PROPAGATION OF SINGULARITIES FOR HYPERBOLIC OPERATORS WITH MULTIPLE INVOLUTIVE CHARACTERISTICS

Enrico BERNARDI

(Received July 22, 1986)

0. Introduction

In this paper we will give a result on propagation of C^{∞} singularities generalizing previous results of R.B. Melrose and G.A. Uhlmann [8]; we consider pseudodifferential operators whose principal symbol vanishes at order $m \geqq 2$ on an involutive manifold. Explicity we shall assume:
(i) Let X be a C^{∞} manifold of dimension n and let Σ be a C^{∞} closed conic, non radial, involutive submanifold of codimension $d \geqq 2$ in $T^{*}(X) \backslash\{0\}$, the cotangent bundle minus the zero section.
We therefore have, denoting by ω and $\sigma=d \omega$ the canonical 1 and 2 forms in the symplectic manifold $T^{*}(X), \gamma \in \Sigma \Rightarrow T_{\gamma}(\Sigma)^{\sigma} \subset T_{\gamma}(\Sigma)$ where with $T_{\gamma}(\Sigma)^{\sigma}$ we denote the dual with respect to the bilinear form σ. When Σ is given by $\left\{\gamma \in T^{*}(X) \backslash 0 \mid\right.$ $\left.q_{1}(\gamma)=\cdots=q_{d}(\gamma)=0\right\}$ where $q_{j} \in C^{\infty}\left(T^{*}(X) \backslash\{0\}\right), j=1, \cdots, d$ are positevely homogeneous of degree one and for any $\gamma \in \Sigma, d q_{\mathrm{j}}(\gamma)$ and $\omega(\gamma)$ are linearly independent one forms, then we have $\left\{q_{i}, q_{j}\right\}(\gamma)=0$ where $\left\{q_{i}, q_{j}\right\}$ denotes as usual the Poisson bracket between q_{i} and q_{j}. Frobenius Theorem then gives that Σ is locally foliated of dimension d by the flow out of the Hamiltonian fields of the q_{j}. The leaf through $\gamma^{0} \in \Sigma$, whose tangent space in γ^{0} is $T_{\gamma^{0}}(\Sigma)^{\sigma}$ will be denoted by $F_{\gamma^{0}}$. Moreover for any $\gamma \in \Sigma$ the bilinear form σ induces an isomorphism

$$
J_{\sigma}: T_{\gamma}\left(T^{*}(X) \backslash 0\right) / T_{\gamma}(\Sigma) \rightarrow T_{\boldsymbol{\gamma}}^{*}\left(F_{\gamma}\right)
$$

(ii) Let $\varphi \in C^{\infty}(X)$ real valued and $\widetilde{\rho}=\varphi \circ \pi$ where π from $T^{*}(X)$ to X is the canonical projection.
Let $P\left(x, D_{x}\right)$ be a classical properly supported pseudodifferential operator of order $m+k$ in $X, m \in \boldsymbol{N}, k \in \boldsymbol{R}$. Let P_{m+k} be its principal symbol. We assume: P is hyperbolic with respect to the level surfaces of $\varphi([5])$, the Hamiltonian field of $\widetilde{\mathscr{q}}, H_{\tilde{\varphi}}$ is transversal to Σ and P_{m+k} vanishes exactly of order m on Σ.
(iii) (Microlocal Levi Condition) ([9])

Microlocally near every point $\gamma^{0} \in \Sigma$ in a neighborhood of which Σ is given as in (i):

$$
\begin{equation*}
P\left(x, D_{x}\right) \equiv \sum_{|\alpha| \leq m} A_{\alpha}\left(x, D_{x}\right) Q_{1^{\alpha} 1}^{\alpha}\left(x, D_{x}\right) \cdots Q_{d}^{\alpha} d\left(x, D_{x}\right) \tag{0.1}
\end{equation*}
$$

where Q_{1}, \cdots, Q_{d} are first order pseudodifferential operators with principal symbol q_{1}, \cdots, q_{d}, and A_{α} are pseudodifferential operators of order k. Here $A \equiv B$ if there exists $\Gamma \ni \gamma^{0}$ such that for any $v \in \mathcal{E}^{\prime}(X) W F(v) \subset \Gamma \Rightarrow(A-B) v \in C^{\infty}(X)$.
It is well known that P induces on $F_{\gamma^{0}}$ a differential operator P^{0} homogeneous of order m in the fibers of $T^{*}\left(F_{\gamma^{0}}\right)$: for its principal symbol one has:

$$
\begin{equation*}
P_{\gamma^{0} ; m}^{0}(v)=\lim _{t \rightarrow 0} t^{-m} P_{m+k}\left(\gamma^{0}+t v\right) \tag{0.2}
\end{equation*}
$$

P^{4} is hyperbolic with respect to $J_{\sigma}\left(H_{\varphi}\left(\gamma^{0}\right)\right)=N\left(\gamma^{0}\right)$. Finally we shall assume here that:
(iv) for any $\gamma \in \Sigma, P_{\gamma}^{0}$ is strictly hyperbolic with respect to $N(\gamma)$.

Now denoting by Γ_{γ} the component of $N(\gamma)$ in the complement of $\left\{v \in T^{*}\left(F_{\gamma}\right) \mid\right.$ $\left.P_{\gamma}^{0}(v)=0\right\}$ and by $\left(\Gamma_{\gamma}\right)^{0}$ the (euclidean) polar of $\Gamma_{\gamma},([2])$ let $E^{+}(\gamma)\left(E^{-}(\gamma)\right)$ be the forward (backward) emission from γ along the field of cones $\left(\Gamma_{\gamma}\right)^{0}$, cfr. (4.11). Then the result of our paper is given in the following:

Theorem. Let P satisfy assumption (i)-(iv). Let $v \in \mathcal{D}^{\prime}(X)$ and $\gamma^{0} \in \Sigma \backslash$ $W F(P v)$. If there exists a conic neiborhood Γ of γ^{0}, and a choice of sign+or-such that:

$$
\Gamma \cap W F(v) \cap\left(E^{ \pm}\left(\gamma^{0}\right) \backslash\left(\gamma^{0}\right)\right)=\phi
$$

Then γ^{0} does not belong to $W F(v)$.

Remarks.

(i) R.B. Melrose and G.A. Uhlmann proved the theorem when $m=2$ (and $d \geqq 3$: if $d=2$ see [10] for the construction of a microlocal parametrix). In that case assumption (iii) reduces to the Levi condition that the subprincipal symbol of P vanishes on Σ ([3], [6]). Always in the case of double characteristics similar results have been obtained by R. Lascar [7] and Ivrii [6]. (Ivrii's results which are proved by means of microlocal energy estimates are more general for Σ may have symplectic components also, see however [1] for a precise formulation of some results). In the case of $m \geqq 2$ and involutive characteristics only, assuming an ellipticity and a Calderon's type uniqueness condition for the operator induced on the leaf J. Sjostrand [9] proved that in general there is propagation in any direction on the leaf. The results in [7] are proved essentialy by means of Carleman estimates on the leaf and techniques formerly developed in [9]. For the construction of a parametrix in case of multiple characteristics (of constant multiplicity) see also the work of Chazarain [12].
(ii) Here we shall prove the theorem by constructing as in [8] a microlocal parametrix for the operator and the diffusion result will be clear from direct
inspection. We want to point out that under assumptions (i)-(iv) P behaves like a principal type operator outside Σ and moreover null bicharacteristics starting outside Σ do not have limit points on Σ ([6]). As in [8] simple examples of operators satisfying (i)-(iv) are provided by taking $X=X_{1} \times X_{2}$, dim $X_{1}=d$ and P a strictly hyperbolic operator of order m in X_{1} extended trivially in X. As in [8] however this is not a microlocal model of the general case.
(iii) The proof is given in four steps: 1) we reduce the operator to a standard simpler form using the invariance under canonical transformation and conjugation via Fourier Integral Operator of the assumptions; 2) we solve HamiltonJacobi equations in polar coordinates; 3) we construct a microlocal parametrix for the Cauchy problem; 4) we finally compute the WF's and conclude.
It is a pleasure to thank A. Bove and C. Parenti for useful conversations and helpful encouragement.

