ON THE SCHUR INDICES OF CERTAIN IRREDUCIBLE CHARACTERS OF REDUCTIVE GROURS OVER FINITE FIELDS

Zyozyu OHMORI

(Received September 11, 1986)

Introduction. Let F_q be a finite field with q elements, of characteristic p. Let G be a connected, reductive linear algebraic group defined over F_q , with Frobenius endomorphism F, and let G^F denote the group of F-fixed points of G. In [13], we investigated, under the assumption that the centre Z of G is connected, the rationality-properties of the characters λ^{G^F} of G^F induced by certain linear characters λ of a Sylow p-subgroup of G^F and, using the results obtained there, proved some propositions concerning the Schur indices of the semisimple or regular irreducible characters of G^F . In this paper, we shall treat the general case, that is, the case that Z is not necessarily connected. The main results are stated and proved in §2. In particular, we get the following (see Corollary 1 to Proposition 1, §2):

Theorem. Any irreducible Deligne-Lusztig character $\pm R_T^{\theta}$ of G^F ([4]) has the Schur index at most two over the field Q of rational numbers.

I wish to thank Profesosr N. Iwahori who kindly taught me properties of the Cartan matrices. I also thank Professor S. Endo for his kind advices during the preparation of the paper. The referee gave me valuable comments for the old version of the paper. Finally, I wish to dedicate this paper to the late Professor T. Miyata.

1. Some lemmas. Let G and F be as above. Let B be an F-stable Borel subgroup of G with the unipotent radical U and T an F-stable maximal torus of B. For a root α of G (with respect to T), let U_{α} denote the root subgroup of G associated with α . Let U. be the subgroup of U generated by the non-simple positive root subgroups U_{α} (the ordering on the roots is the one determined by B). Then U/U. is commutative and can be regarded as the direct product $\prod_{\alpha \in \Delta} U_{\alpha}$, where Δ is the set of simple roots. As $FU_{-}=U_{-}$, F acts on $U/U_{-}=\prod_{\alpha \in \Delta} U_{\alpha}$ and this action is the one induced by the maps $F: U_{\alpha} \to FU_{\alpha}$, $\alpha \in \Delta$. Let ρ be the permutation on the roots α given by $FU_{\alpha}=U_{\rho\alpha}$ and let I be the set of orbits of ρ on Δ . For $i \in I$, put $U_i = \prod_{\alpha \in i} U_{\alpha}$. Then $U/U = \prod_{i \in I} U_i$ and, as each U_i is *F*-stable, we have $U^F/U.^F = \prod_{i \in I} U_i^F$. For each $i \in I$, put $q_i = q^{|i|}$ and take one simple root γ_i in *i*. Then, for each *i*, there is an isomorphism ϕ_i of U_i^F with the additive group of F_{q_i} such that $\phi_i(tut^{-1}) = \gamma_i(t)\phi_i(u)$ for $u \in U_i^F$ and $t \in T^F$ (cf. Proof of 11.8 of Steinberg [17] and Carter [3], pp. 76-77). Thus the family $\phi = (\phi_i)_{i \in I}$ defines an isomorphism

(1)
$$\phi: U^F/U^F = \prod_{i \in I} U^F_i \cong \prod_{i \in I} F_{q_i}$$

so that, for $u = \prod_{i \in I} u_i$ with $u_i \in U_i^F$ for $i \in I$ and $t \in T^F$, we have

(2)
$$\phi(tut^{-1}) = \prod_{i\in I} \lambda_i(t)\phi_i(u_i).$$

Now let Λ be the set of characters λ of U^F such that $\lambda | U = 1$ and Λ_0 the set of characters λ in Λ such that $\lambda | U_i^F \neq 1$ for all $i \in I$. Then we have

Lemma 1. Let $\lambda \in \Lambda_0$. Then λ^{G^F} is multiplicity-free (Gel'fand-Graev, Yokonuma, Steinberg) and any irreducible Deligne-Lusztig character $\pm R_T^{\theta}$ of G^F occurs in λ^{G^F} (Deligne-Lusztig).

By embedding G in the connected, reductive group $G_1 = (G \times T)/\{(z, z^{-1}) | z \in Z\}$ (Z is the centre of G) with connected centre and the same derived group ([4], 5.18) and (as to the second assertion) using properties of Green functions (cf. [3], 7.2.8 and 7.7), we are reduced to the case that Z is connected. In this case the lemma is proved in [4], Theorem 10.7 (or in [3], 8.1.3 and 8.4.5).

Our purpose is to study the rationality of the characters λ^{G^F} , $\lambda \in \Lambda$. Suppose p=2. Then, by (1), U^F/U .^F is an elementary abelian 2-group, so that, for any $\lambda \in \Lambda$, λ , hence λ^{G^F} is realiazable in Q. Therefore, from now on, we shall assume that $p \neq 2$.

Lemma 2. Let ν be a primitive element of \mathbf{F}_{p} (i.e. $\mathbf{F}_{p}^{\times} = \langle \nu \rangle$). Then there exists an element t in T^{F} such that $t^{p-1} = 1$ (possibly $t^{(p-1)/2} = 1$) and $\alpha(t) = \nu^{2}$ for all simple roots α .

