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Introduction

Investigating various aspects of Keldys theorem [11], N. Ninomiya in-
troduced and studied special operators related to the generalized Dirichlet
problem in classical potential theory.

To recall his interesting result from [18], let us introduce the following
notation.

Let {B;} be the sequence of balls in the Euclidean space R" of dimension
m>2 having a rational center and rational radius. Denote by A; the nor-
malized surface measure on 9B; and fix positive numbers a; such that the
Newtonian potential ¢ of the measure 3} a;); is continuous on R". (The
potential ¢ will be called the Cartan potential here.)

Suppose that UC R™ is a bounded open set and denote by C(aU) the set of
all continuous functions on 9U. Let F(U) stand for the set of all real-valued
functions defined on U. As usual, HY denotes the operator of the Perron-
Wiener-Brelot sclution of the generalized Dirichlet problem on U.

To state the Ninomiya uniqueness result, suppose that 4: C(dU)—%(U)
is an operator having the following properties:

(i) A s linear and positive;
(it) sup Af(U)=sup f(8U) whenever feC(dU);
(iii) A(pov)=piw whenever p is a continuous Newtonian potential of a measure

supported by the complement CU of the set U;

(iv) A(qior) is harmonic (or subharmonic) on U for the Cartan potential g.

(Obviously, the operator A=HY enjoys (i)-(iv), thus no existence problem
arises.)

N. Ninomiya [18] was able to prove that such an operator 4 is uniquely
determined by conditions (i)-(iv). This remarkable result improves the state-
ment of Keldy$ uniqueness theorem for the generalized Dirichlet problem (see
Theorem 1 below; note that conditions (4) and (6) stated there are automatically
satisfied in classical potential theory; cf. also [6] and [16]).

The proof of uniqueness given by Ninomiya makes use of potentials of
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finite energy and of Lebesgue measure. Hence it does not admit a straight-
forward modification to a more general situation as in the case of other partial
differential equations or of abstract potential theory.

In this paper, in the context of harmonic spaces, necessary and sufficient
conditions for uniqueness of the Ninomiya type operators are established and
relations to previous investigations of Keldys operators are shown. The validity
of the theorems given below requires that the relevant function spaces are rich
enough, as illustrated by a counterexample. Also, a density result for harmonic
functions is proved. This result does not seem to be known even in classical
potential theory where the corresponding statement can be formulated as fol-
lows: Every function continuous on U and harmonic on U is a uniform limit
of continuous potentials of signed measures supported by CU.

1. The Ninomiya and Keldys operators

In what follows, let X be a PB-harmonic space with countable base in the
sense of axiomatics of Constantinescu and Cornea [7]. (All notions not recalled
here are to be found in this monograph.) The corresponding harmonic sheaf
is denoted by ¥ and the cone of continuous potentials on X is denoted by P.
For a potential p, the symbol C(p) stands for its superharmonic carrier.

Suppose that UC X is a nonempty, relatively compact open set. Denote
by U, and U, the set of regular and irregular points of U, respectively. A Borel
set MC QU is said to be negligible, if M has harmonic measure zero at every
point of U, i.e. &°Y(M)=0 whenever x& U.

As above, F(U) stands for the space of real-valued functions on U, S(U)
is the cone of (not necessarily continuous) superharmonic functions on U. Of
course, H(U)=S8(U)N(—S(V)).

Let us introduce the following notations:
H(U) = theCO); hyeH(U)}, H@OU)= H{U)qy,
P(U) = {pw; p€P, C(p)cCU}, Q(U) = P(U)—P(U).

Clearly, Q(U), the space of differences of functions of P(U), is a subspace
of H(U).

The following definition is a slight modification of that proposed by N.
Ninomiya. (It should be noticed that the above mentioned condition (ii) is a
consequence of conditions (i) and (jii) and so does not appear in our definition.)

An operator A: C(0U)—S(U) is said to be a Ninomiya operator on U, if
(1) A is linear and positive;

(2) A(piv)=piv whenever pe P(U);
(3) there is a strict potential g& P such that A(q,5y) €H(U).

If (1) and (2) hold and (3) is replaced by
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(3%) there is a strict potential g€ & such that 4(g,y) € —S(U),
then 4 will be termed a weak Ninomiya operator.

Recall that an operator A: C(0U)—%(U) is said to be a Keldys operator,
provided (1) holds and the following conditions are fulfilled:
(2) A(hioy)=Hhy whenever he H(U);

(3’) A(C@U)cH(U).

