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1. Introduction

Let  be an open set in R”, n=1, containing the origin and let 7>0. This
paper is concerned with the non-hypoellipticity of differential operators of
second order of the form:

2

(1.1) L =3} a(x 1) + 31 b, ) 51#‘(”’ n+-2,

Ox; Ox;

where (x, £)=(%,, **+, %,, ) EQ=0X(—T, T).
We assume that

(1.2) all coefficients of L are complex-valued C*= functions defined in Q,

(13) @ (x 1) = a;(x, 1) (16, j<n), (v, )EQ.
We put
(14) a(x7 t’ E) = _Z:Iaij(x) t) E:‘ gi ’ (x: t: E)E‘Q'XR" *

The operator L is said to be hypoelliptic in Q if for any open subset U of Q and
any u€ 9'(U), Lue C=(U) implies u C=(U), and is said to be globally hypoel-
liptic in Q if € D'(Q) and Lucs C=(Q) imply ue C=(Q).

In order that L is not hypoelliptic, Re a(x, #, £) must vanish at some point,
say (0,0, &%), %0 (cf. [8]). We give a sufficient condition for L not to be
globally hypoelliptic or to be non-hypoelliptic in any open neighborhood of
the origin mainly in terms of the behavior of Re a(x, ¢, £°) along the straight line
x=0 through the origin or in terms of that of a(x, ¢, £°) along the integral curve
(x(2), t) of the vector field 33;., by(x, t) 8/0x,+0/0¢ through the origin according
as the coefficients of L are complex valued or real valued. In these results we
require that Re a(0, ¢, £°) or a(x(¢), ¢, £°) changes its sign from plus to minus
when ¢ increases across 0 and vanishes at =0 exactly to some odd order.

We review related known results on the (non-) hypoellipticity of operators
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of second order with C* coefficients defined in an open set & of R*(n=2):

” 2 n
P=3a,(x) -0 + Sby(x) 2 ().
ij=1 8x’. axj k=1 axk
Let a(x, £)=2X17 ;-1 a;j(x) &; £, be the characteristic form of P.
In [5] Hérmander proved that

(H) if Pis hypoelliptic in O and a;;(x) (1=, j<n) are real valued, then for any
x€0 the quadratic form: £—a(x, £) is semi-definite.

The quadratic form a(x, £) may change its sign when x varies in (.

Kannai [6] treated the operator 0/8t—t3*/dx*, *&R!, and proved that it is
not hypoelliptic in any open neighborhood of the origin. This fact is due to
the change of sign of —¢ from plus to minus near =0, and it motivates us to
investigate the relation between the hypoellipticity of P and the change of sign
of the quadratic form a(x, £).

Subsequently Zuily [12] generalized the Kannai’s result and proved that if
all coefficients of P are real analytic in O, 337 ;.1]a;;(x) | +>3%-1|b,(x) | %0 for all
x€Q and if P is hypoelliptic there, then

(1.5) for every x,€0 there exist an open neighborhood V, of x, and an analytic
function ¢(x) defined in V, such that a(x, £)=¢(x) 237 ;-1 a;;(x) & &;=
o(x) a(x, £), (x, )€V, X R" where a;;(x) (1=¢, j<n) are real analytic func-
tions defined in V, and the quadratic form a(x, £) is non-negative

and
(1.6) > by(x) gi’(x)go for any x&V,N$7Y0).
k=1 X,

The case where the coefficients of P are real C= functions was studied by
the authors of [3], [7] and [2]. Let O*=Int {x&Q|a(x, £)=0,VEER"}, O =
Int {x€Q|a(x, £)<0, VEER"} and N=ON0oO*=0N00~. Under the assump-
tion that N is an (7—1)-dimensional manifold of class C*, k=4, Lanconelli [7]
proved that if

(1.7) an by(x,) v4(x,)<O at some point x,EN,
=1

where v(x,)=(v,(%,), ***, v,(¥,)) is an interior normal to O* at x,, then P is not
hypoelliptic in any open neighborhood of x,, more precisely, for any sufficiently
small open neighborhood ¥, of x, there exists a function ¥ C%V ,)\C4V,) such
that Pu=0 in V,. This is an extension of the Zuily’s result stated above and
Theorem 1 (3) in Beals-Fefferman [3]. Here we note that the condition (1.7)
means that the quadratic form a(x, £) changes from the non-negative form to the
non-positive form along the integral curve of the vector field 33;.; b,(x) 8/0x,
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through «,.

Amano [2] proved, under some additional assumptions, that if (1.7) holds,
then there exist an open neighborhood U of x,and a function % of the class L=(U)
such that Pu=0 in U and (x,, v(x,)) or (x,, —v(x,)) € WF ,(u).

In all of their works it is assumed that
(a) all coefficients of P are real valued,

(b) N is an (n—1)-dimensional manifold of class C* k=4,

(€) ka1 balw,) va(,)<0, x,EN.

In this paper we give a sufficient condition for non-hypoellipticity of operators
L defined by (1.1) which are special forms of P but do not necessarily satisfy (a),
(b) or (c).

For the case where the coeflicients of L are complex valued we obtain

Theorem 1.1. Assume that there exist £°=(&3, -+, E3)=*+0, a real number
a<0 and an odd integer ¢>>0 such that for sufficiently small t

(A1) Re a(0, 2, ') = at®+O(1) ,
(A2) 4, (0,8) = Ot and by(0,1)= Ot (1=i,j, k=n),
(A.3) |grad, a;,(0, t)| = O(t“*™?) and |grad, b,(0,t)|=

= OtV (1<i,j,k<n),

where | + | denotes the Euclidean norm.
Then, L is not globally hypoelliptic in any open neighborhood UCS) containing
the origin.

We shall prove Theorem 1.1 in sections 2, 3 and 4 by applying the usual
asymptotic method with some modifications.

ExampLE 1.1. According to the result of Zuily [12] or Lanconelli [7]
stated above, the operator (x*—t°%) 0%/0x*+-0/d¢, (x, t)ER?, is not hypoelliptic in
any open subset of R?*\ {0} intersecting the set {(x, t)|¥*=#} and so, by defini-
tion of hypoellipticity, it is not hypoelliptic in any open neighborhood of 0.
Moreover, by Theorem 1.1 it is not globally hypoelliptic in any open neigh-
borhood of 0. Note that (b) does not hold at O for this operator.

ExampLE 1.2. Let L,=(x—1) (x*4-#!) 0*/0x*+4-8/0t, (%, t)ER®. 'Then, N=
{(x, t)eR?|x=1t%} is a C~ manifold of dimension 1 and (1, 0) is the interior
normal to Q*= {(x, {)eR*| x>} at (0,0)N. Itis easy to check that (c) does
not hold at (0, 0) for L,. However, by Theorem 1.1 L, is not globally hypoel-
liptic in any open neighborhood of (0, 0).

In the following two theorems the coefficients of L are assumed to be real
valued in Q, and (x(2), t)=(x(2), --*, x,(¢), ) denotes the integral curve of the
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vector field 33;., by(x, t) 8/8x,+0/d¢t through 0.

Theorem 1.2. Assume that
(B) there exist £°=(E3, -+, £2)£0, a real number a<<0 and an odd integer ¢>0
such that for sufficiently small t

a(x(t), t, &) = at®™+0 (1.
Then L is not hypoelliptic in any open neighborhood of 0.

We shall prove Theorem 1.2 in section 6 using the results of section 5. The
outline of the proof is as follows. Suppose that (B) holds and L is hypoelliptic
in some open neighborhood U of 0. Then there exist open neighborhoods V
and V of 0 (V, Vc U), and a diffeomorphism from ¥ to ¥V which transforms L
to an operator L defined in ¥ satisfying all the assumptions in Theorem 1.1.
Then, L is not hypoelliptic in V which is a contradiction, because hypoellipticity
is invariant under diffeomorphisms.

As an application of Theorem 1.2 and the Hormander’s theorem (H) we
obtain the following theorem which will be proved in section 7.

Theorem 1.3. Assume that the coefficients of L except ¢ are analytic in Q
and L is hypoelliptic there. Let (T, T,),—T=<T,<T,<T, be the domain of de-
finition of the curve (x(t),t). Then one of the following three properties holds.

(i) a(x(),t,E)<0 forall (t,&)(T,, T,)XR",

(i) a(x(),tE)=0 forall (t,&)e(Ty, T,)XR",

(iil) there exists T, T'<T,<T, such that a(x(t),t,£)<0 for all (¢, &)E
(Ty, T]XR* and a(x(t),t E)=0 forall (¢, E)<[T, T;)XR*.

