ON THE SCHUR INDICES OF CERTAIN IRREDUCIBLE CHARACTERS OF REDUCTIVE GROURS OVER FINITE FIELDS

Zyozyu OHMORI

(Received September 11, 1986)

Introduction. Let $\boldsymbol{F}_{\boldsymbol{q}}$ be a finite field with q elements, of characteristic p. Let G be a connected, reductive linear algebraic group defined over $\boldsymbol{F}_{\boldsymbol{q}}$, with Frobenius endomorphism F, and let G^{F} denote the group of F-fixed points of G. In [13], we investigated, under the assumption that the centre Z of G is connected, the rationality-properties of the characters $\lambda^{G^{F}}$ of G^{F} induced by certain linear characters λ of a Sylow p-subgroup of G^{F} and, using the results obtained there, proved some propositions concerning the Schur indices of the semisimple or regular irreducible characters of G^{F}. In this paper, we shall treat the general case, that is, the case that Z is not necessarily connected. The main results are stated and proved in § 2. In particular, we get the following (see Corollary 1 to Proposition 1, § 2):

Theorem. Any irreducible Deligne-Lusztig character $\pm R_{T}^{\theta}$ of G^{F} ([4]) has the Schur index at most two over the field \boldsymbol{Q} of rational numbers.

I wish to thank Profesosr N. Iwahori who kindly taught me properties of the Cartan matrices. I also thank Professor S. Endo for his kind advices during the preparation of the paper. The referee gave me valuable comments for the old version of the paper. Finally, I wish to dedicate this paper to the late Professor T. Miyata.

1. Some lemmas. Let G and F be as above. Let B be an F-stable Borel subgroup of G with the unipotent radical U and T an F-stable maximal torus of B. For a root α of G (with respect to T), let U_{α} denote the root subgroup of G associated with α. Let U. be the subgroup of U generated by the non-simple positive root subgroups U_{α} (the ordering on the roots is the one determined by B). Then U / U. is commutative and can be regarded as the direct product $\prod_{\alpha \in \Delta} U_{\alpha}$, where Δ is the set of simple roots. As $F U .=U$., F acts on $U / U .=\prod_{\alpha \in \Delta} U_{\infty}$ and this action is the one induced by the maps $F: U_{\infty} \rightarrow F U_{\alpha}$, $\alpha \in \Delta$. Let ρ be the permutation on the roots α given by $F U_{\alpha}=U_{\rho \alpha}$ and let I
be the set of orbits of ρ on Δ. For $i \in I$, put $U_{i}=\prod_{\alpha \in i} U_{\alpha}$. Then $U / U .=\prod_{i \in I} U_{i}$ and, as each U_{i} is F-stable, we have $U^{F} / U . F=\prod_{i \in I} U_{i}^{F}$. For each $i \in I$, put $q_{i}=q^{|i|}$ and take one simple root γ_{i} in i. Then, for each i, there is an isomorphism ϕ_{i} of U_{i}^{F} with the additive group of $\boldsymbol{F}_{q_{i}}$ such that $\phi_{i}\left(t u t^{-1}\right)=\gamma_{i}(t) \phi_{i}(u)$ for $u \in U_{i}^{F}$ and $t \in T^{F}$ (cf. Proof of 11.8 of Steinberg [17] and Carter [3], pp. 76-77). Thus the family $\phi=\left(\phi_{i}\right)_{i \in I}$ defines an isomorphism

$$
\begin{equation*}
\phi: U^{F} / U .^{F}=\prod_{i \in I} U_{i}^{F} \xrightarrow[\rightarrow]{\leftrightarrows} \prod_{i \in I} F_{q_{i}} \tag{1}
\end{equation*}
$$

so that, for $u=\prod_{i \in I} u_{i}$ with $u_{i} \in U_{i}^{F}$ for $i \in I$ and $t \in T^{F}$, we have

$$
\begin{equation*}
\phi\left(t u t^{-1}\right)=\prod_{i \in I} \lambda_{i}(t) \phi_{i}\left(u_{i}\right) . \tag{2}
\end{equation*}
$$

Now let Λ be the set of characters λ of U^{F} such that $\lambda \mid U .=1$ and Λ_{0} the set of characters λ in Λ such that $\lambda \mid U_{i}^{F} \neq 1$ for all $i \in I$. Then we have

Lemma 1. Let $\lambda \in \Lambda_{0}$. Then $\lambda^{G^{F}}$ is multiplicity-free (Gel'fand-Graev, Yokonuma, Steinberg) and any irreducible Deligne-Lusztig character $\pm R_{T}^{\theta}$ of G^{F} occurs in $\lambda^{G^{F}}$ (Deligne-Lusztig).

By embedding G in the connected, reductive group $G_{1}=(G \times T) /\left\{\left(z, z^{-1}\right) \mid\right.$ $z \in Z\}(Z$ is the centre of $G)$ with connected centre and the same derived group ([4], 5.18) and (as to the second assertion) using properties of Green functions (cf. [3], 7.2.8 and 7.7), we are reduced to the case that Z is connected. In this case the lemma is proved in [4], Theorem 10.7 (or in [3], 8.1.3 and 8.4.5).

Our purpose is to study the rationality of the characters $\lambda^{G^{F}}, \lambda \in \Lambda$. Suppose $p=2$. Then, by (1), $U^{F} / U .^{F}$ is an elementary abelian 2-group, so that, for any $\lambda \in \Lambda, \lambda$, hence $\lambda^{G^{F}}$ is realiazable in \boldsymbol{Q}. Therefore, from now on, we shall assume that $p \neq 2$.

Lemma 2. Let ν be a primitive element of $\boldsymbol{F}_{p}\left(\right.$ i.e. $\left.\boldsymbol{F}_{p}^{\times}=\langle\nu\rangle\right)$. Then there exists an element t in T^{F} such that $t^{p-1}=1$ (possibly $t^{(p-1) / 2}=1$) and $\alpha(t)=\nu^{2}$ for all simple roots α.

