Kawauchi, A. Osaka J. Math. 25 (1988), 171–183

THE IMBEDDING PROBLEM OF 3-MANIFOLDS INTO 4-MANIFOLDS

Dedicated to Professor Hiroshi Toda on his 60th birthday

AKIO KAWAUCHI

(Received November 25, 1986)

We consider mainly the case n=3 of the following general *Imbedding Problem* in the topological category:

Under what relations between an n-manifold M and an (n+1)-manifold W, both closed, connected and oriented, does there exist an imbedding from M to W?

Since the problem is trivial for $n \leq 2$, the case n=3 is the first appearing nontrivial case. In general, for any n, there are two kinds of imbeddings from Mto W. An imbedding f from M to W is said to be of type I or II, according to whether W-fM is connected or not. If such an imbedding f exists, then we say that M is type I or II imbedded in W. If f is of type II, then W-fMis seen to have exactly two components, since the boundary map $\partial: H_1(W, W$ $fM; Z_2) \rightarrow \hat{H}_0(W-fM; Z_2)$ is onto and there is a duality isomorphism $H_1(W, W$ $fM; Z_2) \cong H^n(fM; Z_2) (\cong Z_2)$ (cf. Spanier [Sp; p. 342]). It is possible to characterize the type of an imbedding $f: M \rightarrow W$ in terms of homology. In fact, f is of type II or I according to whether the homomorphism $f_*: H_n(M; Z_2) \rightarrow H_n(W; Z_2)$ is trivial or not. This is proved by examining the following commutative diagram:

$$\begin{aligned} H^{n}(W; Z_{2}) &\xrightarrow{i^{*}} H^{n}(fM; Z_{2}) \\ &\simeq \uparrow \qquad \uparrow \simeq \\ H_{1}(W; Z_{2}) &\xrightarrow{j_{*}} H_{1}(W, W-fM; Z_{2}) \xrightarrow{\partial} \tilde{H}_{0}(W-fM; Z_{2}) \rightarrow 0 \end{aligned}$$

where the vertical maps are the duality isomorphisms (cf. [Sp]). For example, if $\beta_1(W; Z) = 0$, then we see from the Poincaré duality and the universal coefficient theorem that any imbedding from M to W is of type II. A typical example of a type I imbedding is $M \stackrel{\sim}{\Rightarrow} 1 \times M \subset S^1 \times M = W$. Let n=3. First we show that there is an estimate of $\beta_2(W; Z)$ by $\beta_1(M; Z)$ or by certain integral invariants of an infinite cyclic covering of M, provided that M is topologically type

II imbedded in W. By this estimate, we find infinitely many M which are smoothly type I imbedded in some smooth 4-manifolds having the O-homology of $S^1 \times S^3$, but not topologically type II imbeddable in any W with $\beta_2(W; Z) < r$, for each r > 0(See Theorem 2.5). This suggests that the treatment of type I imbeddings is more difficult than that of type II imbeddings, because if M is type II imbedded in W, then M is also type I imbedded in some W' with $\beta_{2}(W';Z) = \beta_{2}(W;Z)$ [For example, take $W' = W \# S^1 \times S^3$]. We can avoid this difficulty by considering punctured imbeddings instead of type I imbeddings. We denote by M° a compact punctured manifold of M. Then our main result is that there is an estimate of $\beta_2(W; Z_2)$ by $\beta_1(M; Z)$ or by certain integral invariants of an infinite cyclic covering of the double DM° , provided that M° is topologically imbedded in W. This estimate enables us to find infinitely many M such that M° are not topologically imbeddable in any W with $\beta_2(W; Z_2) < r$, for each r > 0 (See Theorem 3.2). This research was initially planned in the piecewise-linear category (cf. [K, 1], [K, 2]), but after Freedman's work [F], it became a standard fact that there is a great difference between the piecewise-linear and topological imbeddabilities. In fact, Freedman showed that all homology 3-spheres are imbedded in S^4 by locally flat topological imbeddings, but, as it is well-known, not by piecewise-linear imbeddings. This is the reason why we are converted to the topological category.

In §1 we describe briefly the signature theorem for an infinite cyclic covering of a compact oriented 4*m*-manifold with boundary, given in [K, 4]. From this, we derive an estimate of the 4*m*-manifold by integral invariants of an infinite cyclic covering of the boundary. Several properties on an infinite cyclic covering of a closed (4m-1)-manifold are also given here. In §2 we discuss the estimate of a type II imbedding and its consequence, and in §3, the estimate of a punctured imbedding and its consequence. In §4 we remark that similar results hold in the case n=4m-1 (m>1).

1. The signature theorem for an infinite cyclic covering

Consider a pair $(B, \dot{\gamma})$ where B is a compact oriented (4m-1)-manifold and $\dot{\gamma} \in H^1(B; Z)$. Using the infinite cyclic covering space \tilde{B} of B associated with $\dot{\gamma}$, we have defined in [K, 3] integral invariants, $\sigma_a^{\dot{\gamma}}(B), a \in [-1, 1]$, of the proper oriented homotopy equivalence class of $(B, \dot{\gamma})$. The invariant $\sigma_a^{\dot{\gamma}}(B)$ is called the *local signature* of $(B, \dot{\gamma})$ at a and vanishes except a finite number of a. The sum $\sum_{a \in [-1,1]} \sigma_a^{\dot{\gamma}}(B)$ is called the *signature* of $(B, \dot{\gamma})$ and denoted by $\sigma^{\dot{\gamma}}(B)$. Next, consider a pair (X, γ) where X is a compact oriented 4m-manifold and $\gamma \in H^1$ (X; Z). Using the infinite cyclic covering space \tilde{X} of X associated with γ , we have also defined in [K, 4] two kinds of integral invariants, $\tau_{a-0}^{\gamma}(X)$ for $a \in (-1, 1]$ and $\tau_{a+0}^{\gamma}(X)$ for $a \in [-1, 1)$, of the proper oriented homotopy equivalence class of (X, γ) . The following theorem, which we call the *signature theorem*, was proved in [K, 4]:

Theorem 1.1. Assume that $(B, \dot{\gamma})$ is the boundary of (X, γ) with a compact oriented 4*m*-manifold X and $\gamma \in H^1(X; Z)$. Then

$$au_{a=0}^{\gamma}(X) - \operatorname{sign} X = \sum_{x \in [a,1]} \sigma_x^{\dot{\gamma}}(B) \quad and \quad au_{a+0}^{\gamma}(X) - \operatorname{sign} X = \sum_{x \in (a,1]} \sigma_x^{\dot{\gamma}}(B) \ .$$

