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We consider mainly the case n=3 of the following general Imbedding Problem
in the topological category:

Under what relations between an n-manifold M and an (n-\-l)-manifold W,
both closed, connected and oriented, does there exist an imbedding from M to Wί

Since the problem is trivial for n<2, the case n=3 is the first appearing non-
trivial case. In general, for any n, there are two kinds of imbeddings from M
to W. An imbedding / from M to W is said to be of type I or II, according

to whether W—fM is connected or not. If such an imbedding / exists, then
we say that M is type I or II imbedded in W. If / is of type II, then W—fM
is seen to have exactly two components, since the boundary map 8: H^W, W —
fM\ Zz)->βQ(W— fM\ Z2) is onto and there is a duality isomorphism Hλ(W9 W—
fM\ Z^H"(fM\ Z2) («Za) (cf. Spanier [Sp; p. 342]). It is possible to charac-
terize the type of an imbedding/: M-*W in terms of homology. In fact, /is of
type II or I according to whether the homomorphism /# : Hn(M\ Z^-+Hn(W\ Z2)
is trivial or not. This is proved by examining the following commutative dia-
gram:

oc f t «

; Z2) & H^W, W-flf; Z2) 1 H0(W-fM; Z2) -+ 0 ,

where the vertical maps are the duality isomorphisms (cf. [Sp]). For example,
if βλ(W\ Z)=0, then we see from the Poincarό duality and the universal coeffi-

cient theorem that any imbedding from M to W is of type II. A typical example

of a type I imbedding is M^ίχMciS1xM==W. Let n=3. First we show
that there is an estimate of β2(W\ Z) by βλ(M\ Z) or by certain integral invari-
ants of an infinite cyclic covering of M, provided that M is topologically type
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II imbedded in W. By this estimate, we find infinitely many M which are smooth-

ly type I imbedded in some smooth ^-manifolds having the Q-homology of S1 X S3,
but not topologically type II imbeddable in any W with β2(W\ Z)<r, for each r>0

(See Theorem 2.5). This suggsets that the treatment of type I imbeddings is

more difficult than that of type II imbeddings, because if M is type II imbedded

in W, then M is also type I imbedded in some W with β2(W'\ Z)=β2(W; Z)

[For example, take W=W#S1xS3]. We can avoid this difficulty by consider-

ing punctured imbeddings instead of type I imbeddings. We denote by M°

a compact punctured manifold of M. Then our main result is that there is an

estimate of β2(W\ Z2) by β^M; Z) or by certain integral invariants of an infinite

cyclic covering of the double DM0

 y provided that M° is topologically imbedded in W.

This estimate enables us to find infinitely many M such that M° are not
topologically imbeddable in any W with β2(W\ Z2)<ryfor each r>0 (See Theorem

3.2). This research was initially planned in the piecewise-linear category (cf.

[K, 1], [K, 2]), but after Freedman's work [F], it became a standard fact that

there is a great difference between the piecewise-linear and topological imbed-

dabilities. In fact, Freedman showed that all homology 3-sρheres are imbedded

in S* by locally flat topological imbeddings, but, as it is well-known, not by
piecewise-linear imbeddings. This is the reason why we are converted to the

topological category.

In § 1 we describe briefly the signature theorem for an infinite cyclic covering

of a compact oriented 4w-manifold with boundary, given in [K, 4]. From this,

we derive an estimate of the 4w-manifold by integral invariants of an infinite
cyclic covering of the boundary. Several properties on an infinite cyclic covering
of a closed (4m — l)-manifold are also given here. In §2 we discuss the estimate

of a type II imbedding and its consequence, and in §3, the estimate of a punc-

tured imbedding and its consequence. In §4 we remark that similar results

hold in the case n=4m— 1 (m>\).

1. The signature theorem for an infinite cyclic covering

Consider a pair (#,7) where B is a compact oriented (4m— 1) -manifold
and jξΞH\B\Z). Using the infinite cyclic covering space S of B associated

with γ, we have defined in [K, 3] integral invariants, <ry

a(B), αe[— 1, 1], of the

proper oriented homotopy equivalence class of (B, γ). The invariant σl(B) is

called the local signature of (B, γ) at a and vanishes except a finite number of a.

