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GENERALIZATIONS OF NAKAYAMA RING 1

Manasu HARADA

(Received October 11, 1984)

T. Nakayama found a very important ring in ring theory, which we call
a generalized uniserial ring [6]. He showed that a left and right artinian ring
R is a generalized uniserial ring if and only if every (finitely generated) left
(resp. right) R-module is a direct sum of uniserial modules. We shall general-
ize further such a ring from this point of view.

We shall define Conditions (%, 3) and (*#, 3) (see §1) for a direct sum
D(3) of three hollow modules. If R is a generalized uniserial ring, (%, 3) and
(**, 3) are satisfied ([2] and [3]). In §2 we shall give a characterization of
a right artinian ring R which satisfies (*x, 3) for any D(3). In §3 we shall
expose several examples related to the results in the previous section.

We shall study Condition (%, 3) in a forthcoming paper.

1. Definitions. Let R be throughout a right artinian ring with identity.
Modules in this note are unitary right R-modules with finite length. Let e
be a primitive idempotent in R. If eRDeJ/DeJ*D---DeJ"=0 is a unique
chain of the submodules of eR for each e, R is called a right (generalized uni-)
serial ring (Nakayama ring), where J=](R) is the Jacobson radical of R.

As a generalization of a serial ring, we have considered the following two
conditions [1]:

(%, m)  Every (non-zero) maximal submodule of a direct sum D(n) of n non-zero
hollow modules is also a direct sum of hollow modules, and

(%%, n)  Every (non-zero) maximal submodule of the D(n) above contains a non-
trivial direct summand of D(n).

By Nakayama [6], if R is a right and left serial ring, (%, #) holds for any D(n)

and any n as right (resp. left) R-modules. Further R is a right serial ring if

and only if (%, n), replaced hollow by uniserial, holds for any D(z) and any

n as right R-modules [5].

In general, if J?=0, (%, 2) holds for any D(2) by [3], Proposition 3. Let

{N;}%.1 be a set of hollow modules, and put D(n):i,“@N,-. Let M, be a
maximal submodule of D(n-1)=§l®Ni. Then M=M,BN, is a maximal
=1

submodule of D. If D satisfies (%, #), M, is also a direct sum of hollow modules
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by Krull-Remak-Schmidt’s theorem. Hence D(n—1) satisfies (¥, n—1). Con-
trarily, if D(n—1) satisfies (x*, n—1), D(n) does (**, n) by [2], Lemma 1.

DEFINITION. A ring R is called a right US-n ring if (xx, n) is satisfied for
any D(n) (US is an abreviation of uni-serial).
We have obtained the following theorem [2]:

Theorem 1. Let R be a right artinian ring. Then R is a right US-1 ring
if and only if R is a semi-simple ring. R is a right US-2 ring if and only if R is
a right generalized uni-serial ring.

Hence the next problem concerning (%%, 7) is to study the structure of
right US-3 rings.

2. US-3 rings. Let N, and N, be two hollow modules. Assume that
N,~eR/[eA;, and N,~eR|A,, where e is a primitive idempotent and the 4; are
submodules of eR. If there exists an epimorphism of N to N, then there exists
a unit element x in eRe such that x4, 4,. If there exists an epimorphism of
one to another between NV, and N,, we indicate it by N;~N, or 4;,~A4,, namely
there exists a unit element y in eRe such that y4,c 4, or y4,CA4,. Since
y(eR[|A,)=eR[yA,, we may assume, in this case, that 4,C 4, or 4,C 4,.

Now we put A=eRe/e]e, a division ring, and A(4,)={%| €A, there exists
x' in eRe such that ¥'4,C 4,, and x—x'cefe}. If we put S(4;)={x| SeRe,
xA,C A}, then S(4,) is a subring of eRe. Let v be the natural epimorphism
of eRe onto eReleJe=A. Then A(A4,)=v(5(4,)), and A(4,) is a sub-division
ring of A. We may regard A as a right A(4,)-module, and hence we denote
the dimension of A over A(4,) by [A: A(4,)] (see [1]). |A4,| means the length
of 4,.

Lemma 1. Let {A;}}., be a set of three submodules in eR. If A;=e] for
some 1, DzéGBeR/A,- satisfies (%, 3). Conversely, if D satisfies (xx, 3), A;~A;
for some pair (3, 7).

Proof. 1If A,=e], eR/A, is simple. Let M be a maximal submodule of D.
Then MDeR|A, or D=MPeR|A,. Hence (*%, 3) holds. If A,=e] for some
i, then A;~A; for certain j, since e/ is a unique maximal submodule of eR.
Assume that A;=e] for all .. Then any eR/A4; does not satisfy (%, 1). Hence
Ay~ A for some pair (', j') by [4], Corollary 2.

