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1. Introduction

Let ω be an open set in Rn

y n^ly containing the origin and let Γ>0. This
paper is concerned with the non-hypoellipticity of differential operators of
second order of the form:

(1.1) L = Σ &ifa t} —-—+ Σ bfa ί) —+c(x, t)+— ,

where (x, t)=(xl9 •••, xn9 t)^Ω=ωX(—Ty T).
We assume that

(1.2) all coefficients of L are complex-valued C°° functions defined in Ω,

(1.3) affa t) = ajfa t) (1 <^i,j^n), (x9 ί)eΩ .

We put

(1.4) a(xy ty ξ) = Σ*ifa t) ξ< ξ j , (x, ty ξ)^ΩxRn .

The operator L is said to be hypoelliptic in Ω if for any open subset U of Ω and
any u^S)'(U)y Lu^C°°(U) implies u^C°°(U)y and is said to be globally hypoel-
liptic in Ω if we^)'(Ω) and Lu^C°°(Ω) imply weC°°(Ω).

In order that L is not hypoelliptic, Re a(xy ty ξ) must vanish at some point,
say (0, 0, ξ°)y £°ΦO (cf. [8]). We give a sufficient condition for L not to be
globally hypoelliptic or to be non-hypoelliptic in any open neighborhood of
the origin mainly in terms of the behavior of Re a(xy ΐy ξ°) along the straight line
#=0 through the origin or in terms of that of a(xy ty ξ°) along the integral curve
(x(i)y t) of the vector field Σϊ-i bk(x, t) d/dxk+d/dt through the origin according
as the coefficients of L are complex valued or real valued. In these results we
require that Re α(0, ty ξ°) or a(x(t)y ty ξ°) changes its sign from plus to minus
when t increases across 0 and vanishes at t=0 exactly to some odd order.

We review related known results on the (non-) hypoellipticity of operators
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of second order with C°° coefficients defined in an open set β of Rn(n

Let a(xy £)=Σί,;-ι au(χ} ?» f y I36 ̂ e characteristic form of P.
In [5] Hϋrmander proved that

(H) if P is hypoelliptic in O and %(#) (l^i,j^n) are real valued, then for any
x&& the quadratic form: ξ-*a(x, ξ) is semi-definite.

The quadratic form a(x, ξ) may change its sign when x varies in β.

Kannai [6] treated the operator dldt—td2ldx?, x^R\ and proved that it is

not hypoelliptic in any open neighborhood of the origin. This fact is due to

the change of sign of — t from plus to minus near t=Q, and it motivates us to

investigate the relation between the hypoellipticity of P and the change of sign

of the quadratic form a(x, ξ).

Subsequently Zuily [12] generalized the Kannai's result and proved that if

all coefficients of P are real analytic in Ω, Σ/.y-i I aa(χ) I +Σ*-ι I bk(x) I Φθ for all
and if P is hypoelliptic there, then

(1.5) for every x0^Ω, there exist an open neighborhood V0 of x0 and an analytic

function φ(x) defined in V0 such that a(x, ξ)=φ(x) Σ?.y-ι #*/#) £» ζj=
φ(x) a(x> ξ), (x, (?) e Fβ X Rn where a{j(x) (l^ij^ri) are real analytic func-

tions defined in V 0 and the quadratic form a(x, ξ) is non-negative

and

α / \ v i 7 / \ \J\D / \ ^̂  r\ r _ τ/ —. . _ I / / Λ \
.6) Σ 0*W ——(#)2^0 for any # e K 0 Γ Ί φ (0).

*=ι 9#Λ

The case where the coefficients of P are real C°° functions was studied by

the authors of [3], [7] and [2]. Let Ω+=Int {x^U\a(x, |?)^0, v|?eJ?n}, Ω,~ =

Int {x^Ω,\a(x,ξ)<*Qy

vξ^Rn} a.ndN=Ω,ndΩ,+=Ω,ΓldΩ,~. Under the assump-

tion that N is an (n— l)-dimensional manifold of class C*, Λ^4, Lanconelli [7]

proved that if

n

(1.7) Σ **(#•) ^Λ(^O)<0 at some point x0^N,

where K^e)==(I'i(^)> '"> vn(xoϊ)1S an interior normal to β+ at x0, then P is not
hypoelliptic in any open neighborhood of xoy more precisely, for any sufficiently

small open neighborhood V0 of x0 there exists a function u^C°(V0)\C\V0) such
that Pu—0 in V0. This is an extension of the Zuily's result stated above and

Theorem 1 (3) in Beals-Fefferman [3]. Here we note that the condition (1.7)

means that the quadratic form a(x, ξ) changes from the non-negative form to the

non-positive form along the integral curve of the vector field ΣZ-i b k(x) d/dxk
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through x0.
Amano [2] proved, under some additional assumptions, that if (1.7) holds,

then there exist an open neighborhood U of x0 and a function u of the class L°°(U)

such that Pu=0 in U and (x,, v(x0)) or (x0, — v(x^)^WFA(u).

In all of their works it is assumed that
(a) all coefficients of P are real valued,
(b) ΛΓis an (n— l)-dimensional manifold of class C*, &2:4,

(c) ΣH-i bk(xφ) vk(xφ)<0, x0(=N.
In this paper we give a sufficient condition for non-hypoellipticity of operators

L defined by (1.1) which are special forms of P but do not necessarily satisfy (a),

(b)or(c).
For the case where the coefficients of L are complex valued we obtain

Theorem 1.1. Assume that there exist ξ°=(ξΐ, •• , ?S)ΦO, a real number
αr<0 and an odd integer q>0 such that for sufficiently small t

(A.1) Re *(0, ί, ξ°) = αf

(A.2) %(0,f) = 0(f) and bk(0, t) = O(t«) (l£i,j,k£n)

(A.3) I grad, β,χθ, t) | = O(* +W) and \ grad, 44(0, ί) | =

zϋhere \ | denotes the Euclidean norm.

Then, L is not globally hypoelliptic in any open neighborhood C/cΩ containing
the origin.

We shall prove Theorem 1.1 in sections 2, 3 and 4 by applying the usual
asymptotic method with some modifications.

EXAMPLE 1.1. According to the result of Zuily [12] or Lanconelli [7]

stated above, the operator (x2— t3) d2ldx?+d/dt, (x, t)^R2, is not hypoelliptic in

any open subset of Λ2\{0} intersecting the set {(x, ^1^=^} and so, by defini-

tion of hypoellipticity, it is not hypoelliptic in any open neighborhood of 0.

Moreover, by Theorem 1.1 it is not globally hypoelliptic in any open neigh-
borhood of 0. Note that (b) does not hold at 0 for this operator.

EXAMPLE 1.2. Let L^x—t3) (xf+t4) 92/3*2+9/9*, (x, t)<ΞR2. Then, N=
{(x, t)^R2\x=t3} is a C°° manifold of dimension 1 and (1,0) is the interior

normal to Ω+= {(#, t)^R2\ x>t?} at (0, 0)eΛΓ. It is easy to check that (c) does

not hold at (0, 0) for LΓ However, by Theorem 1.1 Lλ is not globally hypoel-

liptic in any open neighborhood of (0, 0).

In the following two theorems the coefficients of L are assumed to be real

valued in Ω, and (x(t), t)= (^(ί), ~ ,xn(t),i) denotes the integral curve of the
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vector field Σϊ-i bk(x, t) dldxk+dldt through 0.

Theorem 1.2. Assume that
(B) there exist ξ°=(ξΐ, •••, £«)ΦO, # raz/ number α<0 αwrf αw orfrf integer q>0

such that for sufficiently small t

Then L is not hypoelliptic in any open neighborhood of 0.

