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0. Introduction

In this paper we will give a result on propagation of C* singularities gen-
eralizing previous results of R.B. Melrose and G.A. Uhlmann [8]; we consider
pseudodifferential operators whose principal symbol vanishes at order m=2 on
an involutive manifold. Explicity we shall assume:

(i) Let X be a C~ manifold of dimension 7z and let % be a C* closed conic,
non radial, involutive submanifold of codimension d=2 in 7*(X)\ {0}, the cotan-
gent bundle minus the zero section.

We therefore have, denoting by w and o=dw the canonical 1 and 2 forms in the
symplectic manifold T#(X), yeZ=Ty(2)° C Ty(2) where with T,(Z)” we denote
the dual with respect to the bilinear form o. When 3 is given by {y& T*(X)\0|
q,(7)="+--=q,(v)=0} where g;& C=(T*(X)\ {0}), j=1, -+, d are positevely homo-
geneous of degree one and for any ¥ €3, dg;(v) and w(7) are linearly independent
one forms, then we have {g;, ¢;} (v)=0 where {g;, ¢;} denotes as usual the Pois-
son bracket between ¢; and ¢;. Frobenius Theorem then gives that X is locally
foliated of dimension d by the flow out of the Hamiltonian fields of the ¢;. The
leaf through y°€ 3, whose tangent space in 9° is Ty(Z)” will be denoted by Fyp.
Moreover for any v 3 the bilinear form o induces an isomorphism

Jo: T(THXNO)/ TY(Z) = T5(Fy) -

(i) Let o= C=(X) real valued and p=gpozr where = from T*(X) to X is the
canonical projection.

Let P(x, D,) be a classical properly supported pseudodifferential operator of
order m+kin X,meN, ke R. Let P,,, be its principal symbol. We assume:
P is hyperbolic with respect to the level surfaces of @ ([5]), the Hamiltonian field
of @, H7 is transversal to X and P,,., vanishes exactly of order m on 3.

(ii1) (Microlocal Levi Condition) ([9])

Microlocally near every point Y3 in a neighborhood of which X is given as
in (i):
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(0.1) P(x, D,) E'E% A (x, D,)Q1x(x, D,)+-Qa¢(x, D,)

where Q,, -++, O, are first order pseudodifferential operators with principal symbol
¢y ***, 94, and A, are pseudodifferential operators of order 2. Here A=B if there
exists I'>9° such that for any ve&’(X) WF(v)CT=(4—B) ve C~(X).

It is well known that P induces on Fy a differential operator P° homogeneous
of order m in the fibers of T*(Fy0): for its principal symbol one has:

(0.2) P-?O;,,,(YJ) = lir? e Pm+k(')’0+t‘0)

P* is hyperbolic with respect to J(Hy(7°))=N(7"). Finally we shall assume
here that:

(iv) for any yEX, Pj is strictly hyperbolic with respect to N().

Now denoting by T'y the component of N(7) in the complement of {ve T*(Fy)|
P3(v)=0} and by (T)° the (euclidean) polar of Ty, ([2]) let E*(7) (E~(7)) be the
forward (backward) emission from ¢ along the field of cones (T'y)°, cfr. (4.11).
Then the result of our paper is given in the following:

Theorem. Let P satisfy assumption (i)-(iv). Let veD'(X) and Y°'E3\
WF(Pv). If there exists a conic neiborhood T of °, and a choice of sign--or—such
that:

T'NWF@) NEX)\T) = ¢
Then «° does not belong to WF(v).

REMARKS.

(i) R.B. Melrose and G.A. Uhlmann proved the theorem when m=2 (and
d=3: if d=2 see [10] for the construction of a microlocal parametrix). In that
case assumption (iii) reduces to the Levi condition that the subprincipal symbol
of P vanishes on X, ([3], [6]). Always in the case of double characteristics sim-
ilar results have been obtained by R. Lascar [7] and Ivrii [6]. (Ivrii’s results
which are proved by means of microlocal energy estimates are more general for
= may have symplectic components also, see however [1] for a precise formula-
tion of some results). In the case of m=2 and involutive characteristics only,
assuming an ellipticity and a Calderon’s type uniqueness condition for the op-
erator induced on the leaf J. Sjostrand [9] proved that in general there is propaga-
tion in any direction on the leaf. The results in [7] are proved essentialy by
means of Carleman estimates on the leaf and techniques formerly developed in [9].
For the construction of a parametrix in case of multiple characteristics (of cons-
tant multiplicity) see also the work of Chazarain [12].