Proposition 1. Assume that R is a US-3 ring. Then 1) [A: A(4)]<2
for any submodule A in eR. 2) If there exists a submodule B in eR such that
[A: A(B)]=2, then B~C for any submodule C in eR. 3)t=|eJ'le]'**| <2 for
alli. 4) Assume that e]’ contains a maximal submodule A, (DeJ**") with A(A4,)=
A. Then i) e]’ contains at most two maximal submodules A, and A,. ii) A(4,)



GENERALIZATIONS OF NAkAvyaMA RinG I 183

=A(4,)=A. iii) 4, and A, are characteristic in eR. iv) Either A, or A, is
hollow, provided t=2.

Proof. 1) and 2). They are immediate consequences of [2], Theorem 2
and [4], Corollary 1, respectively.
3) Letefile] "' =C,DC,D - PC,, where the C; are simple modules and ¢J* 2
C,ReJ*. Itisclear that |C|=|C,| =1+ |eJ"*!| for all k. Assume that A(C;)
=A and C;~C,. Then there exists a unit x in eRe such that xC,=C,. Since
A(C))=A, put x=ux,+j, where x; C;=C, and jeefe. Then C,=xC,=(x,+7)C;
CxC,+jC,c Cy+eJit'=C,. Hence, if A(C;)=A for all 7, t<2 by Lemma 1.
Next assume that A(C))#=A. Then A(C;)=#=A for all ¢ by 2) and the above
proof. There exists, from 2), a unit x, in eRe with C,=x,C;. Then ®,EA(C)).
Since [A:A(C)]=2, A=A(C,)+®,A(C;). From the observation above,
eJile]i**=A Ci=A(C,)C,+#&, A(C,) C,;=C,+C,. Hence t<2.
4), ii) and iii). They are clear from the first part of the proof of 3).
4), i). Assume that 4, is a maximal submodule of ¢J’ with A(4;)=A. Then
A, is characteristic from iii). Let 4, be another maximal submodule of eJ‘.
Then A(4,)=A from 1) and 2). Hence 4,4, so eJ* contains at most two
maximal submodules 4, and 4,.
4), iv). Assume that A,&=4,. Then A,NA,=eJ*'. Let B be a maximal
submodule in 4;. If B~eJ*!, B=e]J*! since ¢]J**! is characteristic. Hence, if
| 4;/A, J| =2, A, conatins a maximal submodule B; such that Byce] ™. Let
B’ be a maximal submodule of A4, If B'seJ'*! and |A4,/4,]|>2, B'~B,.
Hence there exists a unit element x in eRe such that B'=xB,Cx4,, and so
B'c A,N A,=e]J'*', which is a contradiction. Hence 4, is hollow.

Corollary. Let R be a right artinian ring. Then R is a right US-3 ring
if and only if we have the following properties for each primitive idempotent e:
1) For any three submodules A; of eR such that A(4;)=A, A;~A; for some pair
(Z 7). 2) [A: A(A)I<2 for any submodule A of eR. 3) If [A: A(B)]=2 for
a submodule B of eR, B~A.

Proof. “Only if” part is clear from Lemma 1 and Proposition 1. Assume
1)~3) and put D=eR/A,PeR|A,PeR|A;. If the A, satisfy 1), then D satisfies
(%%, 2) and hence (%%, 3) by [4], Corollary 3. Assume that [A: A(4,)]=2. Then
we may assume that A4,C A4, or 4,C A4, from 3). If A=A(4,), then A(4,, 4,)
={®|x<EeRe, xA,C A} =A or A(4,, A,))=A, respectively. Hence D satisfies
(**, 2) by [4], Theorem 2. Finally assume that [A: A(4,)]=2 for all . Then
D satisfies (%%, 3) by 3) and [4], Corollary 4.

In Corollary to Proposition 1, we have given the condition under which
(#*, 3) holds for any D(3). Using this corollary, we shall give the complete
form of the lattice of submodules of eR, provided R is a right US-3 ring.
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First we consider the following situation:

X DY are characteristic submodule of eJ, X|Y is simple and Y is hollow.

