THE IMBEDDING PROBLEM OF 3-MANIFOLDS INTO 4-MANIFOLDS

Dedicated to Professor Hiroshi Toda on his 60th birthday

Aкio KAWAUCHI

(Received November 25, 1986)

We consider mainly the case $n=3$ of the following general Imbedding Problem in the topological category:

Under what relations between an n-manifold M and an ($n+1$)-manifold W, both closed, connected and oriented, does there exist an imbedding from M to W ?

Since the problem is trivial for $n \leq 2$, the case $n=3$ is the first appearing nontrivial case. In general, for any n, there are two kinds of imbeddings from M to W. An imbedding f from M to W is said to be of type I or II, according to whether $W-f M$ is connected or not. If such an imbedding f exists, then we say that M is type I or II imbedded in W. If f is of type II, then $W-f M$ is seen to have exactly two components, since the boundary map $\partial: H_{1}(W, W-$ $\left.f M ; Z_{2}\right) \rightarrow \tilde{H}_{0}\left(W-f M ; Z_{2}\right)$ is onto and there is a duality isomorphism $H_{1}(W, W-$ $\left.f M ; Z_{2}\right) \cong H^{n}\left(f M ; Z_{2}\right)\left(\cong Z_{2}\right)$ (cf. Spanier [Sp; p. 342]). It is possible to characterize the type of an imbedding $f: M \rightarrow W$ in terms of homology. In fact, f is of type II or I according to whether the homomorphism $f_{*}: H_{n}\left(M ; Z_{2}\right) \rightarrow H_{n}\left(W ; Z_{2}\right)$ is trivial or not. This is proved by examining the following commutative diagram:

$$
\begin{aligned}
& H^{n}\left(W ; Z_{2}\right) \xrightarrow{i^{*}} H^{n}\left(f M ; Z_{2}\right) \\
& \quad \simeq \uparrow \xlongequal{\cong} \quad \stackrel{j_{*}}{\leftrightarrows} H_{1}\left(W, W-f M ; Z_{2}\right) \xrightarrow{\partial} \tilde{H}_{0}\left(W-f M ; Z_{2}\right) \rightarrow 0,
\end{aligned}
$$

where the vertical maps are the duality isomorphisms (cf. [Sp]). For example, if $\beta_{1}(W ; Z)=0$, then we see from the Poincare duality and the universal coefficient theorem that any imbedding from M to W is of type II. A typical example of a type I imbedding is $M \stackrel{\cong}{\leftrightarrows} 1 \times M \subset S^{1} \times M=W$. Let $n=3$. First we show that there is an estimate of $\beta_{2}(W ; Z)$ by $\beta_{1}(M ; Z)$ or by certain integral invariants of an infinite cyclic covering of M, provided that M is topologically type

II imbedded in W. By this estimate, we find infinitely many M which are smoothly type I imbedded in some smooth 4-manifolds having the Q-homology of $S^{1} \times S^{3}$, but not topologically type II imbeddable in any W with $\beta_{2}(W ; Z)<r$, for each $r>0$ (See Theorem 2.5). This suggsets that the treatment of type I imbeddings is more difficult than that of type II imbeddings, because if M is type II imbedded in W, then M is also type I imbedded in some W^{\prime} with $\beta_{2}\left(W^{\prime} ; Z\right)=\beta_{2}(W ; Z)$ [For example, take $W^{\prime}=W \# S^{1} \times S^{3}$]. We can avoid this difficulty by considering punctured imbeddings instead of type I imbeddings. We denote by M^{o} a compact punctured manifold of M. Then our main result is that there is an estimate of $\beta_{2}\left(W ; Z_{2}\right)$ by $\beta_{1}(M ; Z)$ or by certain integral invariants of an infinite cyclic covering of the double $D M^{o}$, provided that M^{o} is topologically imbedded in W. This estimate enables us to find infinitely many M such that M^{o} are not topologically imbeddable in any W with $\beta_{2}\left(W ; Z_{2}\right)<r$, for each $r>0$ (See Theorem 3.2). This research was initially planned in the piecewise-linear category (cf. $[\mathrm{K}, 1],[\mathrm{K}, 2]$), but after Freedman's work [F], it became a standard fact that there is a great difference between the piecewise-linear and topological imbeddabilities. In fact, Freedman showed that all homology 3-spheres are imbedded in S^{4} by locally flat topological imbeddings, but, as it is well-known, not by piecewise-linear imbeddings. This is the reason why we are converted to the topological category.

In §1 we describe briefly the signature theorem for an infinite cyclic covering of a compact oriented $4 m$-manifold with boundary, given in [K, 4]. From this, we derive an estimate of the $4 m$-manifold by integral invariants of an infinite cyclic covering of the boundary. Several properties on an infinite cyclic covering of a closed ($4 m-1$)-manifold are also given here. In §2 we discuss the estimate of a type II imbedding and its consequence, and in $\S 3$, the estimate of a punctured imbedding and its consequence. In $\S 4$ we remark that similar results hold in the case $n=4 m-1(m>1)$.

1. The signature theorem for an infinite cyclic covering

Consider a pair $(B, \dot{\gamma})$ where B is a compact oriented ($4 m-1$)-manifold and $\dot{\gamma} \in H^{1}(B ; Z)$. Using the infinite cyclic covering space \tilde{B} of B associated with $\dot{\gamma}$, we have defined in $[\mathrm{K}, 3]$ integral invariants, $\sigma_{a}^{\dot{\gamma}}(B), a \in[-1,1]$, of the proper oriented homotopy equivalence class of $(B, \dot{\gamma})$. The invariant $\sigma_{a}^{\dot{\gamma}}(B)$ is called the local signature of $(B, \dot{\gamma})$ at a and vanishes except a finite number of a. The sum $\sum_{a \in[-1,1]} \sigma_{a}^{\dot{\gamma}}(B)$ is called the signature of $(B, \dot{\gamma})$ and denoted by $\sigma^{\dot{\gamma}}(B)$. Next, consider a pair (X, γ) where X is a compact oriented $4 m$-manifold and $\gamma \in H^{1}$ $(X ; Z)$. Using the infinite cyclic covering space \tilde{X} of X associated with γ, we have also defined in $[\mathrm{K}, 4]$ two kinds of integral invariants, $\tau_{a-0}^{\gamma}(X)$ for $a \in$ ($-1,1]$ and $\tau_{a+0}^{\gamma}(X)$ for $a \in[-1,1)$, of the proper oriented homotopy equivalence
class of (X, γ). The following theorem, which we call the signature theorem, was proved in [K, 4]:

Theorem 1.1. Assume that $(B, \dot{\gamma})$ is the boundary of (X, γ) with a compact oriented $4 m$-manifold X and $\gamma \in H^{1}(X ; Z)$. Then

$$
\tau_{a-0}^{\gamma}(X)-\operatorname{sign} X=\sum_{x \in[a, 1]} \sigma_{x}^{\dot{\gamma}}(B) \quad \text { and } \quad \tau_{a+0}^{\gamma}(X)-\operatorname{sign} X=\sum_{x \in[a, 1]} \sigma_{x}^{\dot{\gamma}}(B) .
$$

Note that $\sigma_{-1}^{\dot{\dot{ }}}(B)$ does not appear in the above identities. To simplify the notations, we denote $\tau_{a+0}^{\gamma}(X)$ by $\tau_{a}^{\gamma}(X)$ and the sum $\sum_{x \in(a, 1]} \sigma_{x}^{\dot{\gamma}}(B)$ by $\tau_{a}^{\dot{\gamma}}(B)$. Let $\tau_{1}^{\gamma}(X)$ $=\lim _{a \rightarrow 1-0} \tau_{a}^{\gamma}(X)$ and $\tau_{1}^{\dot{\gamma}}(B)=\lim _{a \rightarrow 1-0} \dot{\tau_{a}}(B)\left(=\sigma_{1}^{\dot{\gamma}}(B)\right)$. Then the signature theorem implies the identity

$$
\tau_{a}^{\gamma}(X)-\operatorname{sign} X=\tau_{a}^{\dot{\gamma}}(B)
$$

for all $a \in[-1,1]$. Note that $\sigma_{-1}^{\dot{\dot{-}}}(B)+\tau_{-1}^{\dot{\dot{ }}}(B)=\sigma^{\dot{\gamma}}(B)$. Let (Y, A) be a pair such that Y is a compact manifold and A is a compact submanifold. Let ($\widetilde{Y}, A)$ be the infinite cyclic covering space pair of (Y, A) associated with an element $\gamma \in H^{1}(Y ; Z)$. Let $\langle t\rangle$ be the covering transformation group with a specified generator t. Let $\Lambda=Z\langle t\rangle$ and $\Gamma=Q\langle t\rangle$. Since $H_{*}(\tilde{Y}, A ; Z)$ is a finitely generated Λ-module and Λ is Noetherian, we see that the kernel of $t-1: H_{*}(\widetilde{Y}, \tilde{A} ; Z)$ $\rightarrow H_{*}(\tilde{Y}, \tilde{A} ; Z)$ is a finitely generated abelian group. We denote this rank by κ_{*}^{γ} $(Y, A ; Z)$. It also equals the Q-dimension of the kernel of $t-1: H_{*}(\tilde{Y}, A ; Q)$ $\rightarrow H_{*}(\tilde{Y}, A ; Q)$. The following is easily obtained (cf. [K, 1; Lemma 1.1]):