It suffices to prove the lemma for the derived group G' of G, hence for the simply-connected covering of G'. If G is a simply-connected semisimple group, then we have $G=G_1\times\cdots\times G_m$, where, for $1\leq i\leq m$, G_i is an F-stable simply-connected semisimple closed subgroup of G whose simple components are permuted by F cyclically, and the truth of the lemma for each G_i will imply that for G. If $G=G_1\times FG_1\times\cdots\times F^{n-1}G_1$, where G_1 is an F^n -stable simplyconnected simple closed subgroup of G for some $n\geq 1$, then T and B, hence the set of simple roots has the corresponding decomposition, and it is easy to see that the truth of the lemma for G_1 with Frobenius map F^n implies that for G (cf. [17], 11.2 (b)). Thus we are reduced to the case that G is a simply-connected simple group.

Suppose therefore that G is such a group. Let $X(T) = \text{Hom}(T, G_m)$ and $Y(T) = \text{Hom}(G_m, T)$, and let $\langle , \rangle \colon X(T) \times Y(T) \to \mathbb{Z}$ be the natural pairing given by $\langle \mathfrak{X}, \mathfrak{X}^{\vee} \rangle =$ degree of $\mathfrak{X} \circ \mathfrak{X}^{\vee}$ for $\mathfrak{X} \in X(T)$ and $\mathfrak{X}^{\vee} \in Y(T)$. Let $\alpha_1, \dots, \alpha_l$ be the simple roots (as to the numbering of the simple roots, we follow that of Bourbaki [2]) and let $\alpha_{,1}^{\vee} \cdots, \alpha_l^{\vee}$ be the corresponding simple coroots. Then, as G is simply-connected, we have $Y(T) = \langle \alpha_1^{\vee}, \dots, \alpha_l^{\vee} \rangle_Z$, so that the mapping $h: (x_1, \dots, x_l) \to \prod_{i=1}^{l} \alpha_i^{\vee}(x_i)$ defines an isomorphism of $(G_m)^l$ with T. Then, for $1 \leq i \leq l$, we have

$$\alpha_i(h(x_1, \cdots, x_l)) = \prod_{j=1}^l x_j \langle \alpha_i, \alpha_j^{\vee} \rangle$$

where $(\langle \alpha_i, \alpha_j^{\vee} \rangle)_{1 \leq i,j \leq l}$ is the Cartan matrix of G. We define an action of F on Y(T) by $F(\chi^{\vee}) = F \circ \chi^{\vee}$ for $\chi^{\vee} \in Y(T)$. Then we have

 $F(\alpha_i^{\vee}) = q(\rho \alpha_i)^{\vee}$

for $1 \le i \le l$ (see [15], 11.4.7). It readily follows that, for $s \in T$, $s = h(x_1, \dots, x_l)$, we have Fs = s if and only if $x_j = x_i^q$ if $\rho \alpha_i = \alpha_j$. Thus the proof of the lemma has been reduced to solving the following problem:

Find an element $t = h(x_1, \dots, x_l)$ with $x_i \in \mathbf{F}_p^{\times}$ for $1 \leq i \leq l$ such that $\prod_{j=1}^l x_j^{\langle \alpha_i, \alpha_j^{\vee} \rangle} = \nu^2$ for $1 \leq i \leq l$ and that $x_j = x_i^q$ (hence $x_j = x_i$) if $\rho \alpha_i = \alpha_j$.

When G is adjoint, by the proof of Theorem 1 of [13], there is an element s in T^F of order p-1 such that $\alpha(s)=\nu$ for all simple roots α . Hence it suffices to take $t=s^2$. Suppose therefore that G is not adjoint. Then, as $p \neq 2$, G is any one of the following types (Steinberg [17], 11.6; also see [3], 1.19): A_l $(l\geq 1)$, B_l $(l\geq 2)$, C_l $(l\geq 2)$, D_l $(l\geq 3)$, E_6 , E_7 , 2A_l $(l\geq 1)$, 2D_l $(l\geq 3)$, 3D_4 , 2E_6 . In each case, an element t of T^F having the property of the lemma (i.e. an solution t of the problem above) can be given as follows (the Cartan matrices are listed up in the appendices of [2]):

Туре	t	
$A_l^2 A_l$	$h(x_1, \cdots, x_l)$	$x_i = \nu^{i(l-i+1)} (1 \leq i \leq l)$
B_l	$h(x_1, \cdots, x_{l-1}, \nu^{l(l+1)/2})$	$x_i = \nu^{i(2l-i+1)} (1 \le i \le l-1)$
C_{l}	$h(x_1, \cdots, x_l)$	$x_i = \nu^{i(2l-i)} \qquad (1 \leq i \leq l)$
$D_l ^2 D_l$	$h(x_1, \dots, x_{l-2}, \nu^{l(l-1)/2}, \nu^{(l-1)/2})$	$x_i = \nu^{i(2l-i-1)}$ $(1 \le i \le l-2)$
E_{6} ${}^{2}E_{6}$	$h(u^{16}, \ u^{22}, \ u^{30}, \ u^{42}, \ u^{30}, \ u^{16})$	
E_7	$h(u^{34}, \ u^{49}, \ u^{66}, \ u^{96}, \ u^{75}, \ u^{52}, \ u^{27})$	
$^{3}D_{4}$	$h(u^6, \ u^{10}, \ u^6, \ u^6)$	

This completes the proof of Lemma 2.