Let {D;} be the set of submodules of eR containing Y such that |D;|=|X|
and D;#=X. Then D;,NX=Y and D;xX, so D;~D, provided :>2. Since
D,ND,=Y, D, and D, can not contain a common maximal submodule except
Y. Let B, (Y) be a maximal submodule of D; for each 7 (note that D;~D,).
Then B,=%B,, and put E=B,+B,. D,/B,=(B,+Y)/B~Y/(B,NY) is simple
and Y is hollow by assumption, and so BN Y=J(Y) (=Z). Similarly, B,N
Y=Z. Since D,|/Y~B,/Z and B,NB,=Z, |E|=|D,|=|D,|, and E~D,, for
E+X. From the fact: D;,DY and Y is characteristic, ED Y, and so E=D; for
some j. However, D;N\D,DB, implies D;=D,, and similarly D;=D,, which
is a contradiction. Hence, whenever z>2, each D; is hollow. Thus we obtain

(X is characteristic and

v DI\D \f\%\/ X o Da 5 Dishollow
1)— i
1
Y (Y is hollow and chara-
or cteristic)
i)-2

Now following Proposition 1, we divide the situations into the following
cases:

ef’ (¢J is hollow)
I i] i+ (eJ**! is hollow)
.
: ] (¢J* is hollow)
{
i+1
Ir / !
C, e C,  (C, and C, are characteristic and either

AN
i

-eji+2

C, or G, is hollow and A(C))=A (i=1, 2))
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IIT’ \

v’

(4, and 4, are chacteraristic, either 4,
or 4, is hollow and A(4;)=A (=1, 2))
(¢J*** is hollow)

(Cy and C, are characteristic, either Cy
or C, is hollow and A(C))=A (i=1, 2))

(eJ* is hollow)

a2 ([A: AC;)]=2 for all §)

([A: A(4)]=2 for all i)

(eJi*! is hollow)
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([A: A(4;)]=2 for all 7)

([A: A(C))]=2 for all 7)

([A: A(A;)]=2 for all 7)

(C, and C, are characteristic,
either C; or C, is hollow and
A=A(C) (=1, 2))

(4, and 4, are characteristic,
either 4, or A4, is hollow and
A=A(4)) (=1, 2))

([A: A(C))]=2 for all 7)
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In the above and following observations, every chain of a diagram means
a composition series, all modules located on the same horizontal line in the
diagram have the same length, and all modules with same length appear in
the diagrams below. It may happen that some modules in the diagrams do
not appear. Further we always consider a case where ¢Jf is a waist (every
composition series contains ¢f*) or D, in the diagram exists.

I' Let D' (eJ) be a submodule of eR with |D’|=|eJ*|. Since there
exists D, containing e¢/**! with |D,|=|eJ*| by assumption, D'~D, by Lemma 1.
Hence D, DeJ*! implies D' DeJ**'. Thus we obtain from i)

e’ (¢J° is hollow and a waist)
I)-1 e ! (eJ#** is hollow and a waist)
e] i+

(A=A(D))

(B; 1s hollow and A=A(B))
for all z)

(eJi*? is a waist)

(D; is hollow and A=A(D;)
for all 7)

! —

eJ ™ (eJ*** is a waist)

g (eJf*? is waist)

IT" Let {D, (eJ)}}-1 be a set of submodules of ¢J such that D,DeJ+!
and |D,|=/eJ’| (see the initial part of I'). Let B, (k=1, 2, ---) be maximal
submodules of D, different from e¢J**'. Since D,/B, is simple and ¢J*** contains

at most two maximal submodules C;, we may assume that B,NeJ*'=C,. Then
since B,=«B, for a unit », B,NeJ*'=x(B,NeJ")=xC,=C,. Let C be a
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maximal submodule of B,. Since B,NeJ*'=CxC,, C~C, or C~C,. How-
ever, since C; and C, are characteristic and |C|=|C,|=]|C,|, C=C, or C=
C,. Therefore C) is a unique maximal submodule of B,. Next assume that n
>2, 1.e. D,%D,. If D, is not hollow, D, contains a maximal submodule B] (=
eJ*!) which contains also a unique maximal submodule C, from the above
argument (k=1 or 2). Since B{~B, by Lemma 1 and C;,xC,, k=1. Therefore
B,NB{=C;. If we replace J(Y) by C, in the proof of i), we obtain the same
situation (put E=B,+B{) and the D; are hollow. Thus we have

et
-7
/%\
B g % By @32 (B,is hollow and A=A(By))

- Z_e_ o
—~_ .
DINDOO \\\ ?]i ~< ’_’Dw (D; is hollow and A=A(D;)
ZW az>2 for all i)
12 ¢ ].+1\ (eJ**! is a waist)
Ci_ G,

N
— S
7N +2
\ AN e] A

——DC

III’ The A; are characteristic. Replacing C; in II) by A4;, we obtain
from 1)

IIT)-1
b >~
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or

—_—————

(D; is hollow and A=
A(D;) for all 7)

1I1)-2

B}:\ v\ \é] s ’X’\Bp (B; is hollow and A=

or

(We shall know later that the B; are hollow.)

