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0. Introduction

In this paper we will give a result on propagation of C°° singularities gen-

eralizing previous results of R.B. Melrose and G.A. Uhlmann [8]; we consider

pseudodiίferential operators whose principal symbol vanishes at order m^2 on

an involutive manifold. Explicity we shall assume:

(i) Let X be a C°° manifold of dimension n and let 2 be a C°° closed conic,

non radial, involutive submanifold of codimension d^.2 in T*(X)\ {0} , the cotan-

gent bundle minus the zero section.
We therefore have, denoting by ω and σ—dω the canonical 1 and 2 forms in the

symplectic manifold T*(X), 7eΣ=^Γγ(Σ)<ΓC TY(Σ) where with 7^(2)' we denote
the dual with respect to the bilinear form σ. When Σ is given by {j e T*(X)\Q 1

?1(γ) = . . . =qd(γ) = 0} where qj <= C~( T*(X)\ {0} ), j = I , - , d are positevely homo-

geneous of degree one and for any γ eΣ, dq^γ) and ω(γ) are linearly independent

one forms, then we have {qh q£ (γ)=0 where {qh q£ denotes as usual the Pois-

son bracket between q{ and qjβ Frobenius Theorem then gives that 2 is locally
foliated of dimension d by the flow out of the Hamiltonian fields of the q j f The

leaf through 7°e2, whose tangent space in γ° is T^(Σ)σ will be denoted by ίV>.

Moreover for any γeΣ the bilinear form σ induces an isomorphism

(ii) Let φeC~(X) real valued and <p=φoπ where π from T*(X) to X is the

canonical projection.
Let P(Xy Dx) be a classical properly supported pseudodifferential operator of

order m-{-k in X, m^Nt k^R. Let Pm+k be its principal symbol. We assume:
P is hyperbolic with respect to the level surfaces of 9^([5]), the Hamiltonian field

of φ, Hφ is transversal to Σ and Pm+k vanishes exactly of order m on Σ.
(iii) (Microlocal Levi Condition) ([9])

Microlocally near every point 70EiΣ in a neighborhood of which Σ is given as
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(0.1) P(X, />,) = Σβ Aa(x, £gρ?.(*, Dt)~'QS<(x, Dt)\Λ\<Sn

where Q19 •••, Qd are first order pseudodiίferential operators with principal symbol

?ι> "•> ?</> and ^« are pseudodiίferential operators of order k. Here A=B if there
exists ΓΞ3<y° such that for any v<=G'(X) WF(v)c:T^(A-B) v(=C°°(X).
It is well known that P induces on Fγo a differential operator P° homogeneous
of order m in the fibers of Γ*(ίV>): for its principal symbol one has:

(0.2) P?o . m(v) = lim r « /Wγ +ΛO
/->0

P4 is hyperbolic with respect to J<r(Hφ(
fγQ))=N(fγ°). Finally we shall assume

here that:

(iv) for any γeΣ, P? is strictly hyperbolic with respect to N(γ).
Now denoting by Γγ the component of N(γ) in the complement of {v GΞ T*(Fγ) \
P*(v) = Q}. and by (Γγ)° the (euclidean) polar of Γv, ([2]) let £+(γ) (£"(r)) be the
forward (backward) emission from γ along the field of cones (I\)°, cfr. (4.11).
Then the result of our paper is given in the following :

Theorem. Let P satisfy assumption (i)-(iv). Let v<=$)r(X) and 7°eΣ\
WF(Pv). If there exists a conic neiborhood Γ of γ°, and a choice of sign+or—such
that:

Then 7° does not belong to WF(υ).