Clearly, every Keldys operator is a Ninomiya operator and every Ninomiya
operator is a weak Ninomiya operator. Of course, the operator HY of the Perron-
Wiener-Brelot solution of the generalized Dirichlet problem is a Keldys operator.

The main question studied in this paper is to investigate under what cir-
cumstances a Ninomiya operator is uniquely determined.

The uniqueness problem for Keldys operators has been extensively studied;
for references see [15], [16], [17]. Recall the following result; for a proof see
[12] or [21]; cf. also [15].

Theorem 1. Suppose that

(4) the space H(U) linearly separates the points of U and contains a strictly posi-
tive function.

Then the following conditions are equivalent :

(5) there is exactly one Keldys operator on U ;

(6) the set U, is negligible.

The main result of this paper reads as follows:

Theorem 2. Suppose that

(7) the space Q(U) linearly separates the points of U and contains a strictly posi-
tive function.
Then the following conditions are equivalent :

(8) there is exactly one weak Ninomiya operator on U ;

(9) there is exactly one Ninomiya operator on U ;

(10) the set U, is negligible.

The proof of Theorem 2 will be postponed until after having proved several
auxiliary results.

2. Simpliciality and density of a space of harmonic functions

First recall that, for x& U, the set M, of representing measures (with respect
to Q(U)) is the set of all positive Radon measures p on U such that u(g)=q(x)
whenever g Q(U). The Choquet boundary of U with respect to Q(U) is defined
by

ChQ(U) U= {xEU) M, = {&}}.

Note that Chgy)y U is a G set.  If (7) holds, then by the Choquet theorem (cf.
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e.g. [19], p. 43), for every x€U, there is a p,EM, carried by the Choquet
boundary. This means that u,(U\Chq,U)=0.
Let us denote by F the essential base of CU; see [4], p. 94.

Theorem 3. Suppose that condition (7) holds. Then Chowy, U=FNU and
the space Q(U) is simplicial (i.e. for every x&U there is a unique p, €M, carried
by Chow)U).

Proof. Since Q(U)C H(U), we have &f € M, for every x€ U by [4], p- 103.
If x€ChoyU, then x€U and &f=¢,. Thus x&FNU by [4], p. 102. Con-
sequently, Chowy UCFNU.

For pe 2 put

L(p) = 9€P; ¢=p, R =g} .
Then _L(p) is increasingly filtered by [10], p. 500 and by [4], p. 98,
RE = sup L(p).

Let x& FN U and v,€ M, be a measure carried by CheyU. We are going
to prove that v,=¢&,, which, in turn, shows that x& ChouU.

To this end, fix p€ P and put P,=_L(p);5. Then P, is increasingly filtered,
P,cQ(U) and p=sup P, on FN U because Ry =p on F. Since v, is carried by
Chowy UcFN U, we have

Spdv,, = S sup P, d v, = sup {S hdv,, heP}
_ sup {(x); heP} = p(x).

Consequently, v,(p)=p(x) whenever pe P and v,=¢€, by [7], p. 45. It follows
that ChQ(U)(szﬂ U.

Let xeU and Ps> T, be elements of M, carried by ChowU and, as above, let
PE P be a fixed potential. Then

(pap.=(sup Pdp.=sup f ndp.; hepy
= sup {i(x); hEP} = Rj(x)
and, similarly,
[par.=rRIG).

Consequently, p(p)=7.(p) for every peP and p,=7,. Hence Q(U) is
simplicial.
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Theorem 4. Suppose that (7) holds. Then Q(U) is uniformly dense in
H(U).

Proof. Clearly, Q(U)cH(U). By Theorem 2, we have ChgaU=Chow,U
=FNU and it follows from [4], pp. 102, 103, that Ch,,,U=FN U and H(U) is
simplicial. Thus Q(U) and H(U) have the same annihilating measures; cf. [9],
p. 20 or [15], p. 240. Consequently, Q(U)=H(U).

Remark. One also could use the Stone-Weierstrass type theorem esta-
blished in [8]. For classical potential theory in R®, the result of Theorem 4
for regular sets is mentioned in [1].

3. Uniqueness of Ninomiya operators

In this section, we are going to prove Theorem 2. To this end, some
auxiliary results are needed.

Lemma 1. For x€U and feC(dU), put D" f(x)=¢&5(f). Let an operator
A: C(eU)—F(U) satisfy (1) and (2). Then

A(p1av)2DY(prav) »
whenever pE P.
Proof. ForxeU,
a.: fr Af(x), feC(@U),

is a positive Radon measure on 0U. Let peP and g€ L(p). Since gz P(U),
we have a,(q)=¢(x). Thus, for any x& U,

A(prv) (%) = a(p) Zsupie(g); ¢&-L(p)}
= sup L(p) (x) = Ry (x) = &(p) = D’(prav) (%) -

Remark. For a similar result, cf. [13], p. 175.