Note that $\sigma_{-1}^{\dot{\gamma}}(B)$ does not appear in the above identities. To simplify the notations, we denote $\tau_{a+0}^{\gamma}(X)$ by $\tau_a^{\gamma}(X)$ and the sum $\sum_{x \in (a,1]} \sigma_x^{\dot{\gamma}}(B)$ by $\tau_a^{\dot{\gamma}}(B)$. Let $\tau_1^{\gamma}(X)$ $= \lim_{a \to 1^{-0}} \tau_a^{\gamma}(X)$ and $\tau_1^{\dot{\gamma}}(B) = \lim_{a \to 1^{-0}} \tau_a^{\dot{\gamma}}(B) (=\sigma_1^{\dot{\gamma}}(B))$. Then the signature theorem implies the identity

$$\tau_a^{\gamma}(X) - \operatorname{sign} X = \tau_a^{\dot{\gamma}}(B)$$

for all $a \in [-1, 1]$. Note that $\sigma_{-1}^{i}(B) + \tau_{-1}^{i}(B) = \sigma^{i}(B)$. Let (Y, A) be a pair such that Y is a compact manifold and A is a compact submanifold. Let (\tilde{Y}, \tilde{A}) be the infinite cyclic covering space pair of (Y, A) associated with an element $\gamma \in H^{1}(Y; Z)$. Let $\langle t \rangle$ be the covering transformation group with a specified generator t. Let $\Lambda = Z \langle t \rangle$ and $\Gamma = Q \langle t \rangle$. Since $H_{*}(\tilde{Y}, \tilde{A}; Z)$ is a finitely generated Λ -module and Λ is Noetherian, we see that the kernel of $t-1: H_{*}(\tilde{Y}, \tilde{A}; Z)$ $\rightarrow H_{*}(\tilde{Y}, \tilde{A}; Z)$ is a finitely generated abelian group. We denote this rank by κ_{*}^{γ} (Y, A; Z). It also equals the Q-dimension of the kernel of $t-1: H_{*}(\tilde{Y}, \tilde{A}; Q)$ $\rightarrow H_{*}(\tilde{Y}, \tilde{A}; Q)$. The following is easily obtained (cf. [K, 1; Lemma 1.1]):

Lemma 1.2. For any integer $d \neq 0$, $\kappa_*^{d\gamma}(Y, A) = \kappa_*^{\gamma}(Y, A)$.

Let $TH_*(\tilde{Y}, \tilde{A}; Q)$ be the Γ -torsion part of $H_*(\tilde{Y}, \tilde{A}; Q)$, which is a finitely generated Γ -module, and $BH_*(\tilde{Y}, \tilde{A}; Q) = H_*(\tilde{Y}, \tilde{A}; Q)/TH_*(\tilde{Y}, \tilde{A}; Q)$, which is Γ -free. We denote this rank by $\beta_*^{\gamma}(Y, A; Q)$. We use the signature theorem to prove the following:

Lemma 1.3. Let B be a closed oriented (4m-1)-manifold and $\dot{\gamma} \in H^1(B; Z)$ and d be a non-zero integer.

- (1) For a real number θ such that $\cos d\theta \neq \pm 1$ and $\sigma_{\cos d\theta}^{\dot{\gamma}}(B) = 0$, we have $\tau_{\cos \theta}^{d\dot{\gamma}}(B) = \tau_{\cos d\theta}^{\dot{\gamma}}(B)$ and $\sigma_{\cos \theta}^{d\dot{\gamma}}(B) = 0$,
- (2) $\sigma^{d\dot{\gamma}}(B) = \sigma^{\dot{\gamma}}(B)$ (if d is odd) or 0 (if d is even).

The following is direct from Lemma 1.3:

Corollary 1.4. (1) $\tau_1^{d\gamma}(B) = \tau_1^{\gamma}(B)$,

- (2) $\tau_{-1}^{d\dot{\gamma}}(B) = \tau_{-1}^{\dot{\gamma}}(B)$ (if d is odd) or $\tau_{1}^{\dot{\gamma}}(B)$ (if d is even),
- (3) $\sigma_{-1}^{d\dot{\gamma}}(B) = \sigma_{-1}^{\dot{\gamma}}(B)$ (if d is odd) or $-\sigma_{1}^{\dot{\gamma}}(B)$ (if d is even),
- (4) If $\cos d\theta \neq \pm 1$, then $\sigma_{\cos \theta}^{d\dot{\gamma}}(B) = \text{sign} (\sin \theta \sin |d|\theta) \sigma_{\cos d\theta}^{\dot{\gamma}}(B)$,

A. KAWAUCHI

(5) If $\cos d\theta = \pm 1$ but $\cos \theta \neq \pm 1$, then $\sigma_{\cos \theta}^{d\dot{\gamma}}(B) = 0$.

1.5. Proof of Lemma 1.3. First, assume that $(B, \dot{\gamma})$ is the boundary of a pair (X, γ) . Let \tilde{X} and $\tilde{X}^{(d)}$ be the infinite cyclic covering spaces of X associated with γ and $d\gamma$, respectively. Let A(t) be a t-Hermitian matrix, which is the Γ -intersection matrix associated with a Γ -basis e_1, e_2, \dots, e_r of $BH_{2m}(\tilde{X}; Q)$. By [K, 1; Lemma 1.1], we can consider e_1, e_2, \dots, e_r as a Γ -basis for $BH_{2m}(\tilde{X}^{(d)}; Q)$, associated with which the Γ -intersection matrix is $A(t^d)$. Since $\sigma_{\cos d\theta}^{\dot{\gamma}}(B)=0$, it follows from the signature theorem that

$$\begin{aligned} \tau_{\cos d\theta}^{\dot{\gamma}}(B) &= \tau_{\cos d\theta \pm 0}^{\gamma}(X) - \operatorname{sign} X \\ &= \lim_{d^{\nu \neq d\theta \pm 0}} \operatorname{sign} A(\mathrm{e}^{id^{\nu}}) - \operatorname{sign} X \\ &= \lim_{\nu \neq \theta \pm 0} \operatorname{sign} A((\mathrm{e}^{i^{\nu}})^{d}) - \operatorname{sign} X \\ &= \tau_{\cos \theta \pm 0}^{d^{\gamma}}(X) - \operatorname{sign} X \\ &= \tau_{\cos \theta}^{d^{\dot{\gamma}}}(B) \quad \text{and} \quad \sigma_{\cos \theta}^{d^{\dot{\gamma}}}(B) = 0 \end{aligned}$$

showing (1). For (2) note that $\sigma^{\dot{\gamma}}(B)$ is the α -invariant of the double covering space of *B* associated with the Z_2 -reduction $\dot{\gamma}(2) \in H^1(B; Z_2)$ of $\dot{\gamma}$ (See [K, 4; Lemma 4.3]). Since it is similar for $\sigma^{d\dot{\gamma}}(B)$, we see that $\sigma^{d\dot{\gamma}}(B) = \sigma^{\dot{\gamma}}(B)$ (if *d* is odd) or 0 (if *d* is even), showing (2). If $(B, \dot{\gamma})$ is not a boundary, then some multiple $N(B, \dot{\gamma})$ (N > 0) is a boundary (cf. [K, 4; Remark 1.6]) and we obtain the identities (1), (2) on $N(B, \dot{\gamma})$ in place of $(B, \dot{\gamma})$. Dividing them by *N*, we obtain the desired (1), (2). This completes the proof.

For an abelian group H, let tH be the torsion part and bH=H/tH. Let X be a compact oriented 4m-manifold with boundary B. Let $\hat{\beta}_*(X;Z)$ be the rank of the cokernel of the natural homomorphism $H_*(B;Z) \rightarrow H_*(X;Z)$. Note that any intersection matrix on $bH_{2m}(X;Z)$ has the rank $\hat{\beta}_{2m}(X;Z)$, by Poincaré duality.

