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We consider mainly the case n=3 of the following general Imbedding Problem
in the topological category:

Under what relations between an n-manifold M and an (n+1)-manifold W,
both closed, connected and oriented, does there exist an imbedding from M to W?

Since the problem is trivial for <2, the case #=3 is the first appearing non-
trivial case. In general, for any #, there are two kinds of imbeddings from M
to W. An imbedding f from M to W is said to be of ¢ype I or II, according
to whether W—fM is connected or not. If such an imbedding f exists, then
we say that M is type I or II imbedded in W. 1If f is of type II, then W—fM
is seen to have exactly two components, since the boundary map 0: H,(W, W—
fM; Z)—H(W—fM; Z,) is onto and there is a duality isomorphism H,(W, W—
fM; Z,)=H"(fM; Z,) (=<Z,) (cf. Spanier [Sp; p. 342]). It is possible to charac-
terize the type of an imbedding f: M—W in terms of homology. In fact, fis of
type II or I according to whether the homomorphism fy: H,(M; Z,)—H,(W; Z,)
is trivial or not. This is proved by examining the following commutative dia-
gram:

HW; 2) 5 1 )
=1 b=
HW; 2) 2 mow, w—pn; 2y 2 B w—p; z) — 0,

where the vertical maps are the duality isomorphisms (cf. [Sp]). For example,
if B(W; Z)=0, then we see from the Poincaré duality and the universal coeffi-
cient theorem that any imbedding from M to W is of type II. A typical example
of a type I imbedding is MS1xMcS'x M=W. Let n=3. First we show
that there is an estimate of B,(W; Z) by B,(M; Z) or by certain integral invari-
ants of an infinite cyclic covering of M, provided that M is topologically type
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IT imbedded in . By this estimate, we find infinitely many M which are smooth-
ly type 1 imbedded in some smooth 4-manifolds having the Q-homology of S*X S5,
but not topologically type 11 imbeddable in any W with B,(W; Z)<r, for each r>0
(See Theorem 2.5). This suggsets that the treatment of type I imbeddings is
more difficult than that of type II imbeddings, because if M is type II imbedded
in W, then M is also type I imbedded in some W’ with B,(W'; Z)=R,(W; Z)
[For example, take W'=W#S'x S%]. We can avoid this difficulty by consider-
ing punctured imbeddings instead of type I imbeddings. We denote by M’
a compact punctured manifold of /. Then our main result is that there is an
estimate of B(W; Z,) by B,(M; Z) or by certain integral invariants of an infinite
cyclic covering of the double DM, provided that M° is topologically imbedded in W.
This estimate enables us to find infinitely many M such that M’ are not
topologically imbeddable in any W with B,(W; Z,)<r, for each r>0 (See Theorem
3.2). 'This research was initially planned in the piecewise-linear category (cf.
[K, 1], [K, 2]), but after Freedman’s work [F], it became a standard fact that
there is a great difference between the piecewise-linear and topological imbed-
dabilities. In fact, Freedman showed that all homology 3-spheres are imbedded
in S* by locally flat topological imbeddings, but, as it is well-known, not by
piecewise-linear imbeddings. This is the reason why we are converted to the
topological category.

In §1 we describe briefly the signature theorem for an infinite cyclic covering
of a compact oriented 4m-manifold with boundary, given in [K, 4]. From this,
we derive an estimate of the 4m-manifold by integral invariants of an infinite
cyclic covering of the boundary. Several properties on an infinite cyclic covering
of a closed (4m—1)-manifold are also given here. In §2 we discuss the estimate
of a type II imbedding and its consequence, and in §3, the estimate of a punc-
tured imbedding and its consequence. In §4 we remark that similar results
hold in the case n=4m—1 (m>1).

1. The signature theorem for an infinite cyclic covering

Consider a pair (B, y) where B is a compact oriented (4m—1)-manifold
and Yy€HYB; Z). Using the infinite cyclic covering space B of B associated
with ¥, we have defined in [K, 3] integral invariants, o-',f(B), acs[—1,1], of the
proper oriented homotopy equivalence class of (B, ¢). The invariant ai’(B) is
called the local signature of (B, ¥) at a and vanishes except a finite number of a.
The sum >} o-i’(B) is called the signature of (B, ) and denoted by a-';(B). Next,

ae[-1,1]
consider a pair (X, 7) where X is a compact oriented 4m-manifold and yeH!
(X;Z). Using the infinite cyclic covering space X of X associated with v, we
have also defined in [K, 4] two kinds of integral invariants, 7J_o(X) for ae
(—1, 1] and 72, o(X) for ac[—1, 1), of the proper oriented homotopy equivalence
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class of (X, 7). The following theorem, which we call the signature theorem, was
proved in [K, 4]:

