A CHARACTERIZATION OF CONDITIONAL EXPECTATIONS FOR $L_{\infty}(X)$ -VALUED FUNGTIONS

RYOHEI MIYADERA

(Received October 6, 1986)

Introduction. Let $(\Omega, \mathcal{A}, \mu)$ be a probability space, (S, X, λ) a measure space and E a Banach space. We consider constant-preserving contractive projections of $L_1(\Omega, \mathcal{A}, \mu E)$ into itself. If E = R or E is a strictlyconvex Banach space, then it is known (Ando [1], Douglas [2] and Landers and Rogge [4]) that such operators coincide precisely with the conditional expectation operators. If $E = L_1(X, S, \lambda)$, the author [5] proved that such operators which are translation invariant coincide with the conditional expectation operators. In this paper we deal with the case when $E = L_{\infty}(X, S, \lambda)$. If $E = R^2$ with the norm $||(x, y)||_{R^2} = |x| \vee |y|$, then such operators can be expressed as a linear combination of two conditional expectation operators. On the other hand if $E = L_{\infty}(X, S, \lambda)$ and $E \not \cong R^2$ with the norm $||(x, y)||_{R^2} = |x| \vee |y|$, then such operators coincides with the conditional expectation given some σ -subalgebra.

1. Definitions and lemmas. Let $(\Omega, \mathcal{A}, \mu)$ be a probability space and (X, S, λ) a measure space. Let $S^+ = \{K : K \in S \text{ and } \lambda(K) > 0\}$ and $L_{\infty}(X, S, \lambda)$ the class of essentially bounded measurable functions on (X, S, λ) . Let $E = L_{\infty}(X, S, \lambda)$, then E is a Banach space with the norm defined by $||a||_E = \text{esssup } |a(x)|$ for each $a \in L_{\infty}(X, S, \lambda)$. Let $L_1(\Omega, \mathcal{A}, \mu, E)$ be the class of E-valued Bochner integrable functions on $(\Omega, \mathcal{A}, \mu)$ with the norm defined by

$$||f||_L = \int ||f(\omega)||_E d\mu(\omega)$$
 for each $f \in L_1(\Omega, \mathcal{A}, \mu, E)$.

For the definitions and properties of Bochner integral, see Hille and Phillips [3].

DEFINITION 1. For a σ -subalgebra \mathcal{B} of \mathcal{A} , a function g is called the conditional expectation of f given \mathcal{B} if g is weakly measurable with respect to \mathcal{B} , and

$$\int_B g d\mu = \int_B f d\mu$$
 for each $B \in \mathcal{B}$,

where the integral is the Bochner integral. We denote by $f^{\mathcal{B}}$ the conditional

106 R. MIYADERA

expectation of f given \mathcal{B} . We shall denote by R the class of real numbers. For each $\varphi \in L_1(\Omega, \mathcal{A}, \mu, R)$ we define $(\varphi \cdot a) = \varphi(\omega) \cdot a$ for each $\omega \ni \Omega$.

DEFINITION 2. Let P be a linear operator of $L_1(\Omega, \mathcal{A}, \mu, E)$ into itself. P is said to be *contractive* if

$$||P|| = \sup\{||P(f)||_L : f \in L_1(\Omega, \mathcal{A}, \mu, E) \text{ and } ||f||_L = 1\} = 1,$$

P is constant-preserving if $P(l_{\Omega} \cdot a) = l_{\Omega} \cdot a$ for each $a \in E$ and P is called a projection if $P \circ P = P$, where l_{Ω} is the characteristic function of E.

Lemma 1.1. For each $f \in L_1(\Omega, \mathcal{A}, \mu, E)$ the conditional expectation $f^{\mathcal{B}}$ of f given \mathcal{B} exists uniquely up to almost every-where and the conditional expectation operator $(\cdot)^{\mathcal{B}}$ is a constant-preserving contractive projection for each σ -subalgebra \mathcal{B} of \mathcal{A} .

For the proof see Schwartz [6].

By the definition of conditional expectation $(\varphi \cdot a)^{\mathcal{B}} = \varphi^{\mathcal{B}} \cdot a$ for each $\varphi \in L_1(\Omega, \mathcal{A}, \mu, R)$ and $a \in E$.

