Kawai, H. Osaka J. Math. 23 (1986), 201-205

ON INDECOMPOSABLE MODULES AND BLOCKS

Dedicated to Professor HIROSI NAGAO for his 60th birthday

HIROAKI KAWAI

(Received November 30, 1984)

Introduction

Let G be a finite group and F a field of prime characteristic p. Let M be an irreducible FG-module belonging to a block B of FG with defect group D. Then the following fact is well-known. Namely if M has height 0 in B, then D is a vertex of M and the dimension of D-source of M is prime to p (provided that F is sufficiently large). The main objective of this paper is to study an indecomposable module M which satisfies the conclusion in the above statement. In particular it will turn out that M_H has a component with the same property for $H \leq G$ under certain circumstances (see Theorem 2.1). We shall apply our results to give new proofs to some of important theorems concerning blocks.

The notation is almost standard: We fix a complete discrete valuation ring R of characteristic 0 with F as its residue class field. We assume that the quotient field of R is a splitting one for every subgroup of G. We let θ denote R or F. By an θG -module M, we understand a right θG -module which is finitely generated free over θ . If M is indecomposable, we denote its vertex by vx(M). For another module N, N | M indicates that N is isomorphic to a direct summand of M and we say "N is a component of M" if N is indecomposable. If n is an integer and p^m is the highest p-power dividing n, then we write m = v(n). Finally for a block B of G, we denote by $\delta(B)$ a defect group of B.

1. Sources with θ -rank prime to p

For later convenience, we put down the following well-known fact without proof.

Lemma 1.1. Let M be an indecomposable θG -module with vertex Q. Let V be an indecomposable θQ -module. Then V is a Q-source of M if and only if $V | M_{Q}$ and Q is a vertex of V. Let M be an indecomposable θG -module. We consider the following condition;

(*) $p \not\mid \operatorname{rank}_{\theta} V$ for a source V of M.

Theorem 1.2. Let H be a subgroup of G. Let M be an indecomposable θG -module with vertex Q which satisfies (*). Let P be a maximal member of $\{Q^{x} \cap H | x \in G\}$. Then there exists a component N of M_{H} such that P is a vertex of N and N satisfies (*).

Proof. We set $P=Q^a \cap H$ $(a \in G)$ and let V be a Q^a -source of M. Then there exists a component W of V_P with $p \not\mid \operatorname{rank}_{\theta} W$. Then P is a vertex of W by Green's theorem. We may assume that $V \mid M_{Q^a}$ and hence $W \mid M_P$. Let N be a component of M_H such that $W \mid N_P$. Then $P \subseteq_H vx(N)$. On the other hand, $N \mid M_H$ means that $vx(N) \subseteq_H Q^x \cap H$ for some $x \in G$. Therefore we have $vx(N) =_H P$ by the choice of P. Moreover W is a P-source of N by Lemma 1.1. This completes the proof.

We mention a couple of remarks concerning the condition (*).

REMARK 1.3. Let M be an indecomposable FG-module with cyclic vertex. Then M satisfies (*).

For the proof of this fact, it is sufficient to show the following lemma, which may be, much or less, well-known.

Lemma 1.4. Let $Q = \langle x \rangle$ be a cyclic group of order p^s . Let M be an arbitrary indecomposable FQ-module. Then M satisfies (*).

Proof. (Watanabe) We denote by Q_i the subgroup of Q with order p^i $(0 \le i \le s)$. For each i, FQ_i has exactly p^i indecomposable modules V_{ij} with $\dim_F V_{ij} = j$ $(1 \le j \le p^i)$. Recall that each $M_{ij} = (V_{ij})^q$ is indecomposable by Green's theorem. Moreover if (j, p) = 1, then $\nu(\dim_F M_{ij}) = \nu(|Q:Q_i|)$. This implies that Q_i is a vertex of M_{ij} and so V_{ij} is a Q_i -source of it. Now we see that the set $\bigcup_{i=0}^{i} \{M_{ij}|(j, p)=1, 1\le j\le p^i\}$ must be a full set of non-isomorphic indecomposable FQ-modules, since $p^s = \sum_{i=0}^{s} \varphi(p^i)$ (φ denotes the Euler totient function). This completes the proof of Lemma 1.4.