1. Some preparations

Let $\gamma^{0} \in \Sigma=\left\{\gamma \in T^{*}(X) \backslash 0 \mid q_{1}(\gamma)=\cdots=q_{d}(\gamma)=0\right\}$ as in assumption (i). Then $T_{\gamma}(\Sigma)=\left[H_{q_{1}}(\gamma), \cdots, H_{q_{d}}(\gamma)\right]^{\sigma}$. By (ii) there exists $j \in\{1, \cdots, d\}$ such that $\sigma\left(H_{q_{j}}(\gamma), H_{\varphi}(\gamma)\right) \neq 0$. Let us consider $\Sigma^{\prime}=\left\{\gamma \in T^{*}(X) \backslash 0 \mid q_{1}(\gamma)=\cdots=q_{d}(\gamma)=0\right.$, $\varphi(\gamma)=0\}$. We have $\operatorname{rank}(\sigma)_{1 \Sigma^{\prime}}=2 n-d-1-\operatorname{dim} \operatorname{Ker}(M)$, where M is the matrix:

$$
\left(\begin{array}{lc}
\left\{q_{i}, q_{j}\right\}_{\mid \Sigma^{\prime}, i, j=1, \cdots, d} ; & \left\{q_{i}, \varphi\right\}_{\mid \Sigma^{\prime}, i=1, \cdots, d} \\
\left\{q_{i}, \varphi\right\}_{\mid \Sigma^{\prime}, i=1 \cdots, d} & 0
\end{array}\right)
$$

It is obvious that M has rank 2, therefore rank $(\sigma)_{1 \Sigma^{\prime}}=2(n-d)$. Then ([5] Th. 21.2.4) there is a canonical homogeneous transformation sending Σ^{\prime} in $\{(x, \xi) \in$ $\left.T^{*}\left(\boldsymbol{R}^{n}\right) \backslash\{0\} \mid \xi_{n-d+1}=\cdots=\xi_{n}=x_{n}=0\right\}$. Since Σ is involutive, it is sent into $\left\{(x, \xi) \in T^{*}\left(\boldsymbol{R}^{n}\right) \backslash\{0\} \mid \xi_{n-d+1}=\cdots=\xi_{n}=0\right\}$ and φ in these new canonical coordinates is sent to x_{n}. Setting $\boldsymbol{R}^{n} \ni x=\left(x^{\prime}, x^{\prime \prime}, x_{n}\right) \in \boldsymbol{R}^{n-d} \times \boldsymbol{R}^{d-1} \times \boldsymbol{R}$ and $x^{\prime \prime \prime}=$ $\left(x^{\prime \prime}, x_{n}\right), \Sigma$ is then given by $\xi^{\prime \prime \prime}=0$. Let F be a Fourier Integral operator elliptic in γ^{0}, of order zero and such that, with $D_{j}=D_{x j} F^{-1} Q_{j} F=D_{j+n-d}+r_{j}\left(x, D_{x}\right)$, $j=1, \cdots, d$ with r_{j} of order zero. Assumption (iii) and Lemma 0.1 in the first chapter of [7] now give that microlocally near $\gamma^{0}=\left(x=0 ; \xi^{\prime}=(0, \cdots, 0,1), \xi^{\prime \prime}=0\right.$, $\xi_{n}=0$):

$$
P\left(x, D_{x}\right) \equiv \sum_{|\alpha| \leqq m} A_{\alpha}\left(x, D_{x}\right) D_{n-d+1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{d}}
$$

where now A_{α} are pseudodifferential operators of order zero. After composition with a pseudodifferential operator of order zero in view of the hyperbolicity of P we can assume that the complete symbol of P is given by:

$$
\begin{equation*}
p(x, \xi)=\xi_{n}^{m}+\sum_{0}^{m}\left[\left[\sum_{\substack{\alpha^{\prime \prime} \mid \alpha^{\prime \prime}, j}} A_{\alpha^{\prime \prime}, j}^{0}(x, \xi)\left(\xi^{\prime \prime}\right)^{\alpha^{\prime \prime}}\right] \xi_{n}^{m-j}\right. \tag{1.1}
\end{equation*}
$$

Now we have $\partial_{\xi_{n}}^{h} p_{m}\left(\delta^{0}\right)=\delta_{h m} m$! where $\delta_{h m}$ is the Kronecker symbol and $h \in$ $\{1, \cdots, m\}$. So by using a pseudodifferential version of the Malgrange preparation theorem:

$$
\begin{equation*}
P\left(x, D_{x}\right) \cong Q\left(x, D_{x}\right)\left[D_{n}^{m}+\sum_{i}^{m} E_{j}\left(x, D_{x}, D_{x^{\prime \prime}}\right) D_{n}^{m-j}\right] \tag{1.2}
\end{equation*}
$$

in a conic neighborhood of γ^{0} and Q elliptic at γ^{0}. Comparison of (1.1) with (1.2) and composition with a parametrix of Q finally gives that near γ^{0} with different $A_{\alpha, j}$:

$$
\begin{equation*}
p(x, \xi)=\xi_{n}^{m}+\sum_{i}^{m}\left[\sum_{\left|\alpha^{\prime \prime}\right| \leq j} A_{\alpha^{\prime \prime}, j}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right)\left(\xi^{\prime \prime}\right)^{\alpha^{\prime \prime}}\right] \xi_{n}^{m-j} \tag{1.3}
\end{equation*}
$$

In these coordinates the leaf $F_{\gamma^{0}}$ through $\gamma^{0} \in \Sigma, \gamma^{0}=\left(x^{0}, \xi^{\prime 0}, \xi^{\prime \prime}=0, \xi_{n}=0\right)$ is given by:

$$
F_{\gamma^{0}}=\left\{(x, \xi) \in T^{*}\left(\boldsymbol{R}^{n}\right) \backslash\{0\} \mid x^{\prime}=x^{\prime 0}, \xi^{\prime}=\xi^{\prime 0}, \xi^{\prime \prime}=0, \xi_{n}=0\right\}
$$

The principal symbol of the operator P^{0} is:

$$
\begin{equation*}
p_{\left(x^{\prime 0}, \xi^{0}\right)}^{0}\left(x^{\prime \prime \prime}, \xi^{\prime \prime}, \xi_{n}\right)=\xi_{n}^{m}+\sum_{1}^{m} j\left[\sum_{\left|\alpha^{\prime \prime}\right|=j} A_{\alpha^{\prime \prime}, j}^{0}\left(x^{\prime 0}, x^{\prime \prime \prime}, \xi^{\prime 0}, 0\right)\left(\xi^{\prime \prime}\right)^{\alpha^{\prime \prime}}\right] \xi_{n}^{m-j} \tag{1.4}
\end{equation*}
$$

Therefore assumption (iv) requires that $p_{\left(x^{\prime}, \xi\right)}^{0}\left(x^{\prime \prime \prime}, \xi^{\prime \prime}, \xi_{n}\right)=0$ has m real distinct roots ξ_{n}.
Let us now study the local structure of $\operatorname{Char}(P) \backslash \Sigma$. We shall assume $d>2$. We introduce polar coordinates near $\Sigma: \xi^{\prime \prime}=\rho \omega, \rho \in\left[0,+\infty\left[, \omega \in S^{d-2}\right.\right.$. The principal symbols of P and P^{0} are then given by:

$$
\begin{align*}
& p_{m}=\xi_{n}^{m}+\sum_{1}^{m}\left[\sum_{\left|\alpha^{\prime \prime}\right|=j} A_{d^{\prime \prime}, j}^{0}\left(x, \xi^{\prime}, \rho \omega\right)(\omega)^{\alpha^{\prime \prime}}\right] \rho^{j} \xi_{n}^{m-j} \tag{1.5}\\
& p_{m}^{0}=\xi_{n}^{m}+\sum_{1}^{m}\left[\sum_{\left|\alpha^{\prime \prime}\right|=j} A_{\alpha^{\prime \prime}, j}^{0}\left(x, \xi^{\prime}, 0\right)(\omega)^{\alpha^{\prime \prime}}\right] \rho^{j} \xi_{n}^{m-j} \tag{1.6}
\end{align*}
$$