Theorem 1.1. Assume that (B, «y) is the boundary of (X, <) with a compact
oriented 4m-manifold X and yeHYX; Z). Then

1l_o(X)—sign X = 3 oU(B) and 71.o(X)—sign X = by ciB).
zE[a,l] z€(q,1]

Note that 0-“7_1(B) does not appear in the above identities. To simplify the not-
ations, we denote 7}, (X) by 7}(X) and the sum E( a¥(B) by 7i(B). Let 7}(X)
x€@,1]

= lim 7}(X) and r'f(B): lim -r):’(B) (zaf(B)). Then the signature theorem im-
a>1-0 a>»1-0
plies the identity
7Y(X)—sign X = 7i(B)

for all ac[—1,1]. Note that o7,(B)+77,(B)=c"(B). Let (Y, A) be a pair
such that Y is a compact manifold and 4 is a compact submanifold. Let (Y, 4)
be the infinite cyclic covering space pair of (Y, 4) associated with an element
vyeHY Y;Z). Let {t> be the covering transformation group with a specified
generator £. Let A=Z<t>and T=0Q<¢>. Since Hy(Y, 4; Z) is a finitely gener-
ated A-module and A is Noetherian, we see that the kernel of t—1: Hy(Y, 4; Z)
—H,(Y, 4; Z) is a finitely generated abelian group. We denote this rank by «}
(Y, A;Z). It also equals the O-dimension of the kernel of t—1: Hy(¥, 4; Q)
—H,(Y, 4; Q). The following is easily obtained (cf. [K, 1; Lemma 1.1]):

Lemma 1.2. For any integer d=0, «3(Y, A)=x}(Y, A).

Let TH4(Y, 4; Q) be the T'-torsion part of Hy(Y, 4; Q), which is a finitely
generated I"-module, and BH(Y, 4; Q)=H«(Y, 4; Q)|TH«(Y, 4; Q), which is
I-free. We denote this rank by B%(Y, 4; Q). We use the signature theorem
to prove the following:

Lemma 1.3. Let B be a closed oriented (4m—1)-manifold and y=H'(B; Z)
and d be a non-zero integer.

(1) For a real number 6 such that cos d0=++1 and ol 40(B)=0, we have 7, o(B)
=1Ywao(B) and i o(B)=0,

(2) ad'i(B)=o-';(B) (if d is odd) or O (if d is even).

The following is direct from Lemma 1.3:

Corollary 1.4. (1) =47 (B)=+I(B),
(2) (B)="\(B) (¢f d is odd) or ¥I(B) (if d is even),
() o (B)=0"1(B) (if d is odd) or —a¥(B) (if d is even),
(4) If cos d9=%+1, then o, o(B)=sign (sin @ sin|d|§) ol 2(B),
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(5) If cos d0=--1 but cos = +1, then acogo(B) 0.

1.5. Proof of Lemma 1.3. First, assume that (B, %) is the boundary of a pair
(X, ). Let X and X@ be the infinite cyclic covering spaces of X associated
with o and dv, respectively. Let A(¢) be a t-Hermitian matrix, which is the I'-
intersection matrix associated with a I'-basis e, e, -+, ¢, of BH,,(X; Q). By
[K, 1; Lemma 1.1], we can consider e,, ¢,, -+, e, as a I'-basis for BH,,,(X9; Q),
associated with which the T-intersection matrix is A(#¢). Since ol w(B)=0, it
follows from the signature theorem that

Tg.osdo(B) = TZosdoﬂ(X)—sign X
= lim sign A(e’?")—sign X

dv->d@+0
= lim sign A((e")%)—sign X
v>920
= Tgo'YSOiO(X)__Sign X
= 784(B) and ofl(B)=0,

showing (1). For (2) note that a”(B) is the a-invariant of the double covering
space of B associated with the Z,-reduction ¥(2)eHY(B;Z,) of ¥ (See [K, 4;
Lemma 4.3]). Since it is similar for ¢#(B), we see that ¢®/(B)=q"(B) (if d is
odd) or 0 (if 4 is even), showing (2). If (B, ) is not a boundary, then some
multiple N(B, ) (N>0) is a boundary (cf. [K, 4; Remark 1.6]) and we obtain the
identities (1), (2) on N(B, &) in place of (B, ¢). Dividing them by N, we obtain
the desired (1), (2). This completes the proof.