We shall prove Theorem 1.2 in section 6 using the results of section 5. The
outline of the proof is as follows. Suppose that (B) holds and L is hypoelliptic
in some open neighborhood U of 0. Then there exist open neighborhoods V
and Fof 0 (V, Vc [/), and a diίfeomorphism from V to V which transforms L
to an operator L defined in V satisfying all the assumptions in Theorem 1.1.
Then, L is not hypoelliptic in V which is a contradiction, because hypoellipticity
is invariant under diffeomorphisms.

As an application of Theorem 1.2 and the Hϋrmander's theorem (H) we
obtain the following theorem which will be proved in section 7.

Theorem 1.3. Assume that the coefficients of L except c are analytic in Ω
and L is hypoelliptic there. Let (T19 T2)9—T^Tl<T2^ίT9 be the domain of de-
finition of the curve (x(t), t). Then one of the following three properties holds.

(i) a(x(t)it9ξ)£Q for all (ί, ξ)^(T19 T2)xR» ,
(ii) a(x(ΐ),t,ξ)^0 for all (t, ξ)<Ξ(Tl9 T2)xR» ,
(iii) there exists T0, T,<T0<T2ί such that a(x(t), t, ξ)£Q for all (ί,f)e

and α(*(f),/,|)^0 for all (t, ?)e[Γβ, T2)χR» .

REMARK. If the coefficients of L are functions of the variable t only, the
analyticity condition in Theorem 1.3 is unnecessary. For the proof see [1],

NOTATION. For x=(x^ •••, xn)^Rn and a multi-index of non-negative in-
tegers a= (#!, •••, an) we use the notation:

In sections 2, 3 and 4 we shall use the notation:

2. Derivation of ordinary differential equations

The proof of Theorem 1.1 will be based on the following lemma due to
[10, Lemma 1.1].
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Lemma 2.1. Let U be an open subset of Ω such that U^O and suppose
that L is globally hypoelliptic in U. Then for any positive integer ml and any
compact subset Kλ of U, there exist another positive integer m2) another compact

subset K2 of U and a positive constant C such that

I / 1 mι.κ^C( I Lf I m2ιK2+ I / 1 0tKί) far all /e C°°( U) ,

where \ f \ m κ= sup Σ 1 9* 9ί /(#, f) \ for a non-negative integer m and a com-
Cχ,oe κ \Λ[+j^m

pact subset K of U.

Taking m1=l and Kλ= {0} in the above lemma we have

Corollary 2.1. Under the same assumptions as in Lemma 2.1 there exist a
positive integer M, a compact subset K of U and a positive constant C such that

(2.1) lgtad,/(0,0)|^C(|L/|Jf. jr+|/|,. jr) for all /eC~(C7).

By Corollary 2.1, to prove Theorem 1.1 it suffices to show that

(#) under the assumptions of Theorem 1.1, the inequality (2.1) is not valid for
any choice of M, K and C.

To this end we shall determine functions gλ(x, t)—wλ(x, t) exp (— \vλ(xy t)) with
λ>0 as a parameter so that (2.1) does not hold for /=%λ£λ as λ->+°° where
%λ(λ>0) are cut-off functions defined in a neighborhood of 0.

Now we choose real numbers 6 , p, dy K and # such that

(2.2) -,

(2.3) 0<p<l ,

(2.4) d = -(1-p) (q-l+ε)l(q+l+ε) ,

(2.5) « = 2(l-p)/(β+l+e),

(2.6) -d<μ<(\-p-d)β.

Note that we can choose μ satisfying (2.6), because (1— p— ίί)/2+</=(l— p)/

((?+l+£)>0. For every multi-index of non-negative integers p=(p!, •• ,pn)
we put

f O =
(2.7) p(P) = \P \P+(\P\-l)d

Let N be a positive integer satisfying

(2.8) 3(M+2)+(μ-(l-p-

where M is the integer which appeared in Corollary 2.1. Such an integer
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exists by (2.6).

Furthermore we put

(2.9) fχ(*,ί)= |ΛΣrλ-p»>t.

(2.10) wλ(*. ί) = Σ

with λ>0 as a parameter and undetermined functions vλtp(t) and wλtp

to be infinitely differentiable in a neighborhood of 0. Then we obtain

(2.1 1) exp (\vλ) L(wλ exp (— λvλ))

= -λwλ {9, *;λ-λ Σ tf,v 9< 0λ 9y uλ+ Σ α, ; 9, 9y vλ

.

+ Σj ** 9* a»λ+cwλ .

We want to express the Taylor expansion of the right-hand side of (2.11)
with respect to * at #=0 and make the coefficients of xp, \p\ ^N, to be equal
to 0. To this end we must make some preparations.

We can write for i,j=\, —,n

Mλ(*,ί)= Σ
\P\ £N-\

9, 9, »χ(*. ί) = Σ
\P\^.N~2

.8,a^(*,ί)= Σ
lίl̂ JT-

9, 8y «χ(«, ί) = Σ λμ(lί l+2)(ί, + δ, y+ 1) (/>,.+ 1) Wx.^+.Xί) *» ,
I^I^jZy-2

^
where ,̂-=(0, •••, 1, •••, 0) (l^i^ri) and δ^ is the Kronecker's delta. Take suf-
ficiently small δ>0 so that

(2.12) I7β= i(xyt)<=R»+l\ \x\<S, \t\<S}cU.

By the Taylor's formula we can write in U8

*«/*, 0 == Σ «0 xp+ Σ «̂ , 0 ̂  , ίj = 1, -, n ,
lίl̂ jv w=jr+i

**(*, 0 = Σ «(0 **+ Σ #(*,*)**, A = l , - , n ,

Σ
l*l=JΓ

From the assumptions (A.2) and (A.3) of Theorem 1.1 it follows that for t,j=l,
•• ,n and sufficiently small t
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(2.13) «?,(*) = 0(ί ) and α?,(ί) = θφ<+»*)(\p |= 1) ,

(2.14) bi(t) = θφ) and #(ί) = O(ί««>/2) ( | f | = 1) .

We put

(2.15) βft+1>(*,f)= Σ βf,(*,f)*>, ί,y=l,-,»,
ι*ι=jy+ι

(2.16) #»+1>(*,ί) = Σ #(*,*)*', ft=l,-,n,
lίl=Jf+ι

(2.17) c<*+1>(*, ί) = Σ e»(*,ί)*»,
, IΛ= * >

(2.18) Lw+1 = Σ <+1)(*. ί) 9,- 9/+ Σ δf+ '>(*, ί) 9* -

We denote by f7'=(^)ιίι^^ an<^ ^— (W/>)I#I^ΛΓ vectors whose components are
complex numbers vp and ^(1^1 ^N) where p~(pι, •••,/>») is a multi-index of
non-negative integers. We also denote by | V \ and | W \ the Euclidean norms
of V and W respectively. Now, for λ>0 and multi-indices of non-negative

integers p=(pl9 —,pn) ( \ p \ ^Λ^, we define functions φλ,p(V, f) of V and ty and
ψλ.p(V, W, t) of V, W and t as follows:

(2.19)

= Σ

- Σ Σ
ί,y=ι «+β=

-Σ Σ
*=ι

(2.20) τbjy,

= -

+2 Σ Σ λ^-Ήi Ί+i^w-^+OOβ^+l) (7y+l)
, ,y=ι *+β+γ=j>

iβi.iγi^^ -i

XVβ+eiWι+eJ

- Σ Σ λμ-μ|βf|(Λ+l) «(0 w^4- Σ λ-μ|flf|

* =

Finally we put

(2.21)

(2.22)
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where vλ_p and zσλ>ί( \p\ ^N) are the functions which appeared in the right-hand
sides of (2.9) and (2.10) respectively.