Lemma 2. Let (7) hold and let an operator A: C(@U)—F(U) satisfy (1)
and (2) IszChQ(U) U, then

A(piv) (x) = p(z)  for x—>z,
whenever pE P.

Proof. By (7), there is p,&P(U) with inf py(U)=1. If e, has the same
meaning as in the proof of Lemma 1, then, for every x& U,

(U)o (po) = po(x) Ssup p(T)< oo .
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So, for a given & ChgqyU, it is sufficient to prove the following statement:
If x,€U,x,—-2 and a, —a weakly,then a=¢,.

To show this, fix pP(U). Then a, (p)=p(x,) and, consequently, a(s)=
s(x) for every s€Q(U). Hence a €M, and a=¢,, since 2 & Cho)U.

Lemma 3. Suppose (6) and (7). Let A:CQQU)—-F(U) be an operator
satisfying (1) and (2). If g€ P and A(qav) E —S(U), then

A(qiov) = HY(q100) -

Proof. Let g satisfy the hypothesis. By (7), there is pP(U) such that
Qv =7pipy- Thus

A(q1ov)=A(piov) = Piv

and the function s=HY(q5y)— A4(qi5v) is superharmonic and lower bounded on U.
Condition (6) and Theorem 3 imply that D?(q,oy)=H(qioy) and U,=Cho,U;
see [4], p. 106. By Lemma 2,

lim s(x) =0

for every 2 U,. Since the set U; is negligible by (6), the minimum principle
(cf. [2], p. 145) yields s=0 on U. But s<0 by Lemma 1. Consequently,

A(g100)=H"(g100)-

Proof of Theorem 2. Obviously, (8) implies (9). Since (4) follows from
(7), (9) implies (10) by Theorem 1. It remains to prove that (10) implies (8).

Let A be a weak Ninomiya operator. By definition, there is a strict po-
tential g€ P such that A4(q,y) € —S(U).

Fix x€U. By (10) and [4], p. 106, €¢V=¢&!, thus

a(p)z&"(p), PEP,
by Lemma 1. We have

a(q) = &(q)

by Lemma 3. Since ¢ is a strict potential, ot,=&FY by [6], pp. 166, 43.
We conclude that A=HY and (8) is verified.

ReMARK. The implications (5)=>(6), and also (8)=(9)=(10) are true
without hypotheses (4) and (7); cf. [15], pp. 239, 244. 'The following theorem
shows, however, that the implication (6)=(5), and, consequently, the implica-
tion (10)=>(8) do not hold in general.
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4. Non-uniqueness of Keldy$ operators and the negligible set of
irregular points

We shall construct a harmonic space Y and a relatively compact open set
UcC Y for which the Keldys theorem fails despite of the fact that U, is negligible.
It is also shown that the uniqueness of a Keldys operator implies that the space
H(0U) is in a sense rich enough.

Theorem 5. There is a PB-harmonic Bauer space Y with countable base
and a nonempty, relatively compact open set UCY such thot U, is negligible and
there exist two distinct Keldys operators on U.

Proof. If V'CR is an interval (possibly degenerated), denote by £(V') and
K(V) the set of all affine and constant functions on V, respectively.

Define Y=[0, 1[ (endowed with the relative topology from R) and M= {1/
(n+1); neN}. Every open set I/'C Y not containing 0 is a union of a disjoint
system of intervals which are open in R.

Suppose that 'C Y is a nonempty open connected set. If 0V, put H(V)
=X(V). If 0&V and MN V=0, put A(V)=L(V). If, finally, 0V and
MN V=@, define ay=inf (M N V), V,=] inf V, ay[, V,=] ay, sup V[. Notice
that V;=0, if and only if inf V=0. A function h&C(V) is said to belong to
HWV), if by €L(V)) and by, € K(V,). If V'C Y is an open set, then 4 is said
to belong to J(V"), provided hy, &9 (V) for every component V of the set .
Then 4 is a harmonic sheaf possessing the Doob convergence property and con-
taining constant functions. It is easily seen that ]a,b[ and [0,a[ are regular sets,
if 0<a<b<<l. Hence there is a strong base of regular sets in Y. Notice that
10,4[ is not regular.

One easily verifies that x+—1—x is a superharmonic function on Y, thus Y is
a P-harmonic space by [7], p. 4.