It suffices to prove the lemma for the derived group G^{\prime} of G, hence for the simply-connected covering of G^{\prime}. If G is a simply-connected semisimple group, then we have $G=G_{1} \times \cdots \times G_{m}$, where, for $1 \leqq i \leqq m, G_{i}$ is an F-stable simply-connected semisimple closed subgroup of G whose simple components are permuted by F cyclically, and the truth of the lemma for each G_{i} will imply that for G. If $G=G_{1} \times F G_{1} \times \cdots \times F^{n-1} G_{1}$, where G_{1} is an F^{n}-stable simplyconnected simple closed subgroup of G for some $n \geqq 1$, then T and B, hence the set of simple roots has the corresponding decomposition, and it is easy to see that the truth of the lemma for G_{1} with Frobenius map F^{n} implies that for
G (cf. [17], 11.2 (b)). Thus we are reduced to the case that G is a simply-connected simple group.

Suppose therefore that G is such a group. Let $X(T)=\operatorname{Hom}\left(T, \boldsymbol{G}_{\boldsymbol{m}}\right)$ and $Y(T)=\operatorname{Hom}\left(\boldsymbol{G}_{m}, T\right)$, and let $\langle\rangle:, X(T) \times Y(T) \rightarrow \boldsymbol{Z}$ be the natural pairing given by $\left\langle\chi, \chi^{\vee}\right\rangle=$ degree of $\chi \circ \chi^{\vee}$ for $\chi \in X(T)$ and $\chi^{\vee} \in Y(T)$. Let $\alpha_{1}, \cdots, \alpha_{l}$ be the simple roots (as to the numbering of the simple roots, we follow that of Bourbaki [2]) and let $\alpha,{ }_{1}^{\vee} \cdots, \alpha_{l}^{\vee}$ be the corresponding simple coroots. Then, as G is simply-connected, we have $Y(T)=\left\langle\alpha_{1}^{\vee}, \cdots, \alpha_{l}^{\vee}\right\rangle_{z}$, so that the mapping $h:\left(x_{1}, \cdots, x_{l}\right) \rightarrow \prod_{i=1}^{l} \alpha_{i}^{\vee}\left(x_{i}\right)$ defines an isomorphism of $\left(\boldsymbol{G}_{m}\right)^{l}$ with T. Then, for $1 \leqq i \leqq l$, we have

$$
\alpha_{i}\left(h\left(x_{1}, \cdots, x_{l}\right)\right)=\prod_{j=1}^{l} x_{j}^{\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle}
$$

where $\left(\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle\right)_{1 \leq i, j \leq l}$ is the Cartan matrix of G. We define an action of F on $Y(T)$ by $F\left(\chi^{\vee}\right)=F \circ \chi^{\vee}$ for $\chi^{\vee} \in Y(T)$. Then we have

$$
F\left(\alpha_{i}^{\vee}\right)=q\left(\rho \alpha_{i}\right)^{\vee}
$$

for $1 \leqq i \leqq l$ (see [15], 11.4.7). It readily follows that, for $s \in T, s=h\left(x_{1}, \cdots, x_{l}\right)$, we have $F s=s$ if and only if $x_{j}=x_{i}^{q}$ if $\rho \alpha_{i}=\alpha_{j}$. Thus the proof of the lemma has been reduced to solving the following problem:
Find an element $t=h\left(x_{1}, \cdots, x_{l}\right)$ with $x_{i} \in \boldsymbol{F}_{p}^{\times}$for $1 \leqq i \leqq l$ such taht $\prod_{j=1}^{l} x_{j}^{\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle}=\nu^{2}$ for $1 \leqq i \leqq l$ and that $x_{j}=x_{i}^{q}\left(\right.$ hence $x_{j}=x_{i}$) if $\rho \alpha_{i}=\alpha_{j}$.

When G is adjoint, by the proof of Theorem 1 of [13], there is an element s in T^{F} of order $p-1$ such that $\alpha(s)=\nu$ for all simple roots α. Hence it suffices to take $t=s^{2}$. Suppose therefore that G is not adjoint. Then, as $p \neq 2$, G is any one of the following types (Steinberg [17], 11.6; also see [3], 1.19): $A_{l}(l \geqq 1), B_{l}(l \geqq 2), C_{l}(l \geqq 2), D_{l}(l \geqq 3), E_{6}, E_{7},{ }^{2} A_{l}(l \geqq 1),{ }^{2} D_{l}(l \geqq 3),{ }^{3} D_{4}$, ${ }^{2} E_{6}$. In each case, an element t of T^{F} having the property of the lemma (i.e. an solution t of the problem above) can be given as follows (the Cartan matrices are listed up in the appendices of [2]):

Type	t		
$A_{l}{ }^{2} A_{l}$	$h\left(x_{1}, \cdots, x_{l}\right)$	$x_{i}=\nu^{i(l-i+1)}$	$(1 \leqq i \leqq l)$
B_{l}	$h\left(x_{1}, \cdots, x_{l-1}, \nu^{l(l+1) / 2}\right)$	$x_{i}=\nu^{i(2 l-i+1)}$	$(1 \leqq i \leqq l-1)$
C_{l}	$h\left(x_{1}, \cdots, x_{l}\right)$	$x_{i}=\nu^{i(2 l-i)}$	$(1 \leqq i \leqq l)$
$D_{l}{ }^{2} D_{l}$	$h\left(x_{1}, \cdots, x_{l-2}, \nu^{l(l-1) / 2}, \nu^{(l-1) / 2}\right)$	$x_{i}=\nu^{i(2 l-i-1)}$	$(1 \leqq i \leqq l-2)$
$E_{6}{ }^{2} E_{6}$	$h\left(\nu^{16}, \nu^{22}, \nu^{30}, \nu^{42}, \nu^{30}, \nu^{16}\right)$		
E_{7}	$h\left(\nu^{34}, \nu^{49}, \nu^{66}, \nu^{96}, \nu^{75}, \nu^{52}, \nu^{27}\right)$		
${ }^{3} D_{4}$	$h\left(\nu^{6}, \nu^{10}, \nu^{6}, \nu^{6}\right)$		

This completes the proof of Lemma 2.

Lemma 3. Assume that q is an even power of p. Then there exists an element t in T^{F} such that $t^{2(p-1)}=1\left(\right.$ possibly $\left.t^{p-1}=1\right)$ and $\alpha(t)=\nu$ for all simple roots α.