Lemma 1.2. For any integer $d \neq 0, \kappa_{*}^{d \gamma}(Y, A)=\kappa_{*}^{\gamma}(Y, A)$.
Let $T H_{*}(\widetilde{Y}, \tilde{A} ; Q)$ be the Γ-torsion part of $H_{*}(\widetilde{Y}, \tilde{A} ; Q)$, which is a finitely generated Γ-module, and $B H_{*}(\widetilde{Y}, \tilde{A} ; Q)=H_{*}(\widetilde{Y}, \tilde{A} ; Q) / T H_{*}(\widetilde{Y}, \tilde{A} ; Q)$, which is Γ-free. We denote this rank by $\beta_{*}^{\gamma}(Y, A ; Q)$. We use the signature theorem to prove the following:

Lemma 1.3. Let B be a closed oriented (4m-1)-manifold and $\dot{\gamma} \in H^{1}(B ; Z)$ and d be a non-zero integer.
(1) For a real number θ such that $\cos d \theta \neq \pm 1$ and $\sigma_{\cos d \theta}^{\dot{\gamma}}(B)=0$, we have $\tau_{\cos \theta}^{d \dot{\gamma}}(B)$ $=\tau_{\cos d \theta}^{\dot{\gamma}}(B)$ and $\sigma_{\text {cos } \theta}^{d \dot{\gamma}}(B)=0$,
(2) $\sigma^{d \dot{\gamma}}(B)=\sigma^{\dot{\gamma}}(B)$ (if d is odd) or 0 (if d is even).

The following is direct from Lemma 1.3:
Corollary 1.4. (1) $\tau_{1}^{d \dot{\gamma}}(B)=\tau_{1}^{\dot{\gamma}}(B)$,
(2) $\tau_{-1}^{d \dot{\gamma}}(B)=\tau_{-1}^{\dot{\dot{\gamma}}}(B)$ (if d is odd) or $\tau_{1}^{\dot{\gamma}}(B)$ (if d is even),
(3) $\sigma_{-1}^{d \dot{\gamma}}(B)=\sigma_{-1}^{\dot{\gamma}}(B)$ (if d is odd) or $-\sigma_{1}^{\dot{\gamma}}(B)$ (if d is even),
(4) If $\cos d \theta \neq \pm 1$, then $\sigma_{\cos \theta}^{d \dot{\gamma}}(B)=\operatorname{sign}(\sin \theta \sin |d| \theta) \sigma_{\cos d \theta}^{\dot{\gamma}}(B)$,
(5) If $\cos d \theta= \pm 1$ but $\cos \theta \neq \pm 1$, then $\sigma_{\cos \theta}^{d \dot{\gamma}}(B)=0$.
1.5. Proof of Lemma 1.3. First, assume that $(B, \dot{\gamma})$ is the boundary of a pair (X, γ). Let \tilde{X} and $\tilde{X}^{(d)}$ be the infinite cyclic covering spaces of X associated with γ and $d \gamma$, respectively. Let $A(t)$ be a t-Hermitian matrix, which is the Γ intersection matrix associated with a Γ-basis $e_{1}, e_{2}, \cdots, e_{r}$ of $B H_{2 m}(\tilde{X} ; Q)$. By [$\mathrm{K}, 1$; Lemma 1.1], we can consider $e_{1}, e_{2}, \cdots, e_{r}$ as a Γ-basis for $B H_{2 m}\left(\tilde{X}^{(d)} ; Q\right)$, associated with which the Γ-intersection matrix is $A\left(t^{d}\right)$. Since $\sigma_{\cos d \theta}^{\dot{\gamma}}(B)=0$, it follows from the signature theorem that

$$
\begin{aligned}
\boldsymbol{\tau}_{\cos d \theta}^{\dot{\gamma}}(B) & =\tau_{\cos d \theta \pm 0}^{\gamma}(X)-\operatorname{sign} X \\
& =\lim _{d \vartheta \rightarrow d \theta \pm 0} \operatorname{sign} A\left(\mathrm{e}^{i d \gamma}\right)-\operatorname{sign} X \\
& =\lim _{\nu \rightarrow+0 \pm 0} \operatorname{sign} A\left(\left(\mathrm{e}^{i \nu}\right)^{d}\right)-\operatorname{sign} X \\
& =\boldsymbol{\tau}_{\cos \theta \pm 0}^{d \gamma}(X)-\operatorname{sign} X \\
& =\boldsymbol{\tau}_{\cos \theta}^{d \boldsymbol{\gamma}}(B) \quad \text { and } \quad \sigma_{\cos \theta}^{d i}(B)=0,
\end{aligned}
$$

showing (1). For (2) note that $\sigma^{\dot{\gamma}}(B)$ is the α-invariant of the double covering space of B associated with the Z_{2}-reduction $\dot{\gamma}(2) \in H^{1}\left(B ; Z_{2}\right)$ of $\dot{\gamma}$ (See [K, 4; Lemma 4.3]). Since it is similar for $\sigma^{d \dot{\gamma}}(B)$, we see that $\sigma^{d \dot{\gamma}}(B)=\sigma^{\dot{\gamma}}(B)$ (if d is odd) or 0 (if d is even), showing (2). If ($B, \dot{\gamma}$) is not a boundary, then some multiple $N(B, \dot{\gamma})(N>0)$ is a boundary (cf. [K, 4 ; Remark 1.6]) and we obtain the identities (1), (2) on $N(B, \dot{\gamma})$ in place of $(B, \dot{\gamma})$. Dividing them by N, we obtain the desired (1), (2). This completes the proof.

For an abelian group H, let $t H$ be the torsion part and $b H=H / t H$. Let X be a compact oriented $4 m$-manifold with boundary B. Let $\hat{\beta}_{*}(X ; Z)$ be the rank of the cokernel of the natural homomorphism $H_{*}(B ; Z) \rightarrow H_{*}(X ; Z)$. Note that any intersection matrix on $b H_{2 m}(X ; Z)$ has the rank $\hat{\beta}_{2 m}(X ; Z)$, by Poincare duality.

Theorem 1.6. Assume that for some non-zero integer $d,(B, d \dot{\gamma})$ is the boundary of a pair (X, γ) with a compact oriented $4 m$-manifold X and $\gamma \in H^{1}$ $(X ; Z)$. Then for all a,

$$
\left|\tau_{\Delta}^{\dot{\gamma}}(B)\right|-\kappa_{2 m-1}^{\dot{\gamma}}(B) \leq \hat{\beta}_{2 m}(X ; Z)+|\operatorname{sign} X| .
$$

Proof. By Lemma 1.2, $\kappa_{2 m-1}^{\dot{\gamma}}(B)=\kappa_{2 m-1}^{d \dot{\gamma}}(B)$. By Lemma 1.3(1),

$$
\max _{a \in[-1,1]} \tau_{a}^{\dot{\gamma}}(B)=\max _{a \in[-1,1]} \tau_{a}^{d \dot{\gamma}}(B) \quad \text { and } \min _{a \in[-1,1]} \tau_{a}^{\dot{\gamma}}(B)=\min _{a \in[-1,1]} \tau_{a}^{d \dot{\gamma}}(B) .
$$

Thus, we may assume $d=1$. Let (\tilde{X}, \tilde{B}) be the infinite cyclic covering space pair of (X, B) associated with γ. Let $\hat{\beta}_{*}^{\gamma}(X ; Q)$ be the Γ-rank of the cokernel of the natural homomorphism $H_{*}(\widetilde{B} ; Q) \rightarrow H_{*}(\tilde{X} ; Q)$. By the exact sequence of
(\tilde{X}, \tilde{B}), we have

$$
\begin{aligned}
& \hat{\beta}_{2 m}^{\gamma}(X ; Q)=\Sigma_{q=0}^{2 m}(-1)^{q} \beta_{q}^{\gamma}(X, B ; Q)+\Sigma_{q=0}^{2 m-1}(-1)^{q} \beta_{q}^{\dot{\gamma}}(B ; Q) \\
& \quad+\Sigma_{q=0}^{2 m-1}(-1)^{q+1} \beta_{q}^{\gamma}(X ; Q) .
\end{aligned}
$$