For an abelian group H, let tH be the torsion part and bH-—H/tH Let X
be a compact oriented 4m-manifold with boundary B. Let B*(X Z) be the
rank of the cokernel of the natural homomorphism Hy(B; Z)—Hy(X; Z). Note

that any intersection matrix on bH,,(X; Z) has the rank BA,M(X ; Z), by Poincaré
duality.

Theorem 1.6. Assume that for some nom-zero integer d, (B, dey) is the
boundary of a pair (X, ) with a compact oriented 4m-manifold X and y=H'
(X;Z). Then for all a,

| 7H(B)| —kimr(B) < Bom(X; Z)+|sign X | .
Proof. By Lemma 1.2, «¥,_;(B)=«}_(B). By Lemma 1.3(1),

max 7¥(B) = max 7¢(B) and mm —r,,(B) min #(B).
ae[-1,1] ae[-1,1] er-1,1 ag[-1,1]

Thus, we may assume d=1. Let (X, B) be the infinite cyclic covering space

pair of (X, B) associated with . Let ,é\l(X ; O) be the T'-rank of the cokernel of
the natural homomorphism Hy(B; Q)—>H«(X; Q). By the exact sequence of
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(X, B), we have
B1a(X; Q) = S2my(—1)! BY(X, B; Q)+=273"(—1)* BI(B; Q)
+ =22 (1) BY(X; Q).

From the Wang exact sequence

t—1

~ H(X, B;0) " H/X, B; 0)2 H/X, B; 0) > H, (%, ; 0)

t—1

— Hq—l(X; B; Q) -,
we see that B (X, B; Z)=g}(X, B; Q)+«} (X, B)+x]_,(X, B). Similarly, 8,
(B3 2)=B(B; Q)+ wi(B)-+i1(B) and B,(X; Z)=B1(X; Q)+ 4} (X)+ s (X).
Note that f,,(X;Z)=3"(—1)"B,(X, B; Z)+3is'(—1) B,(B; Z)+=%%5t
(—1)"™ B,(X; Z). Then we have

B1u(X;5 Q) = Bon(X3 Z)—bn(X, B)+ il s(B)— ifm-s(X)
A -
ZBen(X; Z)+rhm-1(B) .

The inequality |73(X)| < é;’m(X ; Q) is directly obtained from the definition of
7HX) (cf. [K, 4]). Therefore, by the signature theorem,

|7i(B) < |7(X) | + |sign X|
<BIn(X; Q)+ |sign X|
A 5 .

<Bem(X; Z)+ 1Y m—r(B)+ |sign X| .

This completes the proof.
Corollary 1.7. Under the assumption of Theorem 1.6,
|7H(B)| <Bonl X; Z)+ Isign X|

for all a.

Proof. By the proof of Theorem 1.6, ITZ(B)I <|™UX)|+|sign X| and |7}

()| <B1n(X; O)<BIn(X; Q)< BIn(X; Q) hn(X)+Khmos (X)=Bem(X; Z),
completing the proof.

Remark 1.8. In Theorem 1.6 and Corollary 1.7, if we replace -r'Z(B)

with ¢¥(B), then the resulting inequalities do not hold in general. Some
counterexample was given in [K, 4; 4.5].

2. Type II imbeddings

Theorem 2.1. Assume that M is topologically type II imbedded in W.
Then B(M; Z)<XB(W;Z)|2 or there is an indivisible element y=HYM; Z) such
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that for all a
|73(M) | — (M) < B(W; Z)+ | sign W| <2B(W; Z) .

Proof. Assume that B,(M; Z)>B,(W; Z)|2. Regard f: MCW. Since it
is of type II and H(W, W—M; Z)=<H¥M; Z)=Z, the boundary map 9: H,
(W, W—M; Z)—H,(W—M; Z) is an isomorphism, so that the natural homomor-
phism H(W—M; Z)—-H,(W; Z) is onto. Using Quinn’s handle straightening
lemma [Q], we can kill H,(W; Q) without changing G,(W; Z) by a surgery on
W—M. We assume GB,(W;Z)=0. By Ancel/Cannon [A/C], the imbedding
fr=fXxid: Mp=M x CP*C W x CP*=W/p is homotopic to a bi-collared imbedding
f#: Mp—Wp, which is also of type II. Let ff Mp=M}{. M} splits Wp into two
compact connected submanifolds E’, E”. To see that B,(Wp—M3; Z)=0, sup-
pose that Hy(Wp—M}; Q)=0. Then H(E'; Q)=H,(E"; Q)=0 and B,(E’, M};
2)>B,(M#; Z) and B(E", M; Z)> B(M}; Z). Hence B(W, M; Z)—B,(Ws,
M; Z)=BJE', Mi; Z)+BAE", M4; 2)>28,M4; Z)=28,M; Z). Since H,
(W; O)=H,(W; Q)=0, we see from the exact sequence of (W, M) that @,
(W, M; Z)=B(M; Z)+BW; Z)—B,(M; Z)=B4W; Z), so that B(W; Z) =26,
(M; Z), contradicting our assumption. Therefore, B(W,—M}¢; Z)=B(E'; Z)
+By(E"; Z)%0. Say By(E'; Z)+0. Let yeHYE';Z) be any non-zero ele-
ment. Since the natural map H,(M¢; Q)—H,(E’; Q) is onto, ypr=v|MjcH!
(M$; Z) is not zero. Write yp=dy, for an integer d+0 and an indivisible
element ¢,. By Theorem 1.6,