Lemma 1.2. If Q is a constant-preserving contractive projection of $L_1(\Omega, \mathcal{A}, \mu, E)$ into itself, then for each $\varphi \in L_1(\Omega, \mathcal{A}, \mu, R)$ with $0 \le \varphi \le 1$ and $a \in E$ there exists a μ -null set N such that

$$||a||_E - ||Q(\varphi \cdot a)(\omega)||_E = ||a - Q(\varphi \cdot a)(\omega)||_E$$
 for each $\omega \in \Omega - N$.

For the proof see Miyadera [5].

Lemma 1.3. Let Q be a constant-preserving contractive projection of $L_1(\Omega, \mathcal{A}, \mu, E)$ into itself. If, for each $\varphi \in L_1(\Omega, \mathcal{A}, \mu, R)$ and for each nonzero element a of E, there exists $\varphi' \in L_1(\Omega, \mathcal{A}, \mu, R)$ such that $Q(\varphi \cdot a) = \varphi' \cdot a$, then there exists a σ -subalgebra \mathcal{B} of \mathcal{A} such that Q(f) is the conditional expectation of f given \mathcal{B} for each $f \in L_1(\Omega, \mathcal{A}, \mu, E)$. In particular each constant-preserving contractive projection of $L_1(\Omega, \mathcal{A}, \mu, R)$ into itself is the conditional expectation given some σ -subalgebra.

For the proof see Miyadera [5].

Lemma 1.4. Let $T \in S^+$ and $A \in \mathcal{A}$. Then there exists a μ -null set N such that for each $\omega \in \Omega - N$

$$|Q(l_A \cdot l_T)(\omega)| \leq 1$$
 (a.e.x.)

and

$$0 \leq Q(l_A \cdot l_T)(\omega) \cdot l_T \leq 1$$
 (a.e.x.)

Proof. By Lemma 1.2 there exists a μ -null set N such that

$$||l_T||_E - ||Q(l_A \cdot l_T)(\omega)||_E = ||l_T - Q(l_A \cdot l_T)(\omega)||_E$$

for each $\omega \in \Omega - N$, and hence for each $\omega \in \Omega - N$,

$$||Q(l_A \cdot l_T)(\boldsymbol{\omega})||_E \leq 1$$

and

$$||l_T - Q(l_A \cdot l_T)(\omega)||_E \leq 1$$
.

Therefore by the definition of $||\cdot||_E$ we have for each $\omega \in \Omega - N$,

$$|Q(l_A \cdot l_T)(\omega)| \le 1$$
 (a.e.x)

and

$$0 \leq Q(l_A \cdot l_T)(\omega) \cdot l_T \leq 1$$
 (a.e.x).

Lemma 1.5. Let $A \in \mathcal{A}$ and $T, T' \in S^+$ and $T \cap T' = \phi$. Then

$$\int Q(l_A \cdot l_T) \cdot l_{T'} | d\mu = 0 \qquad \text{(a.e.x)}.$$

Proof. Since Q is constant-preserving and contractive,

$$\begin{split} 1 &= \int ||l_A \cdot l_T + l_\Omega \cdot l_{T'}||_E d\, \mu \geqq \int ||Q(l_A \cdot l_T + l_\Omega \, l_{T'})||_E d\, \mu \\ &= \int ||Q(l_A \cdot l_T) + l_\Omega \cdot l_{T'}||_E d\, \mu = \int ||Q(l_A \cdot l_T) \cdot l_{T'} + l_\Omega \cdot l_{T'}||_E d\, \mu \\ &\geqq ||\int (Q(l_A \cdot l_T) \cdot l_{T'} + l_\Omega \cdot l_{T'}) d\, \mu||_E \,. \end{split}$$

Similarly

$$\begin{split} 1 &= \int ||l_A \cdot l_T - l_\Omega \cdot l_{T'}||_E d\mu \\ &\geq \int ||Q(l_A \cdot l_T - l_\Omega \cdot l_{T'})||_E d\mu = \int ||Q(l_A \cdot l_T) - l_\Omega \cdot l_{T'}||_E d\mu \\ &\geq \int ||Q(l_A \cdot l_T) \cdot l_{T'} - l_\Omega \cdot l_{T'}||_E d\mu \geq ||\int (Q(l_A \cdot l_T) \cdot l_{T'} - l_\Omega \cdot l_{T'}) d\mu||_E \,. \end{split}$$