From the Wang exact sequence

$$
\begin{aligned}
& \rightarrow H_{q}(\tilde{X}, \tilde{B} ; Q) \xrightarrow{t-1} H_{q}(\tilde{X}, \tilde{B} ; Q) \xrightarrow{p_{*}} H_{q}(X, B ; Q) \rightarrow H_{q-1}(\tilde{X}, \tilde{B} ; Q) \\
& \xrightarrow{t-1} H_{q-1}(\tilde{X}, \tilde{B} ; Q) \rightarrow
\end{aligned}
$$

we see that $\beta_{q}(X, B ; Z)=\beta_{q}^{\gamma}(X, B ; Q)+\kappa_{q}^{\gamma}(X, B)+\kappa_{q-1}^{\gamma}(X, B)$. Similarly, β_{q} $(B ; Z)=\beta_{q}^{\dot{\gamma}}(B ; Q)+\kappa_{q}^{\dot{\gamma}}(B)+\kappa_{q-1}^{\dot{\gamma}}(B)$ and $\beta_{q}(X ; Z)=\beta_{q}^{\gamma}(X ; Q)+\kappa_{q}^{\gamma}(X)+\kappa_{q-1}^{\gamma}(X)$. Note that $\hat{\beta}_{2 m}(X ; Z)=\Sigma_{q=0}^{2 m}(-1)^{q} \beta_{q}(X, B ; Z)+\Sigma_{q=0}^{2 m-1}(-1)^{q} \beta_{q}(B ; Z)+\Sigma_{q=0}^{2 m-1}$ $(-1)^{q+1} \beta_{q}(X ; Z)$. Then we have

$$
\begin{aligned}
& \hat{\beta}_{2 m}^{\gamma}(X ; Q)=\hat{\beta}_{2 m}(X ; Z)-\kappa_{2 m}^{\gamma}(X, B)+\kappa_{2 m-1}^{\dot{\gamma}}(B)-\kappa_{2 m-1}^{\gamma}(X) \\
& \quad \leq \hat{\beta}_{2 m}(X ; Z)+\kappa_{2 m-1}^{\dot{\gamma}}(B) .
\end{aligned}
$$

The inequality $\left|\tau_{a}^{\gamma}(X)\right| \leq \hat{\beta}_{2 m}^{\gamma}(X ; Q)$ is directly obtained from the definition of $\tau_{a}^{\gamma}(X)(\mathrm{cf} .[\mathrm{K}, 4])$. Therefore, by the signature theorem,

$$
\begin{aligned}
\left|\tau_{a}^{\dot{\gamma}}(B)\right| & \leq\left|\tau_{a}^{\gamma}(X)\right|+|\operatorname{sign} X| \\
& \leq \hat{\beta}_{2 m}^{\gamma}(X ; Q)+|\operatorname{sign} X| \\
& \leq \hat{\beta}_{2 m}(X ; Z)+\kappa_{2 m-1}^{\dot{\gamma}}(B)+|\operatorname{sign} X| .
\end{aligned}
$$

This completes the proof.
Corollary 1.7. Under the assumption of Theorem 1.6,

$$
\left|\tau_{a}^{\dot{\gamma}}(B)\right| \leq \beta_{2 m}(X ; Z)+|\operatorname{sign} X|
$$

for all a.
Proof. By the proof of Theorem 1.6, $\left|\tau_{a}^{\dot{\gamma}}(B)\right| \leq\left|\tau_{a}^{\gamma}(X)\right|+|\operatorname{sign} X|$ and $\mid \tau_{a}^{\gamma}$ $(X) \mid \leq \hat{\beta}_{2 m}^{\gamma}(X ; Q) \leq \beta_{2 m}^{\gamma}(X ; Q) \leq \beta_{2 m}^{\gamma}(X ; Q)+\kappa_{2 m}^{\gamma}(X)+\kappa_{2 m-1}^{\gamma}(X)=\beta_{2 m}(X ; Z)$, completing the proof.

Remark 1.8. In Theorem 1.6 and Corollary 1.7 , if we replace $\boldsymbol{\tau}_{a}^{\dot{\gamma}}(B)$ with $\sigma^{\dot{\gamma}}(B)$, then the resulting inequalities do not hold in general. Some counterexample was given in $[\mathrm{K}, 4 ; 4.5]$.

2. Type II imbeddings

Theorem 2.1. Assume that M is topologically type II imbedded in W. Then $\beta_{1}(M ; Z) \leq \beta_{2}(W ; Z) / 2$ or there is an indivisible element $\dot{\gamma} \in H^{1}(M ; Z)$ such
that for all a

$$
\left|\tau_{a}^{\dot{\gamma}}(M)\right|-\kappa_{1}^{\dot{\gamma}}(M) \leq \beta_{2}(W ; Z)+|\operatorname{sign} W| \leq 2 \beta_{2}(W ; Z) .
$$

Proof. Assume that $\beta_{1}(M ; Z)>\beta_{2}(W ; Z) / 2$. Regard $f: M \subset W$. Since it is of type II and $H_{1}(W, W-M ; Z) \cong H^{3}(M ; Z) \cong Z$, the boundary map $\partial: H_{1}$ $(W, W-M ; Z) \rightarrow \tilde{H}_{0}(W-M ; Z)$ is an isomorphism, so that the natural homomorphism $H_{1}(W-M ; Z) \rightarrow H_{1}(W ; Z)$ is onto. Using Quinn's handle straightening lemma [Q], we can kill $H_{1}(W ; Q)$ without changing $\beta_{2}(W ; Z)$ by a surgery on $W-M$. We assume $\beta_{1}(W ; Z)=0$. By Ancel/Cannon [A/C], the imbedding $f_{P}=f \times \mathrm{id}: M_{P}=M \times C P^{2} \subset W \times C P^{2}=W_{P}$ is homotopic to a bi-collared imbedding $f_{P}^{\prime}: M_{P} \rightarrow W_{P}$, which is also of type II. Let $f_{P}^{\prime} M_{P}=M_{P}^{\prime} . M_{P}^{\prime}$ splits W_{P} into two compact connected submanifolds $E^{\prime}, E^{\prime \prime}$. To see that $\beta_{1}\left(W_{P}-M_{P}^{\prime} ; Z\right) \neq 0$, suppose that $H_{1}\left(W_{P}-M_{P}^{\prime} ; Q\right)=0$. Then $H_{1}\left(E^{\prime} ; Q\right)=H_{1}\left(E^{\prime \prime} ; Q\right)=0$ and $\beta_{2}\left(E^{\prime}, M_{P}^{\prime}\right.$; $Z) \geq \beta_{1}\left(M_{P}^{\prime} ; Z\right)$ and $\beta_{2}\left(E^{\prime \prime}, M_{P}^{\prime} ; Z\right) \geq \beta_{1}\left(M_{P}^{\prime} ; Z\right)$. Hence $\beta_{2}(W, M ; Z)=\beta_{2}\left(W_{P}\right.$, $\left.M_{P}^{\prime} ; Z\right)=\beta_{2}\left(E^{\prime}, M_{P}^{\prime} ; Z\right)+\beta_{2}\left(E^{\prime \prime}, M_{P}^{\prime} ; Z\right) \geq 2 \beta_{1}\left(M_{P}^{\prime} ; Z\right)=2 \beta_{1}(M ; Z)$. Since H_{3} $(W ; Q)=H_{1}(W ; Q)=0$, we see from the exact sequence of (W, M) that β_{2} $(W, M ; Z)=\beta_{1}(M ; Z)+\beta_{2}(W ; Z)-\beta_{2}(M ; Z)=\beta_{2}(W ; Z)$, so that $\beta_{2}(W ; Z) \geq 2 \beta_{1}$ $(M ; Z)$, contradicting our assumption. Therefore, $\beta_{1}\left(W_{P}-M_{P}^{\prime} ; Z\right)=\beta_{1}\left(E^{\prime} ; Z\right)$ $+\beta_{1}\left(E^{\prime \prime} ; Z\right) \neq 0$. Say $\beta_{1}\left(E^{\prime} ; Z\right) \neq 0$. Let $\gamma \in H^{1}\left(E^{\prime} ; Z\right)$ be any non-zero element. Since the natural map $H_{1}\left(M_{P}^{\prime} ; Q\right) \rightarrow H_{1}\left(E^{\prime} ; Q\right)$ is onto, $\dot{\gamma}_{P}^{\prime}=\gamma \mid M_{P}^{\prime} \in H^{1}$ $\left(M_{P}^{\prime} ; Z\right)$ is not zero. Write $\dot{\gamma}_{P}^{\prime}=d \dot{\gamma}_{P}$ for an integer $d \neq 0$ and an indivisible element $\dot{\gamma}_{P}$. By Theorem 1.6,

$$
\left|\tau_{a}^{\dot{\gamma}_{P}}\left(M_{P}^{\prime}\right)\right|-\mu_{3}^{\dot{\gamma}_{P}}\left(M_{P}^{\prime}\right) \leq \hat{\beta}_{4}\left(E^{\prime} ; Z\right)+\left|\operatorname{sign} E^{\prime}\right| .
$$

Let $\dot{\gamma} \in H^{1}(M ; Z)$ correspond to $\dot{\gamma}_{P}$. Directly, $\kappa_{3}^{\dot{\gamma}_{P}}\left(M_{P}^{\prime}\right)=\kappa_{1}^{\dot{\gamma}}(M)$. By $[\mathrm{K}, 3]$, $\boldsymbol{\tau}_{a}^{\dot{\gamma}_{P}}\left(M_{P}^{\prime}\right)=\tau_{a}^{\dot{\gamma}}(M)$. Let $H^{\prime} \subset H_{4}\left(E^{\prime} ; Q\right)$ and $H^{\prime \prime} \subset H_{4}\left(E^{\prime \prime} ; Q\right)$ be Q-subspaces of dimensions $\hat{\beta}_{4}\left(E^{\prime} ; Z\right)$ and $\hat{\beta}_{4}\left(E^{\prime \prime} ; Z\right)$ on which Q-intersection matrices are nonsingular, respectively.

Lemma 2.2. The composite $H^{\prime} \oplus H^{\prime \prime} \subset H_{4}\left(E^{\prime} ; Q\right) \oplus H_{4}\left(E^{\prime \prime} ; Q\right) \xrightarrow{i_{*}^{\prime}+i_{*}^{\prime \prime}} H_{4}$ $\left(W_{P} ; Q\right) \xrightarrow{\text { projection }} H_{2}(W ; Q) \otimes H_{2}\left(C P^{2} ; Z\right)$ is injective, where i_{*}^{\prime} and $i_{*}^{\prime \prime}$ are natural maps.

Assuming this lemma, we have $\hat{\beta}_{4}\left(E^{\prime} ; Z\right)+\hat{\beta}_{4}\left(E^{\prime \prime} ; Z\right) \leq \beta_{2}(W ; Z)$. By the Novikov addition theorem, sign $E^{\prime}+\operatorname{sign} E^{\prime \prime}=\operatorname{sign} W_{P}=\operatorname{sign} W$. Since $\left|\operatorname{sign} E^{\prime \prime}\right| \leq$ $\hat{\beta}_{4}\left(E^{\prime \prime} ; Z\right)$, it follows that

$$
\begin{aligned}
& \left|\tau_{\partial}^{\dot{\gamma}}(M)\right|-\kappa_{1}^{\dot{\gamma}}(M) \leq \hat{\beta}_{4}\left(E^{\prime} ; Z\right)+\left|\operatorname{sign} E^{\prime}\right| \leq \beta_{2}(W ; Z)-\hat{\beta}_{4}\left(E^{\prime \prime} ; Z\right)+ \\
& |\operatorname{sign} W|+\left|\operatorname{sign} E^{\prime \prime}\right| \leq \beta_{2}(W ; Z)+|\operatorname{sign} W| .
\end{aligned}
$$

This completes the proof except the proof of Lemma 2.2.
2.3. Proof of Lemma 2.2. Using the intersection pairing $\operatorname{Int}_{W_{P}}$ on $H_{4}\left(W_{P} ; Q\right)$, we see that $i_{*}^{\prime}+i_{*}^{\prime \prime} \mid H^{\prime} \oplus H^{\prime \prime}$ is injective, whose image we denote by H. Let $x \in H$ be non-zero and write $x=x_{0}+x_{2}+x_{4}$ with $x_{i} \in H_{i}(W ; Q) \otimes H_{4-i}\left(C P^{2} ; Z\right)$. If $x_{4} \neq$ 0 , then there is an element $x_{0}^{\prime} \in H_{0}(W ; Q) \otimes H_{4}\left(C P^{2} ; Z\right)$ with $\operatorname{Int}_{W_{P}}\left(x_{4}, x_{0}^{\prime}\right) \neq 0$. Then $\operatorname{Int}_{W_{P}}\left(x, x_{0}^{\prime}\right)=\operatorname{Int}_{W_{P}}\left(x_{4}, x_{0}^{\prime}\right) \neq 0$. But, x_{0}^{\prime} is represented by a cycle in M_{P}^{\prime} and hence $\operatorname{Int}_{W_{P}}\left(H, x_{0}^{\prime}\right)=0$, which is a contradiction. Thus, $x_{4}=0$ and $x=x_{0}+$ x_{2}. Note that there is an element $x^{\prime}=x_{0}^{\prime}+x_{2}^{\prime}$ in H with $\operatorname{Int}_{W_{P}}\left(x, x^{\prime}\right) \neq 0$. Then $\operatorname{Int}_{W_{P}}\left(x, x^{\prime}\right)=\operatorname{Int}_{W_{P}}\left(x_{2}, x_{2}^{\prime}\right) \neq 0$, and $x_{2} \neq 0$. This completes the proof of Lemma 2.2.

Since any imbedding from M to W with $\beta_{1}(W ; Z)=0$ is of type II, the following is direct from Theorem 2.1:

Corollary 2.4. If M is topologically imbedded in any W with $H_{*}(W ; Q) \cong$ $H_{*}\left(S^{4} ; Q\right)$ and $\beta_{1}(M ; Z) \neq 0$, then there is an indivisible element $\dot{\gamma} \in H^{1}(M ; Z)$ such that $\left|\tau_{a}^{\dot{\gamma}}(M)\right| \leq \kappa_{1}^{\dot{\gamma}}(M)$ for all a.

This answers in part Problem 3.20 of Kirby's Problem List [Ki] (cf. [G/L]). Note that there are many M which are smoothly imbedded in S^{4} and have $\left|\tau_{a}^{\dot{\gamma}}(M)\right|=\kappa_{1}^{\dot{\gamma}}$ $(M) \neq 0$ for an indivisible $\dot{\gamma}$ and all a. For example, let M be the torus bundle over S^{1} with monodromy matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $\dot{\gamma}$, the element represented by the bundle projection. Directly, we see that M is smoothly imbedded in S^{4} and $\left|\tau_{a}^{\dot{\gamma}}(M)\right|=\kappa_{1}^{\dot{\gamma}}(M)=1$ for all a.

Theorem 2.5. For any positive integers r, r^{\prime}, there are infinitely many M having all of the following properties (0)-(4):
(0) $H_{*}(M ; Z) \cong H_{*}\left(\# \|_{\dot{r}}^{1} \times S^{2} ; Z\right)$ and $\kappa_{1}^{\dot{\gamma}}(M)=0$ and $\left|\tau_{-1}^{\dot{\gamma}}(M)\right| \geq r^{\prime}$ for all indivisible elements $\dot{\gamma} \in H^{1}(M ; Z)$,
(1) M is smoothly type II imbedded in $\# S^{2} \times S^{2}$,
(2) M is smoothly type I imbedded in a smooth 4-manifold W^{*} with $t H_{q}\left(W^{*} ; Z\right) \cong$ Z_{2} (if $q=1,2$) or $0($ if $q \neq 1,2)$ and $b H_{*}\left(W^{*} ; Z\right) \cong H_{*}\left(S^{1} \times S^{3} ; Z\right)$,
(3) M^{0} is smoothly imbedded in a smooth 4-manifold $W^{* *}$ with $t H_{q}\left(W^{* *} ; Z\right) \simeq Z_{2}$ (if $q=1,2$) or $0($ if $q \neq 1,2)$ and $b H_{*}\left(W^{* *} ; Z\right) \cong H_{*}\left(S^{4} ; Z\right)$,
(4) M is not topologically type II imbeddable in any W with $\beta_{2}(W ; Z)<2 r$ and $\beta_{2}(W ; Z)+|\operatorname{sign} W|<r^{\prime}$.

Remark 2.6. We can conclude from Theorem 2.5 that Theorem 2.1 can not apply to type I imbeddings and if $\beta_{1}(M ; Z) \leq \beta_{2}(W ; Z) / 2$, then $\left|\tau_{a}^{\dot{\gamma}}(M)\right|-$ $\kappa_{1}^{\dot{\gamma}}(M), a \in[-1,1]$, do not, in general, restrict $\beta_{2}(W ; Z)$ in Theorem 2.1. Cooper [C] has obtained a result corresponding to (4) in the piecewise-linear category.
2.7. Proof of Theorem 2.5. Let k be any invertible knot in S^{3} with $|\sigma(k)| \geq r^{\prime}$, where $\sigma(k)$ denotes the signature of the knot k. Let $M(k)$ be the 0 -surgery manifold of k. Note that $\sigma^{\dot{\gamma}^{*}}(M(k))=\sigma(k)$ and $\sigma_{-1}^{\dot{\gamma}^{*}}(M(k))=\kappa_{1}^{\dot{\gamma}^{*}}(M(k))=0$ for any generator $\left.\dot{\gamma}^{*} \in H^{1} M(k) ; Z\right) \cong Z$. By Lemma 1.3, $\tau_{-1}^{d \dot{\gamma}_{1}^{*}}(M(k))=\tau_{-1}^{\dot{\gamma}_{1}^{*}}(M(k))=\sigma(k)$ (if d is odd) or 0 (if d is even), for $\sigma_{-1}^{d \gamma^{*}}(M(k))=\sigma_{-1}^{\gamma^{*}}(M(k))=0$. Let M be the r fold connected sum of $M(k)$. Then $H_{*}(M ; Z) \cong H_{*}\left(\# S^{1} \times S^{2} ; Z\right)$ and $\mu_{1}^{\dot{\gamma}}(M)=0$ and $\left|\tau_{-1}^{\dot{\gamma}_{1}}(M)\right| \geq s|\sigma(k)| \geq r^{\prime}$ for any indivisible element $\dot{\gamma} \in H^{1}(M ; Z)$, where s is the number of the summands $M(k)$ of M such that $\dot{\gamma} \mid M(k)$ is an odd multiple of $\dot{\gamma}^{*}$. This shows (0). For (1) note that there is a piecewise-linearly imbedded 2-sphere $S^{2}(k)$ in $S^{2} \times S^{2}$ which is homotopic to $S^{2} \times q$ and has just one nonlocally flat point represented by the knot k (See Suzuki [Su]). Since $S^{2}(k)$ has the self-intersection number 0 , we see that the boundary of a (smooth) regular neighborhood of $S^{2}(k)$ in $S^{2} \times S^{2}$ is diffeomorphic to $M(k)$, so that M is smoothly imbedded in \#S $S^{2} \times S^{2}$, showing (1). For (2) we use that k is invertible.
From this, we have an orientation-preserving diffeomorphism h of $M(k)$ with $h_{*}=-1$ on $H_{1}(M(k) ; Z)$. Let W be the mapping torus of h. Then $t H_{q}(W ; Z)$ $\cong Z_{2}$ (if $q=1,2$) or 0 (if $q \neq 1,2$) and $b H_{*}(W ; Z) \cong H_{*}\left(S^{1} \times S^{3} ; Z\right)$. We may consider that h sends a 3-disk D^{3} in $M(k)$ to itself by the identity. Let $W^{* *}$ be a closed 4-manifold obtained from W by replacing $S^{1} \times D^{3} \subset W$ by $D^{2} \times \partial D^{3}$. We have $t H_{q}\left(W^{* *} ; Z\right) \cong Z_{2}($ if $q=1,2)$ or $0($ if $q \neq 1,2)$ and $b H_{*}\left(W^{* *} ; Z\right) \cong H_{*}\left(S^{4} ; Z\right)$. $M(k)^{\circ}=M(k)$-Int D^{3} is smoothly imbedded in $W^{* *}$ and the connected sum $M(k) \# T_{g}, T_{g}$ the solid torus of genus g, is smoothly imbedded in $M(k)^{\circ}$ and hence in $W^{* *}$. A boundary-disk sum, M^{o}, of r copies of $M(k)^{0}$ is smoothly imbedded in $\left(M(k) \# T_{g}\right) \times[0,1]$ with $g=r-1$. Thus, using a collar of $M(k) \# T_{g}$ in $W^{* *}$, we see that M^{0} is smoothly imbedded in $W^{* *}$. Let W^{*} be a closed 4-manifold obtained from $W^{* *}$ by replacing a tubular neighborhood $T\left(\partial M^{0}\right)=S^{2} \times D^{2}$ of ∂M^{0} in $W^{* *}$ by $D^{3} \times \partial D^{2}$, where the framing of $T\left(\partial M^{o}\right)=S^{2} \times D^{2}$ is chosen so that some $S^{2} \times p\left(p \in \partial D^{2}\right)$ is a boundary-parallel 2 -sphere in M^{0}. We see that M is smoothly type I imbedded in W^{*} and $t H_{q}\left(W^{*} ; Z\right) \cong Z_{2}($ if $q=1,2)$ or 0 (if $q \neq 1,2)$ and $b H_{*}\left(W^{*} ; Z\right) \cong H_{*}\left(S^{1} \times S^{3} ; Z\right)$, showing (2) and (3). For (4) suppose that M is topologically type II imbedded in W with $\beta_{2}(W ; Z)<2 r$ and β_{2} $(W ; Z)+|\operatorname{sign} W|<r^{\prime}$. Since $\beta_{1}(M ; Z)=r>\beta_{2}(W ; Z) / 2$, we have, by (0) and Theorem 2.1, an indivisible element $\dot{\gamma} \in H^{1}(M ; Z)$ such that

$$
r^{\prime} \leq\left|\tau_{-1}^{\dot{\gamma}}(M)\right|-\kappa_{1}^{\dot{\gamma}}(M) \leq \beta_{2}(W ; Z)+|\operatorname{sign} W|<r^{\prime},
$$

which is a contradiction. This completes the proof.

3. Punctured imbeddings

Let α be the standard reflection on the double $D M^{0}$ of M°.

Definition. An element $\dot{\gamma} \in H^{1}\left(D M^{0} ; Z\right)$ is Z_{2}-asymmetric if the Z_{2}-reduction $\dot{\gamma}(2) \in H^{1}\left(D M^{o} ; Z_{2}\right)$ of $\dot{\gamma}$ has $\alpha^{*}(\dot{\gamma}(2)) \neq \dot{\gamma}(2)$.

Theorem 3.1. Assume that M^{0} is topologically imbedded in W. Then β_{1} $(M ; Z) \leq \beta_{2}\left(W ; Z_{2}\right) / 2$ or there is a Z_{2}-asymmetric indivisible element $\dot{\gamma} \in H^{1}\left(D M^{0} ; Z\right)$ such that for all a

$$
\left|\tau_{a}^{\dot{\gamma}}\left(D M^{o}\right)\right|-\kappa_{1}^{\dot{\gamma}}\left(D M^{o}\right) \leq \beta_{2}(W ; Z)+|\operatorname{sign} W| \leq 2 \beta_{2}(W ; Z)
$$

Proof. Assume that $\beta_{1}(M ; Z)>\beta_{2}\left(W ; Z_{2}\right) / 2$. Regard $f: M^{\circ} \subset W$. Since $H_{1}\left(W, W-M^{o} ; Z\right) \cong H^{3}\left(M^{o} ; Z\right)=0$, the natural homomorphism $H_{1}\left(W-M^{o} ; Z\right)$ $\rightarrow H_{1}(W ; Z)$ is onto. By [Q], we can kill $H_{1}(W ; Q)$ without changing $\beta_{2}(W ; Z)$ by a surgery on $W-M^{o}$. We assume $\beta_{1}(W ; Z)=0$. Choose mutually disjoint $S^{1} \times D_{i}^{3}, i=1,2, \cdots, s$, in $W-M^{0}$ (by using [Q]) so that the cores $S^{1} \times 0_{i}, i=1,2$, \cdots, s, represent a basis for $H_{1}\left(W ; Z_{2}\right)$. Let $F=W-\cup_{i=1}^{s} S^{1} \times D_{i}^{3}$. By [A / C] and a boundary collar technique, the imbedding $f_{P}=f \times \mathrm{id}: M_{P}^{o}=M^{\circ} \times C P^{2} \subset$ $F \times C P^{2}=F_{P}$ is homotopic to a bi-collared imbedding $f_{P}^{\prime}: M_{P}^{o} \rightarrow F_{P}$. Let $N=$ $M^{o} \times C P^{2} \times[0,1]$ be a collar of $f_{P}^{\prime} M_{P}^{o}$ in F_{P}. Construct $W^{*}=F \cup_{i=1}^{s} D^{2} \times S_{i}^{2}$ identifying $S^{1} \times \partial D_{i}^{3}$ with $\partial D^{2} \times S_{i}^{2}$ for all i. Then $\beta_{2}\left(W^{*} ; Z\right)=\beta_{2}\left(W ; Z_{2}\right)$ and $\beta_{1}\left(W^{*} ; Z_{2}\right)=0$. Let $W_{P}=W \times C P^{2}, W_{P}^{*}=W^{*} \times C P^{2}, E=W_{P}$-Int N and $E^{*}=$ W_{P}^{*}-Int N. Note that there is an epimorphism $\mu: H_{1}(E ; Z) \rightarrow H_{1}\left(E^{*} ; Z\right)$. We show that $\beta_{1}\left(E^{*} ; Z\right) \neq 0$. Suppose $H_{1}\left(E^{*} ; Q\right)=0$. By Poincare duality, $H_{7}\left(E^{*}\right.$, $\left.\partial E^{*} ; Q\right)=0$. But, $H_{7}\left(E^{*}, \partial E^{*} ; Q\right) \cong H_{7}\left(W_{P}^{*}, N ; Q\right) \cong H_{7}\left(W_{P}^{*}, M_{P}^{o} ; Q\right) \cong H_{3}\left(W^{*}\right.$, $\left.M^{o} ; Q\right) \otimes H_{4}\left(C P^{2} ; Z\right)$. Thus, $H_{3}\left(W^{*}, M^{o} ; Q\right)=0$. Since $\partial: H_{2}\left(E^{*}, \partial E^{*} ; Q\right) \rightarrow$ $H_{1}\left(\partial E^{*} ; Q\right)$ is onto and $H_{2}\left(E^{*}, \partial E^{*} ; Q\right) \cong H_{2}\left(W_{P}^{*}, N ; Q\right) \cong H_{2}\left(W_{P}^{*}, M_{P}^{o} ; Q\right) \cong H_{2}$ $\left(W^{*}, M^{o} ; Q\right) \otimes H_{0}\left(C P^{2} ; Z\right)$ and $\partial E^{*} \cong D M^{0} \times C P^{2}$, we see that $\beta_{2}\left(W^{*}, M^{o} ; Z\right) \geq$ $\beta_{1}\left(D M^{o} ; Z\right)=2 \beta_{1}(M ; Z)$. Using $H_{3}\left(W^{*}, M^{o} ; Q\right)=0$, we obtain from the exact sequence of $\left(W^{*}, M^{o}\right)$ that $\beta_{2}\left(W ; Z_{2}\right)=\beta_{2}\left(W^{*} ; Z\right)=\beta_{2}\left(W^{*}, M^{o} ; Z\right) \geq 2 \beta_{1}(M ; Z)$, contradicting our assumption. Therefore, $\beta_{1}\left(E^{*} ; Z\right) \neq 0$. Take any indivisible element $\gamma^{*} \in H^{1}\left(E^{*} ; Z\right)$. Then $\gamma^{*}(2) \in H^{1}\left(E^{*} ; Z_{2}\right)$ is not zero. Note that ∂E^{*} $=\partial E=\partial N=D M_{P}^{o}\left(=D M^{o} \times C P^{2}\right)$. By the Mayer/Vietoris sequence, the natural homomorphism $H^{1}\left(N ; Z_{2}\right) \oplus H^{1}\left(E^{*} ; Z_{2}\right) \rightarrow H^{1}\left(D M_{P}^{o} ; Z_{2}\right)$ is injective, for $H^{1}\left(W_{P}^{*}\right.$; $\left.Z_{2}\right)=0$. Thus, $\gamma^{*}(2) \mid D M_{P}^{o} \in H^{1}\left(D M_{P}^{o} ; Z_{2}\right)$ is non-zero and there are an odd integer d and an indivisible element $\dot{\gamma}_{P} \in H^{1}\left(D M_{P}^{o} ; Z\right)$ such that $d \dot{\gamma}_{P}=\gamma^{*} \mid D M_{P}^{o}$. Let $\dot{\gamma} \in H^{1}\left(D M^{o} ; Z\right)$ be an indivisible element corresponding to $\dot{\gamma}_{P}$. We show that $\dot{\gamma}$ is Z_{2}-asymmetric. If $\alpha^{*}(\dot{\gamma}(2))=\dot{\gamma}(2)$, then $\dot{\gamma}_{P}(2)=d \dot{\gamma}_{P}(2)$ lies in the image of the natural homomorphism $H^{1}\left(N ; Z_{2}\right) \rightarrow H^{1}\left(D M_{P}^{o} ; Z_{2}\right)$, so that the natural homomorphism $H^{1}\left(N ; Z_{2}\right) \oplus H^{1}\left(E^{*} ; Z_{2}\right) \rightarrow H^{1}\left(D M_{P}^{o} ; Z_{2}\right)$ is not injective, a contradiction. Hence $\dot{\gamma}$ is Z_{2}-asymmetric. Let $\gamma=\mu^{*}\left(\gamma^{*}\right) \in H^{1}(E ; Z)$. Then $\gamma \mid$ $D M_{P}^{o}=d \dot{\gamma}_{P}$. By Theorem 1.6, $\left|\tau_{a}^{\dot{\gamma}_{P}}\left(D M_{P}^{o}\right)\right|-\kappa_{3}^{\dot{\gamma}_{P}}\left(D M_{P}^{o}\right) \leq \hat{\beta}_{4}(E ; Z)+|\operatorname{sign} E|$ for all a. By $[\mathrm{K}, 3], \boldsymbol{\tau}_{a}^{\dot{\gamma}_{P}}\left(D M_{P}^{o}\right)=\boldsymbol{\tau}_{a}^{\dot{\gamma}}\left(D M^{o}\right)$. Directly, $\kappa_{3}^{\dot{\gamma}} P\left(D M_{P}^{o}\right)=\kappa_{1}^{\dot{\gamma}}\left(D M^{o}\right)$. By Lemma 2.2, $\hat{\beta}_{4}(E ; Z) \leq \beta_{2}(W ; Z)$. By the Novikov addition theorem,
$\operatorname{sign} E=\operatorname{sign} W_{P}=\operatorname{sign} W$, for $\operatorname{sign} N=0$. It follows that $\left|\tau_{a}^{\dot{\gamma}}\left(D M^{v}\right)\right|-\kappa_{1}^{\dot{\gamma}}\left(D M^{o}\right)$ $\leq \beta_{2}(W ; Z)+|\operatorname{sign} W|$ for all a. This completes the proof.

Theorem 3.2. For any positive integers r, r^{\prime}, there are infinitely many M having all of the following properties (0)-(4):
(0) $H_{*}(M ; Z) \cong H_{*}\left(\# S^{1} \times S^{2} ; Z\right)$ and $\kappa_{1}^{\dot{\mathrm{Y}}}\left(D M^{o}\right)=0$ and $\left|\tau_{-1}^{\dot{\dot{\gamma}}}\left(D M^{o}\right)\right| \geq r^{\prime}$ for all Z_{2}-asymmetric indivisible elements $\dot{\gamma} \in H^{1}\left(D M^{o} ; Z\right)$,
(1) M is smoothly type II imbedded in $\# S^{2} \times S^{2}$,
(2) M is smoothly type I imbedded in a smooth 4-manifold W^{*} with $t H_{q}\left(W^{*} ; Z\right)$ $\cong \oplus Z_{2}$ (if $q=1,2$) or $0($ if $q \neq 1,2)$ and $b H_{*}\left(W^{*} ; Z\right) \cong H_{*}\left(S^{1} \times S^{3} ; Z\right)$,
(3) M^{o} is smoothly imbedded in a smooth 4-manifold $W^{* *}$ with $t H_{q}\left(W^{* *} ; Z\right) \cong$ $\underset{r}{\oplus} Z_{2}($ if $q=1,2)$ or $0($ if $q \neq 1,2)$ and $b H_{*}\left(W^{* *} ; Z\right) \cong H_{*}\left(S^{4} ; Z\right)$,
(4) M^{0} is not topologically imbeddable in any W with $\beta_{2}\left(W ; Z_{2}\right)<2 r$ and β_{2} $(W ; Z)+|\operatorname{sign} W|<r^{\prime}$.

Remark 3.3. We can conclude from Theorem 3.2 that $\left|\tau_{a}^{\dot{\gamma}}\left(D M^{o}\right)\right|-\kappa_{1}^{\dot{\gamma}}$ $\left(D M^{o}\right), a \in[-1,1)$, do not restrict $\beta_{2}(W ; Z)$ if $\beta_{1}(M ; Z) \leq \beta_{2}\left(W ; Z_{2}\right) / 2$ and this inequality can not be replaced by $\beta_{1}(M ; Z) \leq \beta_{2}(W ; Z) / 2$, in Theorem 3.1.
3.4. Proof of Theorem 3.2. Let $k_{i}, i=1,2, \cdots, r$, be invertible knots in S^{3} such that $\left|\sigma\left(k_{j}\right)\right| \geq r^{\prime}+\sum_{i=1}^{j=1}\left|\sigma\left(k_{i}\right)\right|, j=1,2, \cdots, r$. Let $M_{i}=M\left(k_{i}\right)$ and $M=\#_{i=1}^{r} M_{i}$. Then $H_{*}(M ; Z) \cong H_{*}\left(\# S^{1} \times S^{2} ; Z\right)$. Let $\dot{\gamma} \in H^{1}\left(D M^{o} ; Z\right)$ be any Z_{2}-asymmetric indivisible element. Directly, $\kappa_{1}^{\dot{\gamma}}\left(D M^{o}\right)=0$. Write $D M^{o}=\left(M_{1} \# \bar{M}_{1}\right) \#\left(M_{2} \# \bar{M}_{2}\right)$ $\# \cdots \#\left(M_{r} \# \bar{M}_{r}\right)$, where $\bar{M}_{i}^{o}=\alpha M_{i}^{o}$. Let $M_{i(j)} \# \bar{M}_{i(j)}, j=1,2, \cdots, s$, be all of the summands of $D M^{o}$ such that $\dot{\gamma} \mid M_{i(j)} \# \bar{M}_{i(j)}$ is still Z_{2}-asymmetric, where $1 \leq i(1)$ $<i(2)<\cdots<i(s) \leq r$. Since $\tau_{-1}^{d_{1}^{*}}\left(M_{i}\right)=-\tau_{-1}^{\dot{q}^{*}}\left(\bar{M}_{i}\right)=\sigma\left(k_{i}\right)$ (if d is odd) or 0 (if d is even) for a generator $\dot{\gamma}^{*} \in H^{1}\left(M_{i} ; Z\right)$ (cf. Lemma 1.3), it follows that $\tau_{-1}^{\dot{\gamma}_{1}}\left(D M^{o}\right)$ $=\varepsilon_{1} \sigma\left(k_{i(1)}\right)+\varepsilon_{2} \sigma\left(k_{i(2)}\right)+\cdots+\varepsilon_{s} \sigma\left(k_{i(s)}\right), \varepsilon_{j}= \pm 1$, and $\left|\tau_{-1}\left(D M^{o}\right)\right| \geq\left|\sigma\left(k_{i(s)}\right)\right|-$ $\sum_{j=1}^{s-1}\left|\sigma\left(k_{i(j)}\right)\right| \geq r^{\prime}$, showing (0). Since M_{i} is smoothly imbedded in $S^{2} \times S^{2}$ (cf. 2.7), M is smoothly imbedded in $\# S^{2} \times S^{2}$ (by a type II imbedding), showing (1). Since k_{i} are invertible, there is an orientation-preserving diffeomorphism h of M with $h_{*}=-1$ on $H_{1}(M ; Z)$. Let W^{*} be the mapping torus of h. We have $t H_{q}\left(W^{*} ; Z\right) \cong \bigoplus_{r} Z_{2}$ (if $q=1,2$) or 0 (if $q \neq 1,2$) and $b H_{*}\left(W^{*} ; Z\right) \cong H_{*}\left(S^{1} \times S^{3} ; Z\right)$, showing (2). For (3) we can kill $b H_{1}\left(W^{*} ; Z\right)$ by a surgery on $W^{*}-M^{o}$ to obtain a desired $W^{* *}$. For (4) suppose that there is an imbedding from M^{0} to W with $\beta_{2}\left(W ; Z_{2}\right)<2 r$ and $\beta_{2}(W ; Z)+|\operatorname{sign} W|<r^{\prime} . \quad$ Since $\beta_{1}(M ; Z)=r>\beta_{2}\left(W ; Z_{2}\right) / 2$, we see from (0) and Theorem 3.1 that there is a Z_{2}-asymmetric indivisible element $\dot{\gamma} \in H^{1}\left(D M^{o} ; Z\right)$ such that $r^{\prime} \leq\left|\tau_{-1}^{\dot{\gamma}}\left(D M^{o}\right)\right|-\mu_{1}^{\dot{\gamma}}\left(D M^{o}\right) \leq \beta_{2}(W ; Z)+\mid \operatorname{sign}$ $W \mid<r^{\prime}$, which is a contradiction. This completes the proof of Theorem 3.2.

4. Higher dimensional analogues

We consider the case $n=4 m-1(m>1)$ only. The argument of this case is simpler than the case $n=3$, because any topological imbedding from a compact oriented n-manifold to W is homotopic to a bi-collared imbedding by $[A / C]$.

Theorem 4.1. Assume that M is topologically type $I I$ imbedded in W. Then $\beta_{1}(M ; Z) \leq \beta_{2}(W ; Z)$ or there is an indivisible element $\dot{\gamma} \in H^{1}(M ; Z)$ such that for all a

$$
\left|\tau_{a}^{\dot{\gamma}}(M)\right|-\kappa_{2 m-1}^{\dot{\gamma}}(M) \leq \beta_{2 m}(W ; Z)+|\operatorname{sign} W| \leq 2 \beta_{2 m}(W ; Z) .
$$

Proof. The proof is analogous to that of Theorem 2.1. We give the outline only. Regard $M \subset W$. We can assume that $H_{1}(W ; Q)=0$ by a surgery on $W-M$ and M splits W into two manifolds $E^{\prime}, E^{\prime \prime}$. Assume $\beta_{1}(M ; Z)>\beta_{2}$ $(W ; Z)$. By the Mayer/Vietoris sequence, we have $\beta_{1}\left(E^{\prime} ; Z\right)+\beta_{1}\left(E^{\prime \prime} ; Z\right)>0$. Say $\beta_{1}\left(E^{\prime} ; Z\right)>0$. Let $\gamma \in H^{1}\left(E^{\prime} ; Z\right)$ be any non-zero element. Then $\gamma \mid M \in$ $H^{1}(M ; Z)$ is non-zero, since the natural map $H_{1}(M ; Q) \rightarrow H_{1}\left(E^{\prime} ; Q\right)$ is onto. The rest of the proof follows from Theorem 1.6, the inequalities $\hat{\beta}_{2 m}\left(E^{\prime} ; Z\right)+\hat{\beta}_{2 m}$ $\left(E^{\prime \prime} ; Z\right) \leq \beta_{2 m}(W ; Z),\left|\operatorname{sign} E^{\prime \prime}\right| \leq \hat{\beta}_{2 m}\left(E^{\prime \prime} ; Z\right)$ and the Novikov addition theorem. This completes the proof.

Theorem 4.2. For any positive integers r, r^{\prime}, there are infinitely many smooth M having all of the following properties (0)-(4):
(0) $H_{*}(M ; Z) \cong H_{*}\left(\#{ }_{r} S^{1} \times S^{n-1} ; Z\right)$ and $\kappa_{2 m-1}^{\dot{\gamma}}(M)=0$ and $\left|\tau_{-1}^{\dot{\tau_{1}}}(M)\right| \geq r^{\prime}$ for all indivisible elements $\dot{\gamma} \in H^{1}(M ; Z)$,
(1) M is smoothly type II imbedded in a smooth ($n+1$)-manifold homotopy equivalent to $\# S^{2} \times S^{n-1}$,
(2) M is smoothly type I imbedded in a smooth ($n+1$)-manifold W^{*} with $t H_{q}$ $\left(W^{*} ; Z\right) \cong Z_{2}($ if $q=1, n-1)$ or $0($ if $q \neq 1, n-1)$ and $b H_{*}\left(W^{*} ; Z\right) \cong H_{*}\left(S^{1} \times\right.$ $S^{n} ; Z$,
(3) M^{o} is smoothly imbedded in a smooth ($n+1$)-manifold $W^{* *}$ with $t H_{q}\left(W^{* *} ; Z\right)$ $\simeq Z_{2}($ if $q=1, n-1)$ or $0($ if $q \neq 1, n-1)$ and $b H_{*}\left(W^{* *} ; Z\right) \cong H_{*}\left(S^{n+1} ; Z\right)$,
(4) M is not topologically type II imbeddable in any W with $\beta_{2}(W ; Z)<r$ and $\beta_{2 m}(W ; Z)+|\operatorname{sign} W|<r^{\prime}$.

Proof. We take any invertible smooth ($n-2$)-knot K in S^{n} with $|\sigma(K)| \geq r^{\prime}$ (cf. Levine [L]). Construct $F=D^{n+1} \cup D^{n-1} \times D^{2}$ identifying a tubular neighborhood $T(K)=S^{n-2} \times D^{2}$ of K in $S^{n}=\partial D^{n+1}$ with $\partial D^{n-1} \times D^{2}$. Let $M(K)=\partial F$. Then $H_{*}(M(K) ; Z) \cong H_{*}\left(S^{1} \times S^{n-1} ; Z\right)$ and the double $D F$ is homotopy equivalent to $S^{2} \times S^{n-1}$. It is now an easy exercise (cf. 2.7) that the r-fold connected sum, M, of $M(K)$ has (0)-(4) by using Theorem 4.1 for (4). This completes the
proof.
In the following, we can take M^{o} to be any compact connected oriented n-manifold such that ∂M^{o} is non-empty connected and $\beta_{1}\left(\partial M^{o} ; Z\right)=0$:

Theorem 4.3. Assume that M^{0} is topologically imbedded in W. Then β_{1} $\left(M^{0} ; Z\right) \leq \operatorname{dim}_{Z_{2}} H^{2}(W ; Z) \otimes Z_{2}$ or there is a Z_{2}-asymmetric indivisible element $\dot{\gamma} \in$ $H^{1}\left(D M^{0} ; Z\right)$ such that for all a

$$
\left|\tau_{a}^{\dot{\gamma}}\left(D M^{o}\right)\right|-\kappa_{2 m-1}^{\dot{\gamma}}\left(D M^{v}\right) \leq \beta_{2 m}(W ; Z)+|\operatorname{sign} W| \leq 2 \beta_{2 m}(W ; Z) .
$$

Proof. Regard $M^{\circ} \subset W$. We can assume without changing $\beta_{2 m}(W ; Z)$ and $\operatorname{dim}_{z_{2}} H^{2}(W ; Z) \otimes Z_{2}$ that $\beta_{1}\left(W ; Z_{2}\right)=0$ by a surgery on $W-M^{o}$ (then $\beta_{2}(W ; Z)$ $\left.=\operatorname{dim}_{Z_{2}} H^{2}(W ; Z) \otimes Z_{2}\right)$ and M^{o} has a collar $N \cong M^{o} \times[0,1]$ in W. Let $E=M-$ Int N. Then $\partial E=D M^{o}$. Assume that $\beta_{1}\left(M^{o} ; Z\right)>\beta_{2}(W ; Z)$. By the Mayer/ Vietoris sequence, the natural homomorphism $H_{1}\left(D M^{o} ; Q\right) \rightarrow H_{1}(N ; Q) \oplus H_{1}$ $(E ; Q)$ is onto. Since $\beta_{1}\left(D M^{o} ; Z\right)=2 \beta_{1}\left(M^{o} ; Z\right)$ and $\beta_{1}(N ; Z)=\beta_{1}\left(M^{o} ; Z\right)$ and the kernel of this epimorphism is the image of $\partial: H_{2}(W ; Q) \rightarrow H_{1}\left(D M^{o} ; Q\right)$, we see that $\beta_{1}(E ; Z)>0$. Let $\gamma \in H^{1}(E ; Z)$ be any indivisible element. Since the natural homomorphism $H^{1}\left(N ; Z_{2}\right) \oplus H^{1}\left(E ; Z_{2}\right) \rightarrow H^{1}\left(D M^{o} ; Z_{2}\right)$ is injective, we see that $\gamma \mid D M^{0} \in H^{1}\left(D M^{o} ; Z\right)$ is Z_{2}-asymmetric. The desired inequality now follows from Theorem 1.6, the inequality $\hat{\beta}_{2 m}(E ; Z) \leq \beta_{2 m}(W ; Z)$ and the Novikov addition theorem, completing the proof.

Theorem 4.4. For any positive integers r, r^{\prime}, there are infinitely many smooth M having all of the following properties (0)-(4):
(0) $H_{*}(M ; Z) \cong H_{*}\left(\# S^{1} \times S^{n-1} ; Z\right)$ and $\kappa_{2 m-1}^{\dot{\gamma}}\left(D M^{o}\right)=0$ and $\left|\tau_{-1}^{\dot{\psi}}\left(D M^{o}\right)\right| \geq r^{\prime}$ for all Z_{2}-asymmetric indivisible elements $\dot{\gamma} \in H^{1}\left(D M^{0} ; Z\right)$,
(1) M is smoothly type II imbedded in a smooth ($n+1$)-manifold homotopy equivalent to $\underset{r}{\#} S^{2} \times S^{n-1}$,
(2) M is smoothly type I imbedded in a smooth ($n+1$)-manifold W^{*} with $t H_{q}$ $\left(W^{*} ; Z\right) \cong \oplus Z_{2}($ if $q=1, n-1)$ or $0($ if $q \neq 1, n-1)$ and $b H_{*}\left(W^{*} ; Z\right) \cong H_{*}\left(S^{1} \times\right.$ $S^{n} ; Z$),
(3) M^{o} is smoothly imbedded in a smooth $(n+1)$-manifold $W^{* *}$ with $t H_{q}\left(W^{* *} ; Z\right)$ $\cong \underset{r}{\oplus} Z_{2}$ (if $q=1, n-1$) or $0($ if $q \neq 1, n-1)$ and $b H_{*}\left(W^{* *} ; Z\right) \cong H_{*}\left(S^{n+1} ; Z\right)$,
(4) M^{o} is not topologically imbeddable in any W with $\operatorname{dim}_{z_{2}} H^{2}(W ; Z) \otimes Z_{2}<r$ and $\beta_{2 m}(W ; Z)+|\operatorname{sign} W|<r^{\prime}$.

Proof. Take any invertible smooth ($n-2$)-knots $K_{i}, i=1,2, \cdots, r$, in S^{n} such that $\left|\sigma\left(K_{j}\right)\right| \geq r^{\prime}+\sum_{i=1}^{j=1}\left|\sigma\left(K_{i}\right)\right|, j=1,2, \cdots, r$. The connected sum $M=$ $M\left(K_{1}\right) \# M\left(K_{2}\right) \# \cdots \# M\left(K_{r}\right)$ is proved to have (0)-(4), by using Theorem 4.3 for (4) (cf. 3.4). This completes the proof.

References

[A/C] F.D. Ancel/J.W. Cannon: The locally flat approximation of cell-like embedding relations, Ann. of Math. 109 (1979), 61-86.
[C] D. Cooper: Signatures of surfaces in 3-manifolds and applications to knot and link cobordism, Thesis, Warwick University, 1982.
[F] M.A. Freedman: The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), 357-453.
[G/L] P.M. Gilmer/C. Livingston: On embedding 3-manifolds in 4-space, Topology 22 (1983), 241-252.
[K,1] A. Kawauchi: On a 4-manifold homology equivalent to a bouquet of surfaces, Trans. Amer. Math. Soc. 262 (1980), 95-112.
[K,2] A. Kawauchi: On n-manifolds whose punctured manifolds are imbeddable in ($n+$ +1)-spheres and spherical manifolds, Hiroshima Math. J. 9 (1979), 47-57.
[K,3] A. Kawauchi: On the signature invariants of infinite cyclic coverings of closed odd dimensional manifolds, Algebraic and Topological Theories-to the meory of Dr. T. MIYATA, Kinokuniya Co. Ltd., 1985, 52-85.
[K,4] A. Kawauchi: On the signature invariants of infinite cyclic coverings of even dimensional manifolds, Homotopy Theory and Related Topics, Advanced Studies in Pure Math. 9 (1986), 177-188.
[Ki] R. Kirby: Problems in low dimensional manifold theory, Proc. Symp. Pure Math. 32, part 2 (1978), 273-312.
[L] J. Levine: An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185-198.
[Q] F. Quinn: Ends of maps. III: Dimensions 4 and 5,, J. Differential Geom. 17 (1982), 503-521.
[Sp] E.H. Spanier: Algebraic topology, McGraw Hill, 1966.
[Su] S. Suzuki: Local knots of 2-spheres in 4-manifolds, Proc. Japan Acad. 45 (1969), 34-38.

Department of Mathematics Osaka City University
Sugimoto, Sumiyoshi-ku
Osaka 558, Japan