The sum Σ <rl(B) is called the signature of (B, γ) and denoted by cry(B). Next,
βe[-ι.i]

consider a pair (X, γ) where X is a compact oriented 4m-manifold and
(X; Z). Using the infinite cyclic covering space X of X associated with y, we

have also defined in [K, 4] two kinds of integral invariants, Ta-o(X) for a^

(— 1, 1] and Tl+Q(X) for a^[— 1, 1), of the proper oriented homotopy equivalence
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class of (X, γ). The following theorem, which we call the signature theorem, was

proved in [K, 4] :

Theorem 1.1. Assume that (B, γ) is the boundary of (X, γ) with a compact

oriented 4m-manifold X and <γ^H\X\ Z). Then

τj_o(^)~sign X = Σ σl(B) and τZ+0(-X)-signX = Σ σj (B) .
*e[α,i] *eO*,i]

Note that σL ̂ B) does not appear in the above identities. To simplify the not-

ations, we denote τl^(X) by τl(X) and the sum Σ σ\(B) by rl(B). Let r\(X)
*e(a,i]

= lim τl(X) and τϊ(fi)= lim τϊ(B) (=σϊ(B)). Then the signature theorem im-
«z->l-0 β-M-0

plies the identity

for all *e[-l, 1]. Note that σiι(B)+τi1(jB)=σ'ί(JΪ). Let (Y, A) be a pair
such that Y is a compact manifold and A is a compact submanifold. Let ( Ϋ, A)
be the infinite cyclic covering space pair of ( F, A) associated with an element

γ&H^YjZ). Let <£> be the covering transformation group with a specified
generator t. Let A=Z<f)> and T=Q<(f)>. Since H*(Ϋ, A\ Z) is a finitely gener-

ated Λ-module and Λ is Noetherian, we see that the kernel of £— 1 : H*(Ϋ, A\ Z)
-*H*(Ϋ, Ay Z) is a finitely generated abelian group. We denote this rank by /cj

(Y9A;Z). It also equals the g-dimension of the kernel of t—l:H*(Ϋ, A\ Q)
->#*(?, A\ Q). The following is easily obtained (cf. [K, 1 Lemma 1.1]):

Lemma 1.2. For any integer rfφO, /4Y( Y, A)=κl(Y, A).

Let TH*(Ϋ,A\Q) be the Γ-torsion part of H*(Ϋ, A; Q)9 which is a finitely
generated Γ-module, and BH*(Ϋ, A] Q)=H*(Ϋ, A', Q)ITH*(Ϋ, A\ Q), which is

Γ-free. We denote this rank by /3£(F, A\Q) We use the signature theorem
to prove the following:

Lemma 1.3. Let B be a closed oriented (4m—l)-manifold and γe£2%B; Z)

and d be a non-zero integer.

(1) For a real number θ such that cos </0Φ±l and crlysdθ(B)=Oί τύe have τ

(2) σd\B)=σί(B) (if d is odd) or 0 (if d is even).

The following is direct from Lemma 1.3:

Corollary 1.4. (1) rf (fi)=τϊ(5),

(2) r^B^ri^B) (if d is odd) or T\(B) (if d is even),

(3) σ'Jι(B)=σiι(B) (if d is odd) or -σf(JB) (if d is even),

(4) //cos rf0Φ±l, ίfen σίίβ(fi)=sίgn (sin (9 sί
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(5) //cos dθ=±l but cos 0Φ±1, then σ^β(5)=0.

1.5. Proof of Lemma 1.3. First, assume that (B, γ) is the boundary of a pair
(X, γ). Let Jί and Jt(<ί) be the infinite cyclic covering spaces of X associated
with Ύ and dγ, respectively. Let A(f) be a ί-Hermitian matrix, which is the Γ-
intersection matrix associated with a Γ-basis el9e2ί yer of BHm(%; Q). By
[K, 1; Lemma 1.1], we can consider el9 e2, •••,€, as a Γ-basis for BHm(%W y Q)y

associated with which the Γ-intersection matrix is A(1?). Since σ?0s </<?(£)=0, it
follows from the signature theorem that

= τtosdθ±Q(X)-sign X

= lim sign -4(ewv)— sign JΓ
</v-></0±o

= lim sign ̂ ((e''y)-sign. X
V->0±0

= τ£sθ(B) and cr£U*) = 0 ,

showing (1). For (2) note that σ*(B) is the α-invariant of the double covering
space of B associated with the Z2-reduction <y(2)e.£f1(jB; Z2) of 7 (See [K, 4;

Lemma 4.3]). Since it is similar for σd\B), we see that σd\B)=σ\B) (if d is
odd) or 0 (if d is even), showing (2). If (B, γ) is not a boundary, then some
multiple N(B, γ) (ΛΓ>0) is a boundary (cf. [K, 4; Remark 1.6]) and we obtain the
identities (1), (2) on N(B, <y) in place of (JS, <y). Dividing them by ΛΓ, we obtain

the desired (1), (2). This completes the proof.