Theorem 1.6. Assume that for some non-zero integer d, $(B, d\dot{\gamma})$ is the boundary of a pair (X, γ) with a compact oriented 4m-manifold X and $\gamma \in H^1(X; Z)$. Then for all a,

$$|\tau_a^{\dot{\gamma}}(B)| - \kappa_{2m-1}^{\dot{\gamma}}(B) \leq \hat{\beta}_{2m}(X;Z) + |\operatorname{sign} X| .$$

Proof. By Lemma 1.2, $\kappa_{2m-1}^{\dot{\gamma}}(B) = \kappa_{2m-1}^{d\dot{\gamma}}(B)$. By Lemma 1.3(1),

$$\max_{a \in [-1,1]} \tau_{a}^{\dot{\gamma}}(B) = \max_{a \in [-1,1]} \tau_{a}^{d\dot{\gamma}}(B) \text{ and } \min_{a \in [-1,1]} \tau_{a}^{\dot{\gamma}}(B) = \min_{a \in [-1,1]} \tau_{a}^{d\dot{\gamma}}(B).$$

Thus, we may assume d=1. Let (\tilde{X}, \tilde{B}) be the infinite cyclic covering space pair of (X, B) associated with γ . Let $\hat{\beta}_*^{\gamma}(X; Q)$ be the Γ -rank of the cokernel of the natural homomorphism $H_*(\tilde{B}; Q) \rightarrow H_*(\tilde{X}; Q)$. By the exact sequence of

 (\tilde{X}, \tilde{B}) , we have

$$\hat{\beta}_{2m}^{\gamma}(X;Q) = \sum_{q=0}^{2m} (-1)^{q} \beta_{q}^{\gamma}(X,B;Q) + \sum_{q=0}^{2m-1} (-1)^{q} \beta_{q}^{\gamma}(B;Q) + \sum_{q=0}^{2m-1} (-1)^{q+1} \beta_{q}^{\gamma}(X;Q).$$

From the Wang exact sequence

$$\rightarrow H_q(\tilde{X}, \tilde{B}; Q) \xrightarrow{t-1} H_q(\tilde{X}, \tilde{B}; Q) \xrightarrow{\hat{p}_*} H_q(X, B; Q) \rightarrow H_{q-1}(\tilde{X}, \tilde{B}; Q)$$

$$\xrightarrow{t-1} H_{q-1}(\tilde{X}, \tilde{B}; Q) \rightarrow ,$$

we see that $\beta_q(X, B; Z) = \beta_q^{\gamma}(X, B; Q) + \kappa_q^{\gamma}(X, B) + \kappa_{q-1}^{\gamma}(X, B)$. Similarly, $\beta_q(B; Z) = \beta_q^{\dot{\gamma}}(B; Q) + \kappa_q^{\dot{\gamma}}(B) + \kappa_{q-1}^{\dot{\gamma}}(B)$ and $\beta_q(X; Z) = \beta_q^{\gamma}(X; Q) + \kappa_q^{\gamma}(X) + \kappa_{q-1}^{\gamma}(X)$. Note that $\hat{\beta}_{2m}(X; Z) = \sum_{q=0}^{2m} (-1)^q \beta_q(X, B; Z) + \sum_{q=0}^{2m-1} (-1)^q \beta_q(B; Z) + \sum_{q=0}^{2m-1} (-1)^{q+1} \beta_q(X; Z)$. Then we have

$$\hat{\beta}_{2m}^{\gamma}(X; Q) = \hat{\beta}_{2m}(X; Z) - \kappa_{2m}^{\gamma}(X, B) + \kappa_{2m-1}^{\dot{\gamma}}(B) - \kappa_{2m-1}^{\gamma}(X)$$

$$\leq \hat{\beta}_{2m}(X; Z) + \kappa_{2m-1}^{\dot{\gamma}}(B) .$$

The inequality $|\tau_a^{\gamma}(X)| \leq \hat{\beta}_{2m}^{\gamma}(X;Q)$ is directly obtained from the definition of $\tau_a^{\gamma}(X)$ (cf. [K, 4]). Therefore, by the signature theorem,

$$\begin{aligned} |\tau_a^{\dot{\gamma}}(B)| &\leq |\tau_a^{\gamma}(X)| + |\operatorname{sign} X| \\ &\leq \hat{\beta}_{2m}^{\gamma}(X;Q) + |\operatorname{sign} X| \\ &\leq \hat{\beta}_{2m}(X;Z) + \kappa_{2m-1}^{\dot{\gamma}}(B) + |\operatorname{sign} X| . \end{aligned}$$

This completes the proof.

Corollary 1.7. Under the assumption of Theorem 1.6,

$$|\tau_a^{\dot{\gamma}}(B)| \leq \beta_{2m}(X;Z) + |\operatorname{sign} X|$$

for all a.

Proof. By the proof of Theorem 1.6, $|\tau_a^{\dot{\gamma}}(B)| \leq |\tau_a^{\gamma}(X)| + |\operatorname{sign} X|$ and $|\tau_a^{\gamma}(X)| \leq \hat{\beta}_{2m}^{\gamma}(X; Q) \leq \beta_{2m}^{\gamma}(X; Q) \leq \beta_{2m}^{\gamma}(X; Q) + \kappa_{2m}^{\gamma}(X) + \kappa_{2m-1}^{\gamma}(X) = \beta_{2m}(X; Z)$, completing the proof.

REMARK 1.8. In Theorem 1.6 and Corollary 1.7, if we replace $\tau_a^{\dot{\gamma}}(B)$ with $\sigma^{\dot{\gamma}}(B)$, then the resulting inequalities do not hold in general. Some counterexample was given in [K, 4; 4.5].

2. Type II imbeddings

Theorem 2.1. Assume that M is topologically type II imbedded in W. Then $\beta_1(M; Z) \leq \beta_2(W; Z)/2$ or there is an indivisible element $\dot{\gamma} \in H^1(M; Z)$ such A. KAWAUCHI

that for all a

$$|\tau_{\mathfrak{a}}^{\dot{\gamma}}(M)| - \kappa_{1}^{\dot{\gamma}}(M) \leq \beta_{2}(W;Z) + |\operatorname{sign} W| \leq 2\beta_{2}(W;Z).$$