IV’ Similarly to IT” and the above, we obtain
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'\ D eJ’ OO//,_,D"’ (D; is hollow and A=
N = i a>2 A(D;) for all 7)
N X
I 2~
A A,

v) AL T T
B’l\«B2 «?0‘ fj AN 7 B 8>2 (B; is hollow and A=
W A(B)) for all 1)
G, % C,
N
\ N\ —~—
\ MmN T
\7 N\ i4+2 \\
N e/
NN _.

In order to study the remaining cases, we consider the following:

(We omit other forms similar to the second form in IIT)

i’

Since A(4;)#=A by Proposition 1, 4), for any submodule E of eR, E~A, by
Proposition 1, 2). Hence EDeJ*! provided |E|=|4,], since 4,DeJ*** and
eJ*! is characteristic, and so maximal submodules of D consist of a subset of
{4;}. Therefore D is hollow. On the other hand, A=A(D) and A+=A(4,) by
assumption and Proposition 1, 2). Therefore there exists a unit x in eRe such
that (x4j)A4,=+ 4, for any j in efe. Since A=A(D), there exists j' in ¢Je with
(x+j)D=D. Hence D contains 4, and (x-+j')4,, and so DD A4,+(x+j")4,=
eJf, which is a contradiction. Hence D=e¢J!. Therefore ¢/’ is a waist from
the assumption of this observation. If further 4, is not hollow, there exists
a maximal submodule B, (¢J*!) of 4. Then A(B;)=A and we obtain the
same situation as above. Hence B,CA4,N(x+j)A4,=eJ'*', a contradiction.
Therefore e¢J*! is also a waist. Thus from the argument above and the con-
sideration of I)~IV) we obtain
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(e]* is a waist)

(4; is hollow and [A: A(4,)]=
2 for all 7)

(eJ** is a waist)

(D; is hollow and A=
A(D;) for all 7)

(eJ** is a waist)

(C; is hollow and [A:
A(C))]=2 for all 7)

(eJi*? is a waist)

(e]* is a waist)

Y, K / ~a, (4; is hollow and
XAzt / 7 A: A(A)]=2 for all
2'\:—;_———1———’/ . = 1
- /, [A: A(4))=2 for all i
/
/
e] i+t (eJf*! is a waist)

ef itt (eJF*? is a waist)
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(e]* is a waist)

(4; is hollow and
[A: A(4,)]=2 for all )

(eJi*! is a waist)

(C; is hollow and
[A: A(C;)]=2 for all 7)

(eJi*? is a waist)

(e]* is a waist)

(4; is hollow and
[A: A(4;)]=2 for all 7)

(eJi*! is a waist)
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(D; is hollow and
A=A(D;,) for all 7)

IX) (eJ**" is a waist)
(C; is hollow and
[A: A(C))]=2 for all 7)
(eJ**% is a waist)

X) _
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3
XI) J_E

If the B; in I)-3 or III)-2 are not hollow, we should obtain a circle around
eJ*? (note that 8>2), which is directly connected to the circle around eJ*!
like a cylinder. However, there are no circles directly connected in the dia-
grams. Hence B; is hollow.

If we start from e/ and use the diagrams and induction on the nilpotency
of J, we know that either e/* is a waist or D, in each diagram exists. Thus
we obtain the lattice of all submodules in eR by connecting the diagrams I)~
IX). For example see X), XI) and

1 |
eJ?
PN A

Al \ Am

NI

eJ? L v —+

XII) / \ o |
\ e

eJ? 1

\\ IX
a— ——L_\
E,_

eJ® £




GENERALIZATIONS OF NAKAYAMA Ring 1 195

e (isomorphism classes)
o
i
3
XIII) e ]“/ o
o]
e!]5/ ‘
T
eft

If we consider the lattice of isomorphism classes given by the left-sided multi-
plication of unit elements in eRe, we obtain Diagrams XI) and XIII). Check-
ing each diagram, we know that |4/A]|<2 for any submodule 4 of eR and
that the A4 satisfy the conditions in Corollary to Proposition 1.

Theorem 2. Let R be a right artinian ring. Then the following conditions
are equivalent:

1) Ris a right US-3 ring.

2) Let e be a primitive idempotent in R. For any submodule A of eR, A|A]
=A,®A,, where ADA;DAJ and A; is simple or zero, and one of the following
situations occurs:

i) A,=0, i.e., A is hollow.

i) AyeA,and A, J=A].

iil) There exists a unique characteristic and maximal submodule C in A, and
for any maximal submodule B;==C, there exists a unit element x; in eRe such that
%;B)=B;, and further B; [=A] and A(B;)=A.

iv) There are no characteristic and maximal submodules in A, and for any
maximal submodules B; in A, there exists a unit element x; in eRe such that x;B,—
B;, and further B; J=AJ and [A: A(B;)]=2.