As in the proof of Lemma 2, we can be reduced to the case that G is a simply-connected simple group. When G is adjoint Lemma 3 is proved in the proof of Theorem 1 of [13]. When G is not adjoint t can be given by replacing each ν in the above table with an element $\varepsilon \in \boldsymbol{F}_{q}$ such that $\varepsilon^{2}=\nu$. (We note that, when G is a simply-connected simple group, an element $s=h\left(x_{1}, \cdots, x_{t}\right)$ of T has the property of Lemma 3 if and only if the x_{i} satisfy: (i) $x_{i}^{2(p-1)}=1$ for $1 \leqq i \leqq l$, (ii) $\prod_{j=1}^{l} x_{j}^{\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle}=\nu$ for $1 \leqq i \leqq l$, and (iii) $x_{j}=x_{i}^{q}$ if $\rho \alpha_{i}=\alpha_{j}$.)

In the following, for an integer m and a prime number $r, \operatorname{ord}_{r} m$ denotes the exponent of the r-part of m.

Lemma 4. Assume that G is a (non-adjoint) simply-connected simple group of any one of the following types: A_{l} with $2 \mid l$ or ord ${ }_{2}(l+1)>o r d_{2}(p-1) ;{ }^{2} A_{l}$ with $2 \mid l ; B_{l}$ with $4 \mid l(l+1) ; D_{l}$ with either $(a) 4 \mid l(l-1)$ or $(b) \operatorname{ord}_{2}(l-1)=1$ and $p \equiv-1(\bmod 4) ;{ }^{2} D_{l}$ with $4 \mid l(l-1) ;{ }^{3} D_{4} ; E_{6} ;{ }^{2} E_{6}$. Then there exists an element $t \in T^{F}$ such that $t^{p-1}=1$ and $\alpha(t)=\nu$ for all simple roots α.

In fact, for an element $s=h\left(x_{1}, \cdots, x_{l}\right)$ of T, s satisfies the property of Lemma 4 if and only if the x_{i} satisfy: (i) $x_{i} \in F_{p}^{\times}$, (ii) $\Pi x_{j}{ }^{\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle}=\nu$ for $1 \leqq i \leqq l$, and (iii) $x_{j}=x_{i}^{q}$ (hence $x_{j}=x_{i}$) if $\rho \alpha_{i}=\alpha_{j}$. By solving these equations, we find that an element t having the property of the lemma can be given as follows:

Type	
$A_{l}{ }^{2} A_{l} 2 \mid l \quad h\left(x_{1}, \cdots, x_{l}\right)$	$x_{i}=\nu^{i(l-i+1) / 2} \quad(1 \leqq i \leqq l)$
$A_{l} \operatorname{ord}_{2}(l+1)>\operatorname{ord}_{2}(p-1)$	
$h\left(x_{1}, \cdots, x_{l}\right)$	$x_{1}=\nu^{(e l+p-1) / 2 e} \quad\left(e=\left(\frac{l+1}{2}, p-1\right)\right)$
	$x_{i}=\nu^{-i(i-1) / 2} x_{1}^{i} \quad(2 \leqq i \leqq l)$
$B_{l} 4 \mid l(l+1) \quad h\left(x_{1}, \cdots, x_{l-1}, \nu^{l(l+1) / 4}\right)$	$x_{i}=\nu^{i(2 l-i+1) / 2} \quad(1 \leqq i \leqq l-1)$
$D_{l}{ }^{2} D_{l} 4 \mid l(l-1) ~ h\left(x_{1}, \cdots, x_{l-2}, \nu^{l(l-1) / 4}, \nu\right.$	$\left.\nu^{l(l-1) / 4}\right)$
	$x_{i}=\nu^{i(2 l-i-1) / 2} \quad(1 \leqq i \leqq l-2)$
$\begin{aligned} & D_{l} \operatorname{ord}_{2}(l-1)=1 \quad h\left(x_{1}, \cdots, x_{l-2}, \nu^{\left(l^{2}-l+p-1\right)}\right. \\ & p \equiv-1(\bmod 4) \end{aligned}$	$\begin{aligned} & \left.1 / 4, \nu^{\left(l^{2}-l+3 p-3\right) / 4}\right) \\ & x_{i}=\nu^{i(2 l+p-i-2) / 2} \quad(1 \leqq i \leqq l-2) \end{aligned}$
${ }^{3} D_{4} \quad h\left(\nu^{3}, \nu^{5}, \nu^{3}, \nu^{3}\right)$	
$E_{6}{ }^{2} E_{6} \quad h\left(\nu^{8}, \nu^{11}, \nu^{15}, \nu^{21}, \nu^{15}, \nu^{8}\right)$	

Remark. If (at least) G is split over $\boldsymbol{F}_{\boldsymbol{q}}$, then Lemmas 2, 4 above are implicit in Lehrer's work [12] where he showed a method to calculate the image $a\left(T^{F}\right)$ of T^{F} under the morphism $a: T \rightarrow\left(\boldsymbol{G}_{\boldsymbol{m}}\right)^{l}$ given by $a(s)=\prod_{i=1}^{i} \alpha_{i}(s)$ when G
is a simply-connected simple group (he has carried out the calculation when G is a classical group). For our purpose, it is essential to know the order of t (cf. § 2 below).
2. The main results. We recall that $p \neq 2$. Let ζ_{p} be a primitive p-th root of unity in the field \boldsymbol{C} of complex numbers. Let $\hat{\boldsymbol{F}}_{\boldsymbol{q}}=\operatorname{Hom}\left(\boldsymbol{F}_{q}, \boldsymbol{C}^{\times}\right)$(we consider \boldsymbol{F}_{q} as an additive group) and fix $\chi \in \hat{\boldsymbol{F}}_{q}, \chi \neq 1$. For $a \in \boldsymbol{F}_{q}$, define $\chi_{a} \in \hat{\boldsymbol{F}}_{q}$ by $\chi_{a}(x)=\chi(a x)$ for $x \in \boldsymbol{F}_{q}$. Then we have $\hat{\boldsymbol{F}}_{q}=\left\{\chi_{a} \mid a \in \boldsymbol{F}_{q}\right\}$ and $\left\{\chi^{\tau} \mid \boldsymbol{\tau} \in \operatorname{Gal}\left(\boldsymbol{Q}\left(\zeta_{p}\right) / \boldsymbol{Q}\right)\right\}=\left\{\chi_{a} \mid a \in \boldsymbol{F}_{p}^{\times}\right\}$.