Remark. If the coefficients of L are functions of the variable ¢ only, the
analyticity condition in Theorem 1.3 is unnecessary. For the proof see [1].

NotatioN. For x=(x,, :++, x,)ER" and a multi-index of non-negative in-
tegers a=(a,, ***, @,) we use the notation:

lxl = (xf.*_..._*_xﬁ)l/z’ xﬂ — x?l ..-x‘;n , lal: a1+...+a” .
In sections 2, 3 and 4 we shall use the notation:

0= 2 (1sism), 07=0%-0%, OF= 2 (m=0,1,-).

2. Derivation of ordinary differential equations

The proof of Theorem 1.1 will be based on the following lemma due to
[10, Lemma 1.1].



NON-HYPOELLIPTICITY OF SECOND ORDER OPERATORS 75

Lemma 2.1. Let U be an open subset of Q such that US0 and suppose
that L is globally hypoelliptic in U. Then for any positive integer m, and any
compact subset K, of U, there exist another positive integer m,, another compact
subset K, of U and a positive constant C such that

| [l =CULS |l myxyt 1 flox,) Sor all feC=(U),

where | f |, x=sup >3 |93 0{f(x,t)| for a non-negative integer m and a com-
(x,H)EK |@|+j<m

pact subset K of U.
Taking m;=1 and K,= {0} in the above lemma we have

Corollary 2.1. Under the same assumptions as in Lemma 2.1 there exist a
positive integer M, a compact subset K of U and a positive constant C such that

(2.1) lgrad, f(0, 0)| =C(ILf |,k + | flox) for all fEC=(U).

By Corollary 2.1, to prove Theorem 1.1 it suffices to show that

(#) under the assumptions of Theorem 1.1, the inequality (2.1) is not valid for
any choice of M, K and C.

To this end we shall determine functions g,(x, t)=w,(x, t) exp (—Av,(x, t)) with
A>0 as a parameter so that (2.1) does not hold for f=X, g, as A—>-+ oo where
X\(A>0) are cut-off functions defined in a neighborhood of 0.

Now we choose real numbers &, p, d, « and u such that

2.2) 0<e<%,

(2.3) 0O<p<l1,

24) d=—(1-p)(g—1+8)/(¢+1+¢),

25) x=2(1—p)l(g+1+8),

(2.6) —d<pu<(l—p—d)2.

Note that we can choose p satisfying (2.6), because (1—p—d)/2+d=(1—p)/

(g+1+€)>0. For every multi-index of non-negative integers p=(p,, +**, p,)
we put

0 (»=0)
p+(lpl=1d (|pl21).

Let N be a positive integer satisfying

238) 3(M+2)+(u—(1—p—d)[2) (N+1)<0,

2.7) p0)={

where M is the integer which appeared in Corollary 2.1. Such an integer
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exists by (2.6).

Furthermore we put

(2.9) on(x, 1) = 31 AP, (1) 2,
1PN

(2.10) wy(x, 1) = 3 AP (t) a?
1IS¥

with A>0 as a parameter and undetermined functions v, ,(¢) and w, ,(¢) (| p| = N)
to be infinitely differentiable in a neighborhood of 0. Then we obtain

(2.11) exp (A9,) L(w, exp (—Avy))
'—'_th {at'v)‘ 7\,2(1,]6 7))‘6 vh+2a:16 a vh
+ 2 b, 0, vy}

+6,w,‘+ Z‘a,,a 0; wy— 2x2a,,6 v, 0w,
+2bk6k‘wa+cwx

We want to express the Taylor expansion of the right-hand side of (2.11)
with respect to x at x=0 and make the coefficients of x?, | p| <N, to be equal
to 0. To this end we must make some preparations.

We can write for 7, j=1, ---, n

0; vA(x, t) = = 17\-«')(“2")(1’:“'“1) Uy, prei(E) X7
6 6 7))‘(.76’, t) - I% zx‘—P(p+¢'+‘J)(pt+8u+l) (P1+1) 'vh ﬁ+e.+s,(t) x
0;wy(x, 1) = 31 AP A-1) w, p (F) &
PISN-1

ai' aj w}\(x’ t) ‘—"NSEN_zxMI“-H)(Pi—i—sU—l_ 1) (pl+ 1) wk.ﬁ+¢i+ej(t) x? ’

where ¢;=(0, «--, 1, 0) (1=i=mn) and §;; is the Kronecker’s delta. Take suf-
ficiently small §>0 so that

(2.12) Uy = {(x,t)esR™*| |x|<8, |t|<8}CU.
By the Taylor’s formula we can write in Uy
u(x’ t) = E a; J(t) x’+ 2 af;(x» t) x?, i:j =1, .,
by(x,t) = 2 b’(t) xP4 2 b"(x, a?, k=1, n,
iplsv 1pl=N+1
c(x,t) = 20 () x*+ X3 c(x,t)x?.
Iplsv 1pl=N+1

From the assumptions (A.2) and (A.3) of Theorem 1.1 it follows that for 7, j=1,
-, n and sufficiently small ¢



(2.13)
(2.14)
We put
(2.15)
(2.16)

(2.17)
(2.18)

We denote by V=(v,)isy and W=(w,),;<y vectors whose components are
complex numbers v, and w,(| p| <N) where p=(p,, -+, p,) is a multi-index of
non-negative integers. We also denote by | V| and | W| the Euclidean norms
of V' and W respectively. Now, for A>0 and multi-indices of non-negative
integers p=(p,, ---,p,) (| p| =N), we define functions ¢, ,(V, t) of V" and ¢, and
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ad(t) = O() and a?;(t) = O« V?) (| p|=1),
b(t) = O(t) and bi(t) = O« (| p|=1).

i) = 3 alx ), Lj=1,-n,

biN.”)(x) t) = 2 bg(x) t) x? ’ k= 1’ e,
EF+1

VD (x, 8) = 37 f(x, t)x?,

[Pl=N+1

Lys = 33 afi*0(x, 1) 8, 0,4 33 b+ 0(x, 1) 8 .
Bhi=1 k=1

Y (V, W, t) of V, W and ¢ as follows:

(219) ¢4V, 1)
=333 A0t (g ) (7, +1) af ()X
ij=1 a+Bry=
lﬁl,lzisyzvtl
X UBte; 7"1+zj
— .-.,ij ) ;pl , AP B (8,18, 1) (8;+1) @%i(E) Vpsayie,
IBISN-2
_ g ..f?:, AHO-PB+a)(B, 1 1) bY(F) Vs, »
1BlsN-1
(220) A (V. W, 1)
= — M2=1 m§=ﬁ AR, +-8,;,4-1) (B;+1) a%i(2) Watete;
, 1BIsN-2
F2Z} 3 NEHERRe(8, 1) (7,+1) af (1) X
f,j=1 a&+B+y=p
B 1
X Uptei w‘)’+z;
— g MBE# AR, 1) BY(2) wpﬂ,,—-agﬂh-ml *(t) wg -
IBISN-1
Finally we put
(2.21) Va(#) = (@ ®)ipisw »

(2.22)

Wi(#) = (@r())iptsw >
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where v, , and w, ,(| p| <N) are the functions which appeared in the right-hand
sides of (2.9) and (2.10) respectively.
Under the above preparations we can now rewrite (2.11) in the form:

(2.23) exp (Ao,) L(w, exp (—\v,))

= 0,33 Lo, (O, (0, D) A0

4 — RIBI pob
+ 3 - wn )= Ti0), W0, ) a1
+ 2Ry, 1),
where
(2.24) R, i(x, 1)
=Ny ) S () MO 0 (1)
N+1<[p|S3N -2
1Bl +1vIsIpl+2
1<IBLIYISN
X vk,?(t) xl) )
(2.25) Ry, 1)
=awy(r,2) S ABOATO () 2,
N+15|pI<2N -1
1SIBISN
(2.26) Ry, 1)
R ORSLENOES
N+15|pls2N8
1BI=N
(2.27) R, (x,1)

= 4 -p(B)+1

=N 3 1) NTOT o, 4(2) wy 4(2) %7
N +1<]pI<3 N -2
I1BI+1YI<I8l+2
1=<IBLIVISN

(2.28) R, s(x, t)
= Nay(x, ) 31 af¥(x, £) 8, vy(x, 1) 8; v(%, 1)
—Aw,(x, t‘)'lf::vﬂ (%, t)—27\.“2:1 ali* Y (x, t) 9; vy(x, 1) X
X 0; wy(%, £)+ Ly wi(x, 2) —}—lz("’ W(x, t) wy(x, 1),

and where 7§'} 5, 75, 7$%s and 7§} ; are all linear combinations of af;, b3 and c¢”
(le| =N, 14,4, k=n).