Lemma 3. Assume that q is an even power of p. Then there exists an element t in T^F such that $t^{2(p-1)}=1$ (possibly $t^{p-1}=1$) and $\alpha(t)=\nu$ for all simple roots α .

As in the proof of Lemma 2, we can be reduced to the case that G is a simply-connected simple group. When G is adjoint Lemma 3 is proved in the proof of Theorem 1 of [13]. When G is not adjoint t can be given by replacing each ν in the above table with an element $\varepsilon \in \mathbf{F}_q$ such that $\varepsilon^2 = \nu$. (We note that, when G is a simply-connected simple group, an element $s = h(x_1, \dots, x_l)$ of T has the property of Lemma 3 if and only if the x_i satisfy: (i) $x_i^{2(\rho-1)} = 1$ for $1 \le i \le l$, (ii) $\prod_{j=1}^{l} x_j \langle \sigma_i, \sigma_j \rangle = \nu$ for $1 \le i \le l$, and (iii) $x_j = x_i^q$ if $\rho \alpha_i = \alpha_j$.)

In the following, for an integer m and a prime number r, ord, m denotes the exponent of the r-part of m.

Lemma 4. Assume that G is a (non-adjoint) simply-connected simple group of any one of the following types: A_l with 2|l or $ord_2(l+1) > ord_2(p-1)$; ${}^{2}A_l$ with $2|l; B_l$ with $4|l(l+1); D_l$ with either (a) 4|l(l-1) or (b) $ord_2(l-1)=1$ and $p \equiv -1 \pmod{4}$; ${}^{2}D_l$ with $4|l(l-1); {}^{3}D_4; E_6; {}^{2}E_6$. Then there exists an element $t \in T^F$ such that $t^{p-1}=1$ and $\alpha(t)=\nu$ for all simple roots α .

In fact, for an element $s=h(x_1, \dots, x_l)$ of T, s satisfies the property of Lemma 4 if and only if the x_i satisfy: (i) $x_i \in F_p^{\times}$, (ii) $\prod x_j \langle \alpha_i, \alpha_j^{\vee} \rangle = \nu$ for $1 \leq i \leq l$, and (iii) $x_j = x_i^q$ (hence $x_j = x_i$) if $\rho \alpha_i = \alpha_j$. By solving these equations, we find that an element t having the property of the lemma can be given as follows:

REMARK. If (at least) G is split over \mathbf{F}_q , then Lemmas 2, 4 above are implicit in Lehrer's work [12] where he showed a method to calculate the image $a(T^F)$ of T^F under the morphism $a: T \rightarrow (\mathbf{G}_m)^l$ given by $a(s) = \prod_{i=1}^l \alpha_i(s)$ when G

is a simply-connected simple group (he has carried out the calculation when G is a classical group). For our purpose, it is essential to know the order of t (cf. § 2 below).

2. The main results. We recall that $p \neq 2$. Let ζ_p be a primitive *p*-th root of unity in the field *C* of complex numbers. Let $\hat{F}_q = \text{Hom}(F_q, C^{\times})$ (we consider F_q as an additive group) and fix $\chi \in \hat{F}_q$, $\chi \neq 1$. For $a \in F_q$, define $\chi_a \in \hat{F}_q$ by $\chi_a(x) = \chi(ax)$ for $x \in F_q$. Then we have $\hat{F}_q = \{\chi_a | a \in F_q\}$ and $\{\chi^r | \tau \in \text{Gal}(Q(\zeta_p)/Q)\} = \{\chi_a | a \in F_p^{\times}\}$.

In the following, if χ is a character of a finite group and L is a field of characteristic zero, $L(\chi)$ is the field generated over L by the values of χ . If χ is irreducible, then $m_L(\chi)$ denotes the Schur index of χ with respect to L. If L is an algebraic number field and v is a place of L, then L_v is the completion of L at v. Now let k be the quadratic subfield $Q(\sqrt{\epsilon p})$, $\epsilon = (-1)^{(p-1)/2}$, of $Q(\zeta_p)$.

Proposition 1. Let G, F be as in Introduction. Let $\lambda \in \Lambda$, $\lambda \neq 1$. Then we have the following :

(i) $\lambda^{G^{F}}$ takes all its values in k; if $p \equiv -1 \pmod{4}$, $\lambda^{G^{F}}$ is realizable in k; if $p \equiv 1 \pmod{4}$, then, for any finite place v of k, $\lambda^{G^{F}}$ is realizable in k_{p} .

(ii) Assume that q is an even power of p. Then λ^{G^F} takes all its values in Q and, for any prime number $r \neq p$, λ^{G^F} is realizable in Q_r .

(iii) If G is an adjoint semisimple group or any one of the groups described in Lemma 4, then λ^{G^F} is realizable in Q_r .