REMARKS.
(i) R.B. Melrose and G.A. Uhlmann proved the theorem when m=2 (and

d^3: if d= 2 see [10] for the construction of a microlocal parametrix). In that
case assumption (iii) reduces to the Levi condition that the subprincipal symbol
of P vanishes on Σ ([3], [6]). Always in the case of double characteristics sim-
ilar results have been obtained by R. Lascar [7] and Ivrii [6]. (Ivrii's results
which are proved by means of microlocal energy estimates are more general for
Σ may have symplectic components also, see however [1] for a precise formula-
tion of some results). In the case of m^.2 and involutive characteristics only,
assuming an ellipticity and a Calderon's type uniqueness condition for the op-
erator induced on the leaf J. Sjostrand [9] proved that in general there is propaga-
tion in any direction on the leaf. The results in [7] are proved essentialy by
means of Carleman estimates on the leaf and techniques formerly developed in [9].
For the construction of a parametrix in case of multiple characteristics (of cons-

tant multiplicity) see also the work of Chazarain [12].
(ii) Here we shall prove the theorem by constructing as in [8] a microlocal

parametrix for the operator and the diffusion result will be clear from direct
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inspection. We want to point out that under assumptions (i)-(iv) P behaves
like a principal type operator outside Σ and moreover null bicharacteristics
starting outside Σ do not have limit points on Σ ([6]). As in [8] simple ex-
amples of operators satisfying (i)-(iv) are provided by taking X=X1 X X2J dim
X1=d and P a strictly hyperbolic operator of order m in Xλ extended trivially
in X. As in [8] however this is not a microlocal model of the general case.

(iii) The proof is given in four steps: 1) we reduce the operator to a stand-
ard simpler form using the invariance under canonical transformation and con-
jugation via Fourier Integral Operator of the assumptions; 2) we solve Hamilton-
Jacobi equations in polar coordinates; 3) we construct a microlocal parametrix
for the Cauchy problem; 4) we finally compute the WF's and conclude.
It is a pleasure to thank A. Bove and C. Parenti for useful conversations and
helpful encouragement.

1. Some preparations

Let 70eΣ={7eΓ*(-y)\0|ϊ1(7)=-=ίlί(7)=0} as in assumption (i).
Then Γγ(Σ) = [flfl(y), •••, Hqd(γ)]σ. By (ii) there exists JEΞ {1, •••, d} such that
σ(tf,/γ),fl,(7))Φθ. Let us consider S'= {γeΞ T^(X)\0\q1(Ύ)=^=qd(rγ)=Oί

9>(7) = 0}. We have rank(σ)|S/ = 2/z— d— 1 — dim Ker (M), where M is the
matrix:

0

|2'.i-l....,rf \

/

It is obvious that Mhas rank 2, therefore rank (σ)\^=2(n—d). Then ([5] Th.
21. 2 A) there is a canonical homogeneous transformation sending Σ' in {(#, £)eΞ
T*(Rn)\{Q} \ξn_d+1 = =ξn=xn=Q} . Since Σ is involutive, it is sent into
{(#, ξ) e T*(R")\ {0} \ξn-d+ι= •• =?»=0} and 9? in these new canonical coordi-
nates is sent to XΛ. Setting Rn^x = (x', #", xH)^R*~dxR'~lxR and *"'=
(#", ΛJΛ), Σ is then given by ξ"'=Q. Let ί1 be a Fourier Integral operator elliptic
in γ°, of order zero and such that, with Dj=Dxj F"1 QjF—Dj+n_d-\-rj(xy Dx),
7=1, •••, έί with ry of order zero. Assumption (iii) and Lemma 0.1 in the first
chapter of [7] now give that microlocally near fγ°=(x= 0; f'=(0, •••, 0, 1), |/7— 0,

where now ^4Λ are pseudodifferential operators of order zero. After composition
with a pseudodiίferential operator of order zero in view of the hyperbolicity of
P we can assume that the complete symbol of P is given by:

(i.i) p(x, ξ) = KΓ
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Now we have dζnpm(S°)=8hmm\ where Shm is the Kronecker symbol and
{1, •••, m} . So by using a pseudodifferential version of the Malgrange prepara-
tion theorem:

(1.2) P(x, Dx}^Q(x, Dx) [D +Σj Efa Dx, Dx,,) DΓj]

in a conic neighborhood of γ° and Q elliptic at 7°. Comparison of (1.1) with
(1.2) and composition with a parametrix of Q finally gives that near γ° with

different AΛtj\

(1 .3) p(χ, ξ) = fϊ+Σ, [ Σ Λ".X*, r , n (?")""] ξn-1' .
i l«"l^y

In these coordinates the leaf ί> through γ°eΣ, 7°=(*°, £'°, f/7=0, fΛ=0) is
given by:

Fvo = {(*, ξ )e Γ*(Λ")\ {0} I *' = ««, I' = r°, r = 0, ξ. = 0} .

The principal symbol of the operator P° is:

Therefore assumption (iv) requires that />(V, £)(#'", £", ?«)— 0 has m real distinct
roots ξn.

Let us now study the local structure of Char (P)\Σ. We shall assume d>2.
We introduce polar coordinates near Σ: ξ"=ρω, p^[0, +°°[> ω^^"2. The
principal symbols of P and P° are then given by:

(1-5) pm = f? + Σy [ Σ ^S- Xx, I
i i^'^y

(1.6) p°m - f? + Σy[ Σ ^i-j(Λ, ξ', 0) (ω)*"]
i \<*"\=j

Let us blow up again singularities at ξn= p— 0, u=ξn/p:

(1.5)' ί, = tt"+Σ,[ Σ ^2-, y(Λ, f ', pω) (ω)*"

(1.6)' p'M = «"+Σy[ Σ Ά"j(χ, ξ', 0) (ω)Λ//] u--^
i |β// |=y

By Rouche's Theorem and assumption (iv) we have that pm=0 has for positive
and sufficiently small pm real zeros uh=puh and:

(1.7) uh=^uk if
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This shows that in Char (P)\Σ near Σ, P is of principal type and Char (P)\Σ
has m local components intersecting over Σ. Moreover pm is there factorized
as:

(1.8) p. = Π* ft where qh = ξ.- \ ξ" \ uk(x, ξ', ξ") .

By considering the Hamilton systems for one of these factors one gets from
GronwalΓs Lemma:

(1.9) ir'Ml^fri.ogiΠ y,)!.

7ι> %> belonging to the same null bicharacteristic of pm. This proves that the
simple Hamiltonian flow in Char (P)\Σ has no limit point in Σ (see [6], Propo-
sition 0.3, (ϋ)).
Finally the case d=2 is treated in the same way with ω— ±1. Moreover in
the following we will always deal with d>2, leaving the trivial extensions d=2
to the reader.

2. The eikonal equation

As in [8] and already in (1.5), (1.6) we introduce polar coordinates taking
near Σ : ξ "=pω, p e [0, + oo [, ω e Sd~2. We want to solve :

(2.1) Pm(x, Vxφ(x)) = 0 , φ(χ', a", 0; ω, p, *') = p<ω, ^>+< '̂, *'>

In order to use Hamilton- Jacoby theory let us look for φ of the form:

(2.2) φ(y',y",yn, ω, p, -η'} = <Y,/>+pΨ(;y, ω, p, η)

ψ homogeneous of degree zero in (p, ω). Then (2.1) goes into:

(2.3) (9βψ Γ+Σ, [ Σ 4J» /?, ij'+pV/ψ , pVy/ψ) (V//Ψ)""] (8. ψ)-y = 0
i ι«"ι=y

Let us denote by qm the Hamiltonian function in (2.3):

qm(y',y",yn,ξ',ξ",ξ«,p,v') =

y [ Σ ^/./y, v'+pf, P?") (?")""] (?»)M-y

Therefore:

q.(y', y", y« ?', ?', ξ., o, 7') = f i. (/.,-)(/', y., Γ, e.)