For an abelian group H, let tH be the torsion part and bH=H/tH. Let X
A

be a compact oriented 4τw-manifold with boundary B. Let β*(X\ Z) be the
rank of the cokernel of the natural homomorphism H*(B\ Z)-*H*(X; Z). Note

that any intersection matrix on bH2m(X\ Z} has the rank β2m(X\ Z), by Poincarό
duality.

Theorem 1.6. Assume that for some non-zero integer d, (B, d<γ) is the
boundary of a pair (X, γ) lϋίth a compact oriented 4m-manifold X and
(X\Z). Then for alia,

I τj(B) I -*-ι(£) <„(*; Z)+ I sign X I .

Proof. By Lemma 1.2, 4m-ι(B)=4ί-ι(B). By Lemma 1.3(1),

max r\(E) = max rd

a\B) and min r\(E) = min rf (B) .
βe[-ι,i] αe[-ι,i] βe[-ι,rj βe[-ι,i]

Thus, we may assume d=\. Let (J?, 5) be the infinite cyclic covering space

pair of (X, B) associated with <y. Let βy*(X\ Q) be the Γ-rank of the cokernel of
the natural homomorphism H*(B; Q)-+H*(J£; Q). By the exact sequence of
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, -S), we have

fa.(X; Q) = Σj:,(-l)f #(*,*; ρ)+Σ^ό1(-l)4 β\(B; Q)

P

From the Wang exact sequence

-> #,(*, 5; ρ) ̂ i ff,(*, 5; Q)-ΪHJ(Xt B; Q) -> tf̂ , 5; 0

we see that /?,(*, B;Z)=fl(X, B; Q)+K1(X,B)+^.1(X,B). Similarly,

(B; Z)=β\(B 0+4 (5) + (̂5) and 0, (A"; Z)=

Note that ^2(Λ(^;Z)=Σ2A(-l)ί/Sί(^

(- l)ί+1 βt(X; Z). Then we have

βlm(X; Q} = $m(X; Z)-κlm(

The inequality \rl(X)\<βlm(X; Q) is directly obtained from the definition of

τ (X) (cf. [K, 4]). Therefore, by the signature theorem,

\sign X\

; Z)+4.-ι(B)+ 1 sign X\ .

This completes the proof.

Corollary 1.7. Under the assumption of Theorem 1.6,

/or all # .

Proof. By the proof of Theorem 1.6, | τ\(E) \ <> \ τ>(X) \ + \ sign X \ and | τl

(X}\<βlm(X\ Q)^βlm(X\ Q)<βlm(X\ Q)+fclm(X)+fc1m_ί(X)=β2m(X', Z),
completing the proof.

REMARK 1.8. In Theorem 1.6 and Corollary 1.7, if we replace r1(B)

with σy(B), then the resulting inequalities do not hold in general. Some
counterexample was given in [K, 4; 4.5].

2. Type II imbeddings

Theorem 2.1. Assume that M is topologίcally type II imbedded in W.
Then ft(Λf Z)<β2(W\Z)β or there is an indivisible element <γ<=:Hl(M\ Z} such
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that for all a

\τl(M)\ -4(M)<β2(W; Z)+ |sign W\ <2β2(W; Z).

Proof. Assume that β,(M Z)>β2(W\ Z)/2. Regard /: M C W. Since it
is of type II and H^W, W— M Z)s*H\M Z)^Z, the boundary map 9: Hλ

(W, W—M\ Z)-*βQ(W—M] Z) is an isomorphism, so that the natural homomor-
phism H^W— M\ Z)-+Hl(W\ Z) is onto. Using Quinn's handle straightening
lemma [Q], we can kill H^W] Q) without changing β2(W\ Z) by a surgery on
W—M. We assume β1(W'yZ)=0. By Ancel/Cannon [A/C], the imbedding

fp=fx id: MP=Mχ CP2C Wx CP2= WP is homotopic to a bi-collared imbedding
fP:MP-*Wp, which is also of type II. Let/p MP=MP. MP splits WP into two
compact connected submanifolds £", E". To see that βι(WP—MP\ Z)ΦO, sup-
pose that Hλ(WP-MP\ ρ)=0. Then^GE'; Q)=Hl(Ef/\ Q)=Q and /32(E", M^;
Z^β^Mp Z) and /?2(£", M/ Z^βJMp Z). Hence β2(W, M\ Z)=β2(WPί

MP ,Z)=β2(E', MP-y Z)+β2(E", MP; Z)>2β1(MP; Z)=2βί(M; Z). Since H,
(W\ Q)=Hl(W\ Q)=Q, we see from the exact sequence of (W, M) that β2