Under the above preparations we can now rewrite (2.11) in the form:

(2.23) exp (λϋjO I<wλ exp (-\vj)

where

(2.24) ΛAtl(*, ί)

(*. ί) Σ

(2.25) R^x,t)

= \^(x, t)
I

(2.26) RM(x,t)

= Σ

(2.27)

(2.28) J?A>5(^ ί)

= λ«wλ(*, t) Σ βγj+1)(*. ί) 9,- t>λ(*. ί) 9y βλ(*, ί)
'-ί=1

-X«^(*, ί) Lw+1 σλ(*, t)-2\£a(^\x, t) 9,. ι>λ(*. ί) X

X 9,- e>x(*, ί)+Lw+1 Wχ(*, ί)+c(w+1)(Λr, ί) WA(*. ί) ,

and where ̂ .γ, r^, r^jj and r^,γ are all linear combinations of α?y, &* and c"
'

In order that the coefficients of xp(\p\ ^N) in the right-hand side of (2.23)
may be equal to 0, we define Vλ(t)=(vλιp(t))ιp[SN as the solution of the follow-
ing system of ordinary differential equations with λ>0 as a parameter:
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(2.29) — Vλtp(t) = φ;

with initial conditions

(2.30)

and with Vλ(t) thus defined, we define Wλ(t)=(wλtp(t))\p\^N as the solution of
the following system of linear ordinary differential equations with λ>0 as a
parameter:

dt ' ~~

with initial conditions

(2.32)

Here we note that the domain of definition of Vλ(t) depends on λ>0 and
hence so does that of Wλ(t). In the next section we shall determine the domains
of definitions of Vx(t) and Wλ(t) and estimate the functions vλ(x, ί), wλ(x, t) and
the function:

5

(2.33) R (x t) = 5j R -(x t)

3. Estimates of rλ, zι?λ and /Zλ

At first we determine the domain of definition of Vλ(t).

Proposition 3.1. Let 8 be the constant in (2.12).
(i) There exists a constant roί 0<r0<8, independent of X>1 such that for every

λ>l, the differential equation (2.29) with initial conditions (2.30) has a unique
solution V),(i)=(vλtp(t))\p\^N defined in the interval \t\ ^r0λ""κ.

(ii) There exists a constant C>0 independent of\>l such that for all\>l

(3.1) sup

(3.2) sup I-

Proof. Throughout the proof we shall denote by C positive constants inde-
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pendent of λ>l. Taking into account that the functions φλ^(F, t) (λ>0, | p \ ̂

N) defined by (2.19) are independent of the variable ϋ0, we denote by V=(vp)1^! \P\^N

a vector whose components are complex numbers ^(1^ \p\ =*N) and in relation

to (2.21) we put λ̂(ί) = (wλ.ί(ί))ιsι,isίr Then. Φx,X^> 0=Φλ.»(?> V and we di'
vide (2.29) and (2.30) into two parts:

' —»Λβ(0Λ λ'°

(3.3)
-λ-'-' Σ «?/

ί,y=ι

Σ bl(t) βλ.0(ί) (by (2.19) and (2.8)) ,

= 0

o a^ i / > i ^Ao.

and

(3.4)

We can slove (3.3) by quadrature and (3.4) is an equation with unknown

_

Put Γ.=K,)isι#ιs* with vtM=V-lξ'(l£i£«),v.M+.i=Wl
and v^t=Q(3g\p]£N) and put Z>λκ={(f, ί)| Ϋ-Ϋ0\ ^1 and |ί|^

From (2.19) and (2.8) it follows that

x|β?Xί)|+CΣ Σ

Since d<0 by (2.4), we have for λ>l

Σ λ(|β|-2)<i

(λI-p-rfk?χί)i+ Σ
, ,y = ι |Λ|=I

+C Σ] (λ-2rf I *?,(*) I + Σ
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Hence, using (2.13) and (2.14) we have for λ>l

From (2.2)-(2.5) we see that all exponents of λ in the right-hand side of the
above inequality are less than or equal to K and so

(3.5) sup \φλp(V,t}\^C\* for all λ>l , l£\ρ\£N.
'̂'̂ λ,*

Put Φ\(Vyt)=(φλtp(V,t))1^\p\^N. By (3.5) we have with another constant
C>0 independent of λ>l

(3.6) ^sup |Φ λ(P,f) |ί£CV.
CK>oe7V

Let r0= min (δ, C"1). Then, from (3.6) and the fundamental theorem on ex-
istence of solutions of systems of ordinary differential equations, it follows that
(3.4) has a unique solution Vλ(t) defined in the interval \t\^*r0\~* such that

), t)^Dλtlt. Therefore (i) has been proved and we have

(3.7) sup
l/l£r βλ *

Furthermore by (3.4) and (3.5) it holds that

(3.8) sup \-

It remains to estimate vλtQ(t) and -^-vλ>Q(t). Using (3.3), (2.13), (2.14)
and (3.7), we easily have for λ>l

(3.9) sup 1-4- *UO I ^C(λ1-'p+λ-p-'+λ-p) λ-* .
Ulίr.λ-" dt

On the other hand, from (2.2)-(2.5) it follows that

max(l— 2p, —ρ—dy —ρ) — κq<l—p—κq</c.

Hence by (3.9) we have for λ>l

(3.10) sup lAt^
ui^x-16 dt

Since *\i0(0)=0 by (3.3), we have by (3.10)

(3.11) sup KO(*
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From (3.7) and (3.11) we obtain (3.1), and from (3.10) and (3.8) we obtain
(3.2). Q.E.D.

With vλtp(t)(\p\£N) thus defined, we define vλ(x,t) by (2.9) in R*X
[— r0λ~κ, r0\~*]. Next proposition will play an essential role when we shall prove
(#) in the next section.

Proposition 3.2. There exist constants rl(0<r1<r0) and C>0 both inde-
pendent o/λ>l such that for all sufficiently large λ

(3.12) λReϋλ(Λ,ί)^Cλ1 ( 1-p )ί f + 1+-λ1 p-'|ίc|»,

Proof. We note that £ί+1^>0 because q is a positive odd integer. Through-
out the proof we shall denote by Cλ and C2 positive constants independent of

λ>l, and use the notation: '= - .
By (2.30) we can write dt

°i+vίtβi(θt t) ί,

Then by (3.3) it holds that

(3.13) <0(ί) = -λ1-" Σ fl?y(ί) f J f J
»,y=ι

+Λ(0+-BΛ(0+cλ(0 , I « I &. x
where

jBλ(ί) = the second term of the right-hand side of the differential equation in

(3.3),
Cλ(ί) = the third term of the right-hand side of the same equation as above.

On the other hand, from (2.13), (2.14) and Proposition 3.1 (ii) it follows that

I AW I 2S C1(X
1-*P+" I ί I ««+λ1-»+' 1 1 1 ί+2) , I ί I £r. λ"

Hence, integrating both sides of (3.13) from 0 to t, and using the initial con-

dition of (3.3) and the hypothesis (A.I) of Theorem 1.1, we have

(3.14) Re vλΛ(t)

^ C, λ1-2" ί«+1- Cl(\l~lf+ 1 1 1 t+*+λ>-«M * 1 1 1 «+3)

-C,λ-p-'ί«+1-C1λ-pί«+1

>
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for all λ>l and 1 1 \ <*rt\~*.
When |p I = 1, we have by (2.29), (2.19), (2.7) and (3.1)

,(f)l ^C, Σ Σ (λ1

•

for all λ>l and |ί| ̂ r.λ", and so from (2.13) and (2.14) it follows that

I <,(*) I 5ί C1(λ
1-p-'+λ-10 1 t I « +C1(λ

1-p+λ-<) I ί I «+1>/2

^ C1(λ
1-p"/ 1 ί I ί+λl-p I ί I

for all λ>l and lίl^r.λ", because Q<-d<—2d<\-p—d by (2.2)-(2.4).
Hence, since Re ϋλ>ί(0)=0 ( | p \ = 1) by (2.30), we have for \p\=l

I Re MO I

= I Γ Re v(ip(ή dt\ ^C1(λ
1-p-/ ί««+χ1-

Jo

for all λ>l and \t\ ̂ r0\~*.
Hence, noting that p(p)=p ( \ p \ =1) by (2.7), we have

(3.15) IΣ^'Re
1-2' I ί I ι+(t

for all λ>l, x&R* and \t\ ̂ r0\'κ.
Since l̂+.y(0)=δίχί,;=l, •-, n) by (2.30), we have by (3.2)

I Re vλ ei+ej(t) \ = I Γ Re v( e.+e .(s) ds\ ^ Q λ" 1 1 \ if iΦj ,
Jo

and

Jo «

for all λ> 1 and \t\ <^r0λ"κ. Hence, noting that ρ(p)=ρ+d(\p\ =2) by (2.7),
we have

for all λ>l, x^R" and \t\ ̂ r0\~*.
When 3^ \ρ\£N, we have by (2.7) and (3.1)
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|λ-p(ί> Rec^ί) x"\ ̂

forallλ>l, |*|^
Hence, since d+μ>0 by (2.6), it follows that

(3.17)

forallλ>l, |*|^X-
From (2.9) and (3.14)-(3.17) it follows that

Re vλ(x, t) ̂  C2 λ'-2p ί*+1 {1 - C, C2-'(λ' I ί | +λ2" | ί 1

- C,(λ1-2p-i ί '̂+λ1'2' 1 1 1 1

forallλ>l, |Λ;|^λ"
Now we choose a sufficiently small real number rl such that

0<r,<r., l-CiCί'fa+rϊ^-ί and 1-Qr^A.

Then, if |ί|^r,λ~"

^— and l-Ctλ |ί| ̂ ^
•" '

Hence

Re wλ(

2" I ί 1 1+(«+1)''2) I * I

forallλ>l, |Λ;|^λ-
On the other hand, max(-l+p-rf, — 1+p, -ίί-/t)<0 by (2.2)-(2.4) and

(2.6), and so limλ-1+p-''=limλ-1+p=limλ-<i-μ=0. Therefore there exists a
λ->°° λ->°° λ-><»

sufficiently large λ:> 1 such that for all \>\v \ x \ ̂ λ"μ and | / 1 ^rl \~<

Re vλ(x, t)^C2 λ1'
o 2

- C1(λ
1-2s-'' ί̂ +λ1-* 1 1 1 1')-(«+1>/2) I * I

+4-c2v-
8
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Here we consider Q( \ x \ , £, λ) as a quadratic function of \ x \ . Then, to prove
Proposition 3.2 it suffices to show that the discriminant of Q( \x\ , t, λ)^0 for all

\t\ ^?ι λ~* and λ>λ: if \ is chosen sufficiently large.
When 1 1 \ <Lrλ λ~" it holds that

the discriminant of Q

- -
16

) — — C2\ \1-3f-" t"+l

16 J

l-M-~ rf) -- — C2) X1-3"'"
16 J

On the other hand, from (2.2)-(2.5) we see that

\-p-d-κ(q+\) = 2(l-p) (e-l)l(q+l+6)<0 and

Hence Iimλ1"p"rf"ιc(ff+1)=limλ1"p+rf"2ιc=0 and so the desired estimate has been
j λ">oβ λ">0* ΓΛ τ? TΛproved. Q.E.D.

In order to estimate derivatives of vλ(x, f) we prepare the following lemma.

Lemma 3.1. For every non-negative integer m there exists a constant Cw>0

independent o/λ>l such that

(3.18) sup * for all λ>l .

Proof. The proof is by induction on m. For the case m— 0 (3.18) is
nothing but (3.1). Assuming that (3.18) is vaild for all m less than or equal
to a non-negative integer moy we shall prove that (3.18) is valid for m=m0-\-l.

From (2.7) and (2.2)-(2.4) it follows that

-p) if

p(p)-p(β+ei+e/)^-2d<2(l-p) if \β\£\p\,

p(p)-p(β+ek)^-d<l-p<2(l-p) if \β\£\p\.

Taking (2.19) into account we differentiate both sides of (2.29) m0 -times. Then,
from the above inequalities and the hypothesis of induction we see that (3.18)
is vlaid for m=m0+l. Q.E.D.

Proposition 3.3. Let h=(h1, •••, hn) be a multi-index of non-negative integers
and m be a non-negative integer. Then, there exists a constant CΛ>W>0 independent
o/λ>l such that



86 T. AKAMATSU

(3.19) 1 3* 8? υλ(x, t) \ rg Chttn x α-'Xim o (1 +χ*->-< | * | 2)"/2

/or all

Proof. Using (2.9) we write

θ* 9Γ pλ(*. ί) =|

Let #=(#!, •••, #n) be a multi-index of non-negative integers. If |α| ίj> |λ| we
have with a constant ChtΛ depending only on h and a

and if |α |< |A | we have Qh

x(x*)=Q. Therefore, since (l-p-d)/2<l-p<2
(1-p) by (2.4) and (2.3), we have

(3.20) laiooi.^c^x1*1^^
for allλ>l and
Hence, from Lemma 3.1 and (3.20) it follows that

|9ί 9Γ vλ(χ, t)\^Ch>

x Σ λ""p(^)~(1~

for all λ>l, xt=R" and |ί| ̂ r0 λ"".
On the other hand, by (2.7) and (2.2)-(2.4)

= 0)

^0 and so we obtain (3.19). Q.E.D.

Since Vχ(t)=(vλtp(t))\p\^N has been defined in the interval \t\^r0\~* in
Proposition 3.1, we can also define Wλ(t)==(wλtp(t))\p\gN as the solution of (2.31)
and (2.32) in the same interval, because by virtue of (2.20), (2.31) is a linear
equation with respect to the unknown functions wλtp(i) (\p\^N). With rtλ,p(t)
( \ p \ <^N) thus defined, we define ιoλ(x, t) by (2.10) in R"X [—r0 λ"κ, r0 λ~*]. In
order to estimate derivatives of wλ(x> t) in this region we prepare the following
lemma.

Lemma 3.2. For every non-negative integer my there exists a constant Cm>0
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independent o/λ>l such that

(3.21) sup -ζ
I/is, λ~* "ί

for all \>\ .

Proof. The proof is by induction on m. Firstly we shall prove (3.21) for
m=Q. We denote by C0 positive constants independent of λ>l. By (2.31),
(2.20) and (3.1)

A.W(
dt λV

+ Σ Σ I β?yί,y = ι |α»| + lβ|£J!Γ

+Σ Σ |«(ί)lλ"-'l|i'l+ Σ

for all λ>l and |ί| ^ra\~". Since μ>0 by (2.2)-(2.4) and (2.6), and 1+μ— μ
(\a\ + \β\)-p(β+ei)=l-p+μ(ί-\a\)-(μ+d)\β\^l~p+μ(ί-\a\) by
(2.7) and (2.6), it follows from (2.13) and (2.14) that

^C0 I Wλ(t) I (λ2

for all λ>l and \t\ ̂ rβλ~κ where we have estimated afj(t) (2^ |α| ^Λ^, i,j=l>
•••, w), ά*(ί) (1^ \a\ ^N, k=l, •-•, TZ) and c*(i) (\a\^N) from above by positive
constants.

From (2.2)-(2.6) we see that all exponents of λ in the above inequality
are smaller than #. Hence

foraU and

Therefore from (2.32) and the GronwalΓs inequality we obtain (3.21) for m=Q.
Secondly, assuming that (3.21) is valid for all m less than or equal to a non-

negative integer moy we shall prove that (3.21) is valid for m=m0-\-l.
From (2.2)-(2.7) it follows that

2μ — μ\a\ ^2μ^l—p

Note that the second inequality follows from the inequality already appeared in
the first pragraph in this proof. Taking (2.20) into account we differentiate
both sides of (2.31) m0 -times. Then, by the above inequalities, Lemma 3.1 and
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the hypothesis of induction, we obtain (3.21) for m— ma-{-l. Q.E.D.

Proposition 3.4. Proposition 3.3 holds for wλ(xy t) instead of vλ(x, t).

Proof. The proof is similar to that of Proposition 3.3. The difference
consists in the fact that we use (2.10), (2.31) and Lemma 3.2 instead of (2.9),

(2.29) and Lemma 3.1 respectively, and use the following inequality:

μ\p\ -(l-p-d) I p I /2gO , which follows from (2.6). Q.E.D.

Let Rλ(x, t) be the function defined by (2.33). We consider this as the

remainder term of the right-hand side of (2.23).

Proposition 3.5. Let h=(hly •••, hn) be a multi-index of non-negative integers

and m be a non-negative integer. Then there exists a constant CΛ)W>0 independent

of\>\ such that

(3.22) I dh

x dT Rλ(x, t) I ̂  Ch>m χ»+«(i-»(i*ι+«+ > x

P-rf I χ I

for all λ>l, x&R" and \t\ ̂ r0 λ"κ.

Proof. For the sake of brevity we put v=l — p — d. From (2.24)-(2.28)

and (2.15)-(2.18), we obtain the following five inequalities by using the Leibniz

formula, (3.20), Lemma 3.1, Proposition 3.3, Lemma 3.2 and Proposition 3.4.

\dh

xd?Rλιl(χ,t)\
^ Ch.m λ2+2(1~p)(|A|+w) Σ χ-'»0)-'W-vι>ι/2 x (1 +XV I x 1

r -

^ C

<C

χl+2(l-P)(|A|-fm+2)-V(JV+l)/2/J_|_^V I χ | 2\(3ΛΓ+l)/2
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+ Chm χl+2α-P)(l*l+M+2>-XΛr+l)/2Π _|_^V | χ | 2W3JV+l)/2

-\-C - x^-

+Ch,m x^-

for all λ>l, x^R" and |ί| ^r0 X~", where we have estimated the right-hand side
of (2.28) term by term.

On the other hand, from (2.2)-(2.4), (2.6) and (2.7) it follows that

if N+lg\p\,\β\ + \γ\g\p\+2 and \^\β\, \Ύ\, then

Hίl/2
\γ\-2)d-v\p\l2g-2p+(μ-vl2)\p\<(μ-vl2)x

if N+lg\p\ and l ^ l β l r g Λ Γ then -p(/3)-H/>l/2

= -p-(\β\-l)d-v\p\l2<-\β\d-v\p\!2<(μ-vl2)\p\

if ΛΓ+l^lί l and \β\£N, then

and

if N+l£\p\,lg\β\ and |/S| + |r| ̂  \p \ +2, then

Hence we obtain (3.22). Q.E.D.

4. Proof of (#)

Using the results of section 3, we shall prove ($). Let Γj be the constant
determined in Proposition 3.2. Taking Xl(x)^C^(R>) and X2(t)eC7(Rl) such

that X1(x)=l(\x\ ^-), =0(|*| ^1) and %2(ί)=l(|ί| ̂ -), =0(|ί| ^1), we put
Δl Δl

(4.1) /λ(«, ί) = χ.ίλ"*) %2 ̂  a>λ(*, ί) exp (-λwλ(*, ί)) .

Since rx<re by Proposition 3.2 and s;x(#, ί) and ^λ(Λ7, ί) are C°° functions defined
in R" X [— r0 λ"κ, r0 λ"κ], we see that /λ(Λ?, ί) e CΓ(Λn+1). In what follows we shall
prove that (2.1) does not hold for/λ as \->+oo,

By (2.9), (2.10), (2.30) and (2.32) it holds that «fλ(*,0)=l and vλ(Λ?f 0)=

\/^ϊλ-p Σ?-ι ?? Λ?i+λ"p"l/ | jc | a. Hence, grad,/λ(0, 0)= — x/^λ1"' Γ Since
1— p>0 by (2.3) and ?°ΦO, we obtain
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(4.2) λlim I grad,/λ(0, 0) | = + oo .

Let η=(ηv •• >ηn) be a multi-index of non-negative integers and m be a
non-negative integer. Using (4.1), (2.23), (2.29), (2.31) and (2.33) we can write
with a function rl

(4.3) 9? 9f(L/λ) = %t(λ^) %2 92 8Γ(Λλ exp (-

X-M exp (-λϋ

By the Leibniz formula we can write

XI XI Γ"> m Λ A n Λwn P \/ Ah t Amι( *\ <tι \ V ... V— 2j 2-J ^k.hQ,"'t™k Oχ° Ot°J<χXθχl Otl( — Λ,Vλ)X ••• X

X 9ί* 3f *(~^λ) X exP (~^λ),

where 0;™ .̂..̂  is a positive constant depending only on ηy mί k, hs and mj
(Q^ j^ k). On the other hand, it is clear that \x\ ̂ λ~μ and 1 1 \ ̂ ίrl λ"* on supp
Fl>m and so by Proposition 3.2 we have

1
ez;v(*, )- 2

for all sufficiently large λ>0 and (x, O^supp F%'m. Hence by Proposition 3.3
and Proposition 3.4 it holds that

\ n\+

exp —

for all sufficiently large λ>0 and (x, t)^Rn+1

y where Q and C2 are positive
constants independent of λ>l. Hence by (2.8) we have

(4.4) Urn sup \Fl'm(x, t)\ = 0 if

Next we shall estimate Gl m. It is clear that for all λ>l

JΛ?|^λ""μ^l and \t\^r1\~κ<r0\"κ on supp r\ m

and

l*lfc|x" or |ί|^iλ- on
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since μ>0 by (2.6) and (2.4), and rl<rφ by Proposition 3.2. Hence by (2.9),
(2.10), Lemma 3.1 and Lemma 3.2 there exist constants Kλ and K2>0 inde-
pendent of λ>l such that

sup I rϊ m(x, t) I ̂  Kλ λ*2 for all λ> 1 .
C,,oea"+1

On the other hand, letting p0= min (\—p—d—2μ, 2(1— p)— κ(q-\-\)\ we have
from Proposition 3.2 that

for all sufficiently large λ and (#, ί)esuρρ r1>m where K3>0 is a constant inde-
pendent of λ > 1 . Hence

sup I Gl m(x, t) \ ̂ K, \K2 exp (-K, λp<) .
C*.OeB" + 1

Since pβ>0 by (2.6), (2.5), (2.2) and (2.3), it holds that

(4.5) lim sup \Gl u(x, ί)\ = 0 .
λ-*+~ c,,oe«

Λ+1

From (4.4) and (4.5) we obtain

(4.6) lim I L/λ 1̂  = 0.

Finally, since \x\ ̂ λ"μ and \t\ ̂ rλ λ~κ on supρ/λ, it follows from Proposi-
tion 3.2 and Proposition 3.4 that there exists a constant K^>Q independent of
λ>l such that

1 - ^ 2

for all sufficiently large λ and (Λ?, t)^Rn+1. Hence

(4.7) I /λ I Ot κ is bounded as λ -> + oo .

(4.2), (4.6) and (4.7) imply that (2.1) does not hold for /=/λ which com-
pletes the proof of Theorem 1.1.

5. Two lemmas about real C°° functions

In the following two preliminary lemmas for the proof of Theorem 2.2, we
shall denote by Ω0 an open subset in Rn+l containing 0.

Lemma 5.1. Let f(x, i), (x, t)^Ω0, be a real C°° function and assume that

(5.1) there exist α<0 and an odd integer q>0 such that /(O, t) = atq+O(tq+1)
for sufficiently small t,
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(5.2) there exist /3ΦO, an integer k(\^k^n) and a non-negative integer m such

that 0^m<(q+l)β and -§£(0, t) = βtm+O(tm+1) for sufficiently small t.
dxk

Then there exists (xoy t0)&Ω0 satisfying

(5.3) /(**O = 0 and
at

Proof. Without loss of generality we may suppose that w=l. Using the
Taylor's formula we expand f ( x , t) with respect to x at x— 0. Then by (5.1)
and (5.2) we can write in a sufficiently small neighborhood Fδ= {(#, t)\ \x\ ̂ δ,
\t\^S} (δ>0)ofO,

(5.4) /(*, 0 = a(t) it'+β(t) ΛH-γ(*f

where

(5.5) a(t)<0 and /β(f)Φθ in |ί

Since q>0 is an odd integer we see from (5.2) that

(5.6)

δ) and β(0)=0 by (5.6)
and so |^(ί)| ^δ in |ί| ̂ £ if we take ε(0<f<δ) sufficiently small. Therefore
if 1 1 \ ̂ £ we can substitute θ(t) for Λ? in (5.4) and we have

f ( θ ( t ) , t ) = -α(ί) ̂ {1-47(^(0, 0/3W"2^Ie} > Ul^-

Since y— 2w^>l by (5.6), it follows from (5.5) that for sufficiently small £>0,
f(θ(t),t)>Q if 0<ί<f. On the other hand, by (5.4) and (5.5), /(O, f)<0 if
0<ί<£. Hence, by the intermediate value theorem, for every ί^(0, £) there
exists #(£) satisfying

(5.7) /(*(ί), ί) = 0

and

(5.8) \*(t)\<\θ(t)\=2\β(t)\-**-*.

Differentiating both sides of (5.4) with respect to ί, and substituting x(t) for
x, we have by (5.5) and (5.7)

(5.9) •!£(*(«), 0 = α(*Hί*'-M-£(ί)}, 0<ί<£,
at

where ί̂) = ̂ (ί) tm

x(t)+mβ(t) I"-1

 x(t)+^L(x(t), t) x(t)* .
at at
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By (5.8) there exists a constant C>0 such that

\g(t)\£Ctq+2mt*-1+CP<q-m> , 0<α<£

and so, since a(t)<0 by (5.5), it follows from (5.9) that

dt

Hence, noting that q— 2m^l and 2(q—m)>q by (5.6), we have

(5.10) ^(*(ί),t)<0, 0<ί<£
Ot

with £>0 sufficiently small.
From (5.7) and (5.10) we obtain (5.3). Q.E.D.

Lemma 5.2. Let f(x, t) and g(x, ί) be real C°° functions defined in Ω0. As-
sume that

(5.11) there exists S>0 such that f ( x , t)g(x, f)^0 if \x\ ̂ δ and \t\^S ,

(5.12) there exist a real number αrΦO and an odd integer q>0 such that for suf-
ficiently small t
(i) /(O, t) =
(ii)

(iii)

Then

(5.13)

Proof. Without loss of generality we may suppose that n=l. The proof
is by contradiction. So suppose that (5.13) does not hold. Then there exist
a real number <yΦθ and an integer m such that

(5.14) -̂ (0, t) =
ox

and

(5.15)

By (5.11) we have in Vs={(xtt)\

(5.16) 0^ {/(O, ί ) + ( θ , ί) *+0(*«)> {^(0, ί)+-(0, ί) *
(/•^ C/Λ'

= /(0, t)g(0, ί)+/(0, ί)-^<0, ί) *
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+g(0,
O#

Using (5.12) (ii) we write with a real constant /5

(5.17) g(0, t) = βtq+0(t^) .

Let c be the real number satisfying

(5.18) aβ+ajc= -1.

This is possible because αγΦO. Since q is a positive odd integer, we see from
(5.15) that

(5.19) 2m^q—ί (hence m+l^q—m)

and so we can substitute ctq~m for x in (5.16) if we take t sufficiently small.
Then from (5.12) (i), (5.17), (5.12) (iii) and (5.14) it follows that for suf-

ficiently small t

By (5.19) it is easy to see that min (3q—2m, (q+ί)/2+2q—m> (q+l)/2+3q— 3m,
4q— 4m) ̂ 2<7+l. Hence, using (5.18) we obtain for sufficiently small t

which is a contradiction. Q.E.D.

6. Proof of Theorem 1.2

At first we state two lemmas due to Zuily [12].

Lemma 6.1. Let Ωj be an open subset in Rn,n^l, and

PI = Φ(*) Σ *„(*) Γ - — + Σ βk(x)τ-

δe a partial differential operator of order 2 eo/ίA r^α/ coefficients belonging to C°°(Ω1).

Suppose that Pτ is hypoellίptίc in Ωr 7%^w

i 3 « * * - * * * = 0 if « = 0.
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This lemma is due to Theorem Π.l (iii) of [12]. Although in [12], ana-

lyticity of the coefficients of Pλ is assumed, we can apply the method of proof
there to the C°° case without modification.

Lemma 6.2. Let Ω2 be an open set in Rn+l, n^l, and

P, = ir+* Σ *,X*. *) 1ΓV-+* Σ *<•«(*'')
Oΐ U»; = ι 0#, OΛ, l = 1

Q2 « ί

9ί2 »' = ι ' ' 3,

be a partial differential operator of order 2 with real coefficients belonging to C°°(Ω2).
Assume that there exist (x0, 0, ξ0)^RnxR1xRn+1, an open neighborhood VQ of x0,
ε>0, a conic open neighborhood Γ0 of ξ0 and a constant C>0 such that V0X (—6, 8)
CΩ2 and

for all (x, t, f)eF0X(-£, ε)xΓθ,
i,j = ί

where ξ=(ξl9 ••-,?„, ξn+l). Then P2 is not hypoelliptic in V0X (—6, 8).

We can find a proof of this lemma in p. 117-p. 120 of [12] where we take
l=k=0 and replace n— I with n.

By Lemma 5.1, Lemma 6.1, Lemma 6.2 and the Hϋrmander's theorem (H)
mentioned in the introduction, we obtain

Lemma 6.3. Let Ω3 be an open subset in JRΛ+1, n^>l, and

p - ' "*•
be a partial differential operator of order 2 with real coefficients belonging to C°°

(Ω3). Assume that

(6.1) P3 is hypoelliptic in Ω3 ,

(6.2) if pij(xy t) = 0 for all i,j = 1, •••, w, ίfew ^(Λ:, ί) = 0 for all k = 1, •••,
w,

(6.3) there exist a real number α<0 and an odd integer q>0 such that ^>n(0, t)
= atq+0(t«+1) .

Then

(6.4) \g™dxpn(Oyt)\=0(tW).

Proof. The proof is by contradiction. Assume that (6.4) does not hold.
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Then we can apply Lemma 5.1 to pn(x, t) and so there exists (x09 ΐ0)^Ω3 such

that

(6.5) Aι(*.,O = 0 and ifcL(*., f.)<0 .

By (6.1) and the Hϋrmander's theorem (H)

(6.6) the quadratic form: ξ = (ξly ••-, ξH) -> Σ7,j-ι Pu(χy *) ?i ?y *s semi-definite
for all (x9

Hence

(6.7)

Especially we have

(6.8) O^A/Λ?, t)'gpu(x9 t)pjj(x, t) , / - 1, ..-, 7Z , (x,

Let ω be an open neighborhood of (x09 10) such that

(6.9)

From now on in the proof we shall take ω as a sufficiently small neighborhood
of (x0, t0) if necessary. Let (x', t') be any point in ω satisfying pn(x'9 ί')=0.

Then by (6.8) pu(x, t)pjj(x, t) (l<^j<*ri) attain their minimums at (#', t') and so

0 = -3&L*', ί ' ^

Hence ph{x', t')=Q(l^j£n) by (6.9) and it follows from (6.7) that^X*', ί')=0
(l^ij^n). Furthermore by (6.2) qk(x', t')=Q(l^k^n). Hence by (6.9) and

the implicit function theorem we can write with real-valued functions aij9 βk^

Pifa 0 = Pu(x, t) a^x, t) , qk(x, t) = pu(x, t) βk(x, t), i, j,k = 1, — , n ,

(x9 t)^ω .

Hence

(6.10) P3 = Al Σ ̂  ~-+Aι Σ A ~

Since αu(Λ?, ί)=l in ω, it follows from (6.6) that
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(6.H) _.£«,,.(;

Hence

(6.12) if Σ ια,X*,ί)f*fy = 0 then J- (^Σ ai}(x, ί) £, £,)

II

— <£ ^ i Qfj ^tΛ?, ΓJ ς j —— U , /? — 1, , 7Z .
i = l

On the other hand, from (6.10) and Lemma 6.1 it follows that

(6.13) if pu(x, t) = 0, (x, ί)eω , then Σ «</*, t) — (x> 0 X

,-

Hence by (6.12)

ί6.14) if />Π(Λ?, ί) = 0, (#, ί)eω , then Σ «ί*(^> 0 — (̂ » 0

— 0 , ft = 1, •••, w .

It is clear that (6.11) is valid for ξ replaced with gr&dxpn(x, ΐ) and so combin-
ing this fact with (6.9) and (6.13), and using the implicit function theorem, we
see that there exists a real-valued function a(x, t) e C°°(ω) such that

(f\ 1 ̂  V1 n (v f\ °Pu(v f\ OPiify f\ — /> (v Λ2 a(κ f\\\j.ιjj s i CC|ί^Λ, LJ \*^> ^/ \'*'y ^) — Jrllv. > / **\**'> •'J
ί,j=ι dXi dXj

Analogously we see from (6.14) that there exist real-valued functions bk(x, ί)e C°
(ω) (1 ̂ k^n) such that

(6.16) Σ aik(x, t) 2^(x, t) = pu(x, t) bk(x, t), k = 1, «., n.
« = ι OXi

Now we make the change of variables:

( y = x

<6-17) Φ:

 Λ / Λlί = Aι(*»ί)

By (6.5) Φ is a diίfeomorphism from ω to an open neighborhood ώ of (xoy 0)e
Λ;*,1. From (6.10), (6.15) and (6.16) we see that P3 is transformed by Φ to the
following operator:

(6.18) Pa = , Σ «v 7 3
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dy k k

,
Qt ds /=ι " 9y, 8yy ί= ' 8y, 8*

where ^4 is a real-valued function belonging to C°°(ω). By (6.9) there exist an
open neighborhood V0dR" of x0 and real numbers £, C>0 such that

(6.19) i + - C , (;y,f)er.x(-e,6)cδ.

For S>0 put Γ,= {|eΛ «|δfι>ie'l} where ξ=(ξu -,ξn,ξn+1) and £'=(£„
•••» ?«+])• Then Γ8 is a conic open neighborhood of (1, 0, •••, 0). Since αu(Φ~1

(y> s))=ccιι(x> t)=l in ω, taking VΛ and £, δ>0 sufficiently small we have

(6.20) Σ «, y .fι fy^ ξte± 1 1 1 2 , (y, ', f)e F.x (-e, e) x Γ, .

Let JZ= ί +ί̂  JB , (j, *) e F0 x ί-fi, e). Then Λ is hypoelliptic in FβV 9ί ^
X (—6, £). On the other hand, from f6.18)-(6.20) we easily see that R satisfies all
the assumptions of Lemma 6.2 and so R is not hypoelliptic in V0X (— 8 , 8) which
is a contradiction. Q.E.D.

Now we begin to prove Theorem 1.2. Suppose that L satisfies the hypo-
thesis (B) of Theorem 1.2 and L is hypoelliptic in some open neighborhood U
of 0. We shall show that this yields a contradiction.

Step 1. We shall show that there exist an integer ίβ(ligία<£fl), an odd
integer q0>0 and a real number α0<0 such that

(6.21) aioio(X(t)yt) = a0

and

(6.22) *,/*(*), t) = 0(*<<) , ij = 1, .-., n ,

where (#(*), *) is the integral curve of the vector field ΣLi bk(x,
through the origin.

k
Let £*=(0, •••, 1, •••, 0) (1 <Zk<Zn). Since L is hypoelliptic in t/3θ by hy-

pothesis, it follows from the Hϋrmander's theorem (H) that for sufficiently small
δ>0, the quadratic form: R2^(w, z)^>a(x(t), t, wξ°+zek)=w2 a(x(t), ty ξ°)+2wz

ΣJϊ.i <*ik(x(t)> 0 ζ °i+z* βkk(x(t), t) is semi-definite for all ί, 1 1 \ ̂ δ. Hence
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(6.23)

Hence from the hypothesis (B) of Theorem 1.2 and (6.23) we see that for every
k(l^k^ri), akk(x(t)y t)=Q at t=Q in infinite order or there exist ak<0 and an
odd integer qk>0 such that akk(x(t), t)=ak tqk+O(tqk+1). In the first case we put
?*= + °° Let q0=πάn(qlί •••, qn). Again by the Hϋrmander's theorem (H) the
quadratic form: R2^(w, z)-*a(x(t), t, we^ze^^^x^), t)+2rtzaij(x(ΐ),

#jj(x(t), t) is semi-definite for \t\ ^δ, i,j=l, •••, n, and so we have

(6.24) *,X*(f), tγ^ati(x(t)9 1) a^x(t)9 1), \t\ ̂ δ , i,j = 1, -, n .

From the hypothesis (B) of Theorem 1.2 and (6.24) we see that gr

β< + °° and
taking i0 such that qio=q0 we obtain (6.21) and (6.22) with a0=aio.

Step 2. Renumbering the variables x^l^i ̂ ri) we may suppose that iβ=l.
Then (6.21) can be written as

(6.25) an(x(t)y t) = a0 t<°+O(t<^) ,

where a0<0 and q0>0 is an odd integer.

Let (x(y, t)y 0==(^ι(>r> 0> ""> ^βί̂ ί 0> 0 be the integral curve of the vector
field ΣLi i*(«, 0 d/dxk+dldt through (y, 0)=(Λ> -,yu, 0), i.e., let (^(j, ί), -,
^Λ(jy, ί)) be the solution of the ordinary differential equations with y as a pa-
rameter :

(6.26)

Now we make the change of variables:

x = x(y, s)
(6.27) t

Since x(y, 0)=y by (6.26), ψ is a diίfeomorphism from an open set F, (0, 0)eΊ

y*,1, to an open set V, (0, 0)e Fc C7. Let

(6.28) ψ-1

be the inverse of Ψ. Since yk= yk(x(y, s), s) (l<^k^ri) it follows from (6.26)

that

0 = - (y*(χ(y, *), *)) = Σ i,^(y, *),

Hence in the new variables y and s, L can be written in the form:
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(629) L - ^ a r d y *(6.29) L -Σ Σ —
9

βy*. JL+JL
*=' 9ί 9 9ί

= Σ *u(y,
*.'=ι 9y*9j, '=ι dy,

where for k, 1=1, •••, n

(6.30) &kl(y, ,) = Σ β,X*(Λ *)• *) (*(J. '),
« ,y=ι

(6.31) l,(y, s) =±«ά*(y, *),

and

(6.32)

Since the Jacobi matrix —2-(x(y, s), s) is non-singular in Ϋ, it follows from (6.30)
(jX

that if akl(y, s)=Q for all k, /=!, •••, w then au(x(y, s), s)=0 for all i,./=l, ••-, w.
Hence, also by (6.30)

(6.33) if δkl(y, s) = 0 for all k, I = 1, — , n then lt(y, s) = Q

for all /= 1, •••, w .

Step 3. From definition of x(y, t) it is clear that (a?(0, *), ί)=(Λf W> 0=^
integral curve of the vector field Σϊ-i i*(Λ> 0 9/9^+9/3ί through 0. On the
other hand, dyi/Qxjfa 0)=δ/y, i,;=l, •••, », since XΛ?, 0)=Λ? by (6.26) and (6.28).
Hence by (6.30)

ι

and so from (6.25) and (6.22) it follows that

(6.34) «u(0,ί) =

where αβ<0 and ?0>0 is an odd integer. Moreover by (6.22) and (6.30)

(6.35) au(0,*) = 0(ϊ )9 *,/=!, •..,».

Since L is hypoelliptic in V it follows from Lemma 6.3, (6.33) and (6.34)
that

(6.36) I grad, βu(0, s) \ =
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and it follows from the Hϋrmander's theorem (H) that

(6.37) the quadratic form: ξ -> ά(y, s, ξ ) = Σ!,/-ι #*/(:V> *) ξ k ξι

is semi-definite for all ( yy s) e V .

Hence

(6.38) 0^au(y, s) άn(y, s\ (y, s)ς=V , I = 1, -, n .

Then by Lemma 5.2, (6.38), (6.34), (6.35) with k=l and (6.36)

(6.39) I grad, ajf(0, ή \ = O (*«+»*) , / = 1, -, « .

By (6.37) the quadratic form: R2^(wy z)-*a(y, ί, wel+zei+zej)=w2 άn(y, s)+

Txϋzfaάy, ί)+3ιy(y, i))+^(^i(j, s)+2aij(yί s)+άjj(y9 s)) is semi-definite for all
(y, s)^Ϋ. Hence

(6.40)

Hence by Lemma 5.2, (6.40) and (6.34)-(6.36)

(6.41) I grad, Λf<(0, f )+2 X grad, a,χθ, ̂ )+grad,

Combining this with (6.39) we have

(6.42) I grad, aw(0, ί) | = O(ί^+1>/2) , Λ, / = 1, -, « .

From (6.31) and (6.30) we see that 5/(j, s) (l^l^n) are linear combinations

of δkj(y, s) (l^k,j^n), because the Jacobi matrix —-(x(y, s), s) is non-singular.
Hence by (6.35) and (6.42) we have dx

(6.43)

and

(6.44) I grad,

From (6.34), (6.35) and (6.42)-(6.44) we see that L satisfies all the assump-
tions of Theorem 1.1 with ξ°=(l, 0, •••, 0), a=a0 and q— q0. Hence L is not
hypoelliptic in V. On the other hand, it is obvious that L is hypoelliptic in
V, because L is hypoelliptic in V. This is a contradiction.

7. Proof of Theorem 1.3

Step 1. We shall show that
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(7.1) there exists no point ft, ζl9 t2, ξ2)^(Tί9 T2)χ(R"\{Q})x(Tl9 T2)χ(R"\
{0}) such that t,<t2, a(x(t1)y tlt &)>() and a(x(t2)y t2, ξ2)<0 .

Suppose that (7.1) does not hold, and let ft, ξl9 t2, ξ2) be a point in (Tlt

T2)X(RΛ\{0})X(T19 T2)x(R"\iQ}) satisfying

(7.2) /,</„ *(*(*,), tl9 f1)>0 and a(x(tj, t2y

Let

(7.3) ίf = 8up{ίepllΓf)|β(Λ(ί),ί,f1)^0 in

Then by (7.2) and definition of s0

(7.4) *ι<^Γ.,

(7.5) *(*(*),*, 6)^0 if

Since a(x(t1)9 tly f^φO by (7.2), and a(x(f)y ί, |x) is a real analytic function of t
in (T19 Γ2), there exists no open subinterval of (T19 T2) where a(x(t), t, ξλ) van-
ishes identically. Hence, by (7.5), for any ί, t1^t<sof there exists a sequence
{τΛ}Γ-ι such that lim τk=t and a(x(τk), τkί fi)>0, A=l, 2, •••. Hence by the

Hϋrmander's theorem (H)

for all |e,RΛ, A =1,2,

Hence letting Λ->oo we have

*(*(*), ί,?)^0 for all (ί, £)e=R,

and so, since a(x(t2), ΐ2, ξ2)<Q by (7.2), we see that

(7.6)

On the other hand, by definition of s0 and (7.5), for any £>0 there exists
ίβe(ίβ, s0+ε) such that a(x(tt)y t^ ξ^<Q. Combining this with (7.4)-(7.6) and
the analyticity of a(x(i), ί, ξλ) with respect to ί, we see that there exist α<0 and
an odd integer #>0 such that a(x(t), t, ξι)=a(t—s0)

q+O((t—s0)
q+1). Then by

Theorem 1.2, L is not hypoelliptic in any open neighborhood of (x(s0), s0) which
contradicts to the hypoellipticity of L in Ω. Thus we have proved (7.1).

Step 2. Supposing that neither (i) nor (ii) hold we shall prove that (iii) is
valid. Then there exist (tv ξly t,, ξ2)^(Tl9 T2)x(R»\{Q})x(Tly T2)x(Rn\{0})
such that

(7.7) *(*(*ι),<

(7.8) *(x(t2),t
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Hence from (7.1) it follows respectively that

(7.9) a(x(t\ t, ξ)^0 for all (ί, g)eft, Γ2)x#* ,

(7.10) a(x(t),t,ξ)£Q for all (t, ξ)<Ξ(Tl9 tJxR* .

Let

(7.11) T9 = ίΩf{SG(Tl9T^\a(x(t)9t9ς)^0 in [>, T2)xR*}

and

(7.12) Tί = mp{se(Tl,TJ\a(x(t),t9ξ)£Q in (Γ^J

From (7.8), (7.9) and definition of Γβ we see that *2<T0^*ι From (7.7), (7.10)
and definition of T'0 we see that t2^To<.tv Hence to prove (iii) it suffices to
show that T0=T'0.

Firstly suppose that T0< T'0. Then by definitions of T0 and Γ£, a(x(t\ ty ξ)
-0 for all (ί, £)e(Γ0, T^xR*. Hence α(*(f), *, f)=0 for all (ί, f)e(Γlf Γ2)x
J?n, because #(#(£), ί, ξ ) is an analytic function of t. But this contradicts to
(7.7), and so T0^T'0.

Secondly suppose that T0>T'0. Then by definitions of T0 and ΓJ, there
exist (Tl, ̂ ), (τ2, %)€=(7\, Γ2)xΛn such that

I1ί<τ1<τ1<Γt,έϊ(Λί(τl),τ1>ι7l)<0 and ^(^(τ2), τ2, ̂ 2)>0 .

But this contradicts to (7.1), and so Γβ<;Γ£. Thus we have proved that T0=
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