(ii) Here we shall prove the theorem by constructing as in [8] a microlocal
parametrix for the operator and the diffusion result will be clear from direct
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inspection. We want to point out that under assumptions (i)-(iv) P behaves
like a principal type operator outside 3 and moreover null bicharacteristics
starting outside % do not have limit points on 3 ([6]). As in [8] simple ex-
amples of operators satisfying (i)-(iv) are provided by taking X=X, X X,, dim
X,=d and P a strictly hyperbolic operator of order m in X, extended trivially
in X. As in [8] however this is not a microlocal model of the general case.
(iti) The proof is given in four steps: 1) we reduce the operator to a stand-
ard simpler form using the invariance under canonical transformation and con-
jugation via Fourier Integral Operator of the assumptions; 2) we solve Hamilton-
Jacobi equations in polar coordinates; 3) we construct a microlocal parametrix
for the Cauchy problem; 4) we finally compute the WF’s and conclude.
It is a pleasure to thank A. Bove and C. Parenti for useful conversations and
helpful encouragement.

1. Some preparations

Let o°eS={yeT*X)\0|¢(y)=--=¢/(v)=0} as in assumption (i).
Then Ty(Z)=[H,,(v), ***, Hy,(v)]°. By (ii) there exists j& {1, :--, d} such that
o(H,(7), He(7))#0. Let us consider ='={ye T*X)\0|g(7)="+=¢,(7)=0,
@(v)=0}. We have rank (¢);sy =2n—d— 1 — dim Ker (M), where M is the
matrix:

({Qi, q;} 13,0, j=1,,d ) {4;, #} 12’,i=1,--~,d)
{0:, P} 137,i=1a 0

It is obvious that M has rank 2, therefore rank (¢);s»=2(n—d). Then ([5] Th.
21.2.4) there is a canonical homogeneous transformation sending %’ in {(x, £)e
T*(R")\{0} |£,—g4,="-=E,=x,=0}. Since I is involutive, it is sent into
{(x, ) T*(R"\ {0} |&,-441=""+=E,=0} and @ in these new canonical coordi-
nates is sent to x,. Setting R'Sx=(x, 2", x,)ER*" *XR*'XR and "=
(x”, x,), = is then given by £”/=0. Let F be a Fourier Integral operator elliptic
in 9° of order zero and such that, with D;=D,; F' Q,F=D;,,_,+r;x, D,),
j=1, --+, d with r; of order zero. Assumption (iii) and Lemma 0.1 in the first
chapter of [7] now give that microlocally near ¥*=(x=0; £'=(0, -+, 0, 1), £&”=0,

P(x,D,)= X3 Ay(x, D,) D1, ,+-D3¢
lalsm
where now A4, are pseudodifferential operators of order zero. After composition
with a pseudodifferential operator of order zero in view of the hyperbolicity of
P we can assume that the complete symbol of P is given by:

(1.1) Pp(x, ) = EH?"[Z.‘Z"' LAY (%, ) ()] En

L)
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Now we have 8%, p,(8°)=3,, m! where §,, is the Kronecker symbol and he
{1, -+, m}. So by using a pseudodifferential version of the Malgrange prepara-
tion theorem:

(1.2) P(x, D,)=~0Q(x, D,) [D;,"+§':; ,E{(x, D,, D,/) D]

in a conic neighborhood of 4° and Q elliptic at v°. Comparison of (1.1) with
(1.2) and composition with a parametrix of Q finally gives that near ¢° with
different 4, ;:

«’’

(1'3) p(x, &) = Ezl‘i“ii[l,zqsfqnv”.i(xv &', E”) (‘fﬂ) ] gm=i
In these coordinates the leaf Fyo through y°€3, ¢'=(", £°, £’=0, £,=0) is
given by:

Fyp = {(x, )€ THR\{0} [« =", &' =", £" = 0,§, =0} .