In the following, if χ is a character of a finite group and L is a field of characteristic zero, $L(\chi)$ is the field generated over L by the values of χ. If χ is irreducible, then $m_{L}(\chi)$ denotes the Schur index of χ with respect to L. If L is an algebraic number field and v is a place of L, then L_{v} is the completion of L at v. Now let k be the quadratic subfield $\boldsymbol{Q}(\sqrt{\varepsilon p}), \varepsilon=(-1)^{(p-1) / 2}$, of $\boldsymbol{Q}\left(\zeta_{p}\right)$.

Proposition 1. Let G, F be as in Introduction. Let $\lambda \in \Lambda, \lambda \neq 1$. Then we have the following :
(i) $\lambda^{G^{F}}$ takes all its values in k; if $p \equiv-1(\bmod 4), \lambda^{G^{F}}$ is realizable in k; if $p \equiv 1(\bmod 4)$, then, for any finite place v of $k, \lambda^{G^{F}}$ is realizable in k_{v}.
(ii) Assume that q is an even power of p. Then $\lambda^{G^{F}}$ takes all its values in \boldsymbol{Q} and, for any prime number $r \neq p, \lambda^{G^{F}}$ is realizable in \boldsymbol{Q}_{r}.
(iii) If G is an adjoint semisimple group or any one of the groups described in Lemma 4, then $\lambda^{G^{F}}$ is realizable in \boldsymbol{Q}_{r}.

Proof of (i). Let t be an element of T^{F} having the property of Lemma 2. Then $z=t^{(p-1) / 2}$ lies in the centre Z^{F} of G^{F} since $\alpha(z)=1$ for all simple roots α. Put $c=|\langle z\rangle|(c=1$ or 2$)$. Let $M=\langle t\rangle U^{F}$. Then M acts on Λ by $\lambda^{m}(u)=$ $\lambda\left(\mathrm{mum}^{-1}\right)\left(\lambda \in \Lambda, m \in M, u \in U^{F}\right)$. Let $\lambda \in \Lambda, \lambda \neq 1$. Then, by (1), λ can be expressed as $\lambda=\left(\lambda_{i}\right)_{i \in I}$ with $\lambda_{i} \in \hat{F}_{q_{i}}$ for $i \in I$. And, by (2), we have

$$
\left.\left.\lambda^{t}=\left(\left(\lambda_{i}\right)\right)_{\gamma_{i}(t)}\right)_{i \in I}=\left(\left(\lambda_{i}\right)\right)_{v^{2}}\right)_{i \in I}=\left(\lambda_{i}^{\sigma^{2}}\right)_{i \in I}=\lambda^{\sigma 2}
$$

where σ is a suitable generator of $\operatorname{Gal}\left(\boldsymbol{Q}\left(\zeta_{p}\right) / \boldsymbol{Q}\right)$. Thus, on U^{F}, we have

$$
\lambda^{M}=c \sum_{j=1}^{(p-1) / 2} \lambda^{t^{j}}=c \sum_{j=1}^{(p-1) / 2} \lambda^{\sigma^{2 j}},
$$

hence $\boldsymbol{Q}\left(\lambda^{M}\right)=\boldsymbol{Q}\left(\zeta_{p}\right)^{\left\langle\sigma^{2}\right\rangle}=k$. Therefore the values of $\lambda^{G^{\boldsymbol{F}}}=\left(\lambda^{M}\right)^{G^{F}}$ lie in k.
Suppose $t^{(p-1) / 2}=1$. Then λ^{M} is irreducible. By Gow's argument [7], p. 104, we have $m_{k}\left(\lambda^{M}\right)=1: \lambda^{M} \mid\langle t\rangle=$ the character of the regular representation of $\langle t\rangle$, hence $\left\langle\lambda^{M}, 1_{\langle t\rangle}\right\rangle_{\langle t\rangle}=1$; hence, by Schur's theorem (see e.g. Feit [5], 11.4), $m_{k}\left(\lambda_{M}\right)=1$. Thus λ^{M}, hence $\lambda^{G^{F}}=\left(\lambda^{M}\right)^{G^{F}}$ is realizable in k.

Assume that $t^{(p-1) / 2} \neq 1$. Then λ^{M} is reducible and is equal to the sum $\mu_{0}+\mu_{1}$ where, for $i=0,1, \mu_{i}$ is the irreducible character of M induced by the
linear character of $\langle z\rangle U^{F}$ given by $z^{j} u \rightarrow(-1)^{j i} \lambda(u)(j=0,1)$. We have $\boldsymbol{Q}\left(\mu_{0}\right)=$ $\boldsymbol{Q}\left(\mu_{1}\right)=k$. For $i=0,1$, the simple direct summand A_{i} of the group algebra $k[M]$ of M over k corresponding to μ_{i} is isomorphic over k to the cyclic algebra $\left(\left(k\left(\zeta_{p}\right) / k, \sigma^{2},(-1)^{i}\right)\right.$ over k (cf. Proof of Proposition 3.5 of Yamada [18]). A_{0} clearly splits over k, hence $m_{k}\left(\mu_{0}\right)=1$ and μ_{0} is realizable in k. If $p \equiv-1$ $(\bmod 4)$, then -1 is a norm in $k\left(\zeta_{p}\right) / k$, hence A_{1} splits over k. Thus, in this case, μ_{1}, hence $\lambda^{M}=\mu_{0}+\mu_{1}$ is realizable in k. Suppose $p \equiv 1(\bmod 4)$. Then A_{1} has non-zero invariants only at two real places of k (see Janusz [10], Proposition 3). Thus, for any finite place v of k, μ_{1}, hence $\lambda^{M}=\mu_{0}+\mu_{1}$ is realizable in k_{v}.