| i (MA)| — (MR <BE'; Z)+ |sign E'|.
Let yeHYM; Z) correspond to rp. Directly, ng(M;)zx];(M). By [K, 3],
TiP(M$)=7YM). Let HCH(E'; Q) and H'c H(E”; Q) be QO-subspaces of
dimensions ,é\4(E’; Z) and ,BA;(E" ; Z) on which QO-intersection matrices are non-
singular, respectively.
. . o K
Lemma 2.2. The composite H'@H" CcH,(E'; Q)®H,(E";Q) "— " H,

projection

(We; QY "=  H(W; O)QH,(CP?; Z) is injective, where 1}, and i}/ are natural
maps.

Assuming this lemma, we have ,(%(E’; Z )+,é\4(E’ "3 Z)< B (W3 Z). By the Novi-
ls\ov addition theorem, sign E'+sign E”=sign Wpy=sign W. Since |sign E”| <
By«(E"; Z), it follows that

|mHO) | — (D <BUE's Z)+ Isign B'| <BW; Z)—BuE"; Z)+

|sign W |+ |sign E” | < B,(W; Z)-+ |sign W|.

This completes the proof except the proof of Lemma 2.2.
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2.3. Proof of Lemma 2.2. Using the intersection pairing Inty, on H(Wp; Q),
we see that ¢4 +ii | H'@H” is injective, whose image we denote by H. LetxeH
be non-zero and write x=x,+x,+x, with x,c H(W; O)QH,_(CP?*; Z). If x,=
0, then there is an element xj&Hy(W; Q)QH,(CP?; Z) with Inty, (x,, x§)=0.
Then Inty , (¥, x5)=Inty, (%, x5)#0. But, x{ is represented by a cycle in M}
and hence Inty, (H, x6)=0, which is a contradiction. Thus, x,=0 and x=x,1
%, Note that there is an element ¥'=x{+-x} in H with Inty_ (x, x")==0. Then
Inty, (x, x")=Inty, (%,, ¥5)==0, and x,#=0. This completes the proof of Lemma
2.2.

Since any imbedding from M to W with 8(W; Z)=0 is of type II, the follow-
ing is direct from Theorem 2.1:

Corollary 2.4. If M is topologically imbedded in any W with Hy(W; Q)=<
Hy(S*; O) and B,(M; Z) =0, then there is an indivisible element y € H\(M ; Z) such
that |7i(M)| < «{(M) for all a.

This answers in part Problem 3.20 of Kirby’s Problem List [Ki] (cf. [G/L]). Note
that there are many M which are smoothly imbedded in S* and have |-r}7(M Y| =«
(M) =0 for an indivisible ¢ and all a. For example, let M be the torus bundle

over S' with monodromy matrix ((1) i) and &, the element represented by the

bundle projection. Directly, we see that M is smoothly imbedded in S* and
| 7{(M)| =i(M)=1 for all a.

Theorem 2.5. For any positive integers v, v', there are infinitely many M
having all of the following properties (0)-(4):
(0) Hy(M; Z)e=<Hy(#S'x S?; Z) and xf(]\l):O and |v2\(M)| =r" for all indi-

vistble elements y= H (M ; Z),
(1) M is smoothly type II imbedded in $S*X S?,

(2) M is smoothly type I imbedded in a smooth 4-manifold W* with tH (W*; Z)==
Z(if g=1,2) or O(if q=1, 2) and bH(W*; Z)==H4(S' X S3; Z),

(3) M’ is smoothly imbedded in a smooth 4-manifold W** with tH (W**,Z)=Z,
(if g=1,2) or O(if q=1, 2) and bH(W**; Z)==H(S*; Z),

(4) M is not topologically type II imbeddable in any W with B,(W; Z)<2r and
BoW; Z)+ |sign W | <r'".