(W, M\ Z)=βl(M\ Z)+β2(W; Z)—/?2(M; Z}=β2(W\ Z), so that β2(W', Z}>2β1

(M\ Z), contradicting our assumption. Therefore, βι(WP—MP\ Z)=βl(Er; Z)
+β1(E";Z)3=Q. Say ^(E"; Z)ΦO. Let <γtΞH\E'\Z} be any non-zero ele-
ment. Since the natural map H^Mp Q)-^Hλ(Έ' 0) is onto, γp^γlM/e/ί1

(MP\Z) is not zero. Write <γP=d<γP for an integer JΦO and an indivisible
element γp. By Theorem 1.6,

I rlp(MP) I —κip(MP)<βι(E' Z)+ |sign E' \ .

Let j^H\M\Z) correspond to γp. Directly, 4Γ(MP)=4(M). By [K, 3],

τ^(M;)=τί(M). Let H'dH^E'; Q) and Hfl^H^(Eιr\ Q) be g-subspaces of

dimensions y54(£" Z) and β'4(E" Z) on which (^-intersection matrices are non-
singular, respectively.

Lemma 2.2. The composite H'®H"dH^(Er\ ρ)θ#4(£"; Q) '*i** ̂ 4

(PFp; 0) -> ί̂ C ?̂ Q)®H2(CP2\ Z) w injectίve, where i* and ί* are natural
maps.

Assuming this lemma, we have β4(Ef Z)+βt(E" Z)<β2(W\ Z). By the Novi-
kov addition theorem, sign E"+sign .B^^sign WP=sign W. Since |sign Έ"\ <
/34(£";Z), it follows that

\rl(M) I -κΐ(M)<Zβt(E'; Z)+ |sign E' \ <β2(W; Z)-&(E"; Z)+

I sign W\ + \ sign £7/1 <β2(W; Z)+1 sign W\.

This completes the proof except the proof of Lemma 2.2.
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2.3. Proof of Lemma 2.2. Using the intersection pairing IntTΓp on H4(WP; Q),
we see that /#+*#' | ίΓ0ff" is injective, whose image we denote by H.
be non-zero and write x=x0+x9+x4 with x^H^W; Q)®H^J(CP%\ Z). If
0, then there is an element x^HQ(W\ £))®H4(CP2; Z) with IntWp

Then IntWp (x, Xo) = IntWp (x4, #6)ΦO. But, x'0 is represented by a cycle in Mp
and hence lntWp (H, xΌ)=Q, which is a contradiction. Thus, #4— 0 and #— #0+

x2. Note that there is an element #'—#0+^2 in /f with lntWp (#, #')ΦO. Then
IntWp (xy x')=IτύWp (x2, tfQΦO, and #2ΦO. This completes the proof of Lemma
2.2.

Since any imbedding from M to W with βι(W\ Z)=0 is of type II, the follow-

ing is direct from Theorem 2.1 :

Corollary 2.4. If M is topologically imbedded in any W with H*(W\ Q)^
H*(S*\ Q) and β^M; Z)ΦO, then there is an indivisible element j^H\M\ Z) such

that I r\(M) I < κ\(M) for all a.

This answers in part Problem 3.20 of Kirby's Problem List [Ki] (cf. [G/L]). Note

that there are many M which are smoothly imbedded in S* and have | rl(M) \ =κ1
(M)ΦO for an indivisible 7 and all a. For example, let M be the torus bundle

over S1 with monodromy matrix ί j and <y, the element represented by the

bundle projection. Directly, we see that M is smoothly imbedded in S4 and

\τί(M)\=4(M)=ί for all a.

Theorem 2.5. For any positive integers r, r' ', there are infinitely many M
having all of the following properties (0)-(4) :

(0) H*(M\Z)o*H*($SlxSg\Z) and 4(M)=Q and |τίι(M)|^r' for all indi-

visible elements ^f^H\M\ Z),
(1) M is smoothly type II imbedded in $S2 X *S2,

r

(2) M is smoothly type I imbedded in a smooth ̂ -manifold W* with tHq(W* Z)^
Z2(ifq=l,2) or 0(ι/ jΦl, 2) and bH*(W*\Z)^H*(SlxS*\ Z),
(3) M° is smoothly imbedded in a smooth ^-manifold W** with tHq(W**\Z)e^Z2

(if ?=1, 2) or 0(if ?Φ1, 2) and bH*(W**\Z)c*H*(S* , Z),
(4) M is not topologically type II imbeddable in any W with β2(W\ Z)<2r and

;Z)+ \sign W\<r'.