Proof of (ii). Let t be an element of T^{F} having the property of Lemma 3, and put $M=\langle t\rangle U^{F}$. Then, as $\lambda^{t}=\lambda^{\sigma}(\lambda \neq 1)$, on U^{F}, we have

$$
\lambda^{M}=c \sum_{j=1}^{p-1} \lambda^{t^{j}}=c \sum_{j=1}^{p-1} \lambda^{\sigma j} \quad\left(c=\mid\left\langle t^{p-1} \mid\right\rangle\right)
$$

Thus $\boldsymbol{Q}\left(\lambda^{M}\right)=\boldsymbol{Q}\left(\zeta_{p}\right)^{\langle\sigma\rangle}=\boldsymbol{Q}$.
If $t^{p-1}=1$, then λ^{M} is irreducible and Gow's argument shows that $m_{\boldsymbol{Q}}\left(\lambda^{M}\right)=$ 1 , hence $\lambda^{G^{F}}$ is realizable in \boldsymbol{Q}. Suppose $t^{p-1} \neq 1$. Then λ^{M} is reducible and is equal to the sum $\mu_{0}+\mu_{1}$, where, for $i=0,1, \mu_{i}$ is the irreducible character of M induced by the linear character of $\left\langle t^{p-1}\right\rangle U^{F}$ given by $\left(t^{p-1}\right)^{j} u \rightarrow u(-1)^{j i} \lambda(u)$. We have $\boldsymbol{Q}\left(\mu_{0}\right)=\boldsymbol{Q}\left(\mu_{1}\right)=\boldsymbol{Q}$. For $i=0,1$, the simple direct summand A_{i} of $\boldsymbol{Q}[M]$ corresponding to μ_{i} is isomorphic over \boldsymbol{Q} to $\left(\boldsymbol{Q}\left(\zeta_{p}\right) / \boldsymbol{Q}, \sigma,(-1)^{i}\right)$. A_{0} splits, hence μ_{0} is realizable in \boldsymbol{Q}. A_{1} has the invariants $\frac{1}{2} \bmod 1$ at ∞, p and $0 \bmod 1$ at any other place of \boldsymbol{Q}. Thus, for any prime number $r \neq p, \mu_{1}$, hence $\lambda^{M}=$ $\mu_{0}+\mu_{1}$ is realizable in \boldsymbol{Q}_{r}.

Proof of (iii). When G is adjoint the assertion is contained in Theorem 1 of [13]. Assume that G is not adjoint. Let t be an element of T^{F} having the property of Lemma 4 and put $M=\langle t\rangle U^{F}$. Then λ^{M} is irreducible and $\boldsymbol{Q}\left(\lambda^{M}\right)=\boldsymbol{Q}$. And, by Gow's argument, we have $m_{\boldsymbol{Q}}\left(\lambda^{M}\right)=1$. Thus λ^{M}, hence $\lambda^{G^{F}}=\left(\lambda^{M}\right)^{G^{F}}$ is realizable in \boldsymbol{Q}.

We note that, for $G=S L_{n}, S p_{2 n}$, Proposition 1 is proved by Gow [7], [8].
Corollary 1. Let G, F be as in Proposition 1. Recall that $p \neq 2$. Let be χ an irreducible character of G^{F} such that $\left\langle\chi, \lambda^{G^{F}}\right\rangle_{G^{F}}=1$ for some $\lambda \in \Lambda$ (any irreducible component of $\lambda^{G^{F}}$ for $\lambda \in \Lambda_{0}$ has this property (see Lemma 1)). Then we have $m_{Q}(\chi) \leqq 2$. Thus, in particular, we have $m_{R}(\chi) \leqq 2$ for any irreducible DeligneLusztig character $\chi= \pm R_{T^{\prime}}^{\theta}$ of G^{F}. If $\lambda=1$, then $\lambda^{G^{F}}$ is realizable in \boldsymbol{Q}, hence we have $m_{Q}(\chi)=1$. Assume that $\lambda \neq 1$. Let r be any prime number and v a place of k lying above r. Then, by Proposition 1 , we have $m_{k_{v}}(\chi)=1$, hence $m_{\boldsymbol{Q}_{r}}(\chi) \leqq 2$ as $\left[k_{v}(\chi): \boldsymbol{Q}_{r}(\chi)\right] \leqq 2$. We also have $m_{\boldsymbol{R}}(\chi) \leqq 2$. Thus, $m_{Q}(\chi)$, being the least
common multiple of the $m_{\boldsymbol{Q}_{w}}(\chi)$ with w running over all places of \boldsymbol{Q}, is at most two. The last assertion follows from this fact and Lemma 1.

Corollary 2. Assume that q is an even power of p. Let χ be an irreducible character of G^{F} such that $\left\langle\chi, \lambda^{G}\right\rangle_{G^{F}}=1$ for some $\lambda \in \Lambda$. Then, for any prime number $r \neq p$, we have $m_{Q_{r}}(\chi)=1$.

This follows at once from Proposition 1, (ii).
Corollary 3. Assume that G is an adjoint semisimple group or any one of the groups described in Lemma 4. Let χ be an irreducible character of G^{F} such that $\left\langle\chi, \lambda^{G^{F}}\right\rangle_{G^{F}}=1$ for some $\lambda \in \Lambda$. Then we have $m_{Q}(\chi)=1$.

This follows from Proposition 1, (iii).
Corollary 4. Let G, F be as in Proposition 1. Assume that p is a good prime for G ([16], I, 4.1). Let χ be an irreducible character of G^{F} and let u be a regular unipotent element in G^{F}. Then $\chi(u)$ is an algebraic integer in k, and if $P X \chi(1)$, we have $m_{Q}(\chi) \leqq 2$.

We first note that, as p is good for $G, U .^{F}$ is equal to the derived group of U^{F}, hence Λ is the set of linear characters of U^{F} (Howlett [9], Lehrer [11]), and that, if $u \in U^{F}$, then $\mu(u)=0$ for any non-linear irreducible character μ of U^{F} (Lehrer [11]).

Let \mathcal{O}_{k} be the ring of integers in k. We show that $\chi(u)$ belongs to \mathcal{O}_{k}. We may assume that $u \in U^{F}$ as u is conjugate to an element of U^{F}. Let t be an element of T^{F} having the property of Lemma 2 , and let $\Lambda_{1}, \cdots, \Lambda_{r}$ be the orbits of $\langle t\rangle$ on Λ. Thus, as $\chi^{t}=\chi$, if we put $a_{\lambda}=\langle\chi, \lambda\rangle_{U^{F}}$ for $\lambda \in \Lambda, a_{\lambda}$ is constant on each Λ_{i}. Hence we have

$$
\chi(u)=\sum_{\lambda \in \Lambda} a_{\lambda} \lambda(u)=\sum_{i=1}^{r} a_{i}\left(\sum_{\lambda \in \Lambda_{i}} \lambda(u)\right),
$$

where $a_{i}=a_{\lambda}$ on Λ_{i}. Each $\sum_{\lambda \in \Lambda_{i}} \lambda(u)$ is stable under the action of $\langle t\rangle$, hence under the action of $\left\langle\sigma^{2}\right\rangle$. Thus $\chi(u) \in \mathcal{O}_{k}$.