RemARK 2.6. We can conclude from Theorem 2.5 that Theorem 2.1 can
not apply to type I imbeddings and if B,(M; Z)<B,(W; Z)/2, then I'ri(.M) | —
:cf(M ), ac[—1, 1], do not, in general, restrict B,(W; Z) in Theorem 2.1. Co-
oper [C] has obtained a result corresponding to (4) in the piecewise-linear cat-
egory.
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2.7. Proof of Theorem 2.5. Let k& be any invertible knot in S® with |a(k)| >7’,
where o(k) denotes the signature of the knot k. Let M(k) be the 0-surgery
manifold of .. Note that ¢™(M(k))=c (k) and o7 (M(k))=«]*(M(k))=0 for any
generator y*<H'M(k); Z)=Z. By Lemma 1.3, 75(M(K)=7"(M(k))=o(k)
(if d is odd) or O (if d is even), for o¥{'(M(k))=oY1(M(k))=0. Let M be the r-
fold connected sum of M(k). Then Hy(M; Z)zH*(#Slx S%; Z) and xf(lW):O

and |77,(M)| >s|a(k)| =7 for any indivisible element y&H (M; Z), where s is
the number of the summands M(k) of M such that ¢|M(k) is an odd multiple
of ¢*. 'This shows (0). For (1) note that there is a piecewise-linearly imbedded
2-sphere S?%*k) in S?X.S? which is homotopic to S?X ¢ and has just one non-
locally flat point represented by the knot k2 (See Suzuki [Su]). Since S*(k) has
the self-intersection number 0, we see that the boundary of a (smooth) regular
neighborhood of S*(k) in S?x S? is diffeomorphic to M(k), so that M is smo-
othly imbedded in gS’xS"’, showing (1). For (2) we use that & is invertible.

From this, we have an orientation-preserving diffeomorphism % of M(k) with
hy=—1 on H\(M(k); Z). Let W be the mapping torus of 4. Then tH (W; Z)
=7, (if g=1,2) or O (if q==1,2) and bHy(W; Z)=H4(S**x 8%, Z). We may
consider that % sends a 3-disk D? in M(k) to itself by the identity. Let W** be
a closed 4-manifold obtained from W by replacing S*x D*°C W by D*x 0D®. We
have tH (W**; Z)=Z,(if ¢=1, 2) or 0(if ¢==1, 2) and bH(W**; Z)=H(S*; Z).
M(k)Y’=M(k)-Int D? is smoothly imbedded in W** and the connected sum
M(R)Y$T,, T, the solid torus of genus g, is smoothly imbedded in M(k)° and hence
in W**_ A boundary-disk sum, M", of r copies of M(k)’ is smoothly imbedded
in (M(k)#T,) < [0, 1] with g=r—1. Thus, using a collar of M(k)#T, in W**,
we see that M’ is smoothly imbedded in W**. Let W* be a closed 4-manifold
obtained from W** by replacing a tubular neighborhood T(0M°)=S%xD? of
OM° in W** by D3Xx 0D? where the framing of T(0M°)=S?Xx D? is chosen so
that some S?Xp (p=8D?) is a boundary-parallel 2-sphere in M°. We see that
M is smoothly type I imbedded in W* and tH (W?*; Z)=Z,(if ¢g=1, 2) or 0 (if
q=+1, 2) and bH(W*; Z)==H(S*x S3; Z), showing (2) and (3). For (4) sup-
pose that M is topologically type II imbedded in W with B,(W; Z)<<2r and @,
(W; Z)+|sign W|<r'. Since B(M; Z)=r>B,(W; Z)/2, we have, by (0) and
Theorem 2.1, an indivisible element y = H'(M; Z) such that

r' < |eL(M) | —l(M)<BW; Z)+ |sign W|<r',
which is a contradiction. This completes the proof.

3. Punctured imbeddings

Let a be the standard reflection on the double DM’ of M°.
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DEerFINITION.  An element y& H(DM’; Z) is Z,-asymmetric if the Z,-reduc-
tion y(2)eHY DM’; Z,) of ¢ has a*(¥(2))F¥(2).

Theorem 3.1. Assume that M° is topologically imbedded in W. Then B,
(M; 2)<BW; Z,)[2 or there is a Z,-asymmetric indivisible element y = H(DM’; Z)
such that for all a

| 7(DM?)| —(DM°) < B(W; Z)+ | sign W | <28,(W; Z) .