Put U=]0, %—[ Then H(U)=K(U) and also H{U)=XK(U). We have
H‘Q‘zf(%) on U for feC(dU). Obviously, % is a regular point, 0 U; and
the set {0} is negligible, since HY f=0, provided f(0)=1, f (%)=O. (Note that

for any ac M and BE R, the function x—(1—a 'x)*+ @ is superharmonic.)
For feC(0U), define

Af(x) = + (fO+/ (3 ), w€U.

Then A4 is a Keldys operator on U and Af=HV f if and only if f(0)=f (%)

RemARk. The above example is a modification of a construction given in
[7], p- 71; cf. also [20], [21]. A similar example for a Brelot space is shown in
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[6] but U is not relatively compact there.

In the example described above, H(U) is the space of constant functions.
Thus H(U) does not separate points of U.

The following theorem shows that, for nontrivial H(U), the space H(aU)
contains a strictly positive function if Keldy$ uniqueness theorem holds. The
proof uses an idea from [2].

Theorem 6. Suppose that H({U)= {0}. If there is a unique Keldys operator
on U, then H(QU) contains a strictly positive function.

Proof. Let j denote the function which is equal to 1 on dU. Suppose
that there is a unique Keldys operator on U and there is no strictly positive
function in H(@U). We deduce from these hypotheses that H(U)= {0}.

Notice that for f,, f,e H(@U), the function f,—f, is constant, if and only if
fi=te

Define

H\(0U) = {g+c+j; g=H(0U), cER} .

Then H,(0U) is a majorizing subspace of C(0U). If heH(0U), then there is
exactly one geH(U) and exactly one cER such that hA=g,+c-j. If A=0,
then ¢=0, since otherwise g5, would be strictly positive.
The mapping
Ay h—>gytec-HY k), k=1,2,

is obviously linear on H;(6U) and

Ag1ov) = 8w
for every g H(U). Suppose now that #=0 and € U,. Then ¢=0 and

lim (g1o(x)+c- HY(k-j) (+)) = g(=)+ckZ g(x)+c = h(z)20.

Notice that HYj, being majorized by a continuous potential, is bounded and
U; is negligible since there is a unique Keldys operator on U; cf. the remark
following the proof of Theorem 2. Thus A,A=0 by the minimum principle;
see [2], p. 145. One can extend 4, to a Keldys operator; cf. [15], p. 253. Thus
uniqueness gives, in particular, 4,j=4,;j or HYj=HY(2:j). Consequently,
HYj=0 on U. It follows that H(U)= {0}.

Theorem 7. Let VC X be an open relatively compact set, SCX be a closed
semipolar set such that SNV is not polar. Then there are at least two distinct
Keldys operators on U=V\S.

Proof. Denote S,=VNS. Then 9U=0VUS,, because S is nowhere
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dense by [7], pp. 118, 153. It is easily seen that there is a non-polar compact
set KCS;; see [7], p. 144. For feC(aU), define

A f=Hf, A f = H(fro)ho -

Then A,, A, are clearly positive linear operators from C(8U) into H(U). Let
heH(U). Then heH(V) by [14], p. 121, and A,(hsy)=As(hisy)=Hh1y. Thus
A,, A, are Keldys operators. Let feC(U), f=00on dV and f=10on K. Then
A, f=0 but 4, f is not identically zero on U, since K is not polar; see [7], p. 147.
Thus A4,, A, are distinct Keldys operators on U.

Corollary. If there is exactly one Keldys operator on every nonempty open
relatively compact subset of a harmonic space Y, then the axiom of polarity holds
inY.

Proof. Suppose that the axiom of polarity does not hold in ¥. Then there
is 2 nonempty open subset X of ¥ such that X is a ®B-harmonic space in which
the axiom of polarity does not hold; see [7], pp. 225, 48. By [7], p. 219, there is
a compact non-polar totally thin subset of X. The rest follows from Theorem 7.

REMARKs. The result stated in the corollary is known; see [12], [15] for
another proof. Theorem 7 gives a method to construct sets on which the
Keldys uniqueness theorem does not hold. The special case for the harmonic
space associated to the heat equation was investigated in [12].

The main results of this paper were presented in a talk at the Conference
on Potential Theory, Oberwolfach, July 1984.

During the Conference, Professor W. Hansen communicated to me another
proof of Theorem 4 using continuous dilations studied in [5].

In September 1984, Professor L.I. Hedberg informed me that a similar
density result for classical potential theory was proved in his manuscript con-
cerning approximation by harmonic functions. Instead of Q(U), however,
potentials of measures of finite energy are considered.
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