Now the equation:
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0 = qa(0, 0, 0, ξ', ξ" = ω, ξn, 0, ,') =

(£„)"+£,[ Σ 4i"./0, ,', 0) (ω)β"
i \<*"\=i

has wί real distinct roots £n as ωφO. If 0<p is sufficiently small then qm(y',y">

%> f '» ir"> £«> P> V)— 0 has m real distinct roots ((•„)*, A=l, •••, fw by Rouchέ's
Theorem and the hyperbolicity assumption. By theorem 6.4.5 in [4] there exists

m functions ψA(j>, ω, p, 17') C°° in a conic neighborhood of (<y'=0,y/= 0,^=0,
p=Q, α>, 17 =(0, •••, 1)) such that:

(2.3)' qM(y', y", yny V/ ^Λ, V// Ψ*,

^(y,y/,o;ω>P,v) = <
, 0, 0; ω, p, V) = (f.)*(ω, p, ̂ ')> * = 1, -,

From (2.3)' if | y\ <δ, p<8h'|,h'-(0, -, 1) \ηr\\<S\ιj'\, aXES4'2 and 0<δ

sufficiently small we have m C°° functions φh(y, ω, p, i7/)==^17/>3;/^+P'Ψl*(3;> ω> P>
97') solutions of equation (2.1).

3. Microlocal Cauchy problem

In this section we want to solve the following microlocal Cauchy problem:

(3.1) Pv = Z)>+Σy[ Σ AΛ,,.fa Dx,, Dx,,)
i \^f\^i

Dh

nv(x', x", xn = 0) = δΛ,w_1 δ(*', x") h<= {0, --, m-\}

microlocally near rγ"=(χ=^ ξ'=(0, — , 0, 1), ξ"=0, ^=0), where SΛ.m.l denotes
the Kronecker symbol.

Let us look for v as a sum of oscillotary integrals :

(3.2) » = Σ!y /,/*,)

where /Vy(^) (Λ) = J ^ J M _ r f

 exP (*>/(*» ω, p, ??')) aj(x> ω, p, 97') ̂ ' dpdω

the 9>y's are the phase functions found in section 2 and #; are classical symbols to
be determined.

Let us recall that:

(3.4) e-'φ P(e+i9 aj) =

Σ, I I<X\Q* P(x, Vxφ) Dΐ{exp(iφ2(xy ω, p, 97', *)) αy(ar, ω, p, 97')} ,x=z

where

<P*(x, ω, p, 17', *)=φ(z, ω, p, η')—φ(oc, ω, p, 97 ')+<#—*, V^(Λ?, ω, p, 97')) .
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Now:

(3.5) Pv = ±jlφj(bj)

with

(3.6) bj = Pm(», V,<py) βy+P.Λ*, V,?>y) <Zy+ +

£„ d(Pm(x,

(-«72) Σ** 8fΛ P.(*. V

(1/2) Σ! 8|Λ P.(*. V,φj) /)ϊ

(-*/2) Σ/ Σ** 8|Λ P«.((

+(1/2) fϊf Σ»* 8|Λ P

*, ω, p,

ω, , ̂ '}u=ί

Since 99^ solves equation (2.1) we have:

(3.7) bj = ±h Qξk Pm(x,

(P.-ι(x,

with Rj(aj) easily determined from (3.6). Now from (1.3) and the form of φ^
setting:

(3.8) αA/ = 9έA PW(ΛI, V^XΛ?, ω, p, 07')); = 1, — , m; A = 1, — , if

we have:

(3.9) α.y = p-"1 9ξn qm(y\ y", yn, V/ ψy, V// ψy, 9«^ , p, ̂ ')

From the discussion in section 2 anj=ρm~1 ctnj with ^ny(Λ?, ω, p, 97')ΦO in a conic
neighborhood of γ° e Σ for every j = 1 , , m.