Proof. Assume that $\beta_1(M; Z) > \beta_2(W; Z)/2$. Regard $f: M \subset W$. Since it is of type II and $H_1(W, W-M; Z) \simeq H^3(M; Z) \simeq Z$, the boundary map $\partial: H_1$ $(W, W-M; Z) \rightarrow \tilde{H}_0(W-M; Z)$ is an isomorphism, so that the natural homomorphism $H_1(W-M; Z) \rightarrow H_1(W; Z)$ is onto. Using Quinn's handle straightening lemma [Q], we can kill $H_1(W; Q)$ without changing $\beta_2(W; Z)$ by a surgery on W-M. We assume $\beta_1(W; Z) = 0$. By Ancel/Cannon [A/C], the imbedding $f_P = f \times id: M_P = M \times CP^2 \subset W \times CP^2 = W_P$ is homotopic to a bi-collared imbedding $f'_P: M_P \to W_P$, which is also of type II. Let $f'_P M_P = M'_P. M'_P$ splits W_P into two compact connected submanifolds E', E''. To see that $\beta_1(W_P - M'_P; Z) \neq 0$, suppose that $H_1(W_P - M'_P; Q) = 0$. Then $H_1(E'; Q) = H_1(E''; Q) = 0$ and $\beta_2(E', M'_P; Q) = 0$ $Z \geq \beta_1(M'_P; Z)$ and $\beta_2(E'', M'_P; Z) \geq \beta_1(M'_P; Z)$. Hence $\beta_2(W, M; Z) = \beta_2(W_P, Z)$ $M'_{P}; Z = \beta_{2}(E', M'_{P}; Z) + \beta_{2}(E'', M'_{P}; Z) \ge 2\beta_{1}(M'_{P}; Z) = 2\beta_{1}(M; Z).$ Since H_{3} $(W; Q) = H_1(W; Q) = 0$, we see from the exact sequence of (W, M) that β_2 $(W, M; Z) = \beta_1(M; Z) + \beta_2(W; Z) - \beta_2(M; Z) = \beta_2(W; Z)$, so that $\beta_2(W; Z) \ge 2\beta_1$ (M; Z), contradicting our assumption. Therefore, $\beta_1(W_P - M_P'; Z) = \beta_1(E'; Z)$ $+\beta_1(E'';Z) \neq 0$. Say $\beta_1(E';Z) \neq 0$. Let $\gamma \in H^1(E';Z)$ be any non-zero element. Since the natural map $H_1(M'_P; Q) \rightarrow H_1(E'; Q)$ is onto, $\dot{\gamma}'_P = \gamma | M'_P \in H^1$ $(M'_P; Z)$ is not zero. Write $\dot{\gamma}'_P = d\dot{\gamma}_P$ for an integer $d \neq 0$ and an indivisible element $\dot{\gamma}_{P}$. By Theorem 1.6,

$$|\tau_a^{\dot{\gamma}_P}(M_P')| - \kappa_{3^P}^{\dot{\gamma}_P}(M_P') \leq \hat{\beta}_4(E';Z) + |\operatorname{sign} E'|.$$

Let $\dot{\gamma} \in H^1(M; Z)$ correspond to $\dot{\gamma}_P$. Directly, $\kappa_3^{\dot{\gamma}_P}(M_P') = \kappa_1^{\dot{\gamma}}(M)$. By [K, 3], $\tau_a^{\dot{\gamma}_P}(M_P') = \tau_a^{\dot{\gamma}}(M)$. Let $H' \subset H_4(E'; Q)$ and $H'' \subset H_4(E''; Q)$ be Q-subspaces of dimensions $\hat{\beta}_4(E'; Z)$ and $\hat{\beta}_4(E''; Z)$ on which Q-intersection matrices are non-singular, respectively.

Lemma 2.2. The composite $H' \oplus H'' \subset H_4(E'; Q) \oplus H_4(E''; Q) \stackrel{i'_*+i''_*}{\to} H_4$ $(W_P; Q) \stackrel{\text{projection}}{\to} H_2(W; Q) \otimes H_2(CP^2; Z)$ is injective, where i'_* and i''_* are natural maps.

Assuming this lemma, we have $\hat{\beta}_4(E'; Z) + \hat{\beta}_4(E''; Z) \le \beta_2(W; Z)$. By the Novikov addition theorem, sign $E' + \text{sign } E'' = \text{sign } W_P = \text{sign } W$. Since $|\text{sign } E''| \le \hat{\beta}_4(E''; Z)$, it follows that

$$\begin{aligned} |\tau_{\mathfrak{a}}^{\dot{\gamma}}(M)| &-\kappa_{1}^{\dot{\gamma}}(M) \leq \hat{\beta}_{\mathfrak{4}}(E';Z) + |\operatorname{sign} E'| \leq \beta_{\mathfrak{2}}(W;Z) - \hat{\beta}_{\mathfrak{4}}(E'';Z) + \\ |\operatorname{sign} W| + |\operatorname{sign} E''| \leq \beta_{\mathfrak{2}}(W;Z) + |\operatorname{sign} W|. \end{aligned}$$

This completes the proof except the proof of Lemma 2.2.

2.3. Proof of Lemma 2.2. Using the intersection pairing Int_{W_P} on $H_4(W_P; Q)$, we see that $i'_* + i''_* | H' \oplus H''$ is injective, whose image we denote by H. Let $x \in H$ be non-zero and write $x = x_0 + x_2 + x_4$ with $x_i \in H_i(W; Q) \otimes H_{4-i}(CP^2; Z)$. If $x_4 \neq 0$, then there is an element $x'_0 \in H_0(W; Q) \otimes H_4(CP^2; Z)$ with $\operatorname{Int}_{W_P}(x_4, x'_0) \neq 0$. Then $\operatorname{Int}_{W_P}(x, x'_0) = \operatorname{Int}_{W_P}(x_4, x'_0) \neq 0$. But, x'_0 is represented by a cycle in M'_P and hence $\operatorname{Int}_{W_P}(H, x'_0) = 0$, which is a contradiction. Thus, $x_4 = 0$ and $x = x_0 + x_2$. Note that there is an element $x' = x'_0 + x'_2$ in H with $\operatorname{Int}_{W_P}(x, x') \neq 0$. Then $\operatorname{Int}_{W_P}(x, x') = \operatorname{Int}_{W_P}(x_2, x'_2) \neq 0$, and $x_2 \neq 0$. This completes the proof of Lemma 2.2.

Since any imbedding from M to W with $\beta_1(W; Z) = 0$ is of type II, the following is direct from Theorem 2.1:

Corollary 2.4. If M is topologically imbedded in any W with $H_*(W; Q) \cong H_*(S^4; Q)$ and $\beta_1(M; Z) \neq 0$, then there is an indivisible element $\dot{\gamma} \in H^1(M; Z)$ such that $|\tau_i^{\prime}(M)| \leq \kappa_1^{\prime}(M)$ for all a.

This answers in part Problem 3.20 of Kirby's Problem List [Ki] (cf. [G/L]). Note that there are many M which are smoothly imbedded in S^4 and have $|\tau_a^{\dot{\gamma}}(M)| = \kappa_1^{\dot{\gamma}}(M) = 0$ for an indivisible $\dot{\gamma}$ and all a. For example, let M be the torus bundle over S^1 with monodromy matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\dot{\gamma}$, the element represented by the bundle projection. Directly, we see that M is smoothly imbedded in S^4 and $|\tau_a^{\dot{\gamma}}(M)| = \kappa_1^{\dot{\gamma}}(M) = 1$ for all a.

Theorem 2.5. For any positive integers r, r', there are infinitely many M having all of the following properties (0)–(4):

(0) $H_*(M; Z) \cong H_*(\#S^1 \times S^2; Z)$ and $\kappa_1^{\dot{\gamma}}(M) = 0$ and $|\tau_{-1}^{\dot{\gamma}}(M)| \ge r'$ for all indivisible elements $\dot{\gamma} \in H^1(M; Z)$,

(1) M is smoothly type II imbedded in $\#S^2 \times S^2$,

(2) M is smoothly type I imbedded in a smooth 4-manifold W^* with $tH_q(W^*; Z) \simeq Z_2(if q=1,2)$ or 0(if q=1,2) and $bH_*(W^*; Z) \simeq H_*(S^1 \times S^3; Z)$,

(3) M° is smoothly imbedded in a smooth 4-manifold W^{**} with $tH_q(W^{**};Z) \simeq Z_2$ (if q=1, 2) or 0 (if $q \neq 1, 2$) and $bH_*(W^{**};Z) \simeq H_*(S^4;Z)$,

(4) *M* is not topologically type II imbeddable in any *W* with $\beta_2(W; Z) < 2r$ and $\beta_2(W; Z) + |\operatorname{sign} W| < r'$.