Let us blow up again singularities at $\xi_{n}=\rho=0, u=\xi_{n} / \rho$:

$$
\begin{align*}
& p_{m}=u^{m}+\sum_{1}^{m}\left[\sum_{\left|\alpha^{\prime \prime}\right|=j} A_{\alpha^{\prime \prime}, j}^{0}\left(x, \xi^{\prime}, \rho \omega\right)(\omega)^{\alpha^{\prime \prime}}\right] u^{m-j} \tag{1.5}\\
& p_{m}^{0}=u^{m}+\sum_{i}^{m}\left[\sum_{\left|\alpha^{\prime \prime}\right|=j} A_{\alpha^{\prime \prime}, j}^{0}\left(x, \xi^{\prime}, 0\right)(\omega)^{\alpha^{\prime \prime}}\right] u^{m-j} \tag{1.6}
\end{align*}
$$

By Rouche's Theorem and assumption (iv) we have that $p_{m}=0$ has for positive and sufficiently small ρm real zeros $\mathrm{u}_{h}=\rho u_{h}$ and:

$$
\begin{equation*}
u_{h} \neq u_{k} \quad \text { if } \quad h \neq k \tag{1.7}
\end{equation*}
$$

This shows that in $\operatorname{Char}(P) \backslash \Sigma$ near Σ, P is of principal type and Char $(P) \backslash \Sigma$ has m local components intersecting over Σ. Moreover p_{m} is there factorized as:

$$
\begin{equation*}
p_{m}=\prod_{1}^{m} q_{h} \text { where } q_{h}=\xi_{n}-\left|\xi^{\prime \prime}\right| u_{h}\left(x, \xi^{\prime}, \xi^{\prime \prime}\right) \tag{1.8}
\end{equation*}
$$

By considering the Hamilton systems for one of these factors one gets from Gronwall's Lemma:

$$
\begin{equation*}
\left|\xi^{\prime \prime}\left(\gamma_{1}\right)\right| \leqq M\left(\gamma_{1}, \gamma_{2}\right)\left|\xi^{\prime \prime}\left(\gamma_{2}\right)\right| . \tag{1.9}
\end{equation*}
$$

γ_{1}, γ_{2} belonging to the same null bicharacteristic of p_{m}. This proves that the simple Hamiltonian flow in Char $(P) \backslash \Sigma$ has no limit point in Σ (see [6], Proposition 0.3 , (ii)).
Finally the case $d=2$ is treated in the same way with $\omega= \pm 1$. Moreover in the following we will always deal with $d>2$, leaving the trivial extensions $d=2$ to the reader.

2. The eikonal equation

As in [8] and already in (1.5), (1.6) we introduce polar coordinates taking near $\Sigma: \xi^{\prime \prime}=\rho \omega, \rho \in\left[0,+\infty\left[, \omega \in S^{d-2}\right.\right.$. We want to solve:

$$
\begin{equation*}
P_{m}\left(x, \nabla_{x} \varphi(x)\right)=0, \quad \varphi\left(x^{\prime}, x^{\prime \prime}, 0 ; \omega, \rho, \eta^{\prime}\right)=\rho\left\langle\omega, x^{\prime \prime}\right\rangle+\left\langle\eta^{\prime}, x^{\prime}\right\rangle \tag{2.1}
\end{equation*}
$$

In order to use Hamilton-Jacoby theory let us look for φ of the form:

$$
\begin{equation*}
\varphi\left(y^{\prime}, y^{\prime \prime}, y_{n} ; \omega, \rho, \eta^{\prime}\right)=\left\langle\eta^{\prime}, y^{\prime}\right\rangle+\rho \psi\left(y, \omega, \rho, \eta^{\prime}\right) \tag{2.2}
\end{equation*}
$$

ψ homogeneous of degree zero in (ρ, ω). Then (2.1) goes into:

$$
\begin{align*}
& \left(\partial_{n} \psi\right)^{m}+\sum_{1}^{m}\left[\sum_{\left[\alpha^{\prime \prime} \mid=j\right.} A_{\alpha^{\prime \prime}, j}^{0}\left(y, \eta^{\prime}+\rho \nabla_{y^{\prime}} \psi, \rho \nabla_{y^{\prime \prime}} \psi\right)\left(\nabla_{y^{\prime \prime}} \psi\right)^{\alpha^{\prime \prime}}\right]\left(\partial_{n} \psi\right)^{m-j}=0 \tag{2.3}\\
& \quad \psi\left(y^{\prime}, y^{\prime \prime}, 0 ; \omega, \rho, \eta^{\prime}\right)=\left\langle\omega, y^{\prime \prime}\right\rangle
\end{align*}
$$

Let us denote by q_{m} the Hamiltonian function in (2.3):

$$
\begin{aligned}
& q_{m}\left(y^{\prime}, y^{\prime \prime}, y_{n}, \xi^{\prime}, \xi^{\prime \prime}, \xi_{n}, \rho, \eta^{\prime}\right)= \\
& \quad\left(\xi_{n}\right)^{m}+\sum_{1}^{m} j_{\left|\alpha^{\prime \prime}\right|=j}\left[\sum_{\alpha^{\prime \prime}, j}\left(y, \eta^{\prime}+\rho \xi^{\prime}, \rho \xi^{\prime \prime}\right)\left(\xi^{\prime \prime}\right)^{\alpha^{\prime \prime}}\right]\left(\xi_{n}\right)^{m-j}
\end{aligned}
$$

Therefore:

$$
q_{m}\left(y^{\prime}, y^{\prime \prime}, y_{n}, \xi^{\prime}, \xi^{\prime \prime}, \xi_{n}, 0, \eta^{\prime}\right)=p_{m,\left(y^{\prime}, \eta^{\prime}\right)}^{0}\left(y^{\prime \prime}, y_{n}, \xi^{\prime \prime}, \xi_{n}\right)
$$

Now the equation:

$$
\begin{aligned}
& 0=q_{m}\left(0,0,0, \xi^{\prime}, \xi^{\prime \prime}=\omega, \xi_{n}, 0, \eta^{\prime}\right)= \\
& \quad\left(\xi_{n}\right)^{m}+\sum_{1}^{m} j_{\left|\alpha^{\prime \prime}\right|=j}\left[\sum_{\alpha^{\prime \prime}, j} A^{0}\left(0, \eta^{\prime}, 0\right)(\omega)^{\alpha^{\prime \prime}}\right]\left(\xi_{n}\right)^{m-j}=p_{m,\left(0, \eta^{\prime}\right)}^{0}\left(0, \omega, \xi_{n}\right)
\end{aligned}
$$

has m real distinct roots ξ_{n} as $\omega \neq 0$. If $0<\rho$ is sufficiently small then $q_{m}\left(y^{\prime}, y^{\prime \prime}\right.$, $\left.y_{n}, \xi^{\prime}, \xi^{\prime \prime}, \xi_{n}, \rho, \eta^{\prime}\right)=0$ has m real distinct roots $\left(\xi_{n}\right)^{h}, h=1, \cdots, m$ by Rouchè's Theorem and the hyperbolicity assumption. By theorem 6.4.5 in [4] there exists m functions $\psi_{h}\left(y, \omega, \rho, \eta^{\prime}\right) C^{\infty}$ in a conic neighborhood of $\left(y^{\prime}=0, y^{\prime \prime}=0, y_{n}=0\right.$, $\rho=0, \omega, \eta=(0, \cdots, 1))$ such that:

$$
\begin{align*}
& q_{m}\left(y^{\prime}, y^{\prime \prime}, y_{n}, \nabla_{y^{\prime}} \psi_{h}, \nabla_{y^{\prime \prime}} \psi_{h}, \partial_{n} \psi_{h}, \rho, \eta^{\prime}\right)=0 \tag{2.3}\\
& \quad \psi_{h}\left(y^{\prime}, y^{\prime \prime}, 0 ; \omega, \rho, \eta^{\prime}\right)=\left\langle\omega, y^{\prime \prime}\right\rangle \\
& \partial_{n} \psi_{h}\left(0,0,0 ; \omega, \rho, \eta^{\prime}\right)=\left(\xi_{n}\right)^{h}\left(\omega, \rho, \eta^{\prime}\right), h=1, \cdots, m
\end{align*}
$$

From (2.3)' if $|y|<\delta, \rho<\delta\left|\eta^{\prime}\right|,\left|\eta^{\prime}-(0, \cdots, 1)\right| \eta^{\prime}| |<\delta\left|\eta^{\prime}\right|, \omega \in S^{d-2}$ and $0<\delta$ sufficiently small we have $m C^{\infty}$ functions $\varphi_{h}\left(y, \omega, \rho, \eta^{\prime}\right)=\left\langle\eta^{\prime}, y^{\prime}\right\rangle+\rho \psi_{h}(y, \omega, \rho$, η^{\prime}) solutions of equation (2.1).