REMARK 1.5 (Knörr [5], Theorem 4.5). Assume that F is algebraically closed. Let M be an indecomposable θG -module. Then if $\nu(\operatorname{rank}_{\theta} M) = \nu(|G: vx(M)|), M$ satisfies (*).

As an application of Theorem 1.2, we show the following;

Corollary 1.6. Let H be a normal subgroup of G. Let M be an irreducible

202

FG-module and N an irreducible constituent of M_H . Then if $\nu(\dim_F M) = \nu(|G: vx(M)|)$, we have $\nu(\dim_F N) = \nu(|H: vx(N)|)$.

Proof. For the proof of this result, we may assume that F is algebraically closed. By Theorem 1.2 and Remark 1.5, there exists an irreducible constituent \hat{N} of M_H such that \hat{N} satisfies (*). However, since a source of N and that of \hat{N} are G-conjugate to each other, we have that $\nu(\dim_F N) = \nu(|H: vx(N)|)$ by Theorem 4.5 in [5].

As one of typical modules which satisfy (*), let us take what is called a Scott module. For any subgroup X of G, we denote by I_x the trivial θX -module (an θX -module of rank 1 on which X acts trivially). For a *p*-subgroup Q of G, $(I_q)^G$ has exactly one component S which contains I_G as a submodule, and then Q is a vertex of S (see Burry [2]). Following Burry, we call S the Scott G-module with vertex Q. The following theorem was suggested by Okuyama.

Theorem 1.7. Let H be a subgroup of G and S the Scott G-module with vertex Q. Let P be a maximal member of $\{Q^{x} \cap H | x \in G\}$. Then there exists a component U of S_{H} which is the Scott H-module with vertex P.

Proof. We prove by the induction on |Q|/|P|. If |Q|=|P|, our assertion follows immediately from Theorem 2 in [2]. So we assume that |Q|>|P|. We set $H_1=N_c(P)$ and let P_1 be a maximal member of $\Omega=\{Q^x \cap$ $H_1|Q^x \cap H_1 \supseteq P, x \in G\}$. It is clear that Ω is not empty. Thus by the induction hypothesis, there exists a component U_1 of S_{H_1} which is the Scott H_1 -module with vertex P_1 . We set $T=N_H(P)$, then there exists a component \hat{U} of $(U_1)_T$ which contains I_T as a submodule. However, since $(P_1)^y \cap T=P$ for all $y \in H_1$, $\{(I_{P_1})^{H_1}\}_T$ is a direct sum of copies of $(I_P)^T$ by Mackey decomposition theorem. Thus \hat{U} must be the Scott T-module with vertex P. Let U be a component of S_H such that $\hat{U} \mid U_T$. Then since P is a vertex of U, U corresponds to \hat{U} in the Green correspondence with respect to (H, P, T). Thus by Theorem 1 in [2], U is the Scott H-module with vertex P.

2. Some applications to block theory

Let *H* be a subgroup of *G* and *b* a block of *H*. Following Brauer, we call b *G*-admissible provided $C_G(\delta(b)) \subseteq H$. Note that this does not depend on the particular choice of $\delta(b)$ and b^G is defined. The following theorem was suggested by Okuyama.

Theorem 2.1. Let b be a G-admissible block of H. If M is an indecomposable θ G-module in $B=b^{G}$ which has $\delta(B)$ as a vertex and satisfies (*), then there exists a component N of M_{H} which belongs to b and has $\delta(b)$ as a vertex and satisfies (*).