Proof of (i). Let t be an element of T^F having the property of Lemma 2. Then $z=t^{(p-1)/2}$ lies in the centre Z^F of G^F since $\alpha(z)=1$ for all simple roots α . Put $c=|\langle z \rangle|$ (c=1 or 2). Let $M=\langle t \rangle U^F$. Then M acts on Λ by $\lambda^m(u)=\lambda(mum^{-1})$ ($\lambda \in \Lambda, m \in M, u \in U^F$). Let $\lambda \in \Lambda, \lambda \neq 1$. Then, by (1), λ can be expressed as $\lambda=(\lambda_i)_{i\in I}$ with $\lambda_i \in \hat{F}_{q_i}$ for $i \in I$. And, by (2), we have

$$\lambda^t = ((\lambda_i)_{\gamma_i(t)})_{i \in I} = ((\lambda_i)_{\nu^2})_{i \in I} = (\lambda_i^{\sigma^2})_{i \in I} = \lambda^{\sigma^2},$$

where σ is a suitable generator of $\operatorname{Gal}(Q(\zeta_p)/Q)$. Thus, on U^F , we have

$$\lambda^{M} = c \sum_{j=1}^{(p-1)/2} \lambda^{i^{j}} = c \sum_{j=1}^{(p-1)/2} \lambda^{\sigma^{2j}},$$

hence $Q(\lambda^M) = Q(\zeta_p)^{\langle \sigma^2 \rangle} = k$. Therefore the values of $\lambda^{G^F} = (\lambda^M)^{G^F}$ lie in k.

Suppose $t^{(p-1)/2} = 1$. Then λ^{M} is irreducible. By Gow's argument [7], p. 104, we have $m_k(\lambda^{M}) = 1: \lambda^{M} |\langle t \rangle =$ the character of the regular representation of $\langle t \rangle$, hence $\langle \lambda^{M}, 1_{\langle t \rangle} \rangle_{\langle t \rangle} = 1$; hence, by Schur's theorem (see e.g. Feit [5], 11.4), $m_k(\lambda_M) = 1$. Thus λ^{M} , hence $\lambda^{G^F} = (\lambda^M)^{G^F}$ is realizable in k.

Assume that $t^{(p-1)/2} \neq 1$. Then λ^M is reducible and is equal to the sum $\mu_0 + \mu_1$ where, for $i=0, 1, \mu_i$ is the irreducible character of M induced by the

linear character of $\langle z \rangle U^F$ given by $z^j u \rightarrow (-1)^{ji} \lambda(u)$ (j=0,1). We have $Q(\mu_0) = Q(\mu_1) = k$. For i=0, 1, the simple direct summand A_i of the group algebra k[M] of M over k corresponding to μ_i is isomorphic over k to the cyclic algebra $((k(\zeta_p)/k, \sigma^2, (-1)^i) \text{ over } k$ (cf. Proof of Proposition 3.5 of Yamada [18]). A_0 clearly splits over k, hence $m_k(\mu_0) = 1$ and μ_0 is realizable in k. If $p \equiv -1$ (mod 4), then -1 is a norm in $k(\zeta_p)/k$, hence A_1 splits over k. Thus, in this case, μ_1 , hence $\lambda^M = \mu_0 + \mu_1$ is realizable in k. Suppose $p \equiv 1 \pmod{4}$. Then A_1 has non-zero invariants only at two real places of k (see Janusz [10], Proposition 3). Thus, for any finite place v of k, μ_1 , hence $\lambda^M = \mu_0 + \mu_1$ is realizable in k_p .

Proof of (ii). Let t be an element of T^F having the property of Lemma 3, and put $M = \langle t \rangle U^F$. Then, as $\lambda^t = \lambda^\sigma \ (\lambda \neq 1)$, on U^F , we have

$$\lambda^{M} = c \sum_{j=1}^{p-1} \lambda^{ij} = c \sum_{j=1}^{p-1} \lambda^{\sigma j} \qquad (c = |\langle t^{p-1} | \rangle).$$

Thus $\boldsymbol{Q}(\lambda^{M}) = \boldsymbol{Q}(\boldsymbol{\zeta}_{p})^{\langle \boldsymbol{\sigma} \rangle} = \boldsymbol{Q}.$

If $t^{p-1}=1$, then λ^{M} is irreducible and Gow's argument shows that $m_{Q}(\lambda^{M})=$ 1, hence $\lambda^{c^{F}}$ is realizable in Q. Suppose $t^{p-1} \neq 1$. Then λ^{M} is reducible and is equal to the sum $\mu_{0} + \mu_{1}$, where, for $i=0, 1, \mu_{i}$ is the irreducible character of Minduced by the linear character of $\langle t^{p-1} \rangle U^{F}$ given by $(t^{p-1})^{i} u \rightarrow u(-1)^{ii} \lambda(u)$. We have $Q(\mu_{0})=Q(\mu_{1})=Q$. For i=0, 1, the simple direct summand A_{i} of Q[M]corresponding to μ_{i} is isomorphic over Q to $(Q(\zeta_{p})/Q, \sigma, (-1)^{i})$. A_{0} splits, hence μ_{0} is realizable in Q. A₁ has the invariants $\frac{1}{2} \mod 1$ at ∞, p and 0 mod 1 at any other place of Q. Thus, for any prime number $r \neq p, \mu_{1}$, hence $\lambda^{M} = \mu_{0} + \mu_{1}$ is realizable in Q_{r} .

Proof of (iii). When G is adjoint the assertion is contained in Theorem 1 of [13]. Assume that G is not adjoint. Let t be an element of T^F having the property of Lemma 4 and put $M = \langle t \rangle U^F$. Then λ^M is irreducible and $Q(\lambda^M) = Q$. And, by Gow's argument, we have $m_Q(\lambda^M) = 1$. Thus λ^M , hence $\lambda^{G^F} = (\lambda^M)^{G^F}$ is realizable in Q.

We note that, for $G=SL_n$, Sp_{2n} , Proposition 1 is proved by Gow [7], [8].

Corollary 1. Let G, F be as in Proposition 1. Recall that $p \neq 2$. Let be χ an irreducible character of G^F such that $\langle \chi, \chi^{G^F} \rangle_{G^F} = 1$ for some $\chi \in \Lambda$ (any irreducible component of χ^{G^F} for $\chi \in \Lambda_0$ has this property (see Lemma 1)). Then we have $m_Q(\chi) \leq 2$. Thus, in particular, we have $m_R(\chi) \leq 2$ for any irreducible Deligne-Lusztig character $\chi = \pm R_T^{\theta}$ of G^F . If $\chi = 1$, then χ^{G^F} is realizable in Q, hence we have $m_Q(\chi) = 1$. Assume that $\chi \neq 1$. Let r be any prime number and v a place of k lying above r. Then, by Proposition 1, we have $m_{k_v}(\chi) = 1$, hence $m_{Q_r}(\chi) \leq 2$. We also have $m_R(\chi) \leq 2$. Thus, $m_Q(\chi)$, being the least

common multiple of the $m_{Q_w}(\chi)$ with w running over all places of Q, is at most two. The last assertion follows from this fact and Lemma 1.

Corollary 2. Assume that q is an even power of p. Let χ be an irreducible character of G^F such that $\langle \chi, \chi^G \rangle_{G^F} = 1$ for some $\chi \in \Lambda$. Then, for any prime number $r \neq p$, we have $m_{Q_r}(\chi) = 1$.

This follows at once from Proposition 1, (ii).

Corollary 3. Assume that G is an adjoint semisimple group or any one of the groups described in Lemma 4. Let χ be an irreducible character of G^F such that $\langle \chi, \chi^{G^F} \rangle_{G^F} = 1$ for some $\chi \in \Lambda$. Then we have $m_q(\chi) = 1$.

This follows from Proposition 1, (iii).

Corollary 4. Let G, F be as in Proposition 1. Assume that p is a good prime for G ([16], I, 4.1). Let χ be an irreducible character of G^F and let u be a regular unipotent element in G^F . Then $\chi(u)$ is an algebraic integer in k, and if $p \not\mid \chi(1)$, we have $m_q(\chi) \leq 2$.

We first note that, as p is good for G, U^F is equal to the derived group of U^F , hence Λ is the set of linear characters of U^F (Howlett [9], Lehrer [11]), and that, if $u \in U^F$, then $\mu(u) = 0$ for any non-linear irreducible character μ of U^F (Lehrer [11]).

Let \mathcal{O}_k be the ring of integers in k. We show that $\chi(u)$ belongs to \mathcal{O}_k . We may assume that $u \in U^F$ as u is conjugate to an element of U^F . Let t be an element of T^F having the property of Lemma 2, and let $\Lambda_1, \dots, \Lambda_r$ be the orbits of $\langle t \rangle$ on Λ . Thus, as $\chi^t = \chi$, if we put $a_{\lambda} = \langle \chi, \chi \rangle_{U^F}$ for $\lambda \in \Lambda$, a_{λ} is constant on each Λ_i . Hence we have

$$\chi(u) = \sum_{\lambda \in \Delta} a_{\lambda} \lambda(u) = \sum_{i=1}^{r} a_{i} (\sum_{\lambda \in \Delta_{i}} \lambda(u)),$$

where $a_i = a_{\lambda}$ on Λ_i . Each $\sum_{\lambda \in \Lambda_i} \lambda(u)$ is stable under the action of $\langle t \rangle$, hence under the action of $\langle \sigma^2 \rangle$. Thus $\chi(u) \in \mathcal{O}_k$.

To prove the second assertion, we embed G in G_1 as in the proof of Lemma 1. Assume that $p \not\prec \chi(1)$ and take an irreducible character χ_1 of G_1^F such that $\langle \chi, \chi_1 | G^F \rangle_{G^F} \neq 0$. Then, by the Clifford theory, we have $\chi_1 | G^F = e(\chi^{(1)} + \chi^{(2)} + \cdots + \chi^{(s)})$, where e is a positive integer dividing $(G_1^F : G^F)$ and $\chi^{(1)}, \chi^{(2)}, \cdots, \chi^{(s)}$ are the G_i^F -conjugates of $\chi = \chi^{(1)}(s | (G_1^F : G^F))$. Let r be any prime number and v a place of k lying above r. Put $m_v = m_{k_v}(\chi^{(1)}) = \cdots = m_{k_v}(\chi^{(s)})$. For $1 \leq i \leq s$ and for $\lambda \in \Lambda$, put $a_{\gamma}^{(i)} = \langle \chi^{(i)}, \lambda \rangle_U^F$. Then, by Proposition 1. (i), m_v divides the $a_{\lambda}^{(i)}, 1 \leq i \leq s, \lambda \in \Lambda$. As $p \not\prec (G_1^F : G^F), p \not\prec \chi_1(1)$, so that, by a theorem of Green-Lehrer-Lusztig (see [3], 8.3.6), we have $\chi_1(u) = \pm 1$. Therefore we have the expression

$$\pm 1/m_{\mathfrak{p}} = \chi_1(u)/m_{\mathfrak{p}} = \{e \cdot \sum_{i=1}^s \chi^{(i)}(u)\}/m_{\mathfrak{p}} = e \cdot \sum_{i=1}^s \sum_{\lambda \in \Delta} (a_{\lambda}^{(i)}/m_{\mathfrak{p}}) \cdot \lambda(u),$$

where the right-hand side is an algebraic integer and the left-hand side is a rational number. Hence $m_r=1$, and $m_{Q_r}(\chi) \leq 2$. As r is an arbitrary prime number, we hence have $m_Q(\chi) \leq 2$. This completes the proof of Corollary 4.

Corollary 5. Assume that q is an even power of p and that p is good for G. Let u be a regular unipotent element in G^F . Then, for any irreducible character χ of G^F , $\chi(u)$ is a rational integer, and if $p \not\mid \chi(u)$, we have $m_{Q_r}(\chi) = 1$ for any prime number $r \neq p$.

The proof is similar to the proof of Corollary 4 (we use Proposition 1, (ii)).

Corollary 6. Let G be an adjoint semisimple group or any one of the groups described in Lemma 4. Assume that p is good for G. Let u be a regular unipotent element in G^F and let χ be an irreducible character of G^F . Then $\chi(u)$ is a rational integer and if $p \chi'\chi(u)$, we have $m_Q(\chi)=1$.

REMARK. Lehrer [12] has calculated the values of the cuspidal irreducible characters of G^F at the regular unipotent elements of G^F when G is a semisimple group. As to the upper bound of the indices of the characters of related finite groups, we reffer to Gow [8] for classical finite groups and Benard [1] and Feit [6] for the sporadic simple groups.

Let G be a connected, reductive algebraic group over an algebraically closed field K of characteristic p>0 and F a surjective endomorphism of G such that G^F is finite. Then Lemma 2 still holds for such G^F , so that the statements in Proposition 1, (i) and in Corollary 1 (except for the comment for Lemma 1) hold for G^F . Assume that K is an algebraic closure of F_p and that some power of F is the Frobenius endomorphism relative to a rational structure on G over a finite subfield of K. Then Lemma 1 holds for G^F (cf. Carter [3], 8.1.3 and 8.4.5), so that all the statements in Corollary 1, hence the theorem in Introduction holds for G^F . If p is good for G, then the theorem of Green-Lehrer-Lusztig holds for G^F (if Z is connected: see [3], 8.3.6), so that Corollary 4 holds for G^F .

3. Example. We calculate all the local indices of the cuspidal irreducible Deligne-Lusztig characters $\pm R_T^{\theta}$, of $SL_n(\mathbf{F}_q)$ when q is an even power of p (± 2).

Let G be SL_n and F the endomorphism $(g_{ij}) \rightarrow (g_{ij}^q) (q$ may be any power of any prime p). Let T' be a minisotropic maximal torus of G and let $W = N_G(T')^F/T'^F(T')$ is unique up to G^F -con conjugate). Then, taking an element γ of order $(q^n - 1)/(q - 1)$ in $\mathbf{F}_{q}^{\times n}$, we have $T'^F = \langle t_0 \rangle$, where t_0 is G-conjugate to

SCHUR INDICES

diag $(\gamma, \gamma^{q}, \dots, \gamma^{q^{n-1}})$, and $W = \langle w_{0} \rangle \simeq \mathbb{Z}/n\mathbb{Z}$, where w_{0} is defined by $t_{0}^{w_{0}} = \dot{w}_{0}t_{0}\dot{w}_{0}^{-1}$ = t_{0}^{q} ($\dot{w}_{0} \in N_{G}(T')^{F}$ represents w_{0}). (All these statements can be easily checked by using [16], II, 1.3, 1.10 and 1.14.) W acts on $\hat{T}'^{F} = \text{Hom}(T'^{F}, \mathbb{C}^{\times})$ by $\theta^{w}(s) = \theta(s^{w})$ for $w \in W, \theta \in \hat{T}'^{F}$ and $s \in T'^{F}$. If θ is in general position, i.e., no non-identity element of W fixes θ , then $(-1)^{n-1}R_{T'}^{\theta}$ is a cuspidal irreducible character of $G^{F} = SL_{n}(F_{q})$ ([4], 7.4, 8.3).

Let $\theta \in \hat{T}'^{F}$. Then, by [4], 4.2, for $g \in G^{F}$, if g=su=us (s semisimple, u unipotent) is its Jordan decomposition, we have

$$(3) R^{\theta}_{T}(g) = \frac{1}{|Z_{\mathcal{G}}(s)^{F}|} \sum_{\substack{h \in \mathcal{G}^{F} \\ h^{-1}sh \in \mathcal{I}'}} \mathcal{Q}_{hT'h^{-1}, Z_{\mathcal{G}}(s)}(u) \cdot \theta(h^{-1}sh),$$

where the $Q_{hT'h^{-1}, Z_{G}(s)}$ are Green functions of $Z_{G}(s)$ (which is connected since G is simply-connected). It follows that, if s is not conjugate in G^{F} to any element of T'^{F} , we have $R_{T'}^{\theta}(g) = 0$, and if $s \in T^{F'}$, we have

$$(4) R^{\theta}_{T'}(g) = Q_{T', Z_{\mathcal{G}}(s)}(u) \frac{1}{|W(s)|} \sum_{w \in W} \theta^{w}(s),$$

where $W(s) = \{w \in W | s^w = s\}$ (we note that the minisotropic maximal tori of $Z_G(s)$ form a single $Z_G(s)^F$ -conjugacy class (cf. [16], II, 1.3, 1.10 and 1.14) and that any two elements of T' that are conjugate in G^F are conjugate under the action of W). Thus, as the Green functions take integeral values, by putting $\theta(t_0) = \zeta$, we get from (4):

(5)
$$Q(R_{T'}^{\theta}) = Q(\sum_{w \in W} \theta^w) = Q(\zeta + \zeta^q + \dots + \zeta^{q^{n-1}}).$$

Lemma 5. Assume that θ is in general position. Let $q=p^m$. We further assume that n is even. Then we have

$$\operatorname{ord}_{\mathbf{z}}[\boldsymbol{Q}_{p}(R^{\boldsymbol{\theta}}_{T'}):\boldsymbol{Q}_{p}] = \operatorname{ord}_{\mathbf{z}} m.$$

Let ϕ be the automorphism of $\mathbf{Q}_{p}(\zeta)$ defined by $\zeta^{\phi} = \zeta^{q}$. Then ϕ has order n (by assumption) and we have $\mathbf{Q}_{p}(\zeta)^{\langle\phi\rangle} = \mathbf{Q}_{p}(R_{T'}^{\theta})$ (cf. (5)). Let $f = [\mathbf{Q}_{p}(\zeta): \mathbf{Q}_{p}]$ and $e = |\langle\zeta\rangle|$. Then f is equal to the least integer $h \ge 1$ subject for the condition: $p^{h} \equiv 1 \pmod{e}$ (see Serre [14], p. 85). As $\phi^{n} = 1$ and $\phi^{i} \neq 1$ for $1 \le i \le n-1$, we find that $f \mid mn$ but $f \not\mid mi$ for $1 \le i \le n-1$ [in fact, if $f \mid mi$, then $p^{f} - 1 \mid p^{mi} - 1$, hence $e \mid p^{mi} - 1$, hence $\phi^{i} = 1$]. This shows that $\operatorname{ord}_{z} f = \operatorname{ord}_{z} m + \operatorname{ord}_{z} n$ for any prime divisor r of n. Thus, in particular, we have $\operatorname{ord}_{2} f = \operatorname{ord}_{2} m + \operatorname{ord}_{2} n$. As $[\mathbf{Q}_{p}(\zeta): \mathbf{Q}_{p}(R_{T'}^{\theta})] = [\mathbf{Q}_{p}(\zeta): \mathbf{Q}_{p}(\zeta)^{\langle\phi\rangle}] = n$, we hence have $\operatorname{ord}_{2} [\mathbf{Q}_{p}(R_{T'}^{\theta}): \mathbf{Q}_{p}] = \operatorname{ord}_{2} m$, as desired.

REMARK. Professor K. Iimura showed to the author (by an elementary proof) that n=f/(m, f) and $[Q_{p}(\zeta)^{\langle \phi \rangle}: Q_{p}]=(m, f)$.

Proposition 2. Let χ be any cuspidal irreducible Deligne-Lusztig character $(-1)^{n-1}R_T^{\theta}$ of $G^F = SL_n(F_q)$, where we assume that q is an even power of $p \neq 2$. Then, if n is odd or $ord_2n \geq 2$, we have $m_Q(\chi) = 1$. Assume that $ord_2n = 1$. Then we have $m_{Q_r}(\chi) = 1$ for any prime number r and $m_Q(\chi) = m_R(\chi) \leq 2$. And we have $m_R(\chi) = 2$ if an only if χ is real and $\chi(-1_n) = -\chi(1_n)$ (i.e. $\theta(-1_n) = -1$).

REMARK. Let χ be as above. Assume that *n* is even and let n=2m. Fixing a generator θ_0 of \hat{T}'^F , put $\theta = \theta_0^i$. Then the following can be shown:

(i) χ is real if and only if $\frac{q^m-1}{q-1}|i$.

(ii) Assume that $\operatorname{ord}_{\mathbf{z}} n=1$ and let $i=\frac{q^m-1}{q-1}i'$ with $i' \in \mathbb{Z}$ (hence χ is real).

Then $\theta(-1_n)=1$ if and only if i' is even, and the latter condition is equivalent to the condition that $\theta | Z^F = 1$.

Proof of Proposition 2. Let $\lambda \in \Lambda_0$. Then, by Lemma 1, we have $\langle \chi, \lambda^{G^{F}} \rangle_{G^{F}} = 1$. Thus, if *n* is odd or $\operatorname{ord}_{2} n > \operatorname{ord}_{2} (p-1)$, by Proposition 1, (iii), we have $m_0(\chi) = 1$. Assume that $1 \leq \operatorname{ord}_2 n \leq \operatorname{ord}_2(p-1)$. Let t be an element of T^{F} having the property of Lemma 3. Then, under our assumption, we have $t^{p-1} = -1_n$ (cf. Proof of Lemma 4 and Proof of Lemma 3.3 (a) of Gow [8]). Let us use the notation of the proof of Proposition 1, (ii). Then $\lambda^{M} = \mu_{0} + \mu_{1}$. As $\mu_i(-1_n)=(-1)^i\mu_i(1_n)$ for i=0, 1, by Schur's lemma, we have $\langle \chi, \mu_0 \rangle_M=1$ if $\chi(-1_n) = \chi(1_n)$, and $\langle \chi, \mu_1 \rangle_M = 1$ if $\chi(-1_n) = -\chi(1_n)$. As μ_0 is realizable in Q, we have $m_Q(\chi) = 1$ in the first case. Assume that $\chi(-1_n) = -\chi(1_n)$. If r is any prime number $\neq p$, then μ_1 is realizable in Q_r , hence we have $m_{Q_r}(\chi) = 1$. As q is an even power of p, by Lemma 5, we have $2|[Q_p(\chi):Q_p]|$. Hence $A_1 \otimes_{\varrho} Q_{\flat}(\chi)$ splits (see [14], Chap. XIII, § 3, Prop. 7), hence μ_1 is realizable in $Q_p(\chi)$. Hence we have $m_{Q_p}(\chi) = m_{Q_p(\chi)}(\chi) = 1$. Thus we have $m_Q(\chi) = m_R(\chi)$. If χ is real, we must have $m_{\mathbf{R}}(\chi) = 2$ since otherwise χ will be realizable in \mathbf{R} , so that, by Schur's theorem, we have $(2=)m_R(\chi_1)|\langle \chi, \mu_1 \rangle_M = 1$, a contradiction. If $\operatorname{ord}_{z} n \geq 2$, then χ cannot be real since G^{F} contains a central element z of order 4 such that $z^2 = -1_n$ and $\chi(z) = \pm \sqrt{-1} \chi(1_n)$ ([7], p. 107). Finally, we note that, by [4], 1.22, we have $\chi(-1_n) = -\chi(1_n)$ if and only if $\theta(-1_n) = -1$. This completes the proof of Proposition 2.

References

- M. Benard: Schur indexes of sporadic simple groups, J. Algebra 58 (1979), 508– 522.
- [2] N. Bourbaki: Groupes et algèbres de Lie, chapitres 4, 5 et 6, Hermann, Paris, 1968.
- [3] R.W. Carter: Finite groups of Lie type: conugacy classes and complex characters, John Wiley and Sons, Chechester, 1985.

SCHUR INDICES

- [4] P. Deligne and G. Lusztig: Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103-161.
- [5] W. Feit: Characters of finite groups, W.A. Benjamin, Inc, New York, 1967.
- [6] W. Feit: The computations of some Schur indices, Israel J. Math. 46 (1983), 274-300.
- [7] R. Gow: Schur indices of some groups of Lie type, J. Algebra 42 (1976), 102-120.
- [8] R. Gow: On the Schur indices of characters of finite classical groups, J. London Math. Soc. (2) 24 (1981), 135-147.
- [9] R.B. Howlett: On the degrees of Steinberg characters of Chevalley groups, Math. Z. 135 (1974), 125-135.
- [10] G.J. Janusz: Simple components of **Q**[SL(2,q)], Comm. Algebra 1 (1974), 1–22.
- [11] G.I. Lehrer, Adjoint groups, regular unipotent elements and discrete series characters, Trans. Amer. Math. Soc. 214 (1975), 249–260.
- [12] G.I. Lehrer: On the values of characters of semisimple groups over finite fields, Osaka J. Math. 15 (1978), 77–99.
- [13] Z. Ohmori: On the Schur indices of reductive groups II, Quart. J. Math. Oxford Ser. (2) 32 (1981), 443-452.
- [14] J.P. Serre: Crops locaux, deuxieme edition, Hermann, Paris, 1968.
- [15] T.A. Springer: Linear algebraic groups, Birkhäuser, Boston, 1981.
- [16] T.A. Springer and R. Steinberg: Congugacy classes, in Seminar on Algebraic Groups and Related Finite Groups, by A. Borel et al., Lecture Notes in Math. 131, Springer, Berlin-Heidelberg-New York, 1970.
- [17] R. Steinberg: Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc. 80 (1968).
- [18] T. Yamada: Schur subgroup of the Brauer group, Lecutre Notes in Math. 397, Springer, Berlin-Heidelberg-New York, 1974.

Department of Mathematics Tokyo Metropolitan University Fukasawa, Setagaya-ku Tokyo, 158 Japan