3. Microlocal Cauchy problem

In this section we want to solve the following microlocal Cauchy problem:

$$
\begin{align*}
& P v=D_{n}^{m} v+\sum_{1}^{m}\left[\sum_{\left|\alpha^{\prime \prime}\right| \leq j} A_{\alpha^{\prime \prime}, j}\left(x, D_{x^{\prime}}, D_{x^{\prime \prime}}\right) D_{x^{\prime \prime}}^{\alpha^{\prime \prime}}\right] D_{n}^{m-j}(v) \equiv 0 \tag{3.1}\\
& \quad D_{n}^{h} v\left(x^{\prime}, x^{\prime \prime}, x_{n}=0\right) \equiv \delta_{h, m-1} \delta\left(x^{\prime}, x^{\prime \prime}\right) \quad h \in\{0, \cdots, m-1\}
\end{align*}
$$

microlocally near $\gamma^{0}=\left(x=0 ; \xi^{\prime}=(0, \cdots, 0,1), \xi^{\prime \prime}=0, \xi_{n}=0\right)$, where $\delta_{h, m-1}$ denotes the Kronecker symbol.
Let us look for v as a sum of oscillotary integrals:

$$
\begin{equation*}
v=\sum_{i}^{m} I_{\varphi_{j}}\left(a_{j}\right) \tag{3.2}
\end{equation*}
$$

where $I_{\varphi_{j}}\left(a_{j}\right)(x)=\int_{S^{d-2}} \int_{0}^{+\infty} \int_{R^{n-d}} \exp \left(i \varphi_{j}\left(x, \omega, \rho, \eta^{\prime}\right)\right) a_{j}\left(x, \omega, \rho, \eta^{\prime}\right) d \eta^{\prime} d \rho d \omega$ the φ_{j} 's are the phase functions found in section 2 and a_{j} are classical symbols to be determined.
Let us recall that:

$$
\begin{align*}
& e^{-i \varphi} P\left(e^{+i \varphi} a_{j}\right)= \tag{3.4}\\
& \quad \sum_{\alpha \geqslant 0} 1 / \alpha!\partial_{\xi}^{\alpha} P\left(x, \nabla_{x} \varphi\right) D_{z}^{\alpha}\left\{\exp \left(i \varphi_{2}\left(x, \omega, \rho, \eta^{\prime}, z\right)\right) a_{j}\left(z, \omega, \rho, \eta^{\prime}\right)\right\}_{\mid x=z}
\end{align*}
$$

where

$$
\varphi_{2}\left(x, \omega, \rho, \eta^{\prime}, z\right)=\varphi\left(z, \omega, \rho, \eta^{\prime}\right)-\varphi\left(x, \omega, \rho, \eta^{\prime}\right)+\left\langle x-z, \nabla_{x} \varphi\left(x, \omega, \rho, \eta^{\prime}\right)\right\rangle .
$$

Now:

$$
\begin{equation*}
P v=\sum_{i}^{m} I_{\varphi_{j}}\left(b_{j}\right) \tag{3.5}
\end{equation*}
$$

with

$$
\begin{align*}
& b_{j}=P_{m}\left(x, \nabla_{x} \varphi_{j}\right) a_{j}+P_{m-1}\left(x, \nabla_{x} \varphi_{j}\right) a_{j}+\cdots+ \tag{3.6}\\
& \sum_{i}^{n} \partial_{\xi_{n}} P_{m}\left(x, \nabla_{x} \varphi_{j}\right) D_{x_{h}} a_{j}+\sum_{i}^{n} \partial_{\xi_{h}} P_{m-1}\left(x, \nabla_{x} \varphi_{j}\right) D_{x_{h}} a_{j}+\cdots+ \\
& (-i / 2) \sum_{1}^{n}{ }_{k k} \partial_{\xi_{h} \xi_{k}}^{2} P_{m}\left(x, \nabla_{x} \varphi_{j}\right)\left(\partial_{x_{k} x_{k}}^{2} \varphi_{j}\right) a_{j}+ \\
& (1 / 2) \sum_{1}^{n}{ }_{h k} \partial_{\xi_{k} \xi_{k}}^{2} P_{m}\left(x, \nabla_{x} \varphi_{j}\right) D_{x_{k}{ }^{x} k}^{2} a_{j}+ \\
& (-i / 2) \sum_{1}^{1} \sum_{t}^{\infty} \sum_{i k k}^{n} \partial_{\xi_{h} \xi_{k}}^{2} P_{m-t}\left(x, \nabla_{x} \varphi_{j}\right)\left(\partial_{x_{h} x_{k}} \varphi_{j}\right) a_{j}+ \\
& +(1 / 2) \sum_{i}^{\infty} \sum_{1}^{n}{ }_{k k} \partial_{\xi_{h}^{\xi} k}^{2} P_{m-t}\left(x, \nabla_{x} \varphi_{j}\right) D_{x_{h} x_{k}}^{2} a_{j}+ \\
& +\sum_{|\alpha| \sum_{\alpha}}(1 / \alpha!) \partial_{\xi}^{\alpha} P\left(x, \nabla_{x} \varphi_{j}\right) D_{z}^{\alpha}\left\{\exp \left(i \varphi_{2, j}\left(x, \omega, \rho, \eta^{\prime}, z\right)\right)\right. \\
& \left.a_{j}\left(z, \omega, \rho, \eta^{\prime}\right)\right\}_{1 x=z} .
\end{align*}
$$

Since φ_{j} solves equation (2.1) we have:

$$
\begin{align*}
& b_{j}=\sum_{1}^{n} \partial_{\xi_{k}} P_{m}\left(x, \nabla_{x} \varphi_{j}\right) D_{x_{h}} a_{j}+ \tag{3.7}\\
& \quad\left(P_{m-1}\left(x, \nabla_{x} \varphi_{j}\right)-(+i / 2) \sum_{1}^{n}{ }_{h k} \partial_{\xi_{h} \xi_{k}}^{2} P_{m}\left(x, \nabla_{x} \varphi_{j}\right) \partial_{x_{h} x_{k}}^{2} \varphi_{j}\right) a_{j}+R_{j}\left(a_{j}\right)
\end{align*}
$$

with $R_{j}\left(a_{j}\right)$ easily determined from (3.6). Now from (1.3) and the form of $\boldsymbol{\varphi}_{j}$, setting:

$$
\begin{equation*}
\alpha_{h j}=\partial_{\xi_{h}} P_{m}\left(x, \nabla_{x} \varphi_{j}\left(x, \omega, \rho, \eta^{\prime}\right)\right) j=1, \cdots, m ; h=1, \cdots, n \tag{3.8}
\end{equation*}
$$

we have:

$$
\begin{equation*}
\alpha_{n j}=\rho^{m-1} \partial_{\xi_{n}} q_{m}\left(y^{\prime}, y^{\prime \prime}, y_{n}, \nabla_{y^{\prime}} \psi_{j}, \nabla_{y^{\prime \prime}} \psi_{j}, \partial_{n} \psi_{j}, \rho, \eta^{\prime}\right) \tag{3.9}
\end{equation*}
$$