REMARK 2.6. We can conclude from Theorem 2.5 that Theorem 2.1 can

not apply to type I imbeddings and if β^M\ Z)<β2(W\ Z)/2, then \rl(M) \ —
•

/cϊ(M), a^[— 1, 1], do not, in general, restrict βz(W\ Z) in Theorem 2.1. Co-
oper [C] has obtained a result corresponding to (4) in the piecewise-linear cat-
egory.
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2.7. Proof of Theorem 2.5. Let k be any invertible knot in S3 with \σ(k) \ >r',

where σ(K) denotes the signature of the knot k. Let M(K) be the 0-surgery

manifold of k. Note that σ*(M(k))=σ(k) and σ^(M(k)}=κf(M(k))==Q for any

generator γ*eHlM(k); Z)^Z. By Lemma 1.3, rd^(M(k}}=r^l(M(k})=σ(K)

(if d is odd) or 0 (if d is even), for σdS(M(k))=σ'L\(M(k))=0. Let M be the r-

fold connected sum of M(k). Then H*(M\ Z)^H^SlxS2\ Z) and *ί(Af)=0

and (rl^M) | >s |σ(&) | >rr for any indivisible element j^H\M Z), where ί is
the number of the summands M(k) of M such that γ | M(&) is an odd multiple

of <y*. This shows (0). For (1) note that there is a piecewise-linearly imbedded

2-sphere S2(K) in S2xS2 which is homotopic to S2Xq and has just one non-

locally flat point represented by the knot k (See Suzuki [Su]). Since S2(k) has

the self-intersection number 0, we see that the boundary of a (smooth) regular

neighborhood of S2(k) in S2xS2 is diffeomorphic to M(k), so that M is smo-

othly imbedded in $ 5* X *S2, showing (1). For (2) we use that k is invertible.

From this, we have an orientation-preserving diffeomorphism h of M(k) with

A* = - 1 on H1(M(k) Z). Let W be the mapping torus of Λ. Then tHq(W\ Z)

^Z2 (if j=l,2) or 0(if ?Φ1,2) and ftίf+iϊF ZJβflr^xS Z). We may
consider that h sends a 3-disk D3 in Λf(Λ) to itself by the identity. Let IF** be
a closed 4-manifold obtained from W by replacing S1 X D3C IF by D2 X 9D3. We

have f£Γf(ϊF**; Z)«Zt(if ?=1, 2) or 0(if ?Φ1, 2) and £#*(JF**; Z)z*H*(S4; Z).
M(k)°=M(k)-Int D3 is smoothly imbedded in IF** and the connected sum

M(k)#Tg, Tg the solid torus of genus g, is smoothly imbedded in M(K)° and hence
in IF**. A boundary-disk sum, M°, of r copies of M(K)° is smoothly imbedded

in (Λf(Λ)#Γ,)χ[0, 1] with^=r-l. Thus, using a collar of M(K)$Tg in PF**,
we see that M° is smoothly imbedded in IF**. Let IF* be a closed 4-manifold

obtained from IF** by replacing a tubular neighborhood T(QM°)=S2χD2 of

9M° in IF** by D3xdD2, where the framing of T(QM°)=S2χD2 is chosen so

that some S2Xp (p^QD2} is a boundary-parallel 2-sphere in M°. We see that

M is smoothly type I imbedded in IF* and tHq(W*\Z)e*Z2(\ί j=l, 2) or 0 (if

gΦl, 2) and bH*(W*\ Z)^H*(SlxSz\ Z), showing (2) and (3). For '(4) sup-

pose that M is topologically type II imbedded in IF with βz(W\ Z)<2r and β2

(W; Z)+ (sign W\ <rf. Since β,(M; Z)=r>β2(W', Z)/2, we have, by (0) and

Theorem 2.1, an indivisible element γGH\M , Z) such that

sgn <r ,

which is a contradiction. This completes the proof.

3. Punctured imbeddings

Let a be the standard reflection on the double DM0 of M°.
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DEFINITION. An element <γ^H\DM°\ Z] is Z2-asymmetric if the Z2-reduc-
tion v(2)^H\DM°; Z2) of γ has α*(γ(2))Φγ(2).

Theorem 3.1. Assume that M° is topologically imbedded in W. Then β1

(M; Z)<β2(W; Z2)/2 or there is a Z2-asymmetric indivisible element γ<=H\DM°\Z)
such that for all a

\ri(DM°)\ -4(DM°)<β2(W y Z)+ |sign W\ <2/32(ίF; Z) .

