Tohoku Math. J. 39 (1987), 61-69.

Department of Mathematics
Faculty of Science
Yamagata University Yamagata 990
Japan

[^0]: *) Partly supported by the Grants-in-Aid for Scientific as well as Co-operative Research, The Ministry of Education, Science and Culture, Japan.