From the discussion in section $2 \alpha_{n j}=\rho^{m-1} \widetilde{\alpha}_{n j}$ with $\widetilde{\alpha}_{n j}\left(x, \omega, \rho, \eta^{\prime}\right) \neq 0$ in a conic neighborhood of $\gamma^{0} \in \Sigma$ for every $j=1, \cdots, m$.
If $1 \leqq h \leqq n-d$:

$$
\begin{equation*}
\alpha_{h j}=\sum_{1}^{m}\left[\sum_{\left|\alpha^{\prime \prime}\right|=t} \partial_{\xi_{h}} A_{\alpha^{\prime \prime}, t}^{0}\left(y, \eta^{\prime}+\rho \nabla_{y^{\prime}} \psi_{j}, \rho \nabla_{y^{\prime \prime}} \psi_{j}\right)\left(\nabla_{y^{\prime \prime}} \psi_{j}\right)^{\alpha^{\prime \prime}}\right]\left(\partial_{n} \psi_{j}\right)^{m-t} \rho^{m} \tag{3.10}
\end{equation*}
$$

If $n-d+1 \leqq h \leqq n-1$ then $\alpha_{h j}=\rho^{m-1} \widetilde{\alpha}_{h j}$ where $\widetilde{\alpha}_{h j}$ is a similar although slightly more involved expression as (3.10). Now:

$$
\begin{align*}
& P_{m-1}\left(x, \nabla_{x} \varphi_{j}\right)-(-i / 2) \sum_{1}^{n}{ }_{k k} \partial_{\xi_{h} \xi_{k}}^{2} P_{m}\left(x, \nabla_{x} \varphi_{j}\right) \partial_{x_{h} x_{k}}^{2} \varphi_{j}= \tag{3.11}\\
& \quad=\rho^{m-1} \tilde{b}_{j}\left(x, \omega, \rho, \eta^{\prime}\right)
\end{align*}
$$

which follows from an easy but tedious calculation. Therefore if $P v \equiv 0$ then b_{j} has to be ~ 0. From (3.6) we get:

$$
\begin{equation*}
R_{j}=\sum_{2}^{\infty} \rho^{m-t} R_{j, t}\left(x, D_{x}, \rho\right) \tag{3.12}
\end{equation*}
$$

Let L_{j} be the first order differential operator:

$$
\begin{equation*}
L_{j}=\tilde{\alpha}_{n j} D_{x_{n}}+\sum_{1}^{n-1} \tilde{\alpha}_{h j} D_{x_{k}}+\tilde{b}_{j} \tag{3.13}
\end{equation*}
$$

The transport equations $b_{j} \sim 0$ then become:

$$
\begin{equation*}
L_{j}\left(a_{j}\right)+\sum_{2}^{\infty} \rho^{1-t} R_{j, t}\left(x, D_{x}, \rho\right) a_{j} \cong 0 \tag{3.14}
\end{equation*}
$$

Let us consider the initial conditions in (3.1). First recall that all the φ_{j} coincide at $x_{n}=0$ with $\varphi_{0}\left(y^{\prime}, y^{\prime \prime}, \omega, \rho, \eta^{\prime}\right)=\left\langle\eta^{\prime}, y^{\prime}\right\rangle+\rho\left\langle\omega, y^{\prime \prime}\right\rangle$. Moreover as in [8] microlocally near $\gamma^{0}=\left(x=0 ; \xi^{\prime}=(0, \cdots, 0,1), \xi^{\prime \prime}=0, \xi_{n}=0\right)$ the Dirac delta is represented by:

$$
\begin{align*}
& \delta\left(x^{\prime}, x^{\prime \prime}\right) \equiv v_{0}\left(x^{\prime}, x^{\prime \prime}\right)= \tag{3.15}\\
& =1 /(2 \pi)^{n-1} \int_{S^{d-2}} \int_{0}^{+\infty} \int_{R^{n-d}} \exp \left(i \varphi_{0}\left(x^{\prime}, x^{\prime \prime}, \omega, \rho, \eta^{\prime}\right) \rho^{d-2} \sigma_{1}\left(\rho / \delta\left|\eta^{\prime}\right|\right)\right. \\
& d \eta^{\prime} d \rho d \omega
\end{align*}
$$

with $\sigma_{1} \in C^{\infty}(\boldsymbol{R}), \sigma_{1}(t)=1$ if $|t| \leqq 1 / 2, \sigma_{1}(t)=0$ if $|t| \geqq 1$.
Then we obtain:

$$
\begin{align*}
& \left.\exp \left(i \varphi_{0}\right)\left(a_{1}+\cdots+a_{m}\right)\right|_{x_{n}=0}=0 \tag{3.16}\\
& \exp \left(i \varphi_{0}\right)\left(\left.\left(\partial_{x_{n}} a_{1}+\cdots+\partial_{x_{n}} a_{m}\right)\right|_{x_{n}=0}+\left.\left(\rho D_{x_{n}} \psi_{1}\right)\right|_{x_{n}=0}\right. \\
& \left.\quad a_{1}\right|_{x_{n}=0}+\cdots+\left.\left.\left(\rho D_{x_{n}} \psi_{m}\right)\right|_{x_{n}=0} a_{m}\right|_{x_{n}=0}=0
\end{align*}
$$

$\exp \left(i \varphi_{0}\right)\left[\left.\left.\left(\rho D_{x_{n}} \psi_{1}\right)^{m-1}\right|_{x_{n}=0} a_{1}\right|_{x_{n}=0}+\cdots+\left.\left.\left(\rho D_{x_{n}} \psi_{m}\right)^{m-1}\right|_{x_{n}=0} a_{m}\right|_{x_{n}=0}+\right.$ terms with powers of ρ strictly lower than $m-1]=\exp \left(i \varphi_{0}\right) 1 /(2 \pi)^{n-1} \rho^{d-2} \sigma_{1}\left(\rho / \delta\left|\eta^{\prime}\right|\right)$
The last equation suggests that a_{j} should be of the form:

$$
\begin{equation*}
a_{j}\left(x, \omega, \rho, \eta^{\prime}\right)=\sum_{0}^{d-m-1} \rho^{k} a_{j k}\left(x, \omega, \rho, \eta^{\prime}\right)+\sum_{1}^{\infty} \rho^{-k} b_{j k}\left(x, \omega, \rho, \eta^{\prime}\right) \tag{3.17}
\end{equation*}
$$

if $d-m-1>0$ which will be the case treated first $a_{j k}$ and $b_{j k}$ here are homogeneous of degree zero in (ρ, η^{\prime}).
From (3.15) we have:

$$
\left[\begin{array}{llr}
1 \cdots & & \cdots 1 \tag{3.18}\\
\left.\left(D_{x_{n}} \psi_{1}\right)\right|_{x_{n}=0} & \cdots & \left.\left(D_{x_{n}} \psi_{m}\right)\right|_{x_{n}=0} \\
\hdashline\left.\left(D_{x_{n}} \psi_{1}\right)^{m-1}\right|_{x_{n}=0} \cdots & \left.\left(D_{x_{n}} \psi_{m}\right)^{m-1}\right|_{x_{n}=0}
\end{array}\right] \cdot\left[\begin{array}{c}
\left.a_{1 d-m-1}\right|_{x_{n}=0} \\
\\
\left.a_{m d-m-1}\right|_{x_{n}=0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 /(2 \pi)^{n-1} \sigma_{1}
\end{array}\right]
$$