To prove the second assertion, we embed G in G_{1} as in the proof of Lemma 1. Assume that $p X \chi(1)$ and take an irreducible character χ_{1} of G_{1}^{F} such that $\left\langle\chi, \chi_{1} \mid G^{F}\right\rangle_{G^{F}} \neq 0$. Then, by the Clifford theory, we have $\chi_{1} \mid G^{F}=$ $e\left(\chi^{(1)}+\chi^{(2)}+\cdots+\chi^{(s)}\right)$, where e is a positive integer dividing ($G_{1}^{F}: G^{F}$) and $\chi^{(1)}, \chi^{(2)}, \cdots, \chi^{(s)}$ are the G_{i}^{F}-conjugates of $\chi=\chi^{(1)}\left(s \mid\left(G_{1}^{F}: G^{F}\right)\right)$. Let r be any prime number and v a place of k lying above r. Put $m_{v}=m_{k_{v}}\left(\chi^{(1)}\right)=\cdots=m_{k_{v}}\left(\chi^{(s)}\right)$. For $1 \leqq i \leqq s$ and for $\lambda \in \Lambda$, put $a_{\gamma}^{(i)}=\left\langle\chi^{(i)}, \lambda\right\rangle_{U^{F}}$. Then, by Proposition 1, (i), m_{v} divides the $a_{\lambda}^{(i)}, 1 \leqq i \leqq s, \lambda \in \Lambda$. As $p \nmid\left(G_{1}^{F}: G^{F}\right), p \nmid \chi_{1}(1)$, so that, by a theorem of Green-Lehrer-Lusztig (see [3], 8.3.6), we have $\chi_{1}(u)= \pm 1$. Therefore we have the expression

$$
\pm 1 / m_{v}=\chi_{1}(u) / m_{v}=\left\{e \cdot \sum_{i=1}^{s} X^{(i)}(u)\right\} / m_{v}=e \cdot \sum_{i=1}^{s} \sum_{\lambda \in \Lambda}\left(a_{\lambda}^{(i)} / m_{v}\right) \cdot \lambda(u),
$$

where the right-hand side is an algebraic integer and the left-hand side is a rational number. Hence $m_{v}=1$, and $m_{Q_{r}}(\chi) \leqq 2$. As r is an arbitrary prime number, we hence have $m_{Q}(\chi) \leqq 2$. This completes the proof of Corollary 4.

Corollary 5. Assume that q is an even power of p and that p is good for G. Let u be a regular unipotent element in G^{F}. Then, for any irreducible character χ of $G^{F}, \chi(u)$ is a rational integer, and if $p X \chi(u)$, we have $m_{Q_{r}}(X)=1$ for any prime number $r \neq p$.

The proof is similar to the proof of Corollary 4 (we use Proposition 1, (ii)).

Corollary 6. Let G be an adjoint semisimple group or any one of the groups described in Lemma 4. Assume that p is good for G. Let u be a regular unipotent element in G^{F} and let χ be an irreducible charactre of G^{F}. Then $\chi(u)$ is a rational integer and if $p \not X \chi(u)$, we have $m_{Q}(\chi)=1$.

Remark. Lehrer [12] has calculated the values of the cuspidal irreducible characters of G^{F} at the regular unipotent elements of G^{F} when G is a semisimple group. As to the upper bound of the indices of the characters of related finite groups, we reffer to Gow [8] for classical finite groups and Benard [1] and Feit [6] for the sporadic simple groups.

Let G be a connected, reductive algebraic group over an algebraically closed field K of characteristic $p>0$ and F a surjective endomorphism of G such that G^{F} is finite. Then Lemma 2 still holds for such G^{F}, so that the statements in Proposition 1, (i) and in Corollary 1 (except for the comment for Lemma 1) hold for G^{F}. Assume that K is an algebraic closure of \boldsymbol{F}_{p} and that some power of F is the Frobenius endomorphism relative to a rational structure on G over a finite subfield of K. Then Lemma 1 holds for G^{F} (cf. Carter [3], 8.1.3 and 8.4.5), so that all the statements in Corollary 1, hence the theorem in Introduction holds for G^{F}. If p is good for G, then the theorem of Green-LehrerLusztig holds for G^{F} (if Z is connected: see [3], 8.3.6), so that Corollary 4 holds for G^{F}.
3. Example. We calculate all the local indices of the cuspidal irreducible Deligne-Lusztig characters $\pm R_{T}^{\theta}$, of $S L_{n}\left(\boldsymbol{F}_{q}\right)$ when q is an even power of $p(\neq 2)$.

Let G be $S L_{n}$ and F the endomorphism $\left(g_{i j}\right) \rightarrow\left(g_{i j}^{q}\right)$ (q may be any power of any prime p). Let T^{\prime} be a minisotropic maximal torus of G and let $W=$ $N_{G}\left(T^{\prime}\right)^{F} / T^{\prime F}$ (T^{\prime} is unique up to G^{F}-con conjugate). Then, taking an element $\boldsymbol{\gamma}$ of order $\left(q^{n}-1\right) /(q-1)$ in $\boldsymbol{F}_{q}^{\times} n$, we have $T^{\prime F}=\left\langle t_{0}\right\rangle$, where t_{0} is G-conjugate to
$\operatorname{diag}\left(\gamma, \gamma^{q}, \cdots, \gamma^{q^{n-1}}\right)$, and $W=\left\langle w_{0}\right\rangle \simeq \boldsymbol{Z} / n \boldsymbol{Z}$, where w_{0} is defined by $t_{0}^{w}=\dot{w}_{0} t_{0} \dot{w}_{0}^{-1}$ $=t_{0}^{q}\left(\dot{w}_{0} \in N_{G}\left(T^{\prime}\right)^{F}\right.$ represents $\left.w_{0}\right)$. (All these statements can be easily checked by using [16], II, 1.3, 1.10 and 1.14.) W acts on $\hat{T}^{\prime F}=\operatorname{Hom}\left(T^{\prime F}, \boldsymbol{C}^{\times}\right)$by $\theta^{w}(s)=\theta\left(s^{w}\right)$ for $w \in W, \theta \in \hat{T}^{\prime F}$ and $s \in T^{\prime F}$. If θ is in general position, i.e., no non-identity element of W fixes θ, then $(-1)^{n-1} R_{T}^{\theta}$, is a cuspidal irreducible character of $G^{F}=S L_{n}\left(\boldsymbol{F}_{q}\right)$ ([4], 7.4, 8.3).