Proof. We prove by the induction on $|\delta(B)|/|\delta(b)|$. If $|\delta(B)| = |\delta(b)|$, our assertion follows immediately from Corollary 9 in [6] and Lemma 1.1. So we assume that $|\delta(B)| > |\delta(b)|$. Let \hat{b} be a root of b in $T = \delta(b)C_{c}(\delta(b))$. We set $H_{1}=N_{c}(\delta(b))$ and $b_{1}=\hat{b}^{H_{1}}$. Then $|\delta(b_{1})| > |\delta(b)|$ by Brauer's first main theorem and the assumption. Thus by the induction hypothesis, there exists a component N_{1} of $M_{H_{1}}$ in b_{1} such that $\delta(b_{1})$ is a vertex of N_{1} and N_{1} satisfies (*). Since $H_{1} \triangleright T$, b_{1} covers \hat{b} . Thus by Theorem 1.2, we can show that there exists a component \hat{N} of $(N_{1})_{T}$ such that \hat{N} belongs to \hat{b} and $vx(\hat{N}) =$ $H_{1}\delta(b_{1}) \cap T$. However, since $vx(\hat{N}) \subseteq \delta(b) \subseteq \delta(b_{1})$, we have that $vx(\hat{N}) = \delta(b)$ from the above. Let N be a component of M_{H} such that $\hat{N} \mid N_{T}$. Then $N \in b$ by (3.7a) in [3]. Since $N \in b$ and $\hat{N} \mid N_{T}$, $\delta(b)$ is a vertex of N and N satisfies (*) by Lemma 1.1. Thus the proof is complete.

The above theorems allow us to give alternative proofs to some of important results concerning blocks.

Corollary 2.2 (Brauer's third main theorem). Let b be a G-admissible block of a subgroup of G. If b^{G} is principal, then b is principal.

Proof. This is immediate from the above theorem by taking $M=I_G$, the trivial θG -module.

For the proofs of the following corollaries, we may assume that F is algebraically closed.

Corollary 2.3 (Alperin and Burry [1]). Let Q be a p-subgroup of G and H a subgroup of G such that $H \supseteq QC_G(Q)$. Let B be a block of G. If P is a maximal member of $\{\delta(B)^x \cap H | x \in G, \delta(B)^x \cap H \supseteq Q\}$, then there exists a block b of H such that $b^c = B$ and P is a defect group of b.

Proof. Let M be an irreducible FG-module in B of height 0. Then $\nu(\dim_F M) = \nu(|G: vx(M)|)$ and $\delta(B)$ is a vertex of M. By Theorem 1.2 and Remark 1.5, there exists a component N of M_H such that P is a vertex of N. Let b be a block of H which contains N. Since $C_G(P) \subseteq H$, b^G is defined and equals to B by (3.7a) in [3]. Furthermore by the maximality of P, we see easily that P is a defect group of b.

Corollary 2.4 (Knörr [4]). Let H be a normal subgroup of G. Let B be a block of G and b a block of H. If B covers b, then $\delta(b) = {}_{G}\delta(B) \cap H$.

Proof. Let M be an irreducible FG-module in B of height 0. Then by Theorem 1.2 and Remark 1.5, we can show that there exists a component N of M_H such that N belongs to b and $vx(N) = c\delta(B) \cap H$. So we have $\delta(b) \supseteq$

204

 ${}_{G}\delta(B)\cap H$. On the other hand, for an irreducible *FH*-module *N* in *b* with $\delta(b)$ as a vertex, there exists an irreducible *FG*-module *M* in *B* such that $N | M_{H}$ (see Proposition 4.1 in [4]). Thus we have $\delta(b) \subseteq_{G} \delta(B) \cap H$. Combining with the above, $\delta(b) =_{G} \delta(B) \cap H$ as asserted.

Corollary 2.5. Let H be a normal subgroup of G. Let B be a block of G and φ an irreducible Brauer character of G in B. If φ has height 0, then any irreducible constituent of φ_{H} has height 0 in the block of H to which it belongs.

Proof. This is immediate from Corollary 1.6 and Corollary 2.4.

Acknowledgement. The author wishes to thank Dr. T. Okuyama and A. Watanabe for their helpful advice.

References

- [1] L.J. Alperin and D.W. Burry: Block theory with modules, J. Algebra 65 (1980), 225-233.
- [2] D.W. Burry: Scott modules and lower defect groups, Comm. Algebra 10 (1982), 1855–1872.
- [3] J.A. Green: On the Brauer homomorphism, J. London Math. Soc. (2) 17 (1978), 58-66.
- [4] R. Knörr: Blocks, vertices and normal subgroups, Math. Z. 148 (1976), 53-60.
- [6] A. Watanabe: Relations between blocks of a finite group and its subgroup, J. Algebra 78 (1982), 282-291.

Department of Mathematics Osaka City University Sumiyoshi-ku, Osaka 558, Japan