Proof. Assume that B,(M; Z)>RB,(W; Z,)/2. Regard f: M°CW. Since
H(W,W—M’; Z)=H¥M?’; Z)=0, the natural homomorphism H(W—M’; Z)
—H(W; Z) is onto. By [Q], we can kill H(W; Q) without changing B,(W; Z)
by a surgery on W—M°. We assume @B,(W; Z)=0. Choose mutually disjoint
S'x D%, i=1,2, -+, 5, in W—M?’ (by using [Q]) so that the cores S*x0;, i=1, 2,
.-+, 5, represent a basis for H(W; Z,). Let F=W—Uj}., S*xD}. By [4/C]
and a boundary collar technique, the imbedding f,=fxid: Ms=M’x CP*C
FX CP*=Fp is homotopic to a bi-collared imbedding f#: M%—F,. Let N=
M°x CP?*x[0,1] be a collar of f4M$% in Fp. Construct W¥*=FU ., D*x S?
identifying S*x 8D? with 8D*x S? for all 2. Then B,(W*; Z)=8,(W; Z,) and
Bi(W*; Z,)=0. Let Wpy=WxXCP?, W§=W*XCP?, E=Wp-Int N and E*=
W#-Int N. Note that there is an epimorphism u: H\(E; Z)—>H(E*; Z). We
show that B(E*; Z)=%0. Suppose H,(E*; 0)=0. By Poincaré duality, H,(E*,
0E*; 0)=0. But, H(E*, 0E*; Q)=H, (W%, N; Q)=H, (W%, M%; Q)=H(W*,
M’; O)QH,(CP?; Z). 'Thus, H(W*, M’; 0)=0. Since 8: H(E*, 0E*; O)—
H,(3E*; Q) is onto and H,(E*, 0E*; Q)=H, (W%, N; Q)=H, (W%, M%; Q)=H,
(W*, M°; Q)QH,(CP?; Z) and 0E*=DM°x CP?, we see that B,(W*, M’; Z)>
B(DM’; Z)=2B,(M; Z). Using H(W*, M’; Q)=0, we obtain from the exact
sequence of (W*, M°) that B,(W; Z,)=R(W*; Z)=R,(W*, M’; Z)=2B,(M; Z),
contradicting our assumption. Therefore, B,(E*; Z)4=0. Take any indivisible
element y*eHY(E*; Z). Then v*(2)eHY(E*; Z,) is not zero. Note that 0E*
=0E=0N=DM$3(=DM’x CP?). By the Mayer/Vietoris sequence, the natural
homomorphism HYN; Z,)HYE*; Z,)—-~H DM3; Z,) is injective, for H(W%;
Z,)=0. Thus, v*(2)|DM%=HYDMj3; Z,) is non-zero and there are an odd
integer d and an indivisible element ¥, H(DM?%; Z) such that dy,=9*|DM5.
Let yeHY(DM?’; Z) be an indivisible element corresponding to ¢,. We show
that ¢ is Z,-asymmetric. If a*(¥(2))=(2), then ¢ 5(2)=dyp(2) lies in the image
of the natural homomorphism HYN; Z,)—HYDM?%; Z,), so that the natural
homomorphism HYN; Z,yPHYE*; Z,)—-HYDM$%; Z,) is not injective, a con-
tradiction. Hence ¢ is Z,-asymmetric. Let y=p¥y*)eHYE; Z). Then 7|
DM%=dy,. By Theorem 1.6, |7ir(DM?3)| —/cE;’P(DM‘,’:)S,é\;(E; Z)+ |sign E |
for all a. By [K, 3], 7iz(DM3%)==](DM’). Directly, rir(DM?%)=x](DM").
By Lemma 2.2, )é\.;(E 1 Z)<SBy(W; Z). By the Novikov addition theorem,
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sign E=sign W,=sign W, for sign N=0. It follows that |7I(DM°)| —«}(DM")
<B,(W; Z)+ |sign W| for all a. This completes the proof.

Theorem 3.2. For any positive integers r, v’, there are infinitely many M
having all of the following properties (0)—(4):
(0) Hy(M; Z)=Hy($S'% 8% Z) and €}(DM°)=0 and |77,(DM°)|>r" for all

Z,~asymmetric indivisible elements y = HY(DM’; Z),
(1) M is smoothly type 1I imbedded in #S?x S?