REMARK 2.6. We can conclude from Theorem 2.5 that Theorem 2.1 can not apply to type I imbeddings and if $\beta_1(M; Z) \leq \beta_2(W; Z)/2$, then $|\dot{\tau}_a^i(M)| - \kappa_1^i(M)$, $a \in [-1, 1]$, do not, in general, restrict $\beta_2(W; Z)$ in Theorem 2.1. Cooper [C] has obtained a result corresponding to (4) in the piecewise-linear category. A. KAWAUCHI

2.7. Proof of Theorem 2.5. Let k be any invertible knot in S³ with $|\sigma(k)| \ge r'$, where $\sigma(k)$ denotes the signature of the knot k. Let M(k) be the 0-surgery manifold of k. Note that $\sigma^{\dot{\gamma}*}(M(k)) = \sigma(k)$ and $\sigma^{\dot{\gamma}*}(M(k)) = \kappa_1^{\dot{\gamma}*}(M(k)) = 0$ for any generator $\dot{\gamma}^* \in H^1M(k); Z) \simeq Z$. By Lemma 1.3, $\tau_{-1}^{i_i^*}(M(k)) = \tau_{-1}^{i_i^*}(M(k)) = \sigma(k)$ (if d is odd) or 0 (if d is even), for $\sigma_{-1}^{d\gamma*}(M(k)) = \sigma_{-1}^{\gamma*}(M(k)) = 0$. Let M be the rfold connected sum of M(k). Then $H_*(M; Z) \simeq H_*(\#S^1 \times S^2; Z)$ and $\kappa_1^i(M) = 0$ and $|\tau_{-1}^{\dot{\gamma}}(M)| \ge s |\sigma(k)| \ge r'$ for any indivisible element $\dot{\gamma} \in H^1(M; Z)$, where s is the number of the summands M(k) of M such that $\dot{\gamma} | M(k)$ is an odd multiple of $\dot{\gamma}^*$. This shows (0). For (1) note that there is a piecewise-linearly imbedded 2-sphere $S^2(k)$ in $S^2 \times S^2$ which is homotopic to $S^2 \times q$ and has just one nonlocally flat point represented by the knot k (See Suzuki [Su]). Since $S^{2}(k)$ has the self-intersection number 0, we see that the boundary of a (smooth) regular neighborhood of $S^2(k)$ in $S^2 \times S^2$ is diffeomorphic to M(k), so that M is smoothly imbedded in $\#S^2 \times S^2$, showing (1). For (2) we use that k is invertible. From this, we have an orientation-preserving diffeomorphism h of M(k) with $h_* = -1$ on $H_1(M(k); Z)$. Let W be the mapping torus of h. Then $tH_a(W; Z)$ $\simeq Z_2$ (if q=1, 2) or 0 (if q=1, 2) and $bH_*(W; Z) \simeq H_*(S^1 \times S^3; Z)$. We may consider that h sends a 3-disk D^3 in M(k) to itself by the identity. Let W^{**} be a closed 4-manifold obtained from W by replacing $S^1 \times D^3 \subset W$ by $D^2 \times \partial D^3$. We have $tH_{a}(W^{**}; Z) \simeq Z_{a}(\text{if } q=1, 2) \text{ or } 0(\text{if } q=1, 2) \text{ and } bH_{*}(W^{**}; Z) \simeq H_{*}(S^{4}; Z).$ $M(k)^{\circ} = M(k)$ -Int D³ is smoothly imbedded in W^{**} and the connected sum $M(k) \# T_g$, T_g the solid torus of genus g, is smoothly imbedded in $M(k)^o$ and hence in W^{**} . A boundary-disk sum, M^o , of r copies of $M(k)^o$ is smoothly imbedded in $(M(k) \# T_r) \times [0, 1]$ with g = r - 1. Thus, using a collar of $M(k) \# T_r$ in W^{**} , we see that M^o is smoothly imbedded in W^{**} . Let W^* be a closed 4-manifold obtained from W^{**} by replacing a tubular neighborhood $T(\partial M^o) = S^2 \times D^2$ of ∂M^o in W^{**} by $D^3 \times \partial D^2$, where the framing of $T(\partial M^o) = S^2 \times D^2$ is chosen so that some $S^2 \times p$ ($p \in \partial D^2$) is a boundary-parallel 2-sphere in M^o . We see that M is smoothly type I imbedded in W* and $tH_q(W^*; Z) \simeq Z_2(\text{if } q=1, 2) \text{ or } 0$ (if $q \neq 1, 2$ and $bH_*(W^*; Z) \simeq H_*(S^1 \times S^3; Z)$, showing (2) and (3). For (4) suppose that M is topologically type II imbedded in W with $\beta_2(W; Z) < 2r$ and β_2 $(W; Z) + |\operatorname{sign} W| < r'$. Since $\beta_1(M; Z) = r > \beta_2(W; Z)/2$, we have, by (0) and Theorem 2.1, an indivisible element $\dot{\gamma} \in H^1(M; Z)$ such that

$$r' \leq |\tau_{-1}^{\dot{\gamma}}(M)| - \kappa_{1}^{\dot{\gamma}}(M) \leq \beta_{2}(W; Z) + |\text{sign } W| < r',$$

which is a contradiction. This completes the proof.

3. Punctured imbeddings

Let α be the standard reflection on the double DM° of M° .

DEFINITION. An element $\dot{\gamma} \in H^1(DM^\circ; Z)$ is Z_2 -asymmetric if the Z_2 -reduction $\dot{\gamma}(2) \in H^1(DM^\circ; Z_2)$ of $\dot{\gamma}$ has $\alpha^*(\dot{\gamma}(2)) \neq \dot{\gamma}(2)$.

Theorem 3.1. Assume that M° is topologically imbedded in W. Then β_1 $(M;Z) \leq \beta_2(W;Z_2)/2$ or there is a Z_2 -asymmetric indivisible element $\dot{\gamma} \in H^1(DM^{\circ};Z)$ such that for all a

 $|\tau_{\mathfrak{a}}^{\dot{\gamma}}(DM^{o})| - \kappa_{1}^{\dot{\gamma}}(DM^{o}) \leq \beta_{\mathfrak{a}}(W;Z) + |\operatorname{sign} W| \leq 2\beta_{\mathfrak{a}}(W;Z).$