Let $\theta \in \hat{T}^{\prime F}$. Then, by [4], 4.2, for $g \in G^{F}$, if $g=s u=u s$ (s semisimple, u unipotent) is its Jordan decomposition, we have

$$
\begin{equation*}
R_{T}^{\theta}(g)=\frac{1}{\left|Z_{G}(s)^{F}\right|} \sum_{\substack{h \in G^{F} \\ h^{-1} s h \in T^{\prime}}} Q_{h T^{\prime} h^{-1}, z_{G}(s)}(u) \cdot \theta\left(h^{-1} s h\right) \tag{3}
\end{equation*}
$$

where the $Q_{k \tau^{\prime} h^{-1}, z_{G}(s)}$ are Green functions of $Z_{G}(s)$ (which is connected since G is simply-connected). It follows that, if s is not conjugate in G^{F} to any element of $T^{\prime F}$, we have $R_{T^{\prime}}^{\theta}(g)=0$, and if $s \in T^{F^{\prime}}$, we have

$$
\begin{equation*}
R_{T}^{\theta}(g)=Q_{T^{\prime}, z_{\mathcal{G}^{\prime}(s)}(u)} \frac{1}{|W(s)|} \sum_{w \in W} \theta^{w}(s) \tag{4}
\end{equation*}
$$

where $W(s)=\left\{w \in W \mid s^{w}=s\right\}$ (we note that the minisotropic maximal tori of $Z_{G}(s)$ form a single $Z_{G}(s)^{F}$-conjugacy class (cf. [16], II, 1.3, 1.10 and 1.14) and that any two elements of T^{\prime} that are conjugate in G^{F} are conjugate under the action of W). Thus, as the Green functions take integeral values, by putting $\theta\left(t_{0}\right)=\zeta$, we get from (4):

$$
\begin{equation*}
Q\left(R_{T^{\prime}}^{\theta}\right)=Q\left(\sum_{w \in W} \theta^{w}\right)=Q\left(\zeta+\zeta^{q}+\cdots+\zeta^{a^{n-1}}\right) \tag{5}
\end{equation*}
$$

Lemma 5. Assume that θ is in general position. Let $q=p^{m}$. We further assume that n is even. Then we have

$$
\operatorname{ord}_{2}\left[\boldsymbol{Q}_{p}\left(R_{T^{\prime}}^{\theta}\right): \boldsymbol{Q}_{p}\right]=\operatorname{ord}_{2} m
$$

Let ϕ be the automorphism of $\boldsymbol{Q}_{p}(\zeta)$ defined by $\zeta^{\phi}=\zeta^{q}$. Then ϕ has order n (by assumption) and we have $\boldsymbol{Q}_{p}(\zeta)^{\langle\phi\rangle}=\boldsymbol{Q}_{p}\left(R_{T^{\prime}}^{\theta}\right)$ (cf. (5)). Let $f=\left[\boldsymbol{Q}_{p}(\zeta): \boldsymbol{Q}_{p}\right]$ and $e=|\langle\zeta\rangle|$. Then f is equal to the least integer $h \geqq 1$ subject for the condition: $p^{h} \equiv 1(\bmod e)$ (see Serre [14], p. 85). As $\phi^{n}=1$ and $\phi^{i} \neq 1$ for $1 \leqq i \leqq n-1$, we find that $f \mid m n$ but $f X m i$ for $1 \leqq i \leqq n-1$ [in fact, if $f \mid m i$, then $p^{f}-1 \mid p^{m i}-1$, hence $e \mid p^{m i}-1$, hence $\left.\phi^{i}=1\right]$. This shows that $\operatorname{ord}_{r} f=\operatorname{ord}_{r} m+\operatorname{ord}_{r} n$ for any prime divisor r of n. Thus, in particular, we have $\operatorname{ord}_{2} f=\operatorname{ord}_{2} m+\operatorname{ord}_{2} n$. As $\left[\boldsymbol{Q}_{p}(\zeta): \boldsymbol{Q}_{p}\left(R_{T^{\prime}}^{\theta}\right)\right]=\left[\boldsymbol{Q}_{p}(\zeta): \boldsymbol{Q}_{p}(\zeta)^{\langle\phi\rangle}\right]=n$, we hence have $\operatorname{ord}_{2}\left[\boldsymbol{Q}_{p}\left(R_{T^{\prime}}^{\theta}\right): \boldsymbol{Q}_{p}\right]=\operatorname{ord}_{2} m$, as desired.

Remark. Professor K. Iimura showed to the author (by an elementary proof) that $n=f /(m, f)$ and $\left[\boldsymbol{Q}_{p}(\zeta)^{\langle\phi\rangle}: \boldsymbol{Q}_{p}\right]=(m, f)$.

Proposition 2. Let χ be any cuspidal irreducible Deligne-Lusztig character $(-1)^{n-1} R_{T}^{\theta}$ of $G^{F}=S L_{n}\left(\boldsymbol{F}_{q}\right)$, where we assume that q is an even power of $p \neq 2$. Then, if n is odd or ord $_{2} n \geqq 2$, we have $m_{Q}(\chi)=1$. Assume that ord ${ }_{2} n=1$. Then we have $m_{Q_{r}}(\chi)=1$ for any prime number r and $m_{Q}(\chi)=m_{R}(\chi) \leqq 2$. And we have $m_{\boldsymbol{R}}(\chi)=2$ if an only if χ is real and $\chi\left(-1_{n}\right)=-\chi\left(1_{n}\right)\left(i, . e . \theta\left(-1_{n}\right)=-1\right)$.