Since $\left.\partial_{n} \psi\right|_{x_{n}=0}$ is the j-th root of $q_{m}\left(0,0,0, \xi^{\prime}, \xi^{\prime \prime}=\omega, \xi_{n}, \rho, \eta^{\prime}\right)=0$ and for $j \in$ $\{1, \cdots, m\}$ all these roots are distinct, the linear system has a unique solution giving initial data at $x_{n}=0$ for $a_{j d-m-1}$. On the other hand by ordering (3.13) according to descending powers of ρ we have:

$$
\begin{align*}
& L_{j}\left(a_{j d-m-1}\right)=0 \tag{3.19}\\
& \left.a_{j d-m-1}\right|_{x_{n}=0}=\text { data }
\end{align*}
$$

As $\widetilde{\alpha}_{n j} \neq 0$ from (3.9), (3.19) has a (local) unique C^{∞} solution $a_{j d-m-1}, j \in\{1, \cdots$, $m\}$.
Let us solve for $a_{j p}$ with $p<d-m-1$. (3.13) then yields:

$$
\begin{align*}
0 \simeq & \rho^{d-m-1} L_{j}\left(a_{j d-m-1}\right)+\rho^{d-m-2}\left(L_{j}\left(a_{j d-m-2}\right)+R_{j, 2}\left(a_{j d-m-1}\right)\right)+ \tag{3.20}\\
& \rho^{d-m-3}\left(L_{j}\left(a_{j d-m-3}\right)+R_{j, 3}\left(a_{j d-m-1}\right)+R_{j, 2}\left(a_{j d-m-2}\right)+\cdots+\right. \\
& \rho\left(L_{j}\left(a_{j 1}\right)+\sum_{2}^{d-m-1} R_{j, k}\left(a_{j k}\right)\right)+L_{j}\left(a_{j 0}\right)+\sum_{1}^{d-m-1} R_{j, k+1}\left(a_{j k}\right)+ \\
& \rho^{-1}\left(L_{j}\left(b_{j 1}\right)+\sum_{0}^{d-m-1} R_{j, k+2}\left(a_{j k}\right)\right)+ \\
& \rho^{-2}\left(L_{j}\left(b_{j 2}\right)+\sum_{0}^{d-m-1} R_{j, k+3}\left(a_{j k}\right)+R_{j, 2}\left(b_{j 1}\right)\right)+\cdots
\end{align*}
$$

From (3.16) we have, with $V_{h j}$ the element of place (h, j) in the matrix (3.18):

$$
\begin{equation*}
\rho^{h} \sum_{i}^{m} V_{h j} a_{j}+\sum_{1}^{h} t \rho^{h-t} S_{t, h}\left(a_{j}\right) \cong \delta_{h m-1} 1 /(2 \pi)^{n-1} \rho^{d-2} \sigma_{1}\left(\rho / \delta\left|\eta^{\prime}\right|\right) \tag{3.21}
\end{equation*}
$$

where $S_{t, h}$ are differential operators with coefficients homogeneous of degree zero in (ρ, η^{\prime}). Inserting (3.17) in (3.21):

$$
\begin{align*}
& \sum_{0}^{d-m-1} \rho^{h+k}\left(\sum_{1}^{m} V_{h j} a_{j k}\right)+\sum_{1}^{\infty} \rho^{h-k}\left(\sum_{1}^{m} V_{h j} b_{j k}\right)+\sum_{0}^{d-m-1} \sum_{1}^{h} \rho^{h+k-t} S_{t, h}\left(a_{j k}\right)+ \tag{3.22}\\
& \sum_{1}^{\infty} \sum_{1}^{h} \rho^{h-k-t} S_{t, h}\left(b_{j k}\right) \cong \delta_{h m-1} 1 /(2 \pi)^{n-1} \rho^{d-2} \sigma_{1}\left(\rho / \delta\left|\eta^{\prime}\right|\right)
\end{align*}
$$

For instance let us find the initial conditions for $a_{j d-m-2}$:

$$
\begin{equation*}
\rho^{h+d-m-2}\left(\sum_{1}^{m} V_{h j} a_{j d-m-2}+S_{1, h}\left(a_{j d-m-1}\right)\right)=0 \text { at } x_{r}=0, h \in\{0, \cdots, m-1\} \tag{3.23}
\end{equation*}
$$

(3.23) together with:

$$
\begin{equation*}
L_{j}\left(a_{j d-m-2}\right)+R_{j, 2}\left(a_{j d-m-1}\right)=0 \tag{3.24}
\end{equation*}
$$

enables us to find a (local) C^{∞} solution $a_{j d-m-2}, j \in\{1, \cdots, m\}$. And so on for all $a_{j p} p \in\{1, \cdots, d-m-1\}$.
As far as $b_{j 1}$ is concerned:

$$
\begin{equation*}
\rho^{h-1}\left(\sum_{1}^{m} V_{h j} b_{j 1}\right)+\rho^{h-1} \sum_{0}^{d-m-1} \sum_{1}^{h} t \delta_{t k+1} S_{t, k}\left(a_{j k}\right)=0, h \in\{0, \cdots, m-1\} \text { at } x_{n}=0 . \tag{3.24}
\end{equation*}
$$

$$
\begin{equation*}
L_{j}\left(b_{j_{1}}\right)+\sum_{0}^{d-m-1} R_{j, k+2}\left(a_{j k}\right)=0 \tag{3.25}
\end{equation*}
$$

Therefore it is possible to find all $a_{j k}$ and $b_{j k}$.
By Taylor's formula:

$$
\begin{equation*}
b_{j k}\left(y, \omega, \rho, \eta^{\prime}\right)=\sum_{0}^{k-1} \rho^{k} b_{j h k}\left(y, \omega, \eta^{\prime}\right)+\rho^{k} b_{j k}\left(y, \omega, \rho, \eta^{\prime}\right) \tag{3.26}
\end{equation*}
$$

$b_{j h k},\left(b_{j k}\right)$ homogeneous in $\eta^{\prime}\left(\left(\rho, \eta^{\prime}\right)\right)$ of degree $-h(-k)$. Hence:

$$
\begin{align*}
a_{j} & =\sum_{0}^{d-m-1} \rho^{k} a_{j k}\left(x, \omega, \rho, \eta^{\prime}\right)+\sum_{k<0}\left\{\sum_{1}^{-k} \rho^{-t} a_{j k t}\left(x, \omega, \eta^{\prime}\right)+\right. \tag{3.27}\\
& \left.+\mu_{j k}\left(x, \omega, \rho, \eta^{\prime}\right)\right\} .
\end{align*}
$$

Now to define the classical part $v^{(1)}$ of the solution as in [8], let us put:

$$
\begin{aligned}
& a_{j}^{(1)}\left(x, \omega, \rho, \eta^{\prime}\right)=\sum_{0}^{d-m-1} \rho^{k} a_{j k}\left(x, \omega, \rho, \eta^{\prime}\right)+ \\
& \quad+\sum_{k<0} \mu_{j k}\left(x, \omega, \rho, \eta^{\prime}\right) \sigma_{1}\left(\rho / \delta\left|\eta^{\prime}\right|\right)
\end{aligned}
$$

and the $a_{j}^{(1)}$'s are supported where the phase functions are defined.
To construct the "singular" part of the solution $v^{(2)}$, for any $j \in\{1, \cdots, m\}$ and for any $h \geqq 1$ choose symbols using the standard asymptotics $a_{j h}^{(2)} \in S^{0}\left(\boldsymbol{R}^{n} \times\right.$ $\left.S^{d-2} \times \boldsymbol{R}^{n-d}\right)$ such that $a_{j h}^{(2)} \sim \sum_{k} a_{j k h} \sigma_{1}$. In the same way select $a_{j}^{(2)} \in S^{-1}\left(\boldsymbol{R}^{+} ; S^{0}\right)$, $j \in\{1, \cdots, m\}$ (for a definition of $S^{m}\left(\boldsymbol{R}^{+} ; S^{m^{\prime}}\left(\boldsymbol{R}^{n} \times S^{d-2} \times \boldsymbol{R}^{n-d}\right)\right.$) see [8] page 577) such that

$$
\begin{equation*}
a_{j}^{(2)}-\sum_{1}^{N} \rho^{-k} a_{j k}^{(2)} \in S^{-N-1}\left(\boldsymbol{R}^{+} ; S^{0}\right) \quad \text { for any } \quad N \geqq 1 \tag{3.28}
\end{equation*}
$$