Proof. Assume that $\beta_1(M; Z) > \beta_2(W; Z_2)/2$. Regard $f: M^{\circ} \subset W$. Since $H_1(W, W-M^o; Z) \simeq H^3(M^o; Z) = 0$, the natural homomorphism $H_1(W-M^o; Z)$ $\rightarrow H_1(W; Z)$ is onto. By [Q], we can kill $H_1(W; Q)$ without changing $\beta_2(W; Z)$ by a surgery on $W-M^{\circ}$. We assume $\beta_1(W; Z)=0$. Choose mutually disjoint $S^1 \times D_i^3$, $i=1, 2, \dots, s$, in $W-M^o$ (by using [Q]) so that the cores $S^1 \times 0_i$, $i=1, 2, \dots, s$..., s, represent a basis for $H_1(W; Z_2)$. Let $F = W - \bigcup_{i=1}^{s} S^1 \times D_i^3$. By [A/C]and a boundary collar technique, the imbedding $f_P = f \times id$: $M_P^o = M^o \times CP^2 \subset$ $F \times CP^2 = F_P$ is homotopic to a bi-collared imbedding $f'_P: M^o_P \to F_P$. Let N = $M^{o} \times CP^{2} \times [0, 1]$ be a collar of $f'_{P} M^{o}_{P}$ in F_{P} . Construct $W^{*} = F \cup_{i=1}^{s} D^{2} \times S^{2}_{i}$ identifying $S^1 \times \partial D_i^3$ with $\partial D^2 \times S_i^2$ for all *i*. Then $\beta_2(W^*; Z) = \beta_2(W; Z_2)$ and $\beta_1(W^*; Z_2) = 0$. Let $W_P = W \times CP^2$, $W_P^* = W^* \times CP^2$, $E = W_P$ -Int N and $E^* = W_P$ -Int N and W_P -Int N and W_P -Int N and N W_P^* -Int N. Note that there is an epimorphism $\mu: H_1(E; Z) \rightarrow H_1(E^*; Z)$. We show that $\beta_1(E^*; Z) \neq 0$. Suppose $H_1(E^*; Q) = 0$. By Poincaré duality, $H_7(E^*, Q) = 0$. $\partial E^*; Q = 0.$ But, $H_7(E^*, \partial E^*; Q) \simeq H_7(W_P^*, N; Q) \simeq H_7(W_P^*, M_P^o; Q) \simeq H_3(W^*, M_P^o; Q)$ $M^{\circ}; Q) \otimes H_4(\mathbb{C}P^2; \mathbb{Z})$. Thus, $H_3(W^*, M^{\circ}; Q) = 0$. Since $\partial: H_2(\mathbb{E}^*, \partial \mathbb{E}^*; Q) \rightarrow \mathbb{C}$ $H_1(\partial E^*; Q)$ is onto and $H_2(E^*, \partial E^*; Q) \simeq H_2(W^*_P, N; Q) \simeq H_2(W^*_P, M^o_P; Q) \simeq H_2$ $(W^*, M^o; Q) \otimes H_0(CP^2; Z)$ and $\partial E^* \simeq DM^o \times CP^2$, we see that $\beta_2(W^*, M^o; Z) \ge CP^2$ $\beta_1(DM^o; Z) = 2\beta_1(M; Z)$. Using $H_3(W^*, M^o; Q) = 0$, we obtain from the exact sequence of (W^*, M^o) that $\beta_2(W; Z_2) = \beta_2(W^*; Z) = \beta_2(W^*, M^o; Z) \ge 2\beta_1(M; Z)$, contradicting our assumption. Therefore, $\beta_1(E^*; Z) \neq 0$. Take any indivisible element $\gamma^* \in H^1(E^*; Z)$. Then $\gamma^*(2) \in H^1(E^*; Z_2)$ is not zero. Note that ∂E^* $=\partial E = \partial N = DM_P^o (= DM^o \times CP^2)$. By the Mayer/Vietoris sequence, the natural homomorphism $H^1(N; \mathbb{Z}_2) \oplus H^1(\mathbb{E}^*; \mathbb{Z}_2) \rightarrow H^1(DM_P^o; \mathbb{Z}_2)$ is injective, for $H^1(W_P^*; \mathbb{Z}_2)$ $Z_2 = 0$. Thus, $\gamma^*(2) | DM_P^o \in H^1(DM_P^o; Z_2)$ is non-zero and there are an odd integer d and an indivisible element $\dot{\gamma}_P \in H^1(DM_P^o; Z)$ such that $d\dot{\gamma}_P = \gamma^* | DM_P^o$. Let $\dot{\gamma} \in H^1(DM^o; Z)$ be an indivisible element corresponding to $\dot{\gamma}_P$. We show that $\dot{\gamma}$ is Z_2 -asymmetric. If $\alpha^*(\dot{\gamma}(2)) = \dot{\gamma}(2)$, then $\dot{\gamma}_P(2) = d\dot{\gamma}_P(2)$ lies in the image of the natural homomorphism $H^1(N; \mathbb{Z}_2) \rightarrow H^1(DM_P^o; \mathbb{Z}_2)$, so that the natural homomorphism $H^1(N; Z_2) \oplus H^1(E^*; Z_2) \rightarrow H^1(DM_P^o; Z_2)$ is not injective, a contradiction. Hence $\dot{\gamma}$ is Z_2 -asymmetric. Let $\gamma = \mu^{\ddagger}(\gamma^*) \in H^1(E; Z)$. Then $\gamma \mid$ $DM_P^o = d\dot{\gamma}_P$. By Theorem 1.6, $|\tau_a^{\dot{\gamma}_P}(DM_P^o)| - \kappa_{3P}^{\dot{\gamma}_P}(DM_P^o) \leq \hat{\beta}_4(E;Z) + |\text{sign } E|$ for all a. By [K, 3], $\tau_{a^P}^{\dot{\gamma}}(DM_P^o) = \tau_a^{\dot{\gamma}}(DM^o)$. Directly, $\kappa_{3^P}^{\dot{\gamma}}(DM_P^o) = \kappa_1^{\dot{\gamma}}(DM^o)$. By Lemma 2.2, $\hat{\beta}_4(E; Z) \leq \beta_2(W; Z)$. By the Novikov addition theorem, sign $E = \text{sign } W_P = \text{sign } W$, for sign N = 0. It follows that $|\tau_a^{\gamma}(DM^{\circ})| - \kappa_1^{\gamma}(DM^{\circ}) \leq \beta_2(W; Z) + |\text{sign } W|$ for all a. This completes the proof.

Theorem 3.2. For any positive integers r, r', there are infinitely many M having all of the following properties (0)-(4):

(0) $H_*(M; Z) \cong H_*(\#S^1 \times S^2; Z)$ and $\kappa_1^{\dot{\gamma}}(DM^o) = 0$ and $|\tau_{-1}^{\dot{\gamma}}(DM^o)| \ge r'$ for all

 Z_2 -asymmetric indivisible elements $\dot{\gamma} \in H^1(DM^\circ; Z)$,

(1) M is smoothly type II imbedded in $\#S^2 \times S^2$,

(2) M is smoothly type I imbedded in a smooth 4-manifold W^* with $tH_q(W^*; Z) \cong \bigoplus_{l=1}^{\infty} Z_2$ (if q=1, 2) or 0 (if $q \neq 1, 2$) and $bH_*(W^*; Z) \cong H_*(S^1 \times S^3; Z)$,

(3) M° is smoothly imbedded in a smooth 4-manifold W^{**} with $tH_q(W^{**}; Z) \cong \bigoplus Z_2(if q=1, 2) \text{ or } 0 \ (if q=1, 2) \text{ and } bH_*(W^{**}; Z) \cong H_*(S^4; Z),$

(4) M^{o} is not topologically imbeddable in any W with $\beta_{2}(W; Z_{2}) < 2r$ and $\beta_{2}(W; Z) + |\operatorname{sign} W| < r'$.