Proof. Assume that &(M; Z)>β2(W\ Z2)/2. Regard /: M°dW. Since

, W-M°\ Z}^H\M°\ Z)=Q, the natural homomorphism H^W-M0; Z)

', Z) is onto. By [Q], we can kill H^W; Q) without changing β2(W; Z)
by a surgery on W—M°. We assume β^Wy Z)=0. Choose mutually disjoint

S'XD?, ί=l, 2, ••-, s, in PF-M° (by using [Q]) so that the cores ^xO,, ί=l, 2,

— ,*, represent a basis for fφF; Z2). Let F=W-\Js

i=ll SlχDl By [,4/C]

and a boundary collar technique, the imbedding fp=fx id: M°P=M°xCP2c:

FxCP2=FP is homotopic to a bi-collared imbedding //: M°P-*FP. Let Λ7'̂
M°xCP2x[0, 1] be a collar of fPM°P in FP. Construct TF*=FU Uιΰ2xS?

identifying SlxQDϊ with 9D2χ5? for all i. Then yδ2(PF*; Z)=ft(PΓ; Zt) and

A(Wr*;2a)=0 Let IFp-TFxCP2, lF$-ίF*χCP2, £=PΓP-Int ΛΓ and £*-
PF?-Int N. Note that there is an epimorphism //,: (̂.E; Z)-*^^*; Z). We
show that &(£:*; Z)ΦO. Suppose ίf^E*; 0—0. By Poincare duality, ί/7(£*,
9£*; Q)=0. But, #7(E*, 9£*; ρ)^//7(ΐF?, ]V; Q}^H7(W^ M°P; Q)^Hz(W*y

M°\ Q)®H4(CP2', Z). Thus, H9(W*, M°; g) = 0. Since 9: H9(E*, 9£*; ρ)->

H^dE*] O) is onto and H2(E*, 9E*; ρ) ί̂ί2(IF?, TV; ρ)^ί/2(PFΪ, M°P\ Q)^H2

(W*, M°^Q)®H0(CP2; Z) and dE*^DM°X CP2, we see that β,(W*, M°; Z)>

β^DM0; Z)=2β1(M; Z). Using ^(PF*, M°; 0-0, we obtain from the exact

sequence of (W*, M°) that β2(W', Z2)=β2(W*\ Z)=β2(W*, M°; Z)>2/31(M; Z),
contradicting our assumption. Therefore, βλ(E*\ Z)ΦO. Take any indivisible

element j*ξΞH\E* Z). Then γ*(2) £ΞH\E* Z2) is not zero. Note that 9E*

= dE=dN=DM°P(=DM°χCP2). By the Mayer/Vietoris sequence, the natural

homomorphism ff^ΛΓ; Z2}®H\E*\ Z2)-^H\DMP] Z2) is injective, for /^(W/?;

Z2)=0. Thus, γ*(2)|DM5Je/ί1(Z)M'?,;Z2) is non-zero and there are an odd

integer d and an indivisible element γP^Hl(DM°P Z) such that d<γp=<γ* \ DM°P.

Let γ^Hl(DM°\ Z) be an indivisible element corresponding to γp. We show

that <y is Z2-asymmetric. If α*(ίy(2))='y(2), then ηp(2)= d<γp(2) lies in the image

of the natural homomorphism H\N; Z^-+Hl(DM°P\ Z2), so that the natural
homomorphism H\N\ Z2}®H\E*\ Z^H\DM°P\ Z2) is not injective, a con-
tradiction. Hence γ is Z2-asymmetric. Let γ— μ*(<γ*)^H\E] Z). Then γ|

DM?,-rfγp. By Theorem 1.6, |τ^(DM?>)| -4p(J5ΛfJ.)^A(£; Z)+ |sign E\

for all Λ. By [K, 3], τip(DM°P)=τi(DM0). Directly, ̂  (DM°p) = κ\(DM°} .

By Lemma 2.2, β^(E\ Z)<β2(W\ Z). By the Novikov addition theorem,
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sign E=sign WP=sign Wy for sign N=0. It follows that \τ\(DM0) \ -κ\(DM°)
; Z)+ I sign W\ for all a. This completes the proof.

Theorem 3.2. For any positive integers ry r', there are infinitely many M
having all of the following properties (0)-(4) :

(0) H*(M\Z}^H*($SlxS2;Z) and κi(DM°}=0 and ^(DM0)] >r' for all

Z2-asymmetric indivisible elements γ^Hl(DM°\ Z),
( 1 ) M is smoothly type II imbedded in %S2 X S2,

r

(2) M is smoothly type I imbedded in a smooth 4-manifold W* with tHq(W*\ Z)
sφZ2 (if q=l, 2) or 0 (*/ qΦ 1, 2) and bH*(W* ZJefl^S'x S3; Z),

(3) M° is smoothly imbedded in a smooth ^--manifold W** with tHq(W**;Z)s=z
®ZJtfq=\, 2) or 0 (t/jΦl, 2) and bH*(W**;Z}s*H*(S*; Z),

(4) M" is not topologically ίmbeddάble in any W with β2(W; Z2)<2r and β2

n W\<r'.