If $v=v^{(1)}+v^{(2)}=\sum_{i}^{m} I_{\varphi}\left(a_{j}^{(1)}\right)+\sum_{1}^{m} I_{\varphi}\left(a_{j}^{(2)}\right)$ let us calculate $P v:$ (3.5) and the preceeding constuction show that

$$
\begin{equation*}
P v=I_{\psi}(c)=\int_{R^{n-d}} e^{i\left\langle x^{\prime}, \xi^{\prime}\right\rangle} c\left(x, \xi^{\prime}\right) d \xi^{\prime} \tag{3.29}
\end{equation*}
$$

where $c \in S^{0}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{n-d}\right)$. It is easily verified that $\left.\partial_{n}^{h} v\right|_{x_{n}=0}=I_{\psi}\left(b_{h}\right)+\delta_{h m-1} v_{0}$ with $b_{h} \in S^{0}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{n-d}\right), h \in\{0, \cdots, m-1\}$
Now let us look for a solution of:

$$
\begin{equation*}
P v=I_{\psi}(c) \quad \text { and }\left.\quad \partial_{n}^{h} v\right|_{x_{n}=0}=I_{\psi}\left(b_{h}\right), \quad h \in\{0, \cdots, m-1\} . \tag{3.30}
\end{equation*}
$$

v will be searched of the form $I_{\psi}\left(a^{(3)}\right)$. Now:

$$
P\left(I_{\psi}\left(a^{(3)}\right)\right)=I_{\psi}\left(D_{n}^{m} a^{(3)}+\sum_{i}^{m}\left[\sum_{\left|\alpha^{\prime \prime}\right| \leq j} A_{\alpha, j}\left(x^{\prime}, x^{\prime \prime \prime}, \xi^{\prime}, 0\right)\left(D_{x^{\prime \prime}}\right)^{\alpha^{\prime \prime}}\right] D_{n}^{m-j} a^{(3)}+M a^{(3)}\right)
$$

Because of the strict hyperbolicity assumption (iv) and the fact $M: S^{k} \rightarrow S^{k-1}$ we
begin by solving:

$$
\begin{equation*}
P_{\gamma}\left(a_{0}^{(3)}\right)=c \text { and }\left.\partial_{n}^{h} a_{0}^{(3)}\right|_{x_{n}=0}=b_{h}, \quad h \in\{0, \cdots, m-1\} \tag{3.31}
\end{equation*}
$$

with $a_{0}^{(3)} \in S^{0}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{n-d}\right), \gamma=\left(x^{\prime}, x^{\prime \prime \prime}, \xi^{\prime}, 0\right) \in \Sigma$.
Then by recursively solving:

$$
\begin{align*}
& P_{\gamma}\left(a_{j}^{(3)}\right)=-M a_{j+1}^{(3)} \in S^{j} \quad \text { and }\left.\quad \partial_{n}^{h} a^{(3)}\right|_{x_{n}=0}=0 \tag{3.31}\\
& j=-1,-2,-3, \cdots h \in\{0, \cdots, m-1\}
\end{align*}
$$

we can select $a^{(3)} \sim \sum_{j<0} a^{(3)}$ and it is obvious that
$\left(P_{\gamma}+M\right)\left(a^{(3)}\right) \in S^{-\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{n-d}\right)$ and the choice can be made in order to have $\left.\delta_{n}^{h} a^{(3)}\right|_{x_{n}=0}=b_{h}, h \in\{0, \cdots, m-1\}$
Finally setting $u=v^{(1)}+v^{(2)}-I_{\psi}\left(a^{(3)}\right)$ we have $P u=0$ and $\left.\partial_{n}^{h} u\right|_{x_{n}=0}=\delta_{h m-1} v_{0} \equiv$ $\delta_{h m-1} \delta\left(x^{\prime}, x^{\prime \prime}\right), h \in\{0, \cdots, m-1\}$, which is the solution of (3.1) if $d-m-1>0$. If $d-m-1 \leqq 0$ choosing at once

$$
\begin{equation*}
a_{j}\left(x, \omega, \rho, \eta^{\prime}\right)=\sum_{1+m-d}^{\infty} \rho^{-k} a_{j k}\left(x, \omega, \rho, \eta^{\prime}\right) \tag{3.32}
\end{equation*}
$$

the proof goes as before and this gives in any case the solution of (3.1).

4. Propagation of singularities

First of all the construction of section 3 can be repeated uniformly when $s \in]-\delta, \delta[$ and we find:

$$
\begin{align*}
& E^{(s)}: \mathscr{D}^{\prime}\left(\boldsymbol{R}^{n-1}\right) \rightarrow \mathcal{E}^{\prime}\left(\boldsymbol{R}^{n}\right), P E^{(s)} \equiv 0 \text { near }\left(\gamma^{0}, \gamma^{0^{\prime}}\right), \tag{4.1}\\
& \left.\quad \partial_{n}^{h} E^{(s)}\right|_{x_{n}=s} \equiv \delta_{h m-1} I d \text { near }\left(\gamma^{0}, \gamma^{0^{\prime}}\right) h \in\{0, \cdots, m-1\}
\end{align*}
$$

where $\gamma^{0^{\prime}}=\left(x=0 ; \xi^{\prime}=(0, \cdots, 0,1), \xi^{\prime \prime}=0\right)$.
We shall now reason when $d-m-1>0$ remarking that the case $d-m-1 \leqq 0$ is dealt with exactly in the same way.

$$
\begin{equation*}
\left(E^{(s)} f\right)(x)=\left(E_{(1)}^{(s)}+E_{(2)}^{(s)}+E_{(3)}^{(s)}\right)(f)(x) \tag{4.2}
\end{equation*}
$$

where we have set:

$$
\begin{align*}
& \left(E_{(\mathrm{s})}^{(s)}\right)(f)(x)=\sum_{1}^{m} \int_{S^{d-2}} \int_{0}^{+\infty} \int_{R^{n-d}} \exp \left(i \varphi_{j}\left(x, s, \omega, \rho, \eta^{\prime}\right)\right. \tag{4.3}\\
& \left.\quad-\left\langle z^{\prime}, \eta^{\prime}\right\rangle-\rho\left\langle\omega, z^{\prime \prime}\right\rangle\right) \\
& \quad \times a_{j}^{(1)}\left(x, s, \omega, \rho, \eta^{\prime}\right) f\left(z^{\prime}, z^{\prime \prime}\right) d z^{\prime} d z^{\prime \prime} d \eta^{\prime} d \rho d \omega \\
& \left(E_{(2)}^{(s)}\right)(f)(x)=\sum_{i}^{m} \int_{s^{d-2}} \int_{0}^{+\infty} \int_{R^{n-d}} \exp \left(i \varphi_{j}\left(x, s, \omega, \rho, \eta^{\prime}\right)\right. \tag{4.4}\\
& \left.\quad-\left\langle z^{\prime}, \eta^{\prime}\right\rangle-\rho\left\langle\omega, z^{\prime \prime}\right\rangle\right) \\
& \quad \times a_{j}^{(2)}\left(x, s, \omega, \rho, \eta^{\prime}\right) f\left(z^{\prime}, z^{\prime \prime}\right) d z^{\prime} d z^{\prime \prime} d \eta^{\prime} d \rho d \omega
\end{align*}
$$

$$
\begin{equation*}
\left(E_{(3)}^{(s)}\right)(f)(x)=\int_{R^{n-d}} \int_{R^{n-1}} e^{j\left\langle x^{\prime}-z^{\prime}, \eta^{\prime}\right\rangle} a^{(3)}\left(x, s, \eta^{\prime}\right) f\left(z^{\prime}, z^{\prime \prime}\right) d z^{\prime} d z^{\prime \prime} d \eta^{\prime} \tag{4.5}
\end{equation*}
$$

where in (4.3) $a_{j}^{(1)} \in S^{d-m-1}$, in (4.4) $a_{j}^{(2)} \in S^{-1}\left(\boldsymbol{R}^{+} ; S^{0}\right)$ and in (4.5) $a^{(3)} \in S^{0}$. By Duhamel's principle let us put:

$$
\begin{equation*}
E_{+}(f)(x)=-\int_{-\delta}^{x_{n}}\left(\left(E^{(s)} \circ \gamma_{(s)} \circ A\right)(f)(x) d s, \delta>0\right. \tag{4.6}
\end{equation*}
$$

with conesupp(A) compactly supported near $\gamma^{0^{\prime}}$ and $\gamma_{(s)} u=u$ restricted to $x_{n}=s$. Since $\gamma^{0^{\prime}} \notin\left\{(x, \xi) \mid x_{n}=s, \xi^{\prime}=0, \xi^{\prime \prime}=0, \xi_{n}=0\right\} \gamma_{(s)} \circ A$ is well defined and it is clear that:

$$
\begin{equation*}
P E_{+}(f) \equiv f \text { near } \gamma^{0} \tag{4.7}
\end{equation*}
$$