REMARK 3.3. We can conclude from Theorem 3.2 that $|\tau_a^{\dot{i}}(DM^{\circ})| - \kappa_1^{\dot{i}}(DM^{\circ})| = \kappa_1^{\dot{i}}(DM^{\circ})$, $a \in [-1, 1)$, do not restrict $\beta_2(W; Z)$ if $\beta_1(M; Z) \leq \beta_2(W; Z_2)/2$ and this inequality can not be replaced by $\beta_1(M; Z) \leq \beta_2(W; Z)/2$, in Theorem 3.1.

3.4. Proof of Theorem 3.2. Let k_i , $i=1, 2, \dots, r$, be invertible knots in S^3 such that $|\sigma(k_i)| \ge r' + \sum_{i=1}^{j-1} |\sigma(k_i)|, j=1, 2, \dots, r$. Let $M_i = M(k_i)$ and $M = \#_{i=1}^r M_i$. Then $H_*(M; Z) \cong H_*(\#S^1 \times S^2; Z)$. Let $\dot{\gamma} \in H^1(DM^o; Z)$ be any Z_2 -asymmetric indivisible element. Directly, $\kappa_1^{i}(DM^{o})=0$. Write $DM^{o}=(M_1\#\bar{M}_1)\#(M_2\#\bar{M}_2)$ $\#\cdots \#(M_r \# \overline{M}_r)$, where $\overline{M}_i^\circ = \alpha M_i^\circ$. Let $M_{i(j)} \# \overline{M}_{i(j)}, j=1, 2, \cdots, s$, be all of the summands of DM° such that $\dot{\gamma} | M_{i(j)} \# \overline{M}_{i(j)}$ is still Z_2 -asymmetric, where $1 \leq i(1)$ $< i(2) < \cdots < i(s) \le r$. Since $\tau_{-1}^{d\dot{\gamma}*}(M_i) = -\tau_{-1}^{d\dot{\gamma}*}(\overline{M}_i) = \sigma(k_i)$ (if d is odd) or 0 (if d is even) for a generator $\dot{\gamma}^* \in H^1(M_i; Z)$ (cf. Lemma 1.3), it follows that $\tau_{-1}^{\dot{\gamma}}(DM^{\circ})$ $= \varepsilon_1 \sigma(k_{i(1)}) + \varepsilon_2 \sigma(k_{i(2)}) + \dots + \varepsilon_s \sigma(k_{i(s)}), \varepsilon_j = \pm 1, \text{ and } |\tau_{-1}(DM')| \ge |\sigma(k_{i(s)})| - \varepsilon_1 \sigma(k_{i(s)})| = -\varepsilon_1 \sigma(k_{i(s)}) + \varepsilon_2 \sigma(k_{i(s)}) + \varepsilon_1 \sigma$ $\sum_{j=1}^{s-1} |\sigma(k_{i(j)})| \ge r'$, showing (0). Since M_i is smoothly imbedded in $S^2 \times S^2$ (cf. 2.7), M is smoothly imbedded in $\#S^2 \times S^2$ (by a type II imbedding), showing (1). Since k_i are invertible, there is an orientation-preserving diffeomorphism hof M with $h_* = -1$ on $H_1(M; Z)$. Let W^* be the mapping torus of h. We have $tH_q(W^*; Z) \cong \bigoplus Z_2 \text{ (if } q=1, 2) \text{ or } 0 \text{ (if } q=1, 2) \text{ and } bH_*(W^*; Z) \cong H_*(S^1 \times S^3; Z),$ showing (2). For (3) we can kill $bH_1(W^*; Z)$ by a surgery on $W^* - M^o$ to obtain a desired W^{**} . For (4) suppose that there is an imbedding from M° to W with $\beta_2(W; Z_2) < 2r \text{ and } \beta_2(W; Z) + |\text{sign } W| < r'$. Since $\beta_1(M; Z) = r > \beta_2(W; Z_2)/2$, we see from (0) and Theorem 3.1 that there is a Z_2 -asymmetric indivisible element $\dot{\gamma} \in H^1(DM^o; Z)$ such that $r' \leq |\tau_{-1}^{\dot{\gamma}}(DM^o)| - \kappa_1^{\dot{\gamma}}(DM^o) \leq \beta_2(W; Z) + |\text{sign}|$ W| < r', which is a contradiction. This completes the proof of Theorem 3.2.

4. Higher dimensional analogues

We consider the case n=4m-1 (m>1) only. The argument of this case is simpler than the case n=3, because any topological imbedding from a compact oriented *n*-manifold to *W* is homotopic to a bi-collared imbedding by [A/C].

Theorem 4.1. Assume that M is topologically type II imbedded in W. Then $\beta_1(M; Z) \leq \beta_2(W; Z)$ or there is an indivisible element $\dot{\gamma} \in H^1(M; Z)$ such that for all a

 $|\tau_a^{\dot{\gamma}}(M)| - \kappa_{2m-1}^{\dot{\gamma}}(M) \le \beta_{2m}(W;Z) + |\text{sign } W| \le 2\beta_{2m}(W;Z)$.

Proof. The proof is analogous to that of Theorem 2.1. We give the outline only. Regard $M \subset W$. We can assume that $H_1(W; Q) = 0$ by a surgery on W-M and M splits W into two manifolds E', E''. Assume $\beta_1(M; Z) > \beta_2(W; Z)$. By the Mayer/Vietoris sequence, we have $\beta_1(E'; Z) + \beta_1(E''; Z) > 0$. Say $\beta_1(E'; Z) > 0$. Let $\gamma \in H^1(E'; Z)$ be any non-zero element. Then $\gamma | M \in H^1(M; Z)$ is non-zero, since the natural map $H_1(M; Q) \rightarrow H_1(E'; Q)$ is onto. The rest of the proof follows from Theorem 1.6, the inequalities $\hat{\beta}_{2m}(E'; Z) + \hat{\beta}_{2m}(E''; Z) \leq \beta_{2m}(W; Z)$, $| \text{sign } E'' | \leq \hat{\beta}_{2m}(E''; Z)$ and the Novikov addition theorem. This completes the proof.

Theorem 4.2. For any positive integers r, r', there are infinitely many smooth M having all of the following properties (0)-(4):

(0) $H_*(M; Z) \cong H_*(\# S^1 \times S^{n-1}; Z)$ and $\kappa_{2m-1}^j(M) = 0$ and $|\tau_{-1}^j(M)| \ge r'$ for all indivisible elements $\dot{\gamma} \in H^1(M; Z)$,

(1) M is smoothly type II imbedded in a smooth (n+1)-manifold homotopy equivalent to $\# S^2 \times S^{n-1}$,

(2) M is smoothly type I imbedded in a smooth (n+1)-manifold W* with tH_q $(W^*; Z) \simeq Z_2$ (if q=1, n-1) or 0 (if $q \neq 1, n-1$) and $bH_*(W^*; Z) \simeq H_*(S^1 \times S^*; Z)$,

(3) M° is smoothly imbedded in a smooth (n+1)-manifold W** with $tH_q(W^{**}; Z) \cong Z_2(if q=1, n-1)$ or 0 (if q=1, n-1) and $bH_*(W^{**}; Z)\cong H_*(S^{n+1}; Z)$,

(4) M is not topologically type II imbeddable in any W with $\beta_2(W; Z) < r$ and $\beta_{2m}(W; Z) + |\operatorname{sign} W| < r'$.