REMARK 3.3. We can conclude from Theorem 3.2 that \τΐ(DM°)\—κ\
(DM0}, βe[-l, 1), do not restrict β2(W; Z) if β^M; Z)<βί(W; ZJ/2 and this
inequality can not be replaced by β^M; Z)<β2(W; Z)J2, in Theorem 3.1.

3.4. Proof of Theorem 3.2. Let kf, i=l,2, •••, r, be invertible knots in S3 such

that \σ(kj)\ ^r'+Σfcilσft)!, j=ί, 2, -, r. Let Mi=M(k{) and M= ,̂1 M,.
Then H*(M; Z)atH*($Sl X S2; Z). Let «y ejrφΛT Z) be any Z2-asymmetric

indivisible Clement. Directly, κ\(DM°)=$. Write DM"=(M^M^(M^M2)
% %(Mr%Mr\ where M^aMl Let_Mi(fl$Mi(fl,j=\,2, -,S, be all of the
summands of DM" such that <y IM^^Af,-^) is still Z2-asymmetric, where l<,i(l)

<i(2)< <i(s)<:r. Since tίj(Λfί)=-τfT(-ffl)=<r(*ι) (ίf d is odd) or ° (if d ίs

even) for a generator j*<=H\M(; Z) (cf. Lemma 1.3), it follows that τiι(DΛΓ)

=eιβ (*<ω)+e,o (ft<ω)4- +ef σ(Λ,ω),e/=±l, and | r.^DM") \ ̂  |σ(A,ω)|-
Σylΐ |cr(^, 0.)) I >r', showing (0). Since M, is smoothly imbedded in 52X 52 (cf.
2.7), M is smoothly imbedded in jf ^X S12 (by a type II imbedding), showing

r

(1). Since &, are invertible, there is an orientation-preserving diffeomorphism h
of M with A# = — 1 on H^M; Z). Let J/F* be the mapping torus of h. We have
tH,(W*; Z)-0Z2 (if ?=1, 2) or 0 (if ?Φ1, 2) and 6fΓ*(lΓ*; ̂ H^xS*; Z\

showing (2). For (3) we can kill bH^W*; Z) by a surgery on W*—M° to obtain
a desired RΓ**. For (4) suppose that there is an imbedding from M° to W with
/32(ίF; Z2)<2r and β2(W; Z)+ \ sign IF | <r '. Since (̂M Z)=r>/92(W; Z2)/2,
we see from (0) and Theorem 3.1 that there is a Z2-asymmetric indivisible ele-

ment <Y^H\DM°; Z) such that r'< |τίι(Z)M0) | — ΛΪ(DΛfβ)^/82(ϊΓ; Z)+ |sign
W\ <r', which is a contradiction. This completes the proof of Theorem 3.2.
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4. Higher dimensional analogues

We consider the case n= 4m— 1 (m>l) only. The argument of this case
is simpler than the case n=3, because any topological imbedding from a com-
pact oriented ^-manifold to W is homotopic to a bi-collared imbedding by
\AIC\.

Theorem 4.1. Assume that M is topologically type II imbedded in W.
Then βl(M\Z)<β2(W\Z) or there is an indivisible element γ<=H\M\Z) such
that for all a

I τ(M) I -«-ι(Λί)£ A.(ϊF; Z)+ 1 sign W \ <^2βm(W; Z) .

Proof. The proof is analogous to that of Theorem 2.1. We give the
outline only. Regard Md W. We can assume that Hλ(W\ Q)=0 by a surgery

on W—M and M splits W into two manifolds E', E" . Assume ft(M; Z)>/32

(W Z). By the Mayer/Vietoris sequence, we have &(£'; Z)+β1(E//', Z)>0.
Say βj(E' Z)>0. Let γ^H^E' Z) be any non-zero element. Then 7 1 MeΞ
H\M\ Z) is non-zero, since the natural
rest of the proof follows from Theorem

(E"\Z)<ίβ2m(W\ Z), (sign Έ?'\ <β2m(E"\ Z) and the Novikov addition theorem.
This completes the proof.

map H^M; Q)-+Hj(E' 0 is onto. The
em 1.6, the inequalities β2m(Er \ Z)+/?2ιn

Theorem 4.2. For any positive integers ry r' y there are infinitely many
smooth M having all of the following properties (0)-(4):