(3.10) αw = Σ, [ Σ 8^A ̂ (y, ̂ /

If w— rf+l^A^n— 1 then ahj=pm~l άhj where όtkj is a similar although slight-
ly more involved expression as (3.10). Now:

(3.11) P..,̂ , v,9>y)-(-*/2) Σ»* 8|Λ P.(*, V

= p"-1 5χ«, ω, />, η')
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which follows from an easy but tedious calculation. Therefore if Pv~Q then
bj has to be M). From (3.6) we get:

(3.12) Ri=fllp'-'Riιl(x,D,,P)

Let LJ be the first order differential operator:

(3.13) Lj =& ., D,m+Σt

The transport equations δy~0 then become:

(3.14) L

Let us consider the initial conditions in (3.1). First recall that all the φs coincide

at xn = Q with φ0(y',y", ω, p, V)=<^ />+/><*>*/'>• Moreover as in [8]
microlocally near γ°= (#=(); ξ' = (0, •••, 0, 1), f" = 0, fΛ = 0) the Dirac delta
is represented by:

(3.15) δ(*',*")Ξ»o(*',*") =

^97' dpdω

with ffleC-(JZ), ̂ (i)=l if |ί| ^1/2, σ1(t)=0 if |ί| ̂ 1.
Then we obtain:

exp(^0) (β!+" +βf.)|,._o = 0

+(pD,β ψ.) I ,.H» «. I ,.-β = 0

(3.16)

exp (iφ0) [(PD,a ψi)"-1 1 ,βH) β, I ίn=0-l ----- |-(ρβ,. ψ'B,)
M"1 1 ,.HI «« I ,n=o+terms with

powers of p strictly lower than m— I]=exp(/<p0) \l(2π)n~l pd~2 σ^p/δ | η'\ )
The last equation suggests that as should be of the form:

(3.17) dj(x, ω, p, η') = ω>

if d—m—l>0 which will be the case treated first ajk and bjk here are homogene-
ous of degree zero in (p, 97').
From Γ3.15) we have:

-i
(3.18)

• ••I-

(/>,>„) !,„_
~a\ί-m-\ I *„=•()

amd-m-l I ϊΛ=0-'

0

\n-l
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Since dnψ\Xn=Q is the j'-th root of ^(0, 0, 0, £', ξ"= ω, ξn, ρ,η') = Q and for j'e
{1, « ,τw} all these roots are distinct, the linear system has a unique solution
giving initial data at xn=0 for ajd-m-ι On the other hand by ordering (3.13)
according to descending powers of p we have :

(3.19)

«><-ι»-ι I *,=o = data

As £,,,=1=0 from (3.9), (3.19) has a (local) unique C~ solution aiΛ_m_^j^ {1,

«}.
Let us solve for ajp vtithp<.d—m — 1. (3.13) then yields:

(3.20) 0^p^-1Lj(aj^a

p-\Lj(bjl)+J%~k

1R].,k+3(ajk)+Rj,i(bjl))+

From (3.16) we have, with Vhj the element of place (h,j) in the matrix (3.18):

(3.21) p" Σ, Vh} aj

where S,ιh are differential operators with coefficients homogeneous of degree
zero in (p, -η'). Inserting (3.17) in (3.21):

Π 9?^ V ΛA+* fV V a \\3.ΔΔ) 2-lk P \^j V hj ajk)
0 1

oo A

1 1

For instance let us find the initial conditions for djd_m_2:

(3.23) p'+'- - tiibj Vhj aw.._1+θi.4(αίί_..1)) = 0 at xr = 0, Ae {0, -, m-1}.

(3.23) together with:

(3.24) £X*yj—i)+ΛΛ,(β,(l_1._l) = 0

enables us to find a (local) C°° solution ajd_m_ί,j^. {1, •••,»?}. And so on for all

As far as bn is concerned:

(3.24) p -'ίΣy ^wft/ij+p*'1'^1 Σ, δtk+1St,h(ajk)=Q, he {0, -, m-1} at *B=0.
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(3.25) £XM+ /W«y») = 0

Therefore it is possible to find all ajk and bjk.