The principal symbol of the operator P° is:

(14) Pl B, E,) = Er-30,1 33 A (o, &, E°, 0) (E") 1 0 .

1 |ai=j
Therefore assumption (iv) requires that ply g(x””, E”, £,)=0 has m real distinct
roots &,.
Let us now study the local structure of Char (P)\=. We shall assume d>2.
We introduce polar coordinates near 3: §’'=pow, pE[0, 4o, w542 The
principal symbols of P and P° are then given by:

(1.5) P = E”?’",[}.‘; A (0, &, po) ()] pPER
(16) P?,, == E:’—}—li] [IM,ZI’: Ag//,j(x’ E” O) (a))dr//] P]E:l—j

Let us blow up again singularities at &,=p=0, u=§,/p:

(1.5)' P = um+é][ §: .Agn,j(x, E" Pw) (w)w/] um=i
(1.6)’ P% = u’"<l—lé,-[! 3 A (% E0) ()] wr=i

By Rouche’s Theorem and assumption (iv) we have that p,=0 has for positive
and sufficiently small pm real zeros u,=pu, and:

1.7) wydu, if h*k.
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This shows that in Char (P)\X near 3, P is of principal type and Char (P)\X
has m local components intersecting over 3. Moreover p,, is there factorized
as:

(1.8) Pn = ]':Ih q, where ¢, = £,— IE”Iuh(x’ ELE").

By considering the Hamilton systems for one of these factors one gets from
Gronwall’s Lemma:

(1.9) [E" () | =M (71, 7) [E"(72)] -

71, 7. belonging to the same null bicharacteristic of p,. This proves that the
simple Hamiltonian flow in Char (P)\X has no limit point in 5 (see [6], Propo-
sition 0.3, (ii)).

Finally the case d=2 is treated in the same way with w=-+1. Moreover in
the following we will always deal with d>2, leaving the trivial extensions d=2
to the reader.

2. The eikonal equation

As in [8] and already in (1.5), (1.6) we introduce polar coordinates taking
near 3: £’ =pw, p€[0, +oo[, 0= S4% We want to solve:

(21)  Pux, V.p(x)) =0, o(x',x”,0;0,p,2") = pla, ¥ >+<n", x>
In order to use Hamilton-Jacoby theory let us look for @ of the form:

(22) ¢(y” y”; Vns @, Py ’7’) = <77,’ y,>+P'\l"(y’ w, P, ’7’)

4 homogeneous of degree zero in (p, w). Then (2.1) goes into:

(2.3) (an‘lf)m—i—lzl !:a/% .Ag”.i(y’ 7],+va"l” PVy”‘I") (Vy”‘l’)w”] (0, ‘P‘)m—j =0
\1’(3": y”, 0; o, P 77’) = {w, y”>
Let us denote by ¢, the Hamiltonian function in (2.3):

qm(y” yl,’ yﬂ’ El, E,I, Eﬂ’ p’ 7]’) =
ES S0 A0, 0 +oE o) E)

v

1E)
Therefore:

qm(y’1 J’"7 Vs EI’ E”, & 07 77,) = P?ﬂ.(y',ﬂ')(y,lr Vs E”r En)

Now the equation:
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0= q'n(O) O: O, E') E” = , Em 0: 77’) =
(gn)m—I—z:n]ﬁl;"z;:: .Ag".i(O’ 7', 0) (‘0)“”] (En)m-j = Pgl.(o.n’)(()’ , ‘fn)

has m real distinct roots £, as w=+0. If 0<p is sufficiently small then g,(y’, ¥”,
YV E',E”, Epy p,7")=0 has m real distinct roots (£,)*, k=1, -+, m by Rouche’s
Theorem and the hyperbolicity assumption. By theorem 6.4.5 in [4] there exists
m functions ¥,(¥, @, p, ') C* in a conic neighborhood of (y'=0, =0, y,=0,
p=0, 0, n=(0, ++, 1)) such that:

(23), qm(y,9 .’Y”: Vs Vy’ ‘I"In Vy” "I"Iw an"l"ln P 7]’) =0
"I"h(yl, _',V”, 0; , P, 771) = <a” y”>
an‘l’h(o, O: O, W, P, 77,) = (En)h(wy P> 7]’)’ h= 1’ e, m
From (2.3)" if |y| <8, p<8|7’l,I2"—(0, -+, 1) |7'[|<8|7’|, »ES*"* and 0<8

sufficiently small we have m C* functions @,(y, o, p, 7")=<2", ¥ >+p¥u(», @, p,
') solutions of equation (2.1).

3. Microlocal Cauchy problem

In this section we want to solve the following microlocal Cauchy problem:

(3.1) Po=Dro+3Y[ ) A, (x, Dy, D) D%] Dr=i(n)=0

1 |es)

Div(x', 2", x, = 0)=8, .-, 8(x', ") k{0, ---,m—1}

microlocally near o°=(x=0; £'=(0, -+, 0, 1), £’=0, £,=0), where §, ,,_, denotes
the Kronecker symbol.
Let us look for v as a sum of oscillotary integrals:

(3.2) V= ;mi Iy (a;)

+o00
where Iu(a) 0={ , || _ exp (9,5, 0, b, 1) 4305, 0, p, ) dn’ dpde
the @,’s are the phase functions found in section 2 and a; are classical symbols to

be determined.
Let us recall that:

34) e P(e*?a;)=
Eg 1/a! 8% P(x, V.p) D; {exp (i@, (%, o, p, 7', 2)) a2, ©, p, 7")} 2=
where

¢2(x’ w, P, 7],1 2)=¢(Z, , P, 77’)_¢(x! W, P, 7]')+<x—-2’, V,¢(x, w, P, ’7’)> .
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Now:
m
(3.5) Po = 33, 1o,(b))

with
(3.6) b; = P,(x,V,p,) a;+Py_y(x, V.@;) aj+-+
$h 0t Pu(x, V.2)) D,ha,-—i-;"},, 0¢,Pp-(%, V.@;) D a4+
(—i12) S3us 04, Pu(%, V.2)) (82as, @3) 47+
(1/2) 324t 0%ye, P, Vops) Dyt
(—i/2) 53 Sl Oy, Pus(%, V.)) (824, 23) 17+
+(1/2) 3% St 0Lye, Paci(y Vop) Dipeyast
+3%(1/a!) 0F P(x, V.p,) DIHexp (iga (¥, @, p, 7', 3))
a;(2, @, py 7' )} 15=2 -

Since @; solves equation (2.1) we have:

(3.7 b;= 2:‘.;. 0, Pu(x, V.9;) Drya;+
(Pm-l(xa Vx¢1)_(+l/2) 2“ 6§k5k PM(x’ VS¢I’) agh’p ¢J) ai+Ri(aJ')

with Rj(a;) easily determined from (3.6). Now from (1.3) and the form of ¢,
setting:

(3'8) Qpj = 65,, P,,,(x, V:ﬂ’i(x: , P, ﬂl))j =1, mih=1,n

we have:

(3.9) Ay = p" 8, @u(Ys Vs Vs Vi Yrjs Vpr sy 8udrjs py 1)

From the discussion in section 2 a,;j=p™' &,; with &,(*, , p, 7")#0 in a conic
neighborhood of Y’ =, for every j=1, «+, m.
If1hsn—d:

(310) Ay = %t [ld/2’|=lash Ag”.t(y’ ’7/+va"1”1') va"\lf‘j) (V/"I"j)d/l](an‘l’j)m_‘pm

If n—d+1=h=n—1 then a,;=p™' &,; where &,; is a similar although slight-
ly more involved expression as (3.10). Now:

(3'11) Pm—l(x) Vx¢l)—(—l/2) lEhk 6?,,5,, Pm(x’ V:¢j) aihﬂ Pi=
= pm! 5,-(x, w, py, )
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which follows from an easy but tedious calculation. Therefore if Po=0 then
b; has to be ~0. From (3.6) we get:

(3.12) R;= 3% p"™* R; (%, Ds, p)
Let L; be the first order differential operator:

(3.13) L,=a,, D,ﬂ+'§:‘,, &,; D, +5;
The transport equations b;~0 then become:

(3.14) Li(ai)'i'ét p'™* R; (%, D, p) a;=0

Let us consider the initial conditions in (3.1). First recall that all the o; coincide
at x,=0 with @(y’, 5", o, p, 7')=<n", y>+plw,y”>. Moreover as in [8]
microlocally near ¢°=(x=0; &' =(0, --+, 0, 1), &’ =0, £,=0) the Dirac delta
is represented by:

(3.15) 8(x', x")=vy(x', &) =
4o
=1y | L7 explipda o, 0, 0,7 7 pf8 1)
dn' dpde
with o, € C(R), oy(t)=1if || =1/2, o()=0if |2] =1.
Then we obtain: :
(3.16) exp (igo) (@t +ap) | ;=0 = 0
exXp (l¢0) ((62,, al+ v +ax,, am) I x,,=0+(PDz,, ‘I"l) l 2,=0

a I z,,=o+ o +(PDx, 1l"m) I 2,=0 @m I 2a=0 — 0

€xXp (1‘770) [(pr,, ‘l"l)m—l I z,=0 &1 l x,,=o+ o +(prn '\Irm)m—l l 2,=0 Om I x,,=0+terms with

powers of p strictly lower than m—1]=exp(ig,) 1/(27)** p* 2 oy(p/817’|)
The last equation suggests that a; should be of the form:

d-m-1 o
(3-17) ai(xr W, P, 77,) = Zozk Pk ajk(x’ @, P, 77/)+$k P_k bik(x’ w, P, 77’)

if d—m—1>0 which will be the case treated first @;; and b here are homogene-

ous of degree zero in (p, 7’).
From (3.15) we have:

1. -1 ald—-m—llx,,=o 0

(3.18) (D‘u'\lfl) I 2,=0 ot (Dz,;‘l’m) I Zy=0 |e —

(Dx,,'\lf‘l)m_llx,,=o (Dx,,"l"m)m—ll 2,=0 Amd-m-1 I %y =0 1/(27"")”“l Ty
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Since 8,yr| s, is the j-th root of ¢,(0, 0,0, ¢, &' =0, &,, p,7")=0 and for jE€
{1, ---,m} all these roots are distinct, the linear system has a unique solution
giving initial data at x,=0 for a;;_,_,. On the other hand by ordering (3.13)
according to descending powers of p we have:

(3.19) L(@j-nmr) = 0

Aja-m-1 l Zy=0 — data

As a,;%0 from (3.9), (3.19) has a (local) unique C= solution @;4_p-;, jE {1, *++,

m}.
Let us solve for a;, with p<<d—m—1. (3.13) then yields:

(3.20) 0==p?™ " L(@j4-m-1)+p* " H(L{(@js-m-2)+ R} o(ja-m-1))+
P? " 3 (L @ja-m-3)+Rjs(@ja-m-1)+Rj o(@ja-p-2)+++

P(Li(an)‘|"d_‘;‘;1Rj.k(ajk))‘f‘Lj(“jo)“‘d_é_kl Rj pn(@in)+
P—I(Lf(bi1)+d-$; Ry prala)+
P_2(Li(bi2)+d_ozm;lRi.k+3(aik)+Rj,2(bjl))+ "
From (3.16) we have, with I/,; the element of place (%, ) in the matrix (3.18):
(321)  p* 3 Vg a3 0 S,u(0) 2B0m s 12 62 01(pJ8 17’

where S, , are differential operators with coefficients homogeneous of degree
zero in (p, 7"). Inserting (3.17) in (3.21):

(3.22) dﬁ;l Pt (%i Vii a,-;,)—I—E':k Ph_k(lii Vi bfk)’i—d?m: $: PHEE S, w(a)+
S 300 Sya(bp) = 8ums 1/(2)™ 6472 (pfB ')

For instance let us find the initial conditions for a;;_,,_,:

(323) K, Vig Gjgomer b Sus(@iamo)) = 0 at %, = 0, h& {0, -+, m—1}.