(0) H*(M\Z)<χH*($SlxS ~l\Z) and 4m-ι(M)=Q and \rί1(M)\>rf for all

indivisible elements γ^H\M', Z),
(1) M is smoothly type II imbedded in a smooth (n-\-\}-manίfold homotopy equi-
valent to $S2xS»-\

(2) M is smoothly type I imbedded in a smooth (n-}-\)-manifold W* with tHq

)^Z2(if g=l,fi-l) or Q(if gΦl,Λ-l) and b

(3) M° is smoothly imbedded in a smooth (n+ \)-manίfold W** with tH9(W** Z)
**ZJίifq=l,n-l) or 0(»y gΦl,n-l) and bH*(W** ,Z)c*H*(S*+l',Z),
(4) M is not topologically type II ίmbeddable in any W with β£W\Z)<r and

Proof. We take any invertible smooth (n— 2)-knot K in S" with | σ(K) \ >r'
(cf. Levine [L]). Construct F=Dn+1\jDn~1xD2 identifying a tubular neighbor-
hood T(K)=S»-2xD2 of K in Sn=dDn+1 with QD^xD2. Let M(K)=QF.
Then H*(M(K); Z)^H*(S1xSn~1; Z) and the double DF is homotopy equiva-
lent to S2xS"~1. It is now an easy exercise (cf. 2.7) that the r-fold connected
sum, My of M(K) has (0)-(4) by using Theorem 4.1 for (4). This completes the
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proof.

In the following, we can take M° to be any compact connected oriented w-mani-
fold such that QM° is non-empty connected and β^QM0] Z)=Q:

Theorem 4.3. Assume that M° is topologically imbedded in W. Then β1

(M°\ Z)<dimZ2 H2(W\ Z)®Z2 or there is a Z2-asymmetric indivisible element γ
H\DM0; Z) such that for all a

I τ(DM°) I -*-ι(£M<) <β2m(W Z)+ I sign W \ <2β2m(W; Z) .

Proof. Regard M°d W. We can assume without changing β2m(W\ Z) and
dimZ2 H\W\ Z)®Z2 that βλ(W\ Z2)=0 by a surgery on W-M° (then β2(W; Z)
=dimZ2 H\W\ Z)®Z2) and M° has a collar N^M°X [0, 1] in W. Let E=M-
Int N. Then QE=DM°. Assume that /^(ΛΓ; Z)>β2(W\ Z). By the Mayer/
Vietoris sequence, the natural homomorphism Hl(DM°\Q)-*Hl(N\Q}@Hl

(£; ρ) is onto. Since β^DM0; Z)=2βl(M°-y Z) and β^N; Z)=β1(M°'y Z) and
the kernel of this epimorphism is the image of 3: H2(W\ Q^H^DM0', Q), we
see that βλ(E\ Z)>0. Let γ^H^E; Z) be any indivisible element. Since the
natural homomorphism H\N\ Z^)®H\E\ Z^-*Hl(DM°\ Z2) is injective, we see
that <γ\DM0^Hl(DM°\ Z} is Z2-asymmetric. The desired inequality now fol-
lows from Theorem 1.6, the inequality β2m(E\ Z)<β2m(W\ Z) and the Novikov
addition theorem, completing the proof.

Theorem 4.4. For any positive integers r} r' , there are infinitely many
smooth M having all of the following properties (0)-(4) :

(0) H^(M;Z)^H^S1xSn-1',Z)and4m-ι(DM°)=Oand {ri^DM^l >r' for

all Z2-asymmetrίc indivisible elements j^H\DM0'y Z),
(1) M is smoothly type II imbedded in a smooth (n+l)-manίfold homotopy equi-
valent t

(2) M is smoothly type I imbedded in a smooth (n+lj-manifold W* zϋith tHq

{if q=l,n-l) or 0(ίf qΦl, n-l} and b

(3) M" is smoothly imbedded in a smooth (n-\-l)-manifold W** with tHq(W**;Z)
q=l, n-l) or 0 (if qφl, n-l) and bH*(W**; Z)^H*(Sa+1; Z),

(4) M° is not topologically imbeddable in any W with ά\m.Z2H\W; Z)(g)Z?<r
and β2m(W; Z)+ \ sign W\ <r'.

nProof. Take any invertible smooth (n—2)-knots Ki9 i=l, 2, •••, r, in S
such that I σ(Kj) \ >r'+^il\ \σ(Kf) \ , j= 1, 2, •••, r. The connected sum M=
M(KU^M(K2)^-^M(Kr) is proved to have (0)-(4), by using Theorem 4.3 for
(4) (cf. 3.4). This completes the proof.
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