In order that the coefficients of x?(| p| <N) in the right-hand side of (2.23)
may be equal to 0, we define Vy(£)=(2, ,(¢))i1<n as the solution of the follow-
ing system of ordinary differential equations with A>>0 as a parameter:
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a

(2.29) -

o) = das(Va(®), 1) (1pI=N),

with initial conditions

2,0(0) =0,

9.0 =+v—=1& (1=iZn),
vk.eiﬂj(o) = 8:’;’ (léi,j§n) ,
5 0) =0 (=|p|=N).

(2.30)

and with V,(¢) thus defined, we define W,(¢)=(w, ,(¢))i,1sy as the solution of
the following system of linear ordinary differential equations with A>0 as a
parameter:

(231) L §) = AV, W2, 1) (I2ISN),

with initial conditions

(2.32) {w)\.o(o) =1,

0(0)=0 (1=[|p|=N).

Here we note that the domain of definition of V,(¢) depends on A>0 and
hence so does that of W,(¢). In the next section we shall determine the domains
of definitions of V() and W,(¢) and estimate the functions v,(x, t), @,(x, ) and
the function:

(2.33) Ry 2) = 21 Ryl ).

3. Estimates of v,, w, and R,

At first we determine the domain of definition of V,(2).

Proposition 3.1. Let 8 be the constant in (2.12).

(1) There exists a constant r,,0<r,<8, independent of N>1 such that for every
A>1, the differential equation (2.29) with initial conditions (2.30) has a unique
solution Vy(t)=(v,,,(t))1,1s v defined in the interval |t| <r,\"*.

(ii) There exists a constant C >0 independent of N>1 such that for all A >1

(3.1) sup | V()| =C,
lE1SrA ™"

(3.2) sup |-L V()| =Ca*.
sen " At

Proof. Throughout the proof we shall denote by C positive constants inde-
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pendent of A>1. Taking into account that the functions ¢, ,(V, ) A>0, [ p| =
N) defined by (2.19) are independent of the variable v,, we denote by V=(v,),z151s»
a vector whose components are complex numbers v,(1=|p| =<N) and in relation
to (2.21) we put Vy(£)=(vrs(O)isipsy- Then, ¢, ,(V, t)=¢n,(V, t) and we di-
vide (2.29) and (2.30) into two parts:

d
I V()
= ¢, o( Vx(t)’ t)
= 7\,1 z° 2 au(t) Z)A e;(t) ‘U}\ e;(t)

'—)\,_P d 2 a:](t) (1+8u) ‘UA e.+e;( )

—A 2 BY(t) va, (2) (by (2.19) and (2.8)),
U,o(0) =0

(3.3)

and

4w = dulTi01) (1S [pI=N),

(3.4) Opa(0) = V=18 (1<i<n),
vk.eﬂej(o) = 8:’1’ (léi:jén) )
79,00 =0 (@B=[p|=N).

We can slove (3.3) by quadrature and (3.4) is an equation with unknown func-
tions v, ,(¢) (1= |p| =N).

Put Vo:(va,p)lé IpI=N with Vo,ei— \/j Elx’ (1 élén), 'va.e.'+ej:8ij(l élxjgn)
and v,,=0 (3= |p|<N) and put D,,={(V,8)|V—V, <1 and [t| <\ ""}.
From (2.19) and (2.8) it follows that

| pan(V, )]
_S_C”é1 ng . xl—p+(|u|—1)a|a7j(t)|+Cii\=l m%l, A (%1-2)d
B 1Bl -2
XlaOI+C 3] 33 MEH (O], 15151 <N, (7, ) €D,
il
Since d<<0 by (2.4), we have for A>1
[ pa oV, 1)1

SCE W)+ 3 ek )+ OA
+C 2 (N""Iau(t)l—l- 2 A~ af; (1)

+C'§x*”lbk(t)|+0, 1<|p| <N, (V,t)eD,,.
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Hence, using (2.13) and (2.14) we have for A>1
sup I (l))‘.p( V’ t) ]

7.0 YED,
<C(xl P—d—lq+xl—P—l(q+l)/2+x1—9+d+x—2d—lq
_+_x—d—l(q+1)/2+x—d—K‘I+1) .

From (2.2)—(2.5) we see that all exponents of A\ in the right-hand side of the
above inequality are less than or equal to « and so

(3.5) sup. 1¢A,,(I7,t)|§c>w forall A>1, 1Z|p|=N.

7, 0e

Put @,(V, t)=(¢)\,,(17, Hhsipisn- By (3.5) we have with another constant
C>0 independent of A>1

(3.6) sup. |c1>x( V, 0| <Cn.

7,nHe

Let 7,=min (§, C~'). Then, from (3.6) and the fundamental theorem on ex-
istence of solutions of systems of ordinary differential equations, it follows that
(3.4) has a unique solution V,(#) defined in the interval || <7, A" such that
(V\(t), t)eD,,. Therefore (i) has been proved and we have

3.7) sup RAGIEIH

1tISroA

Furthermore by (3.4) and (3.5) it holds that

(3.8) sup _ '57 V()| <O

1t1Sroh

It remains to estimate v, ((¢) and di")x,o(t)- Using (3.3), (2.13), (2.14)
and (3.7), we easily have for A>1 t

(3.9) sup |v—v,‘0(t)] SCAFPAATTTIEAT) N

ltlérok

On the other hand, from (2.2)~(2.5) it follows that
max (1—2p, —p—d, —p)—rg<l—p—rg<«.
Hence by (3.9) we have for A >1

(3.10) sup |-% o, ()] =CON .
st dt

Since o, 4(0)=0 by (3.3), we have by (3.10)

(3.11) sup o) =C.

1tISroh
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From (3.7) and (3.11) we obtain (3.1), and from (3.10) and (3.8) we obtain
(3.2). Q.E.D.

With o, ,(t) (|| <N) thus defined, we define v,(x,%) by (2.9) in R*X
[—r A", rA7"]. Next proposition will play an essential role when we shall prove
(#) in the next section.

Proposition 3.2. There exist constants r\(0<r,<r,) and C>0 both inde-
pendent of N>1 such that for all sufficiently large N

(3.12) A Re vy(x, 1) = CA¥P t““—{——% AP k2 (x| AT [ SR

Proof. We note that ¢+ >0 because ¢ is a positive odd integer. Through-
out the proof we shall denote by C, and C, positive constants independent of

A>1, and use the notation: '= d

By (2.30) we can write dt
WA,ei(t) = v -1 E?"{"v{,e,’(el’ t) t, 0<6z<1, 1= 1; e, .
Then by (3.3) it holds that

(3.13) ol () = —)\,“”élla?i(t) o g
+A\)+BA(t)+C\(), |t =r, A7,

where

Ak(t) — 7\‘1—21”. }21 a?j(t) (2\/ —1 E? 'v;(_el.(ﬂj t) t+

+v)(,ei(0i t) vi,ej(gj t) tz) ’
B,(t) = the second term of the right-hand side of the differential equation in
(33),
C\(t) = the third term of the right-hand side of the same equation as above.
On the other hand, from (2.13), (2.14) and Proposition 3.1 (ii) it follows that
IAA(t) I é Cl(xl*zp-('l l t l q+l+>\'1—29+21 | t | q+2) , l t’ éro 'A'—l R
I BA(®)| =CoAT02]?, [t =r ™,
IGOISCAIHY, [t <rn.
Hence, integrating both sides of (3.13) from 0 to #, and using the initial con-
dition of (3.3) and the hypothesis (A.1) of Theorem 1.1, we have
(3.149) Re v, 4(2)
>C A\ tq+l—Cl(7\,1"2p+'| £ a2 \I-PHE| | 043
—Cy AP C AP et
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for all A>1 and |t| =7, N7
When | p|=1, we have by (2.29), (2.19), (2.7) and (3.1)

[04,(8)| SC, 31 31 (AIPHIe1-Ddp (a1-24) | g (7) |
f,7=1 |wj§1

=

+C 31 ST by |
k=1 |la|s1
for all A>1 and |¢| =r,A7" and so from (2.13) and (2.14) it follows that

I v}(.p(t) I é CI(NI—P—d_i_x—zd) l t I q+ Cl(hl—i’_}_)’-d) | tl (g+1)/2
TGl e
é Cl(xl—P—d I t l 4_|_xl—P| t | (q+l)/2) ,

for all A>1 and [t| <7,A7% because 0<—d<—2d<1—p—d by (2.2)-(2.4).
Hence, since Re v, ,(0)=0 (| p|=1) by (2.30), we have for | p|=1

|Re v, ,()]

t
= |So Re 4 ,(s) ds| S C,(A1 P4 g4 1* || iz |

for all A>1 and |¢| <7, 27"
Hence, noting that p(p)=p (| p| =1) by (2.7), we have

(3.15) | 35 A7 Re vy, ,(2) x|
1#1=1
écl()\'l—zp—d tq+l+xl—29| tl 1+(q+l)/2) lxl ,

for all A>1, x&R" and || <7, N7~
Since v, ,,4.;,(0)=8;;(1, j=1, -++, n) by (2.30), we have by (3.2)

t
IRe Opis ) =1 | Re () dsI SCIE i it
and
Re v)\.e.'+ei(t) = 1+St Re v)(,e;+a.'(s) dsg l_Cl X‘I tl ’
0

for all A>1 and [¢| =<7,A"". Hence, noting that p(p)=p+d(|p|=2) by (2.7),
we have

(3.16) ST AP Re v, ,(2) 222 (1—C, A% [£]) A"~ | %2,

1p1=2

for all A>1, x&R" and |t|=Zr, 27"
When 3< | p| =N, we have by (2.7) and (3.1)
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[ATP Re v, ,(2) x?| < C, A~P=121-04 | | 121
= C, NP x| A121-2d | | 1512

écl )\'—P—d l xlz x—'(|p|~2)(d+!-‘)

for all A>1, |x| <X\ ""and |t Zr, 27"
Hence, since d+ >0 by (2.6), it follows that

(3.17) |33 A7 Re v,,(t) 22| SC AP |22,
3SIPISN '

for all A>1, [x|=<A""and [t|Zr, 27"
From (2.9) and (3.14)~(3.17) it follows that

Re v,\(x, t)g C'2 xl—zP tq+1{1___Cl C;l(k’ ' tl _*_7\'2:: I t ’ 2+>\,—1+P—d+7\’—1+9)}
_Cl(xl—zp-d tqH—l—?\,l_sztIH(qH)/z) lxl
+(A=C A [t —Cy A" M) AP x|,

forallAa>1, |x|<A""and |t| <7, A"
Now we choose a sufficiently small real number 7, such that

0<r,<r, 1—C, C;l(rl—l—rf)g% and 1—C, rlg%.

Then, if |t] <r, A"

1—CIC{‘()U‘|tI+7\2"It|2)g% and 1—clmz|g%.

Hence
Re o3 ZC, N 91 {_—C, CFHV 54 A7)
— G (M gL\ [ [ 1) [ |
FE—C A A,
for all A>1, |x|=<A""and |¢] <7, A7

On the other hand, max(—1+p—d, —1+p, —d—p)<0 by (2.2)~(2.4) and

(2.6), and so lim A" =lim A~"**=lim A"¢"#=0. Therefore there exists a
A>oo AP A>o

sufficiently large A,>1 such that for all A>),, |x| <A 7" and [t| S 27"
Re 0,(1, 25 ;N7 091 A 774 |l a0
_Cl(xl—zo-d tq+1+7\1—2p I t I l+(q+l)/2) ! xl

_*__l Cz K1—2P tq-l-l
8

E% C A tq“—}—% A 22O (|x], 2 7).
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Here we consider O(|x|,, \) as a quadratic function of |x|. Then, to prove
Proposition 3.2 it suffices to show that the discriminant of Q(|x|, #, A)<0 for all
|t] <r, A" and A>2, if A, is chosen sufficiently large.

When |t]| <7, A" it holds that
the discriminant of O

SZC% (x2—49—2d t2q+2+ 7\’2—49 ' t l q+3)_i C2 x1—39—d tq+1
- 16
—p- - 1 —s0-
_ {2C§(7\.1 P=d ga+l | 3 1-P+d tz)_Tg Cz} A1-3=d yq+1
< {ch(xl—P—d—K(lH-l) r¢11+1+7\‘1—l'+d—2¢ r?)_i Cz} 7\‘1-3P—d patl
- 16

On the other hand, from (2.2)—-(2.5) we see that

1—p—d—#(g+1) = 2(1—p) (6~ 1)/(g+1+€)<0 and
1—p+d—2k = —2(1—p)/(g+1-+8)<0.

Hence lim A}P~97*@+D=]im \!"**¢"**=( and so the desired estimate has been

proved."”” e Q.E.D.

In order to estimate derivatives of v,(x, t) we prepare the following lemma.

Lemma 3.1. For every non-negative integer m there exists a constant C,,>0
independent of \>>1 such that

(3.18) sup % ()| SCo AT for all A>1.

1H1SrA "

Proof. The proof is by induction on m. For the case m=0 (3.18) is
nothing but (3.1). Assuming that (3.18) is vaild for all m less than or equal
to a non-negative integer m,, we shall prove that (3.18) is valid for m=m,+1.

From (2.7) and (2.2)-(2.4) it follows that

I+p(p)—p(B+e)—p(v+e)=1—p—d<2(1—p) if |B|+|vI=]pl,
p(p)—p(B+te+e)=—2d<2(1—p) if [BI=|p],
p(P)—p(B+e)=—d<l—p<2(1—p) if [BIZ|p].

Taking (2.19) into account we differentiate both sides of (2.29) m,-times. Then,
from the above inequalities and the hypothesis of induction we see that (3.18)
is vlaid for m=m,+1. Q.E.D.

Proposition 3.3. Let h=(h,, -+, h,) be a multi-index of non-negative integers
and m be a non-negative integer. Then, there exists a constant C, ,,>0 independent
of A>1 such that
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(3.19) [9% 07 v\(%, £)| S Cy pp NHA-PUUREm) (] Z\1=Pd | x| 2)N/2
for all A\>1, x€R" and |t| <r, 7"

Proof. Using (2.9) we write

—oepy A"
ham _ p(p) & h( aod
0z 07 vy(%, 1) ——wENX " Uy,o(2) 0z(x?) .

Let a=(ay, +**, a,) be a multi-index of non-negative integers. If |a|=|h| we
have with a constant C, , depending only on % and «

[83(x") | < Cp || 41710
= G g NP DUSI=1BD/2 (\1=P=d | | 2Y(1%1= 1hD/2
S C, o NP DUSI=1BD/2 (1 )1=P=d | x| 2) 1902

and if |a|<|h| we have 9%(x")=0. Therefore, since (1—p—d)2<1—p<2
(1—p) by (2.4) and (2.3), we have

(3.20) I 6’;(0&")] _S_C,, ° x2(1—9)|h|—(1-p—-d)|u|/z (1_|__7\’1—-p—d I xlz)1¢|/z

for all A>1 and x&R".
Hence, from Lemma 3.1 and (3.20) it follows that

1057 03(x, )] Sy NP0 (1 N1 [ )V
X 1 A PO-(-p=d)ipifz
SN
for all A>1, x€R" and [¢t| =Zr, A7
On the other hand, by (2.7) and (2.2)—(2.4)

0 (p="0)
—o(p)—(1—p—d) | p| /2 =
p(D)=(1=p=d) |21/ {~p+d—«r~p+dnpuz ED
SF (» = 0)
=\—ptd (Iplz1)
=0 and so we obtain (3.19). Q.E.D.

Since V,(t)=(v,,(f))i,1sy has been defined in the interval |¢| <7, A7 in
Proposition 3.1, we can also define W,(t)=(w, ,(t))1,isn» as the solution of (2.31)
and (2.32) in the same interval, because by virtue of (2.20), (2.31) is a linear
equation with respect to the unknown functions w, ,(z) (| p| =N). With 0, ,(2)
(121 =N) thus defined, we define w,(x, ¢) by (2.10) in R*X[—7, A7, 7,A""]. In
order to estimate derivatives of w,(x, #) in this region we prepare the following
lemma.

Lemma 3.2. For every non-negative integer m, there exists a constant C,,>0
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independent of N>1 such that

(3.21) sup. l% W,‘(t)|§C,,, NP for all A>T,

1tISroA

Proof. The proof is by induction on m. Firstly we shall prove (3.21) for
m=0. We denote by C, positive constants independent of A>1. By (2.31),
(2.20) and (3.1)

‘%W*(t)'écﬂlwa(t)l{.z’: ST |agi(g) [
t ij=1 |e|lsN

ST a2 (t) | A EATIHIBD =Bt
i,j=1 |@|+|BISN

+ké=1 I¢|§N lb‘:(t) Ix“—“lul-*_lM%NIca(t)l)\‘—”ldl} ’

for all A>1 and [¢] =7,\7". Since x>0 by (2.2)~(2.4) and (2.6), and 14+puy—pu

(lal+181)—p(B+e)=1—p+pn(l—|al)—(u+d) || =1—p+u(1—|a|) by
(2.7) and (2.6), it follows from (2.13) and (2.14) that

WA(t) < Co I W,\(t) I (xzﬁ—xq+)\'u—x(4+1)/2+XI—PHL-M

1 —_
| dt
x]_p_g(q-f-l)/z ) 1-p—H ) *—-kq ])

for all A>1 and |¢]| <7, A" where we have estimated a%;(¢) (2= |a| =N, i, j=1,
ey m), b3(t) (1= || N, k=1, -+, n) and ¢*() (|| =N from above by positive
constants.

From (2.2)—(2.6) we see that all exponents of A in the above inequality
are smaller than «. Hence

4
dt

W,‘(t)lgC,x‘lW,\(t)l forall A>1 and |¢| <7, A",

Therefore from (2.32) and the Gronwall’s inequality we obtain (3.21) for m=0.
Secondly, assuming that (3.21) is valid for all m less than or equal to a non-
negative integer m,, we shall prove that (3.21) is valid for m=m,+1.
From (2.2)—(2.7) it follows that

2p—pla|l =2p=1—p—d<2(1—p),
I+ p—p(lal+181)—p(B+e)=1—p+p<2(l—p),
p—ula|=p<2(l—p),
—pla| £0<2(1—p).
Note that the second inequality follows from the inequality already appeared in

the first pragraph in this proof. Taking (2.20) into account we differentiate
both sides of (2.31) m,-times. Then, by the above inequalities, Lemma 3.1 and
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the hypothesis of induction, we obtain (3.21) for m=m,+-1. Q.E.D.
Proposition 3.4. Proposition 3.3 holds for w,(x, t) instead of v,\(x, t).

Proof. The proof is similar to that of Proposition 3.3. The difference
consists in the fact that we use (2.10), (2.31) and Lemma 3.2 instead of (2.9),
(2.29) and Lemma 3.1 respectively, and use the following inequality:

plpl—(Q—p—d)|p|/2=0, which follows from (2.6). Q.E.D.

Let R,(x, t) be the function defined by (2.33). We consider this as the
remainder term of the right-hand side of (2.23).

Proposition 3.5. Let h=(h,, :--, h,) be a multi-index of non-negative integers
and m be a non-negative integer. Then there exists a constant C, ,,>0 independent
of A>1 such that

(3.22) |82 07 Ry(x, t)| < C,,, ATH2ADUkEmH2) 5
X X(M—(I—P~d)/2)(N+l)(1_i_xl—P—d | x|2)2N+1/2

for allA>1, x&R" and |t| <r,\"".

Proof. For the sake of brevity we put v=1—p—d. From (2.24)-2.28)
and (2.15)—(2.18), we obtain the following five inequalities by using the Leibniz
formula, (3.20), Lemma 3.1, Proposition 3.3, Lemma 3.2 and Proposition 3.4.

|9k o7 R, \(x,1)|

_S.Ch,m 7\’2+2(1—P)(lhl+m) 2 )\"‘P(ﬂ)“’(‘Y)"VIPIﬂX (1+7\,v|x|2)(N+|“)/2 ,
N+1Z|P|S3N -2
IBi+ivI<Ipl+2
1SIBLIVISN

|92 07 Ry (%, 2)|

éch,m AIH2A=P) (k] +m) 2 X—P(B)—vm]/zx (1+7\'v lxlz)(N+|p|)/2 ,
N+1Z(pl<2N -1

1KIBISN
[8% 07 R, 5(x, 1)
§Ch,m AHI=P)(Ih]+m) b x#lﬂl—vmlz(l_*_xv|x|2)|p|/2 ,
N +1SIpI<2N
1BlsN
|9k a7 R, (%, t)|
éch.m )\‘1+2(1—P)(Ihl+'n) 2 X—P(ﬂ)H‘IYI“"IPI/Zx(l_{_)LV|x|2)IPI/2 ,
N+1Z[pI<3N -2
1Bl +1vIsIpl+2
1ZIBLIVISN

|9% 87 Ry s(x, t) |
éch,m 7\’2+2(1—9)(1h|+m+2)—v(N+1)/2(1_i_xv ] xl 2)2N+1/2
+Ch m xl+2(l—P)(|h|+m+2)—1'(N+1)/2(1 _i_x’l l x | 2)(3N+l)/2
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+Ch . 7\'1+2(1—p)(|h1+m+2)—v(1v+1)/2(1_!_7\‘\« I x lz)(3N+1)/z
+Ch " xz(l—P)(|h|+m+2)—v(N+1)/2(1_'_7\‘1; | x I 2)N+1/z
+Ch,m 7\‘2(1—P)(1h|+m)—V(N+1)/2(1_*_xvIx|2)N+1/2 ,

for all A>1,xER" and |t| <r, A™*, where we have estimated the right-hand side
of (2.28) term by term.
On the other hand, from (2.2)~(2.4), (2.6) and (2.7) it follows that

if N+1=|pl, I8l+IvI<Ipl+2 and 1=|B], |7], then
—o(B)—p()—vp1 12
— —2p—(181+ |71 —2) d—»| p| 2= —2p-+(u—/2) | p| <(u—/2) X
X(N+1),
if N+1=|p| and 1=<|B|=ZN, then —p(B)—v|p|/2
— —p—(181—1)d—v|p|2<—|Bld—v| p| )2<(n—2/2)| p|
<(u—v[2) (N+1),
if N+1s|pl and [BI=N, then ul@l—»|pl/2<(u—v/2)|p]
<(u—2/2) (N+1),
and
if N+l=s|pl,1=|8] and |[B|+|vI=|p|+2, then
—pB)+ulyl—vIpl2=—p+u(IBl =) +uly|—v|p|/2
<l—p+u(lBl+I|7|—=2)—2|p|[2=1—p+(n—2/2)| p|
S1—p+(p—r/2) (N+1).

Hence we obtain (3.22). Q.E.D.

4. Proof of (#)

Using the results of section 3, we shall prove (§). Let , be the constant
determined in Proposition 3.2. Taking X,(x)&C7(R") and X,(¢)€C7(R') such

that %,(e)=1(|| <), =0(|x] Z1) and %)= 1(|¢| S), =0(]¢| Z1), we put

D) A =20 % (M) ) exp (—rexn 1)
1

Since r,<r, by Proposition 3.2 and v,(x, t) and w,(x, ¢) are C* functions defined
in R*X[—7r, A7", 7, A™%], we see that fy(», t) Cy(R**"). In what follows we shall
prove that (2.1) does not hold for f, as A—— .

By (2.9), (2.10), (2.30) and (2.32) it holds that w,(x, 0)=1 and v,(x, 0)=
V—=INTP  EP AT x| % Hence, grad, f,(0, 0)=—+/—1A!""£°. Since
1—p>0 by (2.3) and £°#0, we obtain
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Let »=(x,, ***, 7,) be a multi-index of non-negative integers and m be a
non-negative integer. Using (4.1), (2.23), (2.29), (2.31) and (2.33) we can write
with a function 3" C7(R**)

(+3) 0T0(LA) = %) X%, (X4 0107 (R, exp (—20)
1
473" exp (—Av,)
=F}"4 Gy

By the Leibniz formula we can write

0z 07 (R, exp (—2v,))

] +m
= S Ol w00 070 RyX 8 BTH(—AD) X e X
R=0 hothytthy=1
Moty oty =

X 0% 07+(—nv,) X exp (—Av,),

where C}7% ..., is a positive constant depending only on u, m, k, k; and m;
(0<j=<k). On the other hand, it is clear that |x]| <A™ and |¢| =7, A" on supp
F}'" and so by Proposition 3.2 we have

—A Re o, (x, t)g—% AP |2

for all sufficiently large A>0 and (x, )esupp FX'™. Hence by Proposition 3.3
and Proposition 3.4 it holds that

l+m
IF}""”(x, t)l écl 2 )‘k+z+2(l-P)(|")|+m+z) XX(M—(x—P-d)/z)(NH) X
k=0

% (1+x1—p—d|x|z)zn+1/z+mlz exp (_l hl"p'dlxlz)
2
< Cz)\‘s(pr 1+m+2) 3¢ 3\ (B=(1~P=d)/2)(N +1) ,

for all sufficiently large A>0 and (x, ) R"*!, where C, and C, are positive
constants independent of A>1. Hence by (2.8) we have

(4.4) lim sup |Fl™(x,£)]=0 if |y|+m=<M.

AP (Lot
Next we shall estimate G3™. It is clear that for all A>1

x| =A*<1 and [¢[<r,A7"<r,A™ on supp "

and

|x|g%7\f‘“ or |t|g’—21>c‘ on supp 7™,
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since x>0 by (2.6) and (2.4), and r,<r, by Proposition 3.2. Hence by (2.9),
(2.10), Lemma 3.1 and Lemma 3.2 there exist constants K, and K,>0 inde-
pendent of A>1 such that
sup |r™(x, t)| <K AFz forall A>1.
(x,t)ER"
On the other hand, letting p,=min (1—p—d—2u, 2(1—p)—x(g+1)), we have
from Proposition 3.2 that

—r Reoy(x, ) S —K; A%

for all sufficiently large A and (x, £)&Ssupp 73'™ where K,>0 is a constant inde-
pendent of A>1. Hence

sup |Gr™(x, t)| =K, Mz exp (—K; \™).

n+1

(2,)ER
Since p,>0 by (2.6), (2.5), (2.2) and (2.3), it holds that
4.5) lim sup |GI™(x,8)|=0.
A>+00 (x,t)ER"H
From (4.4) and (4.5) we obtain
(4.6) ’\l_yﬁo | Lf\lux = 0.

Finally, since |x| =A% and |¢| =7, A™" on supp f,, it follows from Proposi-
tion 3.2 and Proposition 3.4 that there exists a constant K,>>0 independent of
A>1 such that

| (o, O S K124 1] 9 exp (— N ]9,

for all sufficiently large A and (x, f)cR"*'. Hence
4.7) | filox is bounded as A — +oo.

(4.2), (4.6) and (4.7) imply that (2.1) does not hold for f=f, which com-
pletes the proof of Theorem 1.1.

5. Two lemmas about real C~ functions

In the following two preliminary lemmas for the proof of Theorem 2.2, we
shall denote by Q, an open subset in R**! containing 0.

Lemma 5.1. Let f(x,?), (x,8)EQ,, be a real C~ function and assume that

(5.1) there exist a<<O and an odd integer q>0 such that f(0, t) = at*+O(**")
for sufficiently small t,
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(5.2) there exist 3=+0, an integer k(1<k=<n) and a non-negative integer m such
that 0=<m<(g+1)/2 and af’_f(o, £) = BE" O™ for sufficiently small t.
Xk

Then there exists (x,, t,) EQ, satisfying

(5.3) f(xnt) =0 and %f[(x,,, 1)<0.

Proof. Without loss of generality we may suppose that z=1. Using the
Taylor’s formula we expand f(x, ) with respect to x at x=0. Then by (5.1)
and (5.2) we can write in a sufficiently small neighborhood V= {(x, 2)| |x| <3,
[t| =8} (6>0) of 0,

54) f(x, t) = a(t) {'+B(@) t"x+v(x, t) x*} ,
where
(5.5) a(t)<0 and B()=+0 in [¢[|=5.

Since ¢>0 is an odd integer we see from (5.2) that
(5.6) 2m+4-1=q.

Put 0(t)=—2B(t) ' t*™, |t|<8. Then 6(t)eC=(|t]| =8) and 6(0)=0 by (5.6)
and so |0(t)| =3 in |t]| =€ if we take §(0<€<3) sufficiently small. Therefore
if |¢| =& we can substitute 0(¢) for x in (5.4) and we have

f(0@®), 1) = —a@) ' {1—47(6(2), ) B®) """}, |t| €.

Since g—2m=1 by (5.6), it follows from (5.5) that for sufficiently small £>0,
f(0(),)>0 if 0<t<é&. On the other hand, by (5.4) and (5.5), f(0, £)<<O if
0<t<é&. Hence, by the intermediate value theorem, for every ¢ (0, €) there
exists x(t) satisfying

(5.7) (), )= 0
and
(5.8) |2(1)| <16(t)| = 21 B(2)| 1 12~

Differentiating both sides of (5.4) with respect to ¢, and substituting x(z) for
x, we have by (5.5) and (5.7)

(5.9) g_{ (x(2), 1) = a(®) {g 42 ()} , 0<t<E,

where g(t) = ‘fi—'f(t) t"x(t)+mpB(t) tm 1 x(t)—i—%:—(x(t), t) x(2)*.
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By (5.8) there exists a constant C>0 such that
lg(t)| S Ct*+-2mer ' Crrem | 0<t<<E
and so, since a(t)<<0 by (5.5), it follows from (5.9) that

g—ft(x(t), f) <o) {gtt'— CE—2mp='— CRa-m} | 0<t<E.

Hence, noting that g—2m =1 and 2(¢—m)>q by (5.6), we have
(5.10) %{(x(t), 1)<0, O<t<e€
with £>0 sufficiently small.
From (5.7) and (5.10) we obtain (5.3). Q.E.D.

Lemma5.2. Let f(x,¢t) and g(x, t) be real C= functions defined in Q,. As-
sume that

(5.11) there exists >0 such that f(x,t)g(x, £)=0 if |x| <8 and [t| <3,

(5.12) there exist a real number =0 and an odd integer ¢>>0 such that for suf-
ficiently small ¢t
(1)  f(0, t) = at®+0O(t1),
(@) £(0,2)=0@),

(iii) |grad, f(0, )| = O(t«*V7?).
Then
(5.13) |grad, (0, )| = O(t«*”) .

Proof. Without loss of generality we may suppose that z=1. The proof
is by contradiction. So suppose that (5.13) does not hold. Then there exist
a real number ¢ =0 and an integer m such that

(5.14) 98 (0, 1) = yt"4-O(n+)
ox

and

(5.15) 0=m<(g+1)/2.

By (5.11) we have in Vi={(x, t)| |x| <3, |t| =8}

(5.16) 0= {f(0, t)+.g.£.(o, £) x+0(x*)} {2 (0, t)+g§(o, £) x+O(+)}

= (0,080, 10, )20, 1) x-+£(0, 1) O(¥)
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of of og of
+22(0,080, ) x+-(0, ) E0, 1) w4 (0, t) O(+)
+2(0, £) O()+-28(0, 1) O(x)+O(+) .

ox

Using (5.12) (ii) we write with a real constant 3

(5.17) g(0, ) = Bt*+0O(t*?) .
Let ¢ be the real number satisfying
(5.18) af+ayc= —1.

This is possible because ay=0. Since ¢ is a positive odd integer, we see from
(5.15) that

(5.19) 2m=q—1 (hence m+1=q—m)

and so we can substitute c##~" for x in (5.16) if we take ¢ sufficiently small.
Then from (5.12) (i), (5.17), (5.12) (iii) and (5.14) it follows that for suf-
ficiently small ¢

0= {8+ O} + {aryct+ O +)} +O(t3-)
+ O(t(q+l)/2+2q—m) _I__ O(t(q+l)/2+2q —m) _I__ O(t(q+l)/2+3q—3m)
+ O(£5-2m) - O(#34-2) - O(h4~4m) ,

By (5.19) it is easy to see that min (3¢—2m, (¢-+1)/2+29—m, (q-+1)/2+3q—3m,
4q—4m)=2q+1. Hence, using (5.18) we obtain for sufficiently small ¢

0=(aB+ayc) t+0O(t*+) = — 14 O(t*+)
which is a contradiction. Q.E.D.
6. Proof of Theorem 1.2
At first we state two lemmas due to Zuily [12].
Lemma 6.1. Let Q, be an open subset in R, n=1, and

62
0x; 0x;

Py= () 33 o) 50— B0, wEQ,
i,j=1 k=1 ®

be a partial differential operator of order 2 with real coefficients belonging to C=(L,).
Suppose that P, is hypoelliptic in Q,. Then

33, () gi(x)g%(x): 0 if G(x)=0.
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This lemma is due to Theorem II.1 (iii) of [12]. Although in [12], ana-
Iyticity of the coefficients of P, is assumed, we can apply the method of proof
there to the C case without modification.

Lemma 6.2, Let Q, be an open set in R**, n=1, and

O S bl t)
6x,~ ax,- i=1 ax,' ot

Ol s, (e,
ox;

0 N b
P, = ” +t {Mzztlb,,(x, ?)

Fbpssenn ) #2431 i 1)

be a partial differential operator of order 2 with real coefficients belonging to C=(L,).
Assume that there exist (x,, 0, £,)ER* X R*X R**', an open neighborhood V, of x,,
&>0, a conic open neighborhood T', of E, and a constant C>O0 such that VX (—&, €)
cQ, and

S by, ) EES—CIE? forall (x,8,E)EV,x(—¢EXT,,

where E=(E,, +++, E,, E,.)). Then P, is not hypoelliptic in V, X (—E&, ).

We can find a proof of this lemma in p. 117-p. 120 of [12] where we take
I=k=0 and replace n—1 with 7.

By Lemma 5.1, Lemma 6.1, Lemma 6.2 and the Hérmander’s theorem (H)
mentioned in the introduction, we obtain

Lemma 6.3. Let Q, be an open subset in R***, n=1, and

62
Ox; Ox;

P,= 3 pii(% 9) + 31 g ) O tr(m, )2, (x,H)E0,
i,j=1 k=1 6xh at

be a partial differential operator of order 2 with real coefficients belonging to C*
(Q,). Assume that

(6.1) P, is hypoelliptic in Q, ,

(6.2) of pij(x,t)=0 forall i,j=1, -, n, then qx,t) =0 forall k=1, .-,

n,

(6.3) there exist a real number a<<0 and an odd integer q>0 such that p,(0, £)
= at'+O(t") .

Then
(6.4) |grad, pu(0, ) [= O(*>%).

Proof. The proof is by contradiction. Assume that (6.4) does not hold.
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Then we can apply Lemma 5.1 to p,(x, t) and so there exists (%, £,)EQ; such
that

(6.5) pu(*,2) =0 and %%w”ww.

By (6.1) and the Hérmander’s theorem (H)

(6.6) the quadratic form: & = (&, -+, £,) = 3371 p;;(%, t) E; £; is semi-definite
for all (x, ) =Q, .

Hence

(6.7) 0= p;i(x, tY=<pu(x, t) p;j(x,8), L, i=1,,m, (x,8)EQ,.
Especially we have

(68)  0Spylx, 'S puls Doy ), F=1 -, (3HEQ,.

Let w be an open neighborhood of (x,, ¢,) such that

(6.9) %%%mﬂ<0,(&ﬂ€w.

From now on in the proof we shall take w as a sufficiently small neighborhood
of (x,,¢,) if necessary. Let (x’,¢') be any point in o satisfying p;(x’, 2')=0.
Then by (6.8) pyy(x, £) p;;(%, t) (1= j<n) attain their minimums at (x’, ) and so

6 ! ! ’ ’ ’ ’ 6 if ’ ’
O:—%(x,t)pﬁ(x,t)—i—pu(x,t)%(x,t)
- 85);1 (x,’ tl) Pii(x,’ tl) y J= Leynm.

Hence p;,(x’, t')=0(1< j<n) by (6.9) and it follows from (6.7) that p,;(x’, ¢')=0
(1=i,j<n). Furthermore by (6.2) g,(x’, 2’)=0(1=<k=mn). Hence by (6.9) and
the implicit function theorem we can write with real-valued functions «;;, B,E
C(w) (1=1,j,k=<n)

Pii(x’ t) = pu(x, t) a,-j(x, 1), qux,t)=pulx,t) Bi(x, 2), i:j: k=1,-n,
(xtHeEwn.
Hence

62

6.10) P,=p, > a;;
( ) Pumzzl“ i o, ax,

pa B DA+ (mi)cw.
k=1 O, ot

Since ay,(x, )=1 in w, it follows from (6.6) that
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(6.11) Mz;a,-j(x, 1) EE,20, (vt E)CSwxR".
Hence
612 i SaywmnEE=0 then % (2 @ O EE,)
——-Zgl}a,-,,(x,t)g,-———O, k=1, n.

On the other hand, from (6.10) and Lemma 6.1 it follows that

(6.13)  if pu(x, ) =0, (x,f)€w, then 33 o x,1) %P“(x, £) x
ij=1 x;

x OPugy 1y = 0.
ox;
Hence by (6.12)

(6.14)  if py(x,8) =0, (x,f)€w, then 3 au(x,?) %(x, 1)
i=1 x;
=0, k=1, n.

It is clear that (6.11) is valid for & replaced with grad, p;(x, t) and so combin-
ing this fact with (6.9) and (6.13), and using the implicit function theorem, we
see that there exists a real-valued function a(x, f)&C=(w) such that

(6.15) 31 ais(s, ) 22, ) O, 1) = (s, 1 ol 1)

ihj=1 ax‘; ox j
Analogously we see from (6.14) that there exist real-valued functions b,(x, £y C>
(») (1=<k=n) such that

9

(6.16) S o, 1) af’ll(x, £) = po(x, ) by(, 1), R=1, 7.
i=1 x'_

Now we make the change of variables:
(6.17) @: {y —F
§ = pu(x, 2) .

By (6.5) @ is a diffeomorphism from  to an open neighborhood & of (x,, 0)E
Ry*'. From (6.10), (6.15) and (6.16) we see that P, is transformed by @ to the
following operator:

(6.18) P=s3 a,.,.(

6,i=1

0 |0 0)( 2y 0 D)
6y,-+6x,- os 6y,~+8x,- os
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apll 6Pll
+5 2184 (ay,, 3%, 63)+ ot s "

9Py A) % { 2 b.__ﬁ62
( i ) e uz"la"ay.ayﬁ PR 0y, 0s

+sza6_.\'2+ Eﬁka_y:}—i_r: (J’yS)E&'M

where 4 is a real-valued function belonging to C=(&). By (6.9) there exist an
open neighborhood V,C R} of x, and real numbers & C>0 such that

(6.19) (%er)"g—c, (3, )EV, X (—¢, 6)Cé .

FOI’ 8>O pU't P8= {EER“+II8§1> IEII} where g:(En °% gm Eu+1) a‘nd E’Z(Ezy
-++, E441).- Then T is a conic open neighborhood of (1, 0, ---, 0). Since a;,(®™*
(3, 5))=ayu(x, )=1 in &, taking V, and &, §>0 sufficiently small we have

(6.20) i'ga;; & E;Z% E?%%Ifl”, (3,5, E)EV, X (—E,)XT;.

-1
Let R=(%4+:A) P, (y,5)€V,x(—¢& €). Then R is hypoelliptic in 7,

X(—&, €). On the other hand, from (6.18)—(6.20) we easily see that R satisfies all
the assumptions of Lemma 6.2 and so R is not hypoelliptic in ¥, X (—&, €) which
is a contradiction. Q.E.D.

Now we begin to prove Theorem 1.2. Suppose that L satisfies the hypo-
thesis (B) of Theorem 1.2 and L is hypoelliptic in some open neighborhood U
of 0. We shall show that this yields a contradiction.

Step 1. We shall show that there exist an integer i,(1=<7,<7), an odd
integer ¢,>0 and a real number «,<<0 such that

(6.21) @, (%(8), £) = at, Lo O(t0*)
and
(622) aij(x(t): t) == O(t%) ) l:] = 11 e, |

where (x(2), t) is the integral curve of the vector field 33;.; by(x, t) 8/0x,10/0¢
through the origin.
k

Let ¢,=(0, +-+, 1, -+, 0) (1<k=<mn). Since L is hypoelliptic in U>0 by hy-
pothesis, it follows from the Hormander’s theorem (H) that for sufficiently small
>0, the quadratic form: R*S(w, 2)—a(x(?), t, wE°+z2e,)=w* a(x(t), t, £°)+ 2wz
Sia1 au(x(2), t) EI4-22 ay(x(2), t) is semi-definite for all ¢, || <8. Hence



NON-HYPOELLIPTICITY OF SECOND ORDER OPERATORS 99

(6.23) 0=<a(x(2), t, &) au(x(®), 8), |t|<8, k=1, -, n.

Hence from the hypothesis (B) of Theorem 1.2 and (6.23) we see that for every
k(1=k=mn), a,(x(t), 1)=0 at t=0 in infinite order or there exist ¢,<0 and an
odd integer g,>0 such that a,,(x(2), t)=a, t*++O0(%*"). In the first case we put
gv=-+oc. Let ¢g,=min(g, ---,q,). Again by the Hormander’s theorem (H) the
quadratic form: R*S(w, 2)—a(x(2), ¢, we;,+z2e;)=a;; (x(2), t)+2wza, (x(t), )+2*
a;;(x(2), t) is semi-definite for |¢| <8, ¢,j=1, ---, #, and so we have

(6.24) a;(x(t), 1P <a;(x(t), t) a;(x(t), t), |t| =8, i, j=1,-,m.

From the hypothesis (B) of Theorem 1.2 and (6.24) we see that g,<<+-oco and
taking 7, such that ¢; =g, we obtain (6.21) and (6.22) with a,=a;,.

Step 2. Renumbering the variables x,(1<7¢=<n) we may suppose that 7,=1.
Then (6.21) can be written as

(6.25) ay(x(t), t) = a, t"+0(%*),

where a,<<0 and ¢,>0 is an odd integer.

Let (x(y, 2), t)=(x,(y, t), -*+, x,(, t), t) be the integral curve of the vector
field 3341 by(x, t) 8/0x,+0/0t through (y, 0)=(»,, >+, ¥. 0), i.e., let (x(y, t), -+,
x,(y, t)) be the solution of the ordinary differential equations with y as a pa-
rameter:

(6.26) ditxk(t) =by(x(t),2), %(0) =y, k=1, 1.
Now we make the change of variables:

(6.27) w: {” = ()

t=s.
Since x(y, 0)=y by (6.26), ¥ is a diffeomorphism from an open set ¥, (0, 0)e V
CR3*, to an open set V, (0,0)eVcCU. Let

(6.28) v, {y =)

s=1.

be the inverse of ¥. Since y,=y(x(y,s),s) (1=<k=n) it follows from (6.26)
that

0= 2 (x(3 90 ) = 3 Bilx(, ) )22 (53, ), S+ Z (3,99

Hence in the new variables y and s, L can be written in the form:
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629 L= Z}a (2 73 )( S 0, & ( 5o 0)

i k=1 9u; 8y,, i=19x; 0y, k=1 9x; 0y,
ayl: o
= 31 ay(y, s) +E b(y, 9) -a—+l‘(y, S)+—6—
ki=1 =1 ay, os

where for &, I=1, ---, n

(630)  au(y 9 =3 @09 ) Lrx(3, 9, ) P,

$,5,k=1

.
b

63 B39 = 35, x99 D229, 9 5 (24,91 9),

and

(6.32) &(3, ) = c(x(3, %), 9) -

Since the Jacobi matrix g—y(x( 9, 5), §) is non-singular in V, it follows from (6.30)
x

that if @,(y, s)=0 for all %, [=1, -+, # then a;;(x(y, s), s)=0 for all 7,j=1, .-, n
Hence, also by (6.30)

(6.33) if @y(y,s)=0 forall kI=1,--,7 then &(y,5)=0
forall I=1,.,n

Step 3. From definition of x(y, ¢) it is clear that (x(0, t), {)=(x(2), £)=the
integral curve of the vector field 33i.; by(x, £) 8/0x,+0/8t through 0. On the
other hand, 9y,/dx,(x, 0)=3;;, 7, j=1, ---, n, since y(x, 0)=x by (6.26) and (6.28).
Hence by (6.30)

2,(0,9) = 33 aii(x(s), 5) (But-0(s)) (8,,+-0(6))
and so from (6.25) and (6.22) it follows that
(6.34) 4,(0, 5) = a, s%+O0(s%*),
where a,<0 and ¢,>0 is an odd integer. Moreover by (6.22) and (6.30)
(6.35) ay(0,s) = O(s*), kI=1,n

Since L is hypoelliptic in V it follows from Lemma 6.3, (6.33) and (6.34)
that

(6.36) |grad, @,(0, s)| = O(sw+i/z)
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and it follows from the Hormander’s theorem (H) that

(6.37)  the quadratic form: & — @(y, s, &) = 23h.1-18u(y, ) E+ &
is semi-definite for all (y,s5)eV.

Hence

(6.38) 0=<ay(y,8) @u(y, ), (3, 9)EV, =1, n.
Then by Lemma 5.2, (6.38), (6.34), (6.35) with k=1 and (6.36)
(6.39) |grad, @,(0, s)| = O(s@*V%) | I=1, ., n.

By (6.37) the quadratic form: R*>(w, 2)—ad(y, s, we,+ze;+2e;)=w’ @,)(y, s)+
2w2(@;(y, §)+a,(y, 8) 2@y, )+28,(y, 5)+a;(y, 5)) is semi-definite for all
(y,5)eV. Hence

(6.40) 0=dy(y, 8) @i, )+28;(y, $)+d;4(3, 9)), (3, )EV,
,j=1,.n

Hence by Lemma 5.2, (6.40) and (6.34)—(6.36)

(6.41) | grad, @;,(0, s)+2 X grad, ,,(O s)+grad @;{0,s)|
= O(s@tD2) | §,j=1,.

Combining this with (6.39) we have
(6.42) |grad, @,(0, )| = O(s@*V?), Rk l=1,-,n

From (6.31) and (6.30) we see that &,(y, 5) (1<I=<mn) are linear combinations

of @,;(y, s) (1=k, j<mn), because the Jacobi matrix —y(x( 9, $), §) is non-singular.
Hence by (6.35) and (6.42) we have

(6‘43) 1(0, s) = O(Sq") ’ l= 1, IO (3
and
(6'44) lgra'd] 51(0, s) I = O(s(¢a+l)/2) ’ l 1 1’ TN

From (6.34), (6.35) and (6.42)—(6.44) we see that L satisfies all the assump-
tions of Theorem 1.1 with #=(1,0, .-+, 0), a=a, and ¢g=¢q,. Hence L is not
hypoelliptic in V. On the other hand, it is obvious that L is hypoelliptic in
V, because L is hypoelliptic in 7. This is a contradiction.

7. Proof of Theorem 1.3
Step 1. We shall show that
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(7.1)  there exists no point (#, &, t,, &) (T}, T) X (R"\ {0} )X (T}, T3) <X (R™\
{0} ) such that #,<¢,, a(x(2), t,, £,)>0 and a(x(t,), t,, £,)<<0.

Suppose that (7.1) does not hold, and let (¢, &,, ¢, £,) be a point in (T},
T) X (RN\A0}) X (T, T;) X (R'\ {0} ) satisfying

(7.2) 4L<t, a(x(t), t, £)>0 and a(x(t,), 1, &,)<<0.
Let

(7.3) s,=sup{s€[t, T,)|a(x(t), ¢, £)=0 in [t, s]}.
Then by (7.2) and definition of s,

(7.4) 4, <s,=T,,

(7.5) a(x(t),t, £)=20 if =<t<s,.

Since a(x(t,), t,, £&;)=+0 by (7.2), and a(x(t), ¢, &,) is a real analytic function of ¢
in (T}, T}), there exists no open subinterval of (7}, T,) where a(x(%), ¢, £,) van-
ishes identically. Hence, by (7.5), for any ¢, t,<t<Cs,, there exists a sequence
{4} 7-1 such that }EB 7=t and a(x(r;), 74, £)>0, k=1,2, ... Hence by the

Hormander’s theorem (H)
a(x(my), 71, )20  forall £€R", k=1,2,.
Hence letting k— oo we have
a(x(t),t, £)=0 for all (¢ &)€]t, s,)XR"
and so, since a(x(%,), ¢,, £,)<O0 by (7.2), we see that
(7.6) §5,<t,.

On the other hand, by definition of s, and (7.5), for any £€>0 there exists
t,E(S, S,1E) such that a(x(t,), t,, £,)<<0. Combining this with (7.4)~(7.6) and
the analyticity of a(x(2), ¢, £,) with respect to ¢, we see that there exist ¢<<0 and
an odd integer ¢>0 such that a(x(2), ¢, &))=a(t—s,)*+O((¢—s,)**"). Then by
Theorem 1.2, L is not hypoelliptic in any open neighborhood of (x(s,), s,) which
contradicts to the hypoellipticity of L in Q. Thus we have proved (7.1).

Step 2. Supposing that neither (i) nor (ii) hold we shall prove that (iii) is
valid. Then there exist (¢, &, t,, &) (T, T,) X (R"\ {0} ) x (T}, T,) X (R"\ {0})
such that

(7.7) a(x(ty), 4, £)>0,
(7.8) a(x(t), £y, £2)<0.
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Hence from (7.1) it follows respectively that

(7.9) a(x(t),t, £)=0  forall (¢ &)e<[t, T,)XR",
(7.10) a(x(t),t, £)<0  forall (¢ &)e(T),t]XR".
Let

(7.11) T,=inf {s&(T}, T,)|a(x(t),t, £)=0 in [s, T,)XR"}
and

(712) T} =sup {s&(T, T))|a(x@), ¢, E)<0 in (T, s]xR} .

From (7.8), (7.9) and definition of T, we see that #,<7T,<t,. From (7.7), (7.10)
and definition of T'/ we see that ¢,<7T,;<t,. Hence to prove (iii) it suffices to
show that T',=T.

Firstly suppose that 7,<<T';. Then by definitions of T, and T';, a(x(t), t, &)
=0 for all (¢, £)e(T,, T;)XR". Hence a(x(t), t, £)=0 for all (¢, £)(T), T,) X
R", because a(x(t),t, £) is an analytic function of ¢z. But this contradicts to
(7.7), and so T,=T.

Secondly suppose that 7,>T;. Then by definitions of T, and T/, there
exist (1, 71), (T 72) E(T}, T,) X R” such that

Ti<t,<m<T, a(x(r), 7, 7)<0 and a(x(7,), 75 7)>0.

But this contradicts to (7.1), and so T,<7T. Thus we have proved that T,=
T;.
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