Proof. We take any invertible smooth (n-2)-knot K in S^n with $|\sigma(K)| \ge r'$ (cf. Levine [L]). Construct $F = D^{n+1} \cup D^{n-1} \times D^2$ identifying a tubular neighborhood $T(K) = S^{n-2} \times D^2$ of K in $S^n = \partial D^{n+1}$ with $\partial D^{n-1} \times D^2$. Let $M(K) = \partial F$. Then $H_*(M(K); Z) \cong H_*(S^1 \times S^{n-1}; Z)$ and the double DF is homotopy equivalent to $S^2 \times S^{n-1}$. It is now an easy exercise (cf. 2.7) that the *r*-fold connected sum, M, of M(K) has (0)-(4) by using Theorem 4.1 for (4). This completes the proof.

In the following, we can take M° to be any compact connected oriented *n*-manifold such that ∂M° is non-empty connected and $\beta_1(\partial M^{\circ}; Z)=0$:

Theorem 4.3. Assume that M° is topologically imbedded in W. Then β_1 $(M^{\circ}; Z) \leq \dim_{Z_2} H^2(W; Z) \otimes Z_2$ or there is a Z_2 -asymmetric indivisible element $\dot{\gamma} \in H^1(DM^{\circ}; Z)$ such that for all a

$$|\tau_a^{\dot{\gamma}}(DM^o)| - \kappa_{2m-1}^{\dot{\gamma}}(DM^o) \le \beta_{2m}(W;Z) + |\text{sign } W| \le 2\beta_{2m}(W;Z)$$

Proof. Regard $M^{\circ} \subset W$. We can assume without changing $\beta_{2m}(W; Z)$ and $\dim_{Z_2} H^2(W; Z) \otimes Z_2$ that $\beta_1(W; Z_2) = 0$ by a surgery on $W - M^{\circ}$ (then $\beta_2(W; Z) = \dim_{Z_2} H^2(W; Z) \otimes Z_2$) and M° has a collar $N \simeq M^{\circ} \times [0, 1]$ in W. Let E = M - I Int N. Then $\partial E = DM^{\circ}$. Assume that $\beta_1(M^{\circ}; Z) > \beta_2(W; Z)$. By the Mayer/ Vietoris sequence, the natural homomorphism $H_1(DM^{\circ}; Q) \rightarrow H_1(N; Q) \oplus H_1$ (E; Q) is onto. Since $\beta_1(DM^{\circ}; Z) = 2\beta_1(M^{\circ}; Z)$ and $\beta_1(N; Z) = \beta_1(M^{\circ}; Z)$ and the kernel of this epimorphism is the image of $\partial: H_2(W; Q) \rightarrow H_1(DM^{\circ}; Q)$, we see that $\beta_1(E; Z) > 0$. Let $\gamma \in H^1(E; Z)$ be any indivisible element. Since the natural homomorphism $H^1(N; Z_2) \oplus H^1(E; Z_2) \rightarrow H^1(DM^{\circ}; Z_2)$ is injective, we see that $\gamma \mid DM^{\circ} \in H^1(DM^{\circ}; Z)$ is Z_2 -asymmetric. The desired inequality now follows from Theorem 1.6, the inequality $\hat{\beta}_{2m}(E; Z) \leq \beta_{2m}(W; Z)$ and the Novikov addition theorem, completing the proof.

Theorem 4.4. For any positive integers r, r', there are infinitely many smooth M having all of the following properties (0)-(4):

(0) $H_*(M; Z) \cong H_*(\# S^1 \times S^{n-1}; Z) \text{ and } \kappa_{2m-1}^{i}(DM^o) = 0 \text{ and } |\tau_{-1}^{j}(DM^o)| \ge r' \text{ for } M^{i-1}(DM^o) = 0$

all Z_2 -asymmetric indivisible elements $\dot{\gamma} \in H^1(DM^o; Z)$,

(1) M is smoothly type II imbedded in a smooth (n+1)-manifold homotopy equivalent to $\# S^2 \times S^{n-1}$,

(2) *M* is smoothly type *I* imbedded in a smooth (n+1)-manifold W^* with tH_q $(W^*; Z) \cong \bigoplus_r Z_2$ (if q=1, n-1) or 0 (if $q \neq 1, n-1$) and $bH_*(W^*; Z) \cong H_*(S^1 \times S^n; Z)$,

(3) M^{o} is smoothly imbedded in a smooth (n+1)-manifold W^{**} with $tH_{q}(W^{**};Z) \cong \bigoplus Z_{2}(if q=1, n-1)$ or 0 (if $q \neq 1, n-1$) and $bH_{*}(W^{**};Z) \cong H_{*}(S^{n+1};Z)$,

(4) M° is not topologically imbeddable in any W with $\dim_{\mathbb{Z}_2} H^2(W; Z) \otimes \mathbb{Z}_2 < r$ and $\beta_{2m}(W; Z) + |\operatorname{sign} W| < r'$.

Proof. Take any invertible smooth (n-2)-knots K_i , i=1, 2, ..., r, in S^n such that $|\sigma(K_i)| \ge r' + \sum_{i=1}^{j-1} |\sigma(K_i)|, j=1, 2, ..., r$. The connected sum $M = M(K_1) \# M(K_2) \# \cdots \# M(K_r)$ is proved to have (0)-(4), by using Theorem 4.3 for (4) (cf. 3.4). This completes the proof.

References

- [A/C] F.D. Ancel/J.W. Cannon: The locally flat approximation of cell-like embedding relations, Ann. of Math. 109 (1979), 61-86.
- [C] D. Cooper: Signatures of surfaces in 3-manifolds and applications to knot and link cobordism, Thesis, Warwick University, 1982.
- [F] M.A. Freedman: The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), 357–453.
- [G/L] P.M. Gilmer/C. Livingston: On embedding 3-manifolds in 4-space, Topology 22 (1983), 241-252.
- [K,1] A. Kawauchi: On a 4-manifold homology equivalent to a bouquet of surfaces, Trans. Amer. Math. Soc. 262 (1980), 95-112.
- [K,2] A. Kawauchi: On n-manifolds whose punctured manifolds are imbeddable in (n + 1)-spheres and spherical manifolds, Hiroshima Math. J. 9 (1979), 47–57.
- [K,3] A. Kawauchi: On the signature invariants of infinite cyclic coverings of closed odd dimensional manifolds, Algebraic and Topological Theories-to the meory of Dr. T. MIYATA, Kinokuniya Co. Ltd., 1985, 52-85.
- [K,4] A. Kawauchi: On the signature invariants of infinite cyclic coverings of even dimensional manifolds, Homotopy Theory and Related Topics, Advanced Studies in Pure Math. 9 (1986), 177-188.
- [Ki] R. Kirby: Problems in low dimensional manifold theory, Proc. Symp. Pure Math. 32, part 2 (1978), 273-312.
- [L] J. Levine: An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185-198.
- [Q] F. Quinn: Ends of maps. III: Dimensions 4 and 5,, J. Differential Geom. 17 (1982), 503-521.
- [Sp] E.H. Spanier: Algebraic topology, McGraw Hill, 1966.
- [Su] S. Suzuki: Local knots of 2-spheres in 4-manifolds, Proc. Japan Acad. 45 (1969), 34-38.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan