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Introduction. Let Fq be a finite field with q elements, of characteristic

p. Let G be a connected, reductive linear algebraic group defined over Fqy

with Frobenius endomorphism F, and let GF denote the group of F-fixed points

of G. In [13], we investigated, under the assumption that the centre Z of G

is connected, the rationality-properties of the characters \°F of GF induced by
certain linear characters λ of a Sylow ^-subgroup of GF and, using the results

obtained there, proved some propositions concerning the Schur indices of the

semisimple or regular irreducible characters of GF. In this paper, we shall

treat the general case, that is, the case that Z is not necessarily connected. The

main results are stated and proved in § 2. In particular, we get the following

(see Corollary 1 to Proposition 1, §2):

Theorem. Any irreducible Deligne-Lusztig character ±Rχ of GF ([4]) has
the Schur index at most two over the field Q of rational numbers.

I wish to thank Profesosr N. Iwahori who kindly taught me properties of

the Cartan matrices. I also thank Professor S. Endo for his kind advices during

the preparation of the paper. The referee gave me valuable comments for the

old version of the paper. Finally, I wish to dedicate this paper to the late
Professor T. Miyata.

1. Some lemmas. Let G and F be as above. Let B be an .F-stable

Borel subgroup of G with the unipotent radical U and T an F-stable maximal

torus of jB. For a root a of G (with respect to T), let UΛ denote the root sub-
group of G associated with α. Let U. be the subgroup of U generated by the

non-simple positive root subgroups UΛ (the ordering on the roots is the one

determined by B). Then U/U. is commutative and can be regarded as the

direct product U C^»> where Δ is the set of simple roots. As FU. = U., F acts
αseΔ

on U/U. = f [ UΛ and this action is the one induced by the maps F: UΛ-+FUΛ,
*eΔ

Let p be the permutation on the roots a given by FUc6=UβlΛ and let /
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be the set of orbits of p on Δ. For / e/, put U~ Π UΛ. Then UjU.= Π Ui
ίe=/

and, as each C/, is ^-stable, we have UF/U.F=J]L C/f. For each z'e/, put
iel

q—qi** and take one simple root <yf in ί. Then, for each /, there is an isomor-
phism φ, of C/f with the additive group of Fq. such that φ, (ίwί~"1)=ίyl (£)φl (tt)
for we C/f and ZeΓF (cf. Proof of 11.8 of Steinberg [17] and Carter [3], pp.

76-77). Thus the family φ— (φf ), e/ defines an isomorphism

( i ) φ
«e e

so that, for w— Π #» with wt e C/f for £ e/ and t e T1^, we have
ίe/

(2) Φ(ft«-1) = Π λ, (*)Φ,<", )
ίe/

Now let Λ be the set of characters λ of UF such that λ| U. = 1 and ΛO the
set of characters λ in Λ such that λ| C/f Φl for all ίe/. Then we have

Lemma 1. Let λ e ΛQ. ΓA^w λβF w multiplicity-free (GeΓfand-Graev,
Yokonuma, Steinberg) and any irreducible Deligne-Lusztig character ±Rτ of GF

occurs in \°F (Delίgne-Lusztig).

By embedding G in the connected, reductive group Gλ=(Gx T)l{(z, z~l)\
ZZΞZ} (Z is the centre of G) with connected centre and the same derived group

([4], 5.18) and (as to the second assertion) using properties of Green functions
(cf. [3], 7.2.8 and 7.7), we are reduced to the case that Z is connected. In this
case the lemma is proved in [4], Theorem 10.7 (or in [3], 8.1.3 and 8.4.5).

Our purpose is to study the rationality of the characters \°F

y λ ̂  Λ. Suppose
p=2. Then, by (1), UFJU.F is an elementary abelian 2-group, so that, for any
λeΛ, λ, hence λG^ is realiazable in Q. Therefore, from now on, we shall
assume that pφ2.

Lemma 2. Let v be a primitive element of Fp (i.e. Fp=ζι>y). Then there
exists an element t in TF such that tp~l=l (possibly t(p~l^/2=l) and a(t)=v2 for all
simple roots α.

It suffices to prove the lemma for the derived group G' of G, hence for
the simply-connected covering of G'. If G is a simply-connected semisimple
group, then we have G=G1X xGm, where, for !<^'<^m, G, is an jP-stable

simply-connected semisimple closed subgroup of G whose simple components
are permuted by F cyclically, and the truth of the lemma for each G, will imply
that for G. If G=G1xFG1X xF»-1G1, where Gλ is an FΛ-stable simply-
connected simple closed subgroup of G for some ra^l, then T and By hence
the set of simple roots has the corresponding decomposition, and it is easy to

see that the truth of the lemma for Gl with Frobenius map Fn implies that for
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G (cf. [17], 11.2 (b)). Thus we are reduced to the case that G is a simply-con-

nected simple group.

Suppose therefore that G is such a group. Let X(T)=Hom(T> Gm) and

Y(T)=Hom(Gm, T), and let < , >: X(T)x Y(T)-+Z be the natural pairing

given by <%, %v>=degree of %o%v for X<=X(T) and %VGΞ Y(T). Let a19 — , at

be the simple roots (as to the numbering of the simple roots, we follow that of

Bourbaki [2]) and let a,ι •• ,α/ v be the corresponding simple coroots. Then,

as G is simply-connected, we have Y(T)=^aιy •• ,α//>z, so that the mapping
/

h: (x19 •••, #/)->Π cίϊ(Xi) defines an isomorphism of (Gm)1 with T. Then, for

l^/^/, we have

where «#,-, tf/»ι^/f/^/ is the Cartan matrix of G. We define an action of F on

y(T) by F(%v)=Fo%v for %VEΞ F(Γ). Then we have

for l^/^/ (see [15], 11.4.7). It readily follows that, for

we have ίV=ί if and only if Xj=xqi if pα,— α, . Thus the proof of the lemma

has been reduced to solving the following problem :

Find an element t=h(xly •••, #/) with x^Fp for l<^i<£l such taht Π xj

<*i'"ϊ>=v2

y=ι
for l^ i^l and that Xj=xq

{ (hence xj=xi) if pα, =ofy.

When G is adjoint, by the proof of Theorem 1 of [13], there is an element

s in TF of order p—l such that α(j) = ι/ for all simple roots a. Hence it

suffices to take t=s2. Suppose therefore that G is not adjoint. Then, as^Φ2,

G is any one of the following types (Steinberg [17], 11.6; also see [3], 1.19):

A, (/£!), B, (1^2), C, (/Ξ>2), D, (7^3), £6, £7, *A, (ί^l), «Z), (/^3), 3£>4)
2£6. In each case, an element t of !ΓF having the property of the lemma (i.e. an

solution t of the problem above) can be given as follows (the Cartan matrices

are listed up in the appendices of [2]) :

Type _ t _

A,*A, %„-,*,) *,.=*'•<'-"»> (l£i£/)

B, A(*ι, •••,*!-!,
C, *(*!,-,*,)

3D4 h(v6, v10, v6, v6

This completes the proof of Lemma 2.
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Lemma 3. Assume that q is an even power of p. Then there exists an
element t in TF such that t2(p~l>=\ (possibly tp~l=V) and a(t)=v for all simple
roots a.

As in the proof of Lemma 2, we can be reduced to the case that G is a
simply-connected simple group. When G is adjoint Lemma 3 is proved in the
proof of Theorem 1 of [13]. When G is not adjoint t can be given by replacing
each v in the above table with an element e^Fq such that εz=v. (We note
that, when G is a simply-connected simple group, an element s=h(xl9 ••-, xt) of
T has the property of Lemma 3 if and only if the xi satisfy: (i) x}(p~l)=\ for

l^i^7, (ϋ) Π xj<*i *j>=v for l^ί^7, and (iii) x~x] if pα,=αy.)

In the following, for an integer m and a prime number r, oτdrm denotes
the exponent of the r-part of m.

Lemma 4. Assume that G is a (non-adjoint) simply-connected simple group
of any one of the following types: Al withal or ord2(l+l)>ord2(p—ί)y2Al with
2\l\El with 4 1 /(/+!); D, with either (a) 4 \ 1(1-1) or (b) ord2(l-\)=\ and
pΈΞ — 1 (mod4 ) y

2Df with 4|/(/— 1); 3Z>4; £6;
 2£6. Then there exists an element

t^TF such that tp~l=\ and a(t}=v for all simple roots a.

In fact, for an element s— h(xl9 •••, #7) of T, s satisfies the property of
Lemma 4 if and only if the XΊ satisfy: (i) x^Fpy (ii) Π #/*«*'*/ ̂ z; for l<g/<S/,
and (iii) x~x\ (hence xj=xi) if pa^ctj. By solving these equations, we find

that an element t having the property of the lemma can be given as follows:

Type /

At

 2Al 2\l Λfo, — ,*,) *,=„'('-'•«>/*
Al ord2(/+l)>ord2(^)-l)

El

(e=

= -1 (mod 4) Xi=ίSW+p-*-*>fi

\ v\ v\ z;3)

\ *", z;15, z;21, z;15, v*)

REMARK. If (at least) G is split over Fqy then Lemmas 2, 4 above are im-
plicit in Lehrer's work [12] where he showed a method to calculate the image

a(TF) of TF under the morphism a: T->(Gm)1 given by a(s)=j[ai(s) when G
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is a simply-connected simple group (he has carried out the calculation when G

is a classical group). For our purpose, it is essential to know the order of t

(cf. § 2 below).

2. The main results. We recall that^>φ2. Let ζp be a primitive p-th

root of unity in the field C of complex numbers. Let Fq= Horn (Fq, Cx) (we
consider Fq as an additive group) and fix XeJ^, %Φ1. For a^Fv define

%β€Ξ/^ by XΛ(x) = X(ax) for x<=Fq. Then we have Pq= {Xa\a(ΞFq} and

{%τ I re Gal(Q(f,)/Q)} - {%, I αeFjί} -
In the following, if % is a character of a finite group and L is a field of

characteristic zero, £(%) is the field generated over L by the values of X. If % is

irreducible, then mL(X) denotes the Schur index of % with respect to L. If L

is an algebraic number field and v is a place of L, then Lv is the completion of L

at ϋ. Now let k be the quadratic subfield Q(\/ep), e=(— 1)^/2, of Q(ξp).

Proposition 1. Let G, F be as in Introduction. Let λeΛ, λφl. Then

vie have the following :
(i) λG^ takes all its values in k; if p= — 1 (mod 4), \G* is realizable in k;

if p^ I (mod 4), then, for any finite place v of k, \°F is realisable in kυ.
(ii) Assume that q is an even power of p. Then \°F takes all its values in

Q and, for any prime number r Φp, \°F is realizable in Qr.

(iii) If G is an adjoint semisίmple group or any one of the groups described
in Lemma 4, then \°F is realizable in Qr.

Proof of (i). Let t be an element of TF having the property of Lemma 2.

Then z=t(p"l^/z lies in the centre ZF of GF since a(st)=l for all simple roots

a. Put c= I <» I (c= 1 or 2). Let M=<f>UF. Then M acts on Λ by \m(u)=

\(mum"1) (λeΛ, meM, u<=UF). Let λeΛ, λφl. Then, by (1), λ can be

expressed as λ— (λ, )»e/ with λ, eFί; for ίe/. And, by (2), we have

λ* =

where σ is a suitable generator of Gsi(Q(ζp)lQ). Thus, on C/F, we have

hence Q(\M)=Q(ζp)<σ2>=k. Therefore the values of \GF=(\M)cF lie in k.
Suppose t(p~1M2=l. Then \M is irreducible. By Gow's argument [7],

p. 104, we have mk(\M) = l: λM|<£>=the character of the regular representation

of <£>, hence <λM, l<ί>><ί>=l hence, by Schur's theorem (see e.g. Feit [5], 11.4),

mk(\M)=ί. Thus XM, hence λGίr— (\M)°F is realizable in ft.
Assume that Z(/>~1)/2Φ1. Then XM is reducible and is equal to the sum

where, for /=0, 1, /^, is the irreducible character of M induced by the
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linear character of <#>£7F given by #>«-*(—l);'''λ(w) (j=Qy 1). We have Q(μQ)=

Q(μ^=k. For /=0, 1, the simple direct summand Ai of the group algebra k[M]

of M over k corresponding to μi is isomorphic over k to the cyclic algebra

((k(ζp)lk, σ2, (-1)1') over k (cf. Proof of Proposition 3.5 of Yamada [18]). AQ

clearly splits over k, hence mk(μ0)=ί and μQ is realizable in k. If p= — 1

(mod 4), then —1 is a norm in k(ζ^)jk, hence ̂  splits over Λ. Thus, in this

case, μl9 hence \M=μ0+μ1 is realizable in k. Suppose p= 1 (mod 4). Then Al

has non-zero invariants only at two real places of k (see Janusz [10], Proposition

3). Thus, for any finite place v of k, μly hence λM—μ0+μι is realizable in &„.

Proof of (ii). Let t be an element of TF having the property of Lemma

3, and put M=<fyUF. Then, as \t=\<r (λφl), on UF, we have

XM = c 2 V' - c s λσy (c - IO
y=ι y=ι

Thus β(λ

|o=β(r>)< >=β.
If ^~1=1) then XM is irreducible and Gow's argument shows that mQ(\M)=

1, hence \°F is realizable in Q. Suppose tp~l^l. Then λM is reducible and is

equal to the sum A&O+A&I> where, for i=0, 1, μ, is the irreducible character of M

induced by the linear character of <tp~lyUF given by (tp-yu-+u(—l)ji\(u). We

have Q(μ0)=Q(μι):=Q' For i=Q, 1, the simple direct summand A; of Q[M]

corresponding to μi is isomorphic over Q to (Q(ζp)lQ, σ, (—!)'')• A splits,

hence μQ is realizable in Q. Aλ has the invariants — mod 1 at <χ>, ^> and 0 mod 1
Δι

at any other place of Q. Thus, for any prime number rΦ^>, μly hence λM—

μQ+μι is realizable in Qr.

Proof of (iϋ). When G is adjoint the assertion is contained in Theorem

1 of [13]. Assume that G is not adjoint. Let t be an element of TF having

the property of Lemma 4 and put M=ζtyUF. Then λM is irreducible and

Q(X^)—Q, And, by Gow's argument, we have mQ(\M)—1. Thus λM, hence
\G^=^M^ is realizable in Q.

We note that, for G=SLn, Sp2n, Proposition 1 is proved by Gow [7], [8].

Corollary 1. Let G, F be as in Proposition 1. Recall that p^p2. Let be %

an irreducible character of GF such that <%, \°FyGF=l for some λeΛ (any irredu-

cible component of\°Ffor XEϊΛo has this property (see Lemma 1)). Then we have

mQ(X,)^2. Thus, in particular, we have mR(X,)<^2 for any irreducible Deligne-

Lusztig character %,= ±Λr/ of GF. If λ= 1, then \°F is realizable in Q, hence we

have mQ()C)=l. Assume that λΦl. Let r be any prime number and v a place

of k lying above r. Then, by Proposition 1, we have mkv(X,) = l, hence /nQr(%)^2

as [*,(%): Qr(%)]^2. We also have mΛ(X)^2. Thus, mQ(%), being the least
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common multiple of the mQw(X) with w running over all places of Qy is at most

two. The last assertion follows from this fact and Lemma 1.

Corollary 2. Assume that q is an even power of p. Let % be an irreducible

character of GF such that <% λG>G**=l for some λeΛ. Then, for any prime
number r^pp,we have mQr (%)=!.

This follows at once from Proposition 1, (ii).

Corollary 3. Assume that G is an adjoint semisimple group or any one of

the groups described in Lemma 4. Let % be an irreducible character of GF such
that <%, \GF>GF=l for some λeΛ. Then we have mQ(X) = l.

This follows from Proposition 1, (iii).

Corollary 4. Let G, F be as in Proposition 1. Assume that p is a good
prime for G ([16], I, 4.1). Let X be an irreducible character of GF and let u be

a regular unίpoίent element in GF. Then X(u) is an algebraic integer in k, and

We first note that, as p is good for G, U.F is equal to the derived group of

UF

y hence Λ is the set of linear characters of UF (Hewlett [9], Lehrer [11]),
and that, if u^UF, then μ(u)=0 for any non-linear irreducible character μ of
UF (Lehrer [11]).

Let Ok be the ring of integers in k. We show that X(u) belongs to Ok We
may assume that u^UF as u is conjugate to an element of UF. Let t be an

element of TF having the property of Lemma 2, and let Λx, •••, Λr be the orbits

of <(ί> on Λ. Thus, as %'=%, if we put aλ= <%, \\f for λeΛ, αλ is constant

on each Λt . Hence we have

λeΔ i=ι λeΔ;

where af=aλ on Λf . Each Σ \(u) is stable under the action of <£>, hence under
λeΔ|

the action of <<τ2>. Thus %(M) e0A.
To prove the second assertion, we embed G in G1 as in the proof of

Lemma 1. Assume that ^)/(/%(l) and take an irreducible character Xj of Gf

such that <%, XJG^VΦO. Then, by the Clifford theory, we haveXjG1^

έ?(%(1)+%(2)-| ----- h%(s))> where e is a positive integer dividing (Gf : GF) and
%(1), %(2), •••, %(s) are the Gf -conjugates of %=%(1)(s|(Gf : GF)). Let r be any
prime number and v a place of k lying above r. Put mv=mko(X^) = =mkv(

/Xf^).

For 1< '̂<^ and for λeΛ, put ̂ °=<X(ί), λ> .̂ Then, by Proposition 1 (i),

mv divides the a(*\ l^i^s, λeΛ. As^^Gf: GF), ^/KX^l), so that, by a
theorem of Green-Lehrer-Lusztig (see [3], 8.3.6), we have 'X>1(u)= ±1. There-

fore we have the expression
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Xι(«)to = {e Σ x(l) («)>/«. = β Σ Σ
ί=ι

where the right-hand side is an algebraic integer and the left-hand side is a

rational number. Hence mv=l, and mQr()C)<^2. As r is an arbitrary prime

number, we hence have mQ(X,)^2. This completes the proof of Corollary 4.

Corollary 5. Assume that q is an even power of p and that p is good for G.

Let u be a regular unίpotent element in GF. Then, for any irreducible character %

°f GF, %(#) is a rational integer, and if pJ("X,(u), we have mQr(%)=\ for any
prime number

The proof is similar to the proof of Corollary 4 (we use Proposition 1,

(«))•

Corollary 6. Let G be an adjoint semisimple group or any one of the groups

described in Lemma 4. Assume that p is good for G. Let u be a regular unipotent

element in GF and let % be an irreducible charactre of GF. Then X(u) is a rational

integer and if pJ(")C(u), we have mQ()C)=\.

REMARK. Lehrer [12] has calculated the values of the cuspidal irreducible

characters of GF at the regular unipotent elements of GF when G is a semisimple

group. As to the upper bound of the indices of the characters of related finite

groups, we reffer to Gow [8] for classical finite groups and Benard [1] and Feit

[6] for the sporadic simple groups.

Let G be a connected, reductive algebraic group over an algebraically

closed field K of characteristic p>Q and F a surjective endomorphism of G

such that GF is finite. Then Lemma 2 still holds for such GF, so that the state-

ments in Proposition 1, (i) and in Corollary 1 (except for the comment for Lemma

1) hold for GF. Assume that K is an algebraic closure of Fp and that some power

of F is the Frobenius endomorphism relative to a rational structure on G over

a finite subfield of K. Then Lemma 1 holds for GF (cf. Carter [3], 8.1.3 and

8.4.5), so that all the statements in Corollary 1, hence the theorem in Introduc-

tion holds for GF. If p is good for G, then the theorem of Green-Lehrer-

Lusztig holds for GF (if Z is connected: see [3], 8.3.6), so that Corollary 4 holds

for G .̂

3. Example. We calculate all the local indices of the cuspidal irreducible

Deligne-Lusztig characters ±RΘ

T' of SLn(Fq) when q is an even power of

P (*2).
Let G be SLn and F the endomorphism (gij)-*(gqij) (q may be any power

of any prime p). Let 7" be a minisotropic maximal torus of G and let W=

NG(T')F/T'F (Tr is unique up to GF-con conjugate). Then, taking an element

7 of order (qn— !)/(?— 1) in F%*> we have T'F= <ί0>, where ΐ0 is G-conjugate to
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diag(γ, 7*, •••, 79""1), and W=ζw^>^Z\nZ, where WQ is defined by t^=tbQtQιυ^1

— tl (tb^NG(T'Y represents zoQ). (All these statements can be easily checked
by using [16], II, 1.3, 1.10 and 1.14.) W acts on f /^Hom(T/F, Cx) by
β"'(ί)=^(ίlp) for α><E IF", 0e f '*" and s€Ξ T'*. If θ is in general position, i.e., no
non-identity element of W fixes θ, then (— Y)n~lRθ

τt is a cuspidal irreducible
character of G*=SLn(Fq) ([4], 7.4, 8.3).

Let 0ef'F. Then, by [4], 4.2, for £GΞGF, if g=su=us (s semisimple, u
unipotent) is its Jordan decomposition, we have

where the QhT'h-1^^ are Green functions of ZG(s) (which is connected since G
is simply-connected). It follows that, if s is not conjugate in GF to any element
of TF

y we have B*τ,(g)=Q, and if * e ΓF/, we have

(4) ^̂

where W(s) = {zo^W\sw=s} (we note that the minisotropic maximal tori of
ZG(s) form a single ZG(*)F-conjugacy class (cf. [16], II, 1.3, 1.10 and 1.14)
and that any two elements of T" that are conjugate in GF are conjugate under
the action of W). Thus, as the Green functions take integeral values, by put-
ting Θ(t0)=ζy we get from (4):

Lemma 5. Assume that θ is in general position. Let q=pm. We further
assume that n is even. Then we have

Let φ be the automorphism of Qp(ζ) defined by ζφ=ζ9. Then φ has order
n (by assumption) and we have Qp(ζγφ>=Qp(Rθ

T') (cf. (5)). Letf=[Qp(ζ): Qp]
and e= \<?> |. Then/ is equal to the least integer h^ 1 subject for the condi-
tion: £A=1 (mode) (see Serre [14], p. 85). As φn=l and φ''Φl for l^i^n— 1,
we find that/|tfm butf^mi for l ^ί<Ln— 1 [in fact, itf\mi, then^—1 1 '̂—1,
hence e\pmi—\y hence φ'=l]. This shows that ordr/=ordrm+ordrn for any
prime divisor r of n. Thus, in particular, we have ord2/=ord2m+ord2w. As

[Qp(Ώ Qp(Rτ')]=[QP(ζ) Qp(ζ)<φ>]=n, we hence have ord2[QP(RΘ

T<): Qp]=ord2m,
as desired.

REMARK. Professor K. limura showed to the author (by an elementary

proof) that «=//(*,/) and [Qp(ξ)<+>: QP]=(m,f).
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Proposition 2. Let X be any cuspidal irreducible Deligne-Lusztig character
(—\)n~lRτs of GF=SLn(Fq), where we assume that q is an even power of p^2.

Then, if n is odd or ordzn^2, we have mQ(X)=ί. Assume that ord2n=\. Then
we have mQr(X) = l for any prime number r and mQ(X,)=mR(X,)<^2. And zϋe have

™R()Q=2 if an only ίfX is real and %(—!„)=—%(!,) (ι> 0(—1Λ) = —1).

REMARK. Let % be as above. Assume that n is even and let n=2m.

Fixing a generator #0 of T'F, put Θ=Θ1

Q. Then the following can be shown:

(i) % is real if and only if ^ ~ | /.q~1

(ii) Assume that ord2n=l and let i= ^ ~~ i' with i1 <^Z(hence % is real).
q—l

Then θ(—ln) = ί if and only if z' is even, and the latter condition is equivalent
to the condition that θ\ZF=l.

Proof of Proposition 2. Let λ^Λo Then, by Lemma 1, we have

<% \GF\2r=l. Thus, if n is odd or ord2w>ord2(/>—!), by Proposition 1, (iii),
we have mQ(Xf)=l. Assume that lfSord2rc5^ord2(^>—1). Let t be an element

of TF having the property of Lemma 3. Then, under our assumption, we have
tp'1= — ln (cf. Proof of Lemma 4 and Proof of Lemma 3.3 (a) of Gow [8]). Let

us use the notation of the proof of Proposition 1, (ii). Then \M=μ0+μι As

μ, (—!«)—(—1 )'/£,•(!,») for i= 0, 1, by Schur's lemma, we have <%, μ^M

=^ if
%(-U=W> and <%, μιyM=l if %(-!„)=-%(!„). As μ0 is realizable in
Qy we have mQ(%)—1 in the first case. Assume that %(—!„) = — %(ln). If r is
any prime number =(=^>, then μl is realizable in Qry hence we have mQr(%)=!.

As q is an even power of py by Lemma 5, we have 2|[Q^(%): Qp]. Hence

A®QΦ>PO splits (see [14], Chap. XIII, § 3, Prop. 7), hence μλ is realizable in
QP(X). Hence we have mQp('X)=mQpω('X,)=l. Thus we have mQ(X,)=mR(X).
If % is real, we must have mR(fX,)=2 since otherwise % will be realizable in R, so
that, by Schur's theorem, we have (2=)mΛ(%1)|<%, μιyM=l, a contradiction.

If ord2ft^2, then % cannot be real since GF contains a central element # of

order 4 such that 22= — ln and X(z) = ±\/^ϊX(lu) ([7], p. 107). Finally, we
note that, by [4], 1.22, we have %(— lft)=-%(ln) if and only if θ(-ln)=-l.

This completes the proof of Proposition 2.

References

[1] M. Benard: Schur indexes of sporadic simple groups, J. Algebra 58 (1979), 508-
522.

[2] N. Bourbaki: Groupes et algebras de Lie, chapitres 4, 5 et 6, Hermann, Paris,
1968.

[3] R.W. Carter: Finite groups of Lie type: conugacy classes and complex charac-
ters, John Wiley and Sons, Chechester, 1985.



SCHUR INDICES 159

[4] P. Deligne and G. Lusztig: Representations of reductive groups over finite fields,
Ann. of Math. 103 (1976), 103-161.

[5] W. Feit: Characters of finite groups, W.A. Benjamin, Inc, New York, 1967.
[6] W. Feit: The computations of some Schur indices, Israel J. Math. 46 (1983),

274-300.
[7] R. Gow: Schur indices of some groups of Lie type, J. Algebra 42 (1976), 102-120.
[8] R. Gow: On the Schur indices of characters of finite classical groups, J. London

Math. Soc. (2) 24 (1981), 135-147.
[9] R.B. Hewlett: On the degrees of Steinberg characters of Chevalley groups, Math.

Z. 135 (1974), 125-135.
[10] GJ. Janusz: Simple components of Q[SL(2,q)], Comm. Algebra 1 (1974), 1-22.
[11] G.I. Lehrer, Adjoint groups, regular unipotent elements and discrete series characters,

Trans. Amer. Math. Soc. 214 (1975), 249-260.
[12] G.I. Lehrer: On the values of characters of semisimple groups over finite fields,

Osaka J. Math. 15 (1978), 77-99.
[13] Z. Ohmori: On the Schur indices of reductive groups II, Quart. J. Math. Oxford

Ser. (2) 32 (1981), 443-452.
[14] J.P. Serre: Crops locaux, deuxieme edition, Hermann, Paris, 1968.
[15] T.A. Springer: Linear algebraic groups, Birkhauser, Boston, 1981.
[16] T.A. Springer and R. Steinberg: Congugacy classes, in Seminar on Algebraic

Groups and Related Finite Groups, by A. Borel et al., Lecture Notes in Math.
131, Springer, Berlin-Heidelberg-New York, 1970.

[17] R. Steinberg: Endomorphisms of linear algebraic groups, Mem. Amer. Math.
Soc. 80 (1968).

[18] T. Yamada: Schur subgroup of the Brauer group, Lecutre Notes in Math. 397,
Springer, Berlin-Heidelberg-New York, 1974.

Department of Mathematics
Tokyo Metropolitan University
Fukasawa, Setagaya-ku
Tokyo, 158 Japan