Now the rules to compute wave fronts sets given ([4]):

$$
\begin{equation*}
\left.W F\left(E^{(s)} f\right)\right|_{x=s} \subset\left[{\underset{1}{1}}_{j}^{m} K_{j}^{+} \cup \tilde{K}_{F}^{+}\right] \circ\left(i_{s}^{*}\right)^{-1}(W F(f)) \tag{4.8}
\end{equation*}
$$

where $f \in \mathscr{D}^{\prime}\left(\boldsymbol{R}^{n-1}\right),\left(i_{s}^{*}\right)^{-1}(W F(f))=\left\{\left(z^{\prime}, z^{\prime \prime}, s, \zeta^{\prime}, \zeta^{\prime \prime}, \zeta_{n}\right) \mid \zeta_{n} \in \boldsymbol{R},\left(z^{\prime}, z^{\prime \prime}, \zeta^{\prime}, \zeta^{\prime \prime}\right)\right.$ $\in W F(f)\}, K_{j}^{+}$denotes $\exp \left(t H_{q_{j}}\right)\left(\right.$ cfr. (1.8)), $t \geqq 0$ and \widetilde{K}_{F}^{+}is the relation defined by:
(4.9) $(\rho, \bar{\rho}) \in \tilde{K}_{F}^{+}$if and only if ρ and $\bar{\rho}$ belong to same leaf F_{ρ} through $\rho \in \Sigma$ and $x_{n}(\rho) \geqq x_{n}(\bar{\rho})$. Then we have

$$
\begin{equation*}
W F\left(E^{+}\right) \subset \bigcup_{1}^{m} K_{j}^{+} \cup \tilde{K}_{F}^{+} \tag{4.10}
\end{equation*}
$$

It is clear that we will also have an other microlocal parametrix E^{-}satisfying (4.7) and (4.10) with the reversed time orientation. We now want to be more precise on Σ. Let us introduce as in [8] the following relations:
(4.11) $K_{F}^{+} \ni(\rho, \bar{\rho})$ if and only if ρ and $\bar{\rho} \in F_{\rho} \subset \Sigma$ and $\exists \gamma:[0,1] \rightarrow F_{\rho}$ Lipschitz continous curve $\gamma(0)=\rho, \gamma(1)=\bar{\rho}$ and $\dot{\gamma}(t) \in\left(\Gamma_{\gamma}\right)^{0}$ a.e.
$\partial K_{F}^{+} \ni(\rho, \bar{\rho})$ if and only if there exists a null bicharacteristics of the operator P^{0} induced on the leaf F_{ρ} that joints ρ with $\bar{\rho}$.
∂K_{F}^{+}is the boundary of K_{F}^{+}, see e.g. Duistermaat [2]. Let now $\gamma^{0} \in K \subset \Sigma \times$ $\Sigma \backslash \partial K_{F}^{+}, K$ compact, $U \supset K$ open neighborhood of K. Denoting by $k\left(x, z^{\prime}, z^{\prime \prime}\right)$ the kernel of $E^{(0)}$ we have in U^{\prime} (proj. of U at $s=0$).

$$
\begin{equation*}
k\left(x, z^{\prime}, z^{\prime \prime}\right)=\int e^{i\left\langle x^{\prime}-z^{\prime} \cdot \xi\right\rangle} a\left(x, z^{\prime \prime}, \xi^{\prime}\right) d \xi^{\prime} \tag{4.12}
\end{equation*}
$$

This is clear since the term in (4.5) is already of this type and in (4.3), (4.4) at $\rho=0$ the phase is stationary exactly on null bicharacteristics of P^{0}. Therefore integrating by parts in $d \rho d \omega(4.12)$ follows. Now $k\left(x, z^{\prime}, z^{\prime \prime}\right)$ solves $P k=0$ and $\left.\partial_{n}^{h} k\right|_{x_{n}=0}=\delta_{h m-1} \delta\left(x^{\prime}-z^{\prime}, x^{\prime \prime}-z^{\prime \prime}\right) h \in\{0, \cdots, m-1\}$. Therefore a has to be a
solution of $P_{\gamma}(a)=-M a$ and $\left.\partial_{n}^{h} a\right|_{x_{n}=0} \in S^{-\infty}$, if $x^{\prime} \neq z^{\prime}$ and $x^{\prime \prime} \neq z^{\prime \prime} h \in\{0, \cdots$, $m-1$.\}
Since P_{γ} is strictly hyperbolic we obtain that a is still in $S^{-\infty}$ outside the set obtained by emanating from ($z^{\prime}, z^{\prime \prime}, 0 ; \eta^{\prime}, 0,0$) along curves defined in K_{F}^{+}. Finally:

$$
\begin{equation*}
W F\left(E^{ \pm} f\right) \subset K^{ \pm} \circ W F(f) \tag{4.13}
\end{equation*}
$$

Where $K^{ \pm}$is the generalized flow as defined in [11]. Passing to a parametrix for ${ }^{t} P$, the transpose of P, and microlocalizing near γ^{0} now ends in a standard way the proof of the theorem.

References

[1] E. Bernardi, A. Bove and C. Parenti: Propagation des singularités C^{∞} pour des opérateurs hyperboliques a caracteristiques doubles, preprint, 1986.
[2] J.J. Duistermaat: Fourier integral operators, Courant Institute lecture notes, 1973.
[3] L. Hörmander: The Cauchy problem for differential equations with double characteristics, J. Analyse Math. 32 (1977), 110-196.
[4] L. Hörmander: The analysis of linear partial differential operators, I, SpringerVerlag, 1983.
[5] L. Hörmander: The analysis of linear partial differential operators, III, Spring-er-Verlag, 1985.
[6] V. Ja. Ivrii: Wave front of solutions of certain hyperbolic pseudodifferential equations, Trans. Moscow Math. Soc., 1981, Issue 1, 87-119.
[7] R. Lascar: Propagation des singularités des solutions d'équations pseudodifférentiel à caracteristiques de multiplicité variables, Lecture Notes in Math. 856, Springer-Verlag, 1981.
[8] R.B. Melrose, G.A. Uhlmann: Microlocal structure of invotive conical retraction, Duke Math. J. 46 (1979), 571-582.
[9] J. Sjostrand: Propagation of singularities for operators with multiple involutive characteristics, Ann. Inst. Fourier 26. 1 (1976), 141-155.
[10] G.A. Uhlmann: Pseudodifferential operators with double characteristics, Comm. Partial Differential Equations 2 (1977), 713-719.
[11] S. Wakabayashi: Singularities of solutions of the Cauchy problem for symmetric hyperbolic systems, Comm. Partial Differential Equations 9 (1984), 1147-1177.
[12] J. Chazarain: Opérateurs hyperboliques à caracteristiques de multiplicité constant, Ann. Inst. Fourier 24 (1974), 173-202.

[^0]
[^0]: University of Bologna
 Department of Mathematics
 Piazza di Porta S. Donato 5
 40127 Bologna
 Italia