Remark. Let χ be as above. Assume that n is even and let $n=2 m$. Fixing a generator θ_{0} of $\hat{T}^{\prime F}$, put $\theta=\theta_{0}^{i}$. Then the following can be shown:
(i) χ is real if and only if $\left.\frac{q^{m}-1}{q-1} \right\rvert\, i$.
(ii) Assume that $\operatorname{ord}_{2} n=1$ and let $i=\frac{q^{m}-1}{q-1} i^{\prime}$ with $i^{\prime} \in \boldsymbol{Z}$ (hence \mathcal{X} is real). Then $\theta\left(-1_{n}\right)=1$ if and only if i^{\prime} is even, and the latter condition is equivalent to the condition that $\theta \mid Z^{F}=1$.

Proof of Proposition 2. Let $\lambda \in \Lambda_{0}$. Then, by Lemma 1, we have $\left\langle\chi, \lambda^{G^{F}}\right\rangle_{G^{F}}=1$. Thus, if n is odd or $\operatorname{ord}_{2} n>\operatorname{ord}_{2}(p-1)$, by Proposition 1, (iii), we have $m_{Q}(\chi)=1$. Assume that $1 \leqq \operatorname{ord}_{2} n \leqq \operatorname{ord}_{2}(p-1)$. Let t be an element of T^{F} having the property of Lemma 3. Then, under our assumption, we have $t^{p-1}=-1_{n}$ (cf. Proof of Lemma 4 and Proof of Lemma 3.3 (a) of Gow [8]). Let us use the notation of the proof of Proposition 1, (ii). Then $\lambda^{M}=\mu_{0}+\mu_{1}$. As $\mu_{i}\left(-1_{n}\right)=(-1)^{i} \mu_{i}\left(1_{n}\right)$ for $i=0$, 1 , by Schur's lemma, we have $\left\langle\chi, \mu_{0}\right\rangle_{M}=1$ if $\chi\left(-1_{n}\right)=\chi\left(1_{n}\right)$, and $\left\langle\chi, \mu_{1}\right\rangle_{M}=1$ if $\chi\left(-1_{n}\right)=-\chi\left(1_{n}\right)$. As μ_{0} is realizable in \boldsymbol{Q}, we have $m_{Q}(\chi)=1$ in the first case. Assume that $\chi\left(-1_{n}\right)=-\chi\left(1_{n}\right)$. If r is any prime number $\neq p$, then μ_{1} is realizable in \boldsymbol{Q}_{r}, hence we have $m_{\boldsymbol{Q}_{r}}(\chi)=1$. As q is an even power of p, by Lemma 5, we have $2 \mid\left[\boldsymbol{Q}_{p}(\chi): \boldsymbol{Q}_{p}\right]$. Hence $A_{1} \otimes_{Q} \boldsymbol{Q}_{p}(\chi)$ splits (see [14], Chap. XIII, § 3, Prop. 7), hence μ_{1} is realizable in $\boldsymbol{Q}_{\boldsymbol{p}}(\chi)$. Hence we have $m_{Q_{p}}(\chi)=m_{\boldsymbol{Q}_{p}(\chi)}(\chi)=1$. Thus we have $m_{Q}(\chi)=m_{\boldsymbol{R}}(\chi)$. If χ is real, we must have $m_{\boldsymbol{R}}(\chi)=2$ since otherwise χ will be realizable in \boldsymbol{R}, so that, by Schur's theorem, we have $(2=) m_{\boldsymbol{R}}\left(\chi_{1}\right) \mid\left\langle\chi, \mu_{1}\right\rangle_{M}=1$, a contradiction. If $\operatorname{ord}_{2} n \geqq 2$, then χ cannot be real since G^{F} contains a central element z of order 4 such that $z^{2}=-1_{n}$ and $\chi(z)= \pm \sqrt{-1} \chi\left(1_{n}\right)$ ([7], p. 107). Finally, we note that, by [4], 1.22, we have $\chi\left(-1_{n}\right)=-\chi\left(1_{n}\right)$ if and only if $\theta\left(-1_{n}\right)=-1$. This completes the proof of Proposition 2.

References

[1] M. Benard: Schur indexes of sporadic simple groups, J. Algebra 58 (1979), 508522.
[2] N. Bourbaki: Groupes et algèbres de Lie, chapitres 4, 5 et 6, Hermann, Paris, 1968.
[3] R.W. Carter: Finite groups of Lie type: conugacy classes and complex characters, John Wiley and Sons, Chechester, 1985.
[4] P. Deligne and G. Lusztig: Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103-161.
[5] W. Feit: Characters of finite groups, W.A. Benjamin, Inc, New York, 1967.
[6] W. Feit: The computations of some Schur indices, Israel J. Math. 46 (1983), 274-300.
[7] R. Gow: Schur indices of some groups of Lie type, J. Algebra 42 (1976), 102-120.
[8] R. Gow: On the Schur indices of characters of finite classical groups, J. London Math. Soc. (2) 24 (1981), 135-147.
[9] R.B. Howlett: On the degrees of Steinberg characters of Chevalley groups, Math. Z. 135 (1974), 125-135.
[10] G.J. Janusz: Simple components of $\boldsymbol{Q}[S L(2, q)]$, Comm. Algebra 1 (1974), 1-22.
[11] G.I. Lehrer, Adjoint groups, regular unipotent elements and discrete series characters, Trans. Amer. Math. Soc. 214 (1975), 249-260.
[12] G.I. Lehrer: On the values of characters of semisimple groups over finite fields, Osaka J. Math. 15 (1978), 77-99.
[13] Z. Ohmori: On the Schur indices of reductive groups II, Quart. J. Math. Oxford Ser. (2) 32 (1981), 443-452.
[14] J.P. Serre: Crops locaux, deuxieme edition, Hermann, Paris, 1968.
[15] T.A. Springer: Linear algebraic groups, Birkhäuser, Boston, 1981.
[16] T.A. Springer and R. Steinberg: Congugacy classes, in Seminar on Algebraic Groups and Related Finite Groups, by A. Borel et al., Lecture Notes in Math. 131, Springer, Berlin-Heidelberg-New York, 1970.
[17] R. Steinberg: Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc. 80 (1968).
[18] T. Yamada: Schur subgroup of the Brauer group, Lecutre Notes in Math. 397, Springer, Berlin-Heidelberg-New York, 1974.

Department of Mathematics
Tokyo Metropolitan University
Fukasawa, Setagaya-ku
Tokyo, 158 Japan