(3.23) together with:

(3.24) Li@;4-m-2)+R;(@4-m-1) = 0

enables us to find a (local) C* solution @;4_,_,, j€ {1, -, m}. And so on for all
aj,pe{l, -+, d—m—1}.

As far as b;; is concerned:

m d-m~-1 _h
(3.24') ph_l(;j Vh} bjl)+ph—1 zo}k gt 3”;“8,.,,((1]4,,):0, hE {O, AR m—l} at x”:O.
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d-m-1
(3.25) Li(bp)+ 3k Rjprel@j) = 0
Therefore it is possible to find all a;;, and b;;.
By Taylor’s formula:
k-1
(3.26) bi(y, @, py1’) = zo}" p" bjin(¥> @, 7)+p* bia(y, @, py 1)

bjus, (bjx) homogeneous in »'((p, 7")) of degree —A (—k&). Hence:
d-m-1 -k
(327) a; = 021, p" aj,,(x, w, P, 7)’)+h2<ok {12: P_t ajkt(xa w, 77’)_*"
+Il’jk(x1 , P’ 77,)} .
Now to define the classical part v of the solution as in [8], let us put:
d-m-1
a(jl)(x7 @, P, 7)) = ?k Pk ajk(x’ @, P, 7)’)+
+k2<ok Il'jk(xy @, P; 7],) O'I(P/8 l77, l)

and the 4{"’s are supported where the phase functions are defined.

To construct the “singular” part of the solution 9@, for any je {1, ---, m}
and for any £=>1 choose symbols using the standard asymptotics a§} € SY(R" X
S?-2 X R*~?) such that a{} ~33; a;, ;. In the same way select aP € S (R*; S9),
je {1, -, m} (for a definition of S™(R*; S™(R"x S%"2x R*"?)) see [8] page 577)
such that

(3.28) a&z)—EN,, p*dReS VY RY; S forany N=1
1

If v:v(‘)—i—v@):éi I,,(a(,-”)—{—i, I,(a$?) let us calculate Pv: (3.5) and the prece-
1 1

eding constuction show that

(3.29) Po = I(c) = Sm_def<x'-6’> o(x, E') dE’

where c€ SUR"X R*™%). It is easily verified that 0% v, -o=1y(b4)+84m-1 Vo With
b,eS(R"xX R*%), he {0, ---, m—1}
Now let us look for a solution of:

(3.30) Py =Iyc) and 8919|,o= Iy(b), hE{0,-, m—1}.
v will be searched of the form Iy(a®). Now:

P(Iy(a®) = Iy(DF a®+3Y [ 3 4, («', ", ', 0) (D)*"] DI~1a®+Ma®)

(L

Because of the strict hyperbolicity assumption (iv) and the fact M: S*—S*~! we
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begin by solving:
(3.31), Py(a{’) = cand 8} a’|, o= b,, hE{0,:,m—1}

with af’ € SYR" X R* %), y=(x', ¥’”, €', 0)E3.
Then by recursively solving:
(3.31); Py(dP) = —Md, €S’ and 83a®|, =0,

j=-1,-2,-3,---h€ {0, ---,m—1}
we can select a®~31; a® and it is obvious that

<0

(Py+M) (a®)eS~=(R"x R*"%) and the choice can be made in order to have
83 a®| 4 m0=by, k{0, -+, m—1}
Finally setting u=v®+0v®—1,(a®) we have Pu=0 and 0} u|, o=38m-1 Vo=
Sym-1 8(x", &”), k& {0, -+-, m—1}, which is the solution of (3.1) if d—m—1>0.
If d—m—1=0 choosing at once

(3:32) aiw, @, p,7') = S p™ @, 0, p,7)

the proof goes as before and this gives in any case the solution of (3.1).