(2) M is smoothly type I imbedded in a smooth 4-manifold W* with tH (W*; Z)
=@7Z, (if =1, 2) or 0 (¢f g1, 2) and bH(W*; Z)=H4(S*'X S%; Z),

(3) M’ is smoothly imbedded in a smooth 4-manifold W** with tH (W**; Z)==
DZ(f ¢=1, 2) or 0 (if g1, 2) and bH(W**; Z)=H(S*; Z),

(4) M’ is not topologically imbeddable in any W with B, (W; Z,)<2r and B,
(W; Z)+ |sign W|<r'.

ReMARK 3.3. We can conclude from Theorem 3.2 that | TZ(DM )] —fc};
(DM?), ac[—1, 1), do not restrict B,(W; Z) if B,(M; Z)< B, (W Z,)|2 and this
inequality can not be replaced by B,(M; Z)<B,(W; Z)/2, in Theorem 3.1.

3.4. Proof of Theorem 3.2. Let k;,7=1, 2, --+, r, be invertible knots in .S® such
that |a(k;)| >r'+-2iz1|a(kR)], j=1, 2, ---, 7. Let M;=M(k,) and M=4#;., M,.
Then Hy(M; Z)=H(#S'X S*; Z). Let yeHYDM"’; Z) be any Z,-asymmetric

indivisible element. Directly, lc’;f(DM =0. Write DM°=(M,$M,)#(M, 4,
§-#(M,4M,), where Mi=aM?. Let M;#M;,j=1,2, s, be all of the
summands of DM° such that ¥ | M, # M, is still Z,-asymmetric, where 1<i(1)
<i(2)<+<i(s)<r. Since 795 (M,)=—+2(M;)=o(k;) (if d is odd) or O (if d is
even) for a generator y*& HY(M;; Z) (cf. Lemma 1.3), it follows that (DM
=& 0 (ki) +E; 0 (Riw)+ - +& o (kip), €;==1, and |7_(DM°)| = |o (ki) | —
Sizila(kij)| =7, showing (0). Since M, is smoothly imbedded in S2x .S (cf.
2.7), M is smoothly imbedded in #.S5?x S? (by a type II imbedding), showing

(1). Since k; are invertible, there is an orientation-preserving diffeomorphism 4
of M with ky=—1 on H(M; Z). Let W* be the mapping torus of z. We have
tH (W*; Z)rzGPZz (if =1, 2) or 0 (if g==1, 2) and bH(W*; Z)=H,(S*X S3; Z),
showing (2). For (3) we can kill bH,(W*; Z) by a surgery on W*—1/° to obtain
a desired W**. For (4) suppose that there is an imbedding from M’ to W with
BAW; Z,)<2r and B,(W; Z)+ |sign W |<<r'. Since B(M; Z)=r>B,(W; Z,)/2,
we see from (0) and Theorem 3.1 that there is a Z,-asymmetric indivisible ele-
ment y&HY(DM’; Z) such that #'<|77,(DM°)| —«}(DM°)<B,(W; Z)+ | sign
W | <r', which is a contradiction. This completes the proof of Theorem 3.2.



THE IMBEDDING PROBLEM 181

4. Higher dimensional analogues

We consider the case #=4m—1 (m>>1) only. The argument of this case
is simpler than the case #=3, because any topological imbedding from a com-
pact oriented z-manifold to W is homotopic to a bi-collared imbedding by
[4/C].

Theorem 4.1. Assume that M 1is topologically type II imbedded in W.
Then B(M; Z)<B(W; Z) or there is an indivisible element y=H M ; Z) such
that for all a

|THM) | — (M) < Bom(W'; Z)+- | sign W | <2B,n(W; Z) .

Proof. The proof is analogous to that of Theorem 2.1. We give the
outline only. Regard MCW. We can assume that H,(IW; Q)=0 by a surgery
on W—M and M splits W into two manifolds E’, E”. Assume B,(M; Z)>p,
(W; Z). By the Mayer/Vietoris sequence, we have B, (E’; Z)+B(E"; Z)>0.
Say B\(E’; Z)>0. Let yeHYE'; Z) be any non-zero element. Then ¢y|Me
HY(M; Z) is non-zero, since the natural map H(M; Q)—H,(E’; Q) is onto. The
rest of the proof follows from Theorem 1.6, the inequalities 3,,(E’; Z)—{—ﬁz,,,
(E";Z2)<Buwm(W; Z), |sign E” | < ,82,,,(E” ; Z) and the Novikov addition theorem.
This completes the proof.