Therefore we have proved that

$$1 \ge || \int (Q(l_A \cdot l_T) \cdot l_{T'} + l_{\Omega} \cdot l_{T'}) d\mu ||_E$$

and

$$1 \ge || \int (Q(l_A \cdot l_T) \cdot l_{T'} - l_{\Omega} \cdot l_{T'}) d\mu ||_E.$$

Since

$$\int Q(l_A \cdot l_T) l_{T'} d\mu = 0 \quad \text{on} \quad (T')^c$$

108 R. MIYADERA

and

$$\int (l_A \cdot l_{T'}) d\mu = l_{T'},$$

we have

$$\int Q(l_A \cdot l_T) \cdot l_{T'} d\mu = 0 \qquad \text{(a.e.x)}.$$

Lemma 1.6. Let $A \in \mathcal{A}$ and $T \in S^+$. Suppose that there exists T', $T'' \in S^+$ such that $T' \cap T'' = \phi$ and $T' \cup T'' = T^c$, then there exists a μ -nullset N such that $Q(l_A \cdot l_T)(\omega) \cdot l_{T^c} = 0$ (a.e.x) for each $\omega \in \Omega - N$.

Proof. Since Q is constant-preserving and contractive,

$$\begin{split} 1 &= \int ||l_{A} \cdot l_{T} + l_{\Omega} \cdot l_{T''} + (-1)^{k} l_{\Omega} \cdot l_{T'}||_{E} d\mu \\ &\geq \int ||Q(l_{A} \cdot l_{T} + l_{\Omega} \cdot l_{T''} + (-1)^{k} l_{\Omega} \cdot l_{T'})||_{E} d\mu \\ &= \int ||Q(l_{A} \cdot l_{T}) + l_{\Omega} \cdot l_{T''} + (-1)^{k} l_{\Omega} \cdot l_{T'}||_{E} d\mu \\ &\geq \int ||(Q(l_{A} \cdot l_{T}) \cdot l_{T''} + l_{\Omega} \cdot l_{T''}||_{E} \vee ||Q(l_{A} \cdot l_{T}) \cdot l_{T'} + (-1)^{k} l_{\Omega} \cdot l_{T'}||_{E}) d\mu \\ &\geq \int ||Q(l_{A} \cdot l_{T}) \cdot l_{T''} + l_{\Omega} \cdot l_{T''}||_{E} d\mu \wedge \int ||Q(l_{A} \cdot l_{T}) \cdot l_{T'} + (-1)^{k} l_{\Omega} \cdot l_{T'}||_{E} d\mu \\ &\geq ||\int (Q(l_{A} \cdot l_{T}) \cdot l_{T''} + l_{\Omega} \cdot l_{T''}) d\mu ||_{E} \wedge ||\int (Q(l_{A} \cdot l_{T}) \cdot l_{T'} + (-1)^{k} l_{\Omega} \cdot l_{T'}) d\mu ||_{E} \\ &= 1 \, . \end{split}$$

Here we also used Lemma 1.5 that

$$\int Q(l_A \cdot l_T) \cdot l_{T'} d\mu = 0$$

and

$$\int Q(l_A \cdot l_T) \cdot l_{T''} d\mu = 0.$$

We have proved that

$$1 = \int (||Q(l_A \cdot l_T) \cdot l_{T''} + l_{\Omega} \cdot l_{T''}||_E \vee ||Q(l_A \cdot l_T) \cdot l_{T'} + (-1)^k l_{\Omega} \cdot l_{T'}||_E) d\mu$$

and

$$||Q(l_A \cdot l_T) \cdot l_{T''} + l_\Omega \cdot l_{T''}||_E = ||Q(l_A \cdot l_T) \cdot l_{T'} + (-1)^k l_\Omega \cdot l_{T'}||_E \qquad \text{(a.e.x)}.$$

Therefore we have

$$1 = \int (||Q(l_A \cdot l_T) \cdot l_{T'} + l_{\Omega} \cdot l_{T'}||_E \vee ||Q(l_A \cdot l_T) \cdot l_{T'} - l_{\Omega} \cdot l_{T'}||_E) d\mu$$

Since

$$\begin{split} &||Q(l_A \cdot l_T) \cdot l_{T'} + l_\Omega \cdot l_{T'}||_E \vee ||Q(l_A \cdot l_T) \cdot l_{T'} - l_\Omega \cdot l_{T'}||_E \geqq 1 \;, \\ &||Q(l_A \cdot l_T)(\omega) \cdot l_{T'} + l_{T'}||_E = ||Q(l_A \cdot l_T)(\omega) \cdot l_{T'} - l_{T'}||_E = 1 \end{split} \quad \text{(a.e.x)} \;. \end{split}$$

Similarly we can prove that

$$||Q(l_A \cdot l_T)(\omega) \cdot l_{T''} + l_{T''}||_E = ||Q(l_A \cdot l_T)(\omega) \cdot l_{T''} - l_{T''}||_E = 1$$
 (a.e.x).

Therefore there exists a μ -unliset N such that

$$Q(l_A \cdot l_T)(\omega) \cdot l_{T' \cup T''} = 0 \qquad \text{(a.e.x)}.$$

2. A characterization of conditional expectation for $L_{\infty}(X)$ -valued function

Theorem 1. If there exist pairwise disjoint elements X_1 , X_2 and X_3 of S^+ such that $X_1 \cup X_2 \cup X_3 = X$, then a constant-preserving contractive projection Q of $L_1(\Omega, \mathcal{A} \mu, E)$ into itself is a conditional expectation operator given some σ -subalgebra.

Proof. Let $A \in \mathcal{A}$ and $T \in S^+$ and $T \subset X_i$. Then by Lemma 1.6 there exists a μ -nullset N such that for each $\omega \in \Omega - N$

$$Q(l_A \cdot l_T)(\omega) \cdot l_{T^c} = 0 \qquad \text{(a.e.x)}$$

and

$$Q(l_{A^c} \cdot l_T)(\omega) \cdot l_{T^c} = 0 \qquad (a.e.x).$$

Since Q is constant-preserving

$$Q(l_A \cdot l_T) + Q(l_{A^c} \cdot l_T) = Q(l_{\Omega} \cdot l_T) = l_{\Omega} \cdot l_T.$$

Since Q is constant-preserving and contractive

$$\begin{split} 1 &= \mu(A) + \mu(A^c) = \int (||l_A \cdot l_T||_E + ||l_{A^c} \cdot l_T||_E) d\mu \\ &\geq \int (||Q(l_A \cdot l_T)||_E + ||Q(l_{A^c} \cdot l_T)||_E) d\mu \\ &\geq \int ||Q(l_A \cdot l_T) + Q(l_{A^c} \cdot l_T)||_E d\mu = \int ||l_{\Omega} \cdot l_T||_E d\mu = 1 \; . \end{split}$$

Therefore there exists a μ -nullset N' such that for each $\omega \in \Omega - N'$

$$||Q(l_A \cdot l_T)(\omega)||_E + ||Q(l_A \cdot l_T)(\omega)||_E = 1.$$

This together with (1), (2) and (3), implies that for each $\omega \in \Omega - (N \cup N')$ there exists a real number $k(\omega)$ such that $Q(l_A \cdot l_T)(\omega) = k(\omega) \cdot l_T$. Obviously $k(\cdot) \in L_1(\Omega, \mathcal{A}, \mu, R)$. Since Q is linear, $k(\cdot)$ is independent of the choice of T. Let

110 R. MIYADERA

 $E_i = \{a: a \in E, a(x) = 0 \text{ for each } x \in X_i^c\}$ (i = 1, 2 and 3). Q is linear and continuous, and hence for each $\varphi \in L_1(\Omega, \mathcal{A}, \mu, R)$ and $a \in E_i$, there exists $\varphi' \in L_1(\Omega, \mathcal{A}, \mu, E_i)$ such that $Q(\varphi \cdot a) = \varphi' \cdot a$. Therefore by Lemma 1.3 there exists a σ -subalgebra \mathcal{B}_i of \mathcal{A} such that $Q(f) = f^{\mathcal{B}_i}$ for each $f \in L_1(\Omega, \mathcal{A}, \mu, E_i)$. We shall prove that $\mathcal{B}_1 = \mathcal{B}_2 = \mathcal{B}_3$. Let $B \in \mathcal{B}_1$. Then

$$\begin{split} \int l_B d\mu &= \int l_B \cdot ||l_{X_1} + l_{X_2}||_E d\mu = \int ||l_B \cdot l_{X_1} + l_B \cdot l_{X_2}||_E d\mu \\ &\geq \int ||Q(l_B \cdot l_{X_1} + l_B l_{X_2})||_E d\mu = \int ||Q(l_B \cdot l_{X_1}) + Q(l_B \cdot l_{X_2})||_E d\mu \\ &= \int ||(l_B)^{\mathcal{B}_1} \cdot l_{X_1} + (l_B)^{\mathcal{B}_2} \cdot l_{X_2}||_E d\mu = \int ||l_B \cdot l_{X_1} + (l_B)^{\mathcal{B}_2} \cdot l_{X_2}||_E d\mu \\ &= \int (l_B \vee (l_B)^{\mathcal{B}_2}) d\mu \;. \end{split}$$

Hence $l_B(\omega) = l_B(\omega) \vee (l_B)^{\mathcal{B}_2}(\omega)$, which implies that $l_B(\omega) = (l_B)^{\mathcal{B}_2}(\omega)$. Since $||(l_B)^{\mathcal{B}_2}||_L = ||l_B||_L$, $l_B = (l_B)^{\mathcal{B}_2}$. Since B is an arbitrary element of \mathcal{B}_1 , we have proved that $\mathcal{B}_1 \subset \mathcal{B}_2$. Similarly we can prove that $\mathcal{B}_2 \subset \mathcal{B}_3$ and $\mathcal{B}_3 \subset \mathcal{B}_1$, which imply that $\mathcal{B}_1 = \mathcal{B}_2 = \mathcal{B}_3$. Write $\mathcal{B} = \mathcal{B}_2 = \mathcal{B}_2 = \mathcal{B}_3$, then $Q(f) = f^{\mathcal{B}}$ for each $f \in L_1(\Omega, \mathcal{A}, \mu, E)$.

- 3. A characterization of a constant-preserving contractive projection of for R^2 -valued functions. If there do not exist pairwise disjoint element X_1 , X_2 and X_3 such that $X_1 \cup X_2 \cup X_3 = X$ and X_1 , X_2 and $X_3 \in S^+$, then $E \cong R^2$ with the norm $||(x, y)||_E = |x| \vee |y|$ or $E \cong R$ with the norm $||x||_E = |x|$. Douglas [2] showed that a constant-preserving contractive projection of $L_1(\Omega, \mathcal{A}, \mu, R)$ into itself is a conditional expectation given some σ -subalgebra. Therefore our next aim is to consider the case that $E \cong R^2$ with the norm $||(x, y)||_E = |x| \vee |y|$. Note that for each $f \in L_1(\Omega, \mathcal{A}, \mu, R^2)$ there exist $f_1, f_2 \in L_1(\Omega, \mathcal{A}, \mu, R)$ such that $f(\omega) = (f_1(\omega), f_2(\omega))$.
- **Lemma 3.1.** Suppose that $E=R^2$ and Q is a constant-preserving contractive projection of $L_1(\Omega, \mathcal{A}, \mu, E)$ into itself. If $f \in L_1(\Omega, \mathcal{A}, \mu, R)$ with $0 \le f(\omega) \le 1$ (a.e. ω) and $Q((f, f)) = (f_1, f_2)$ and $Q((f, -f)) = (g_1, g_1)$, then $f_2 = f_2$ and $g_1 = -g_2$.

Proof. By Lemma 1.2 there exists μ -nullsets N_1 and N_2 such that for each $\omega \in \Omega - N_1$

$$||(1, 1)||_{E} - ||Q((f, f))(\omega)||_{E} = ||(1, 1) - Q((f, f))(\omega)||_{E}$$

and for each $\omega \in \Omega - N_s$

$$||(1,-1)||_E - ||Q((f,-f))(\omega)||_E = ||(1,-1) - Q((f,-f))(\omega)||_E.$$

Therefore we hv have for each $\omega \in \Omega - N_1$

$$1-(|f_1(\omega)| \vee |f_2(\omega)|) = |1-f_1(\omega)| \vee |1-f_2(\omega)|$$

and for each $\omega \in \Omega - N_2$

$$1-(|g_1(\omega)| \vee |g_2(\omega)|) = |1-g_1(\omega)| \vee |1+g_2(\omega)|$$

and hence $f_1(\omega) = f_2(\omega)$ for each $\omega \in \Omega - N_1$ and $g_1(\omega) = -g_2(\omega)$ for each $\omega \in \Omega - N_{-2}$

Theorem 2. Let $E=R^2$ with the norm $||(x, y)||_E=|x|\vee|y|$. Then Q is a constant-preserving contractive projection if and only if there exist σ -subalgebras \mathcal{B} and \mathcal{C} of \mathcal{A} such that

$$Q((f,g)) = (1/2(f^{\mathcal{B}} + g^{\mathcal{B}} + f^{\mathcal{C}} - g^{\mathcal{C}}), 1/2(f^{\mathcal{B}} + g^{\mathcal{B}} + g^{\mathcal{C}} - f^{\mathcal{C}})).$$

Proof. Suppose that Q is a constant-preserving contractive projection. Then by Lemma 3.1 we can get two operators Q_1 and Q_2 of $L_1(\Omega, \mathcal{A}, \mu, R)$ into itself such that for each $f \in L_1(\Omega, \mathcal{A}, \mu, R)$,

$$Q((f, f)) = (Q_1(f), Q_1(f))$$
 and $Q((f, -f)) = (Q_2(f), -Q_2(f))$.

Since Q is a constant-preserving contractive projection, Q_1 and Q_2 are constant-preserving contractive projections. Therefore by Lemma 1.3 there exist σ -subalgebra $\mathcal B$ and $\mathcal C$ such that

$$Q_1 = (\cdot)^{\mathcal{B}}$$
 and $Q_2 = (\cdot)^{\mathcal{C}}$.

Then

$$\begin{split} Q((f,g)) &= Q(1/2(f+g)+1/2(f-g),\ 1/2(f+g)-1/2(f-g)) \\ &= (Q_1(1/2(f+g))+Q_2(1/2(f-g)),\ Q_1(1/2(f+g))-Q_2(1/2(f-g))) \\ &= ((1/2(f^{\mathcal{B}}+g^{\mathcal{B}}))+(1/2(f^{\mathcal{C}}-g^{\mathcal{C}})),\ (1/2(f^{\mathcal{B}}+g^{\mathcal{B}}))-(1/2(f^{\mathcal{C}}-g^{\mathcal{C}}))) \\ &= (1/2(f^{\mathcal{B}}+g^{\mathcal{B}}+f^{\mathcal{C}}-g^{\mathcal{C}}),\ 1/2(f^{\mathcal{B}}+g^{\mathcal{B}}+g^{\mathcal{C}}-f^{\mathcal{C}})) \,. \end{split}$$

On the other hand let \mathcal{B} and \mathcal{C} be σ -subalgebras of \mathcal{A} and

$$Q((f,g)) = (1/2(f^{\mathcal{B}} + g^{\mathcal{B}} + f^{\mathcal{C}} - g^{\mathcal{C}}, 1/2(f^{\mathcal{B}} + g^{\mathcal{B}} + g^{\mathcal{C}} - f^{\mathcal{C}})).$$

Since $(\cdot)^{\mathcal{B}}$ and $(\cdot)^{\mathcal{C}}$ are constant-preserving projections, Q is a constant-preserving projection. In the following we denote

$$\{\omega: f^{\mathcal{B}} + g^{\mathcal{B}} \ge 0\}$$
 by $\{f^{\mathcal{B}} + g^{\mathcal{B}} \ge 0\}$

and

$$\{\omega: f^{\mathcal{C}} - g^{\mathcal{C}} < 0\}$$
 by $\{f^{\mathcal{C}} - g^{\mathcal{C}} < 0\}$, etc.

It holds that

$$\begin{split} ||Q((f,g))||_L &= \int ||Q((f,g))||_E d\mu \\ &= \int |(1/2(f^{\mathcal{B}} + g^{\mathcal{B}} + f^{\mathcal{C}} - g^{\mathcal{C}})| \vee |1/2(f^{\mathcal{B}} + g^{\mathcal{B}} + g^{\mathcal{C}} - f^{\mathcal{C}})| d\mu \\ &= \int 1/2(f^{\mathcal{B}} + g^{\mathcal{B}} + f^{\mathcal{C}} - g^{\mathcal{C}}) d\mu + \int 1/2(f^{\mathcal{B}} + g^{\mathcal{B}} + g^{\mathcal{C}} - f^{\mathcal{C}}) d\mu \\ &\{f^{\mathcal{B}} + g^{\mathcal{B}} < 0\} \cap \{f^{\mathcal{C}} - g^{\mathcal{C}} \ge 0\} \quad \{f^{\mathcal{B}} + g^{\mathcal{B}} = 0\} \cap \{f^{\mathcal{C}} - g^{\mathcal{C}} < 0\} \\ &+ \int 1/2(-f^{\mathcal{B}} - g^{\mathcal{B}} + f^{\mathcal{C}} - g^{\mathcal{C}}) d\mu + \int 1/2(-f^{\mathcal{B}} - g^{\mathcal{B}} + g^{\mathcal{C}} - f^{\mathcal{C}}) d\mu \\ &\{f^{\mathcal{B}} + g^{\mathcal{B}} < 0\} \cap \{f^{\mathcal{C}} - g^{\mathcal{C}} \ge 0\} \quad \{f^{\mathcal{B}} + g^{\mathcal{B}} < 0\} \cap \{f^{\mathcal{C}} - g^{\mathcal{C}} < 0\} \\ &= \int 1/2(f^{\mathcal{B}} + g^{\mathcal{B}}) d\mu + \int 1/2(-f^{\mathcal{B}} - g^{\mathcal{B}}) d\mu \\ &\{f^{\mathcal{B}} + g^{\mathcal{B}} \ge 0\} \quad \{g^{\mathcal{C}} - f^{\mathcal{C}} \ge 0\} \\ &= \int 1/2(f^{\mathcal{C}} - g^{\mathcal{C}}) d\mu + \int 1/2(g^{\mathcal{C}} - f^{\mathcal{C}}) d\mu \\ &\{f^{\mathcal{C}} - g^{\mathcal{C}} \ge 0\} \quad \{g^{\mathcal{C}} - f^{\mathcal{C}} \ge 0\} \\ &= \int |1/2(f^{\mathcal{B}} + g^{\mathcal{B}})| d\mu + \int |1/2(f^{\mathcal{C}} - g^{\mathcal{C}})| d\mu \\ &= \int |1/2(f + g)| d\mu + \int |1/2(f - g)| d\mu \\ &\leq \int (|f| \vee |g|) d\mu = \int ||(f,g)||_E d\mu \,. \end{split}$$

Therefore Q is contractive.

Acknowledgement. The author would like to thank Professors Tsuyoshi Ando, Hirokichi Kudo and Teturo Kamae for their helpful suggestions. Section 3 is suggested by Professor Kamae.

References

- T. Ando: Contractive projections in L_p-spaces, Pacific J. Math. 17 (1966), 395– 405.
- [2] R.G. Douglas: Contractive projections on an L₁-space, Pacific J. Math. 15 (1965), 443-462.
- [3] E. Hille and R.S. Phillips: Functional analysis and semi-groups, Amer. Math. Soc. Collog. Publ., 1957.
- [4] D. Landers and L. Rogge: Characterization of conditional expectation operators for Banach-valued functions, Proc. Amer. Math. Soc. 81 (1981), 107-110.
- [5] R. Miyadera: Characterizations of conditional expectations for L₁(X)-valued functions, Osaka J. Math. 23 (1986), 313-324.
- [6] L. Schwarz: Disintegration on measures, Tata Institute of Fundamental Research, 1976.

Department of Physics School of Science Kwansei Gakuin University Nishinomiya, Hyogo 662 Japan