By Taylor's formula:

k-l

(3.26) bjk(y, ω, p, η') = ΣA p* δ/A*(y, ω, ?')+P* M^> ω, p, ?')

δ; A Λ, (δ; Λ) homogeneous in ^'((p, 37')) °f degree —A (— k). Hence:

(3.27) aj ='Σ*V <*»(*, ω, p, ?')+gk {Σt p~* aw(x, ω, 77')+

+μjk(x, ω, p, 17')} .

Now to define the classical part v(1) of the solution as in [8], let us put:

d}\x, ω, ρ,η')= Σk pk <*jk(x, ω, p, 17') +

+Σ* A*y*(*> ω, p, 97') σt(p/δ \η' \ )

and the έZ(/)Js are supported where the phase functions are defined.

To construct the "singular" part of the solution v(2\ for any j'e {1, •• 9

and for any A^l choose symbols using the standard asymptotics a(

Sd-2 χ Rn-d^ such tlιat ^2) ̂ ^ a^ σ^ In the same way select α(2) e s
e {1, - , m} (for a definition of Sm(R+\ Sm'(RnxSd~2xR»-d)) see [8] page 577)

such that

(3.28) af-ΣlkP~ka(3^S-N-\R+ ,S0) for any N^

If ϋ=ϋ(1)+ϋw=ΣJy/f(ΛS1))+Σ5y/r(^2)) let us calculate P*;: (3.5) and the prece-

eding constuction show that

(3.29) Pv = /Ψ(c) = \Rn_/<'' *'> c(x, ξ') dξ'

where ce S°(jB* X Λ""</). It is easily verified that Qh

n v \ lB=o=A(**)+5*«-i v9 with

bkeS°(JRnxR''-'1), h(Ξ {0, .», m-1}

Now let us look for a solution of:

(3.30) Pto = 7Ψ(c) and 8* o | ̂  = I*(bh} , A e {0, , »- 1}

w will be searched of the form /ψ(<z(3)). Now:

P(/*(β«>)) = 4(£>: «(3)+Σy [ Σ 4..X*', *"', f, 0) (A,")""] £>:-yα(
1 J*''!^

Because of the strict hyperbolicity assumption (iv) and the fact M: Sk-*Sk~1 we
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begin by solving:

(3.31)β Py(aP) = c and 8* a^\Xn^ = bk, λe {0, -, m-1}

with ύ**ΞS°(ie xΛΛ-Ό, Ύ=(*', *"', £', 0)6ΞΣ.
Then by recursively solving:

(3.31), Pγ(^3))=-M43Λe^ and 8* α(3) Ln=0 = 0 ,

j = -1, -2, -3, .-.*€= {0, ..-, iff-1}

we can select tf(3)~Σ; #(3) and it is obvious that
y<o

(α(3))e5"co(ΛnxΛΛ "rf) and the choice can be made in order to have

Finally setting u=v(1>+v(*>— /ψ(^(3)) we have P^^O and 9j u| Xn=o=§hm-\ ^o=
δAm-ιδ(Λ;',^0,Λe{0, — ,ιif—l} , which is the solution of (3.1) if rf— m— 1>0.
If rf— m— 1^0 choosing at once

CO

(3.32) afac, ω, p, 17') = ΣA ρ~k ajk(x, ω, p, 17')
l + m-d

the proof goes as before and this gives in any case the solution of (3.1).

4. Propagation of singularities

First of all the construction of section 3 can be repeated uniformly when
ίe]— δ, δ[ and we find:

(4.1) £<*>: 3)'(Rn-1) -* βf(R")t PE& == 0 near (γ°, γ0/) ,

9* £« I Xn=s = Shm^ Id near (7°, γ0/) Ae {0, -, ιw-1}

where <y0/=(*=0; f'=(0, -, 0, 1), g"=0).
We shall now reason when d—m—l>Q remarking that the case d— m— 1^0
is dealt with exactly in the same way.