Theorem 4.2. For any positive integers r, r', there are infinitely many
smooth M having all of the following propertzes (0)-(4):

(0) Hu(M; Z)=Hy($S'X S*; Z) and wfn (M)=0 and |<1,(M)| 27" for all

indivisible elements y= H'(M; Z),
(1) M is smoothly type II imbedded in a smooth (n--1)-manifold homotopy equi-
valent to #S*X S*7,

(2) M is smoothly type I imbedded in a smooth (n+-1)-manifold W* with tH,
(W*; 2)=Z,(if q=1,n—1) or 0(if q+1,n—1) and bHu(W*; Z)=<H,(S*'X
S*; Z),

(3) M’ is smoothly imbedded in a smooth (n-+1)-manifold W** with tH (W**; Z)
=Z(if g=1,n—1) or 0 (if q==1, n—1) and bH(W**; Z)=H(S"*; Z),

(4) M is not topologically type II imbeddable in any W with B,(W; Z)<r and
Bon(W; Z)+ |sign W | <r".

Proof. We take any invertible smooth (z—2)-knot K in S* with |o(K) | >7’
(cf. Levine [L]). Construct F=D**'{J D*~'x D? identifying a tubular neighbor-
hood T(K)=8""2*xD? of K in S"=0D**! with D" 'x D*. Let M(K)=aF.
Then Hy(M(K); Z)=<Hy(S*x S*"!; Z) and the double DF is homotopy equiva-
lent to S?x.S*% It is now an easy exercise (cf. 2.7) that the r-fold connected
sum, M, of M(K) has (0)—~(4) by using Theorem 4.1 for (4). This completes the
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proof.

In the following, we can take M’ to be any compact connected oriented z#-mani-
fold such that M’ is non-empty connected and B,(0M°; Z)=0:

Theorem 4.3. Assume that M’ is topologically imbedded in W. Then 3,
(M°; Z)<dim,, H(W; Z)QZ, or there is a Zy-asymmetric indivisible element <y €
HYDM?’; Z) such that for all a

|7} (DM°) | — ki mrs(DM®) < Bom(W; Z)+ |sign W | <28,n(W; Z) .

Proof. Regard M°CW. We can assume without changing B,,(W; Z) and
dim,, H¥W; Z)®4Z, that 8,(W; Z;)=0 by a surgery on W—M?’ (then B,(W; Z)
=dim,, H(W; Z)Q®Z,) and M" has a collar Ne<M°x [0, 1]in W. Let E=M—
Int N. Then dE=DM". Assume that B,(M°; Z)>B,(W; Z). By the Mayer/
Vietoris sequence, the natural homomorphism H,(DM’; Q)—H,(N; Q)®H,
(E; Q) is onto. Since B(DM°; Z)=2B(M’; Z) and By(N; Z)=p(M’; Z) and
the kernel of this epimorphism is the image of 8: H(W; Q)—H,(DM’; Q), we
see that B,(E; Z)>0. Let yeH(E;Z) be any indivisible element. Since the
natural homomorphism HYN; Z,)H'(E; Z,)—H'DM’; Z,) is injective, we see
that | DM’ HYDM’; Z) is Z,-asymm/e\:tric. The desired inequality now fol-
lows from Theorem 1.6, the inequality 3,,(E; £)<B,,(W; Z) and the Novikov
addition theorem, completing the proof.

Theorem 4.4. For any positive integers r, r', there are infinitely many
smooth M having all of the following properties (0)—(4):
(0) Hy(M; Z)=Hy(#S*x S*'; Z) and ;cZ',,,_I(DM"):O and Iril(DM”)l >7' for

all Z,-asymmetric indivisible elements = H(DM’; Z),
(1) M is smoothly type II imbedded in a smooth (n+1)-manifold homotopy equi-
valent to #S*X .S*71,

(2) M is smoothly type I imbedded in a smooth (n+1)-manifold W* with tH,
(W*; Z)=@Z, (if g=1,n—1) or 0(if g=1,n—1) and bH(W*; Z)=Hy(S'X
s*z),

(3) M is smoothly imbedded in a smooth (n+-1)-manifold W** with tH (W**;Z)
=@PZ,(if q=1,n—1) or 0 (if g1, n—1) and bH(W**; Z)=xH(S**; Z),

(4) M’ is not topologically imbeddable in any W with dimg, H(W; Z)QZ,<r
and Bym(W; Z)+ |sign W|<r'.

Proof. Take any invertible smooth (#—2)-knots K;,i=1,2, --+,7, in S”
such that |o(K;)| >7'+=iZl|e(K;)|,j=1, 2, +=-,r. The connected sum M=
M(K,))$ M(K,)#---# M(K,) is proved to have (0)—(4), by using Theorem 4.3 for
(4) (cf. 3.4). This completes the proof.
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