4. Propagation of singularities

First of all the construction of section 3 can be repeated uniformly when
se]—3, §[ and we find:
(4.1) E®: Q' (R*) — £'(R"), P E® = 0 near (¥°, v),

O E®|, _, = 8y, Id near (7", ) ke {0, -+, m—1}

where v¥=(x=0; £'=(0, ---, 0, 1), £"=0).
We shall now reason when d—m—1>0 remarking that the case d—m—1=0
is dealt with exactly in the same way.
(4.2) (E® f) (%) = (EB+EG+ES) (f) (x)

where we have set:

@3 EN@=3],0"( _ exwlpis0pm)

—<2’, " >—plo, F"D)
X a(il)(x’ S, @, p, ﬂ')f(z'» 2”) dz' dz"” dﬂ' dpdw

+oo

wH  ENO@=5(.[

—<&’, 1">—plw, 2))
X aP(x, s, 0, p, ') f(2', 2"7) dz’ d2’ dy' dpde

[ Lostosinsmon
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& a®(x, 5, ") (&, &) dz' 4 dy’

@5 ERO@=| .|

Rn-—l
where in (4.3) aP €847, in (4.4) aP S~ R*; S°) and in (4.5) a® < S°.
By Duhamel’s principle let us put:

(4:6) () ) = = (BOover0d) (1) () ds, 5>0

with conesupp(A) compactly supported near ¢* and vy yu=u restricted to x,=s.
Since e {(x, &) | x,=s, £'=0, "=0, £,=0} (oA is well defined and it is
clear that:

4.7 PE.(f) =fnear°
Now the rules to compute wave fronts sets given ([4]):
(4.8) WF(E“’f)IHC[l?jK? U Ko@) (WF(f))

where fe D'(R*™), (i¥)"(WF(f)={(=", 2", s8¢, L) ER, (2,27, 5,8
EWF(f)}, K} denotes exp (tH,,) (cfr. (1.8)), =0 and K} is the relation defined
by:

(4.9) (p, P)=K?# if and only if p and p belong to same leaf F, through pE X and
%4(p)=%,(P). Then we have

(4.10) WF(E*)C Q,K; UR:

It is clear that we will also have an other microlocal parametrix E~ satisfying
(4.7) and (4.10) with the reversed time orientation. We now want to be more
precise on 3. Let us introduce as in [8] the following relations:

(4.11) K¥>(p, p) if and only if p and p=F,CX and Av: [0, 1]—F, Lipschitz
continous curve ¥(0)=p, ¥(1)=p and y(¢)=(Ty)° a.e.

0 K7>(p, p) if and only if there exists a null bicharacteristics of the operator
P?° induced on the leaf F, that joints p with p.
0 K7 is the boundary of K#, see e.g. Duistermaat [2]. Let now Y€ KCZ3 X
2\0 K#, K compact, UDK open neighborhood of K. Denoting by k(x, 2’, 2”)
the kernel of E® we have in U’ (proj. of U at s=0).

(412) k(x’ z” z”) — g ei(x’—z',g) a(x’ 2”, ‘E,) dgl

This is clear since the term in (4.5) is already of this type and in (4.3), (4.4) at
p=0 the phase is stationary exactly on null bicharacteristics of P°. Therefore
integrating by parts in dp do (4.12) follows. Now k(x, 2', 2’) solves Pk=0 and
k| ¢ 0="084m-1 O(x'—2', &' —2") h& {0, ---, m—1}. Therefore a has to be a
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solution of Py(@)=—Ma and 9ja|, ,€S™>, if ¥'#2" and x"#2" he {0, -,
m—1.}

Since Py is strictly hyperbolic we obtain that a is still in S~ outside the set ob-
tained by emanating from (2, 2”,0; %', 0, 0) along curves defined in K. Finally:

(4.13)

WF(E* f)C K*oWF(f)

Where K* is the generalized flow as defined in [11]. Passing to a parametrix
for 'P, the transpose of P, and microlocalizing near ¥° now ends in a standard
way the proof of the theorem.
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