(4.2) (£<•>/) (*) = (£$+£$+£$) (/) (*)

where we have set:

(4.3) (

X αf^, *, ω, p, ?')/(*'. a") dx' ds>' dr,' dpdω

(4.4) (E®)

-<*',, '>-p<ω,^»

X a«\xy s, ω, p, ?')/(*'» af") Λr' <?«" rfi?'
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(4.5) (£$) (/) (*) = tιd B_ I *>•<*'-/."'> ̂ (Xi St ,')/(*', 2"} dz<

where in (4.3) αWe S"-"-1, in (4.4) aW<=S-\R+; 5°) and in (4.5) β®eS°.
By Duhamel's principle let us put :

(4.6) E+(f) (*) = - ((# >orωoΛ) (/) (*) ds, S>0
«/ — δ

with conesupρ(A) compactly supported near γ° and 7(s)U=u restricted to xn=s.
Since γ°'$ {(#, ξ)\xu=s, ξ'= 0, f"=0, fΛ=0} γωo^ is well defined and it is
clear that :

(4.7) P £+(/)= /near 7°

Now the rules to compute wave fronts sets given ([4]):

(4.8) WF(E"f) Uc [ L) , Kΐ U £?]o(f*)

where ^^'(R^), (ff)-\WF(f))= {(*', y, ί, £', Γ, Γ.) I ?„£/?, (*', z", ξ', ξ")
e WT(/)}, ̂ t denotes exp(tH,.) (cfr. (1.8)), ί^O and ̂  is the relation defined
by:

(4.9) (p, ρ)^Kp if and only if p and p belong to same leaf Fp through peΣ and
xn() ̂  ̂ «p Then we have

(4.10) WF(E+) c U K] U £ί

It is clear that we will also have an other microlocal parametrix E~ satisfying
(4.7) and (4.10) with the reversed time orientation. We now want to be more
precise on 2. Let us introduce as in [8] the following relations:

(4.11) Ki 3(p, p) if and only if p and ρeFpcΣ and 3γ: [0, l]-*Fp Lipschitz
continous curve γ 0 = , γ l = p and 7 ί e Γ γ ° a.e.

9 KF B (p, p) if and only if there exists a null bicharacteristics of the operator
P° induced on the leaf Fft that joints p with p.
8 KF is the boundary of KF, see e.g. Duistermaat [2]. Let now γ^^cΣX
Σ\9 KF , K compact, U^>K open neighborhood of K. Denoting by k(x, #', z")
the kernel of £ (0) we have in U' (proj. of U at s=Q).

(4.12) k(x, *', of) = ( ?<*'-*'£> a(x, z", ξ') dξf

This is clear since the term in (4.5) is already of this type and in (4.3), (4.4) at
pz=0 the phase is stationary exactly on null bicharacteristics of P°. Therefore
integrating by parts in dp dω (4.12) follows. Now k(x, #', #") solves Pk=0 and
9ϊ*LJB-β=δA«-ι δ(x'—z', x"-z")htΞ{ΰ, — ,ιw—l} . Therefore a has to be a
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solution of Py(a)=—Ma and afcl^eS—, if *'=(=*' and Λ"Φ*" λe {0, — ,
m-l.}
Since Pv is strictly hyperbolic we obtain that a is still in 5"°° outside the set ob-
tained by emanating from (#', #",0; 97', 0, 0) along curves defined in Kp Finally:

(4.13) WF(E±f)dK±oWF(f)

Where K± is the generalized flow as defined in [11]. Passing to a parametrix
for *P, the transpose of P, and microlocalizing near 7° now ends in a standard
way the proof of the theorem.
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