In case of iii) and iv) A,~ A4,.

3) The lattice of the submodules of eR is obtained by comnecting Diagrams
N~IX).

Proof. We note that A contains exactly two maximal submodules if and
only if A/AJ=A,D A, and A,x 4, Hence 1)e>3) and 3)—>2) are clear from
the argument before Theorem 2. 2)—3). We can easily see by induction on
¢’ that D in Diagram ii’) is hollow and (D+¢]*)/D is simple. Hence we obtain
this implication from the same argument,

Finally we consider a case of A=A(A4) for any submodule 4 of eR. If
eR is uniserial, every submodule of eR is characteristic. From this pcint of
view, we consider
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Condition II'.  Every hollow module is quasi-projective [3].
If R is a US-3 ring and Condition II’ fulfils, every submodule 4 of eR con-
tains at most two maximal submodules 4, and 4, by Lemma 1. Put B=4,N
A,. If A,/B is isomorphic to 4,/B via f, A;={a,+a,; f(a,+B)=a,+B} is a
submodule of 4 and A4;/B~A,/B. 1t is clear that 4, A; and 4, A; which
contradicts the assumption. Hence A4/4,7%xA/A, provided 4,%A4,. Thus we
obtain the following diagrams:

4 A
/N
A, 4,
4, \
N,
where the A/A; are simple and A/A,A&xA[A4,, and {4;} is the set of maximal
submodules of 4. Conversely, assume that 4 is characteristic in the diagrams
a) and ). Then 4,=](4) for a). Hence 4, is also characteristic. Consider
the diagram b). Let x be any element in eRe. Since {4;} is the set of maximal
submodules of 4, x4,C A4, or xA,CA,. Assume x4,d¢A4,. Since (e+x)4,C
A4, (e+x)4,c A, orc4,. xA,E A4, implies (e+x)A,CA,. On the other hand,

xA,C A, for xA,¢E A;,. Hence A,C A4,, which is a contradiction. Therefore the
A; are also characteristic.

Theorem 3. Let R be as in Theorem 2. Then the following conditions
are equivalent:

1) R s a right US-3 ring and Condition 11" holds.

2) For each primitive idempotent e, any submodule A of eR contains at
most two maximal submodules A, and A,, and either A, or A, is hollow, provided
A,+0 and A,%0.

3) The lattice of the submodules of eR is of Diagram XIV) below, where
each parallelogram is of Diagram b).

<>
%

d
lé
e
7

XIV)
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Proof. The first two conditions are equivalent from the argument before
Theorem 3.
2)—3) is trivial from Diagram XIV).
3)—2). It is clear from the same argument that we obtain Diagram a) or b).
We can show by induction on ¢J* that there exists one of the following situa-
tions:

| /\ /\
7 /\/ /\/

l+1 e]Hl

/\
\/\

/! N

Hence we obtain Diagram XIV).

3. Examples. Let R be a ring with J3=0. We shall give the complete
list of the lattice of submodules of ¢R, when R is US-3.

TR TR I
/ | f |
eJ? eJ* l
e
a,) C, r;o\C2 2) CZ —\T———- - |
\ / ¢ l\.C,,,V ~
!
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fIzR ] TR
ef ! e/
/7/ ——kA \A/ /7/ ______ i
b,) h 2\8]/ b2) ’X //

AIL\OOLé AI/OO Az
N NG
Al o~ /
X Z . __//____\C
I\C ~——-—-/’—/ i
S
eR
|
e
A /00 \A
1 i 2
) JAINTRE
B, Boo e 2/00 B,
. ~. Ny =
K\ ! />/
C Cz

(It may happen that some modules do not appear)
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We shall construct a ring for each case. Let LDK be fields with [L: K]

a,) K KKK a,) /LLL
0 KKK
000K 0 0K
by) LLLL by) LLL
OKLL
00 0L 00K

¢,) ([3], Example 2). Let R be a vector space over K with basis {e, xy;, 5,
Xz €55 Xgpy Va1, Xnp. Define e; e;=e; 3;;, €; x5 €y=Xjp, 5;; Opr € Vi €r=Yijr 3.';' 3&9,
X4y X,="1y, and x,, x,,=7Y,. Putting other multiplications to be zero, we see that
R is a ring with J*=0. Put e=e, 4,=x,K+y,K, 4,=y,,K and B,=x,K.
Then

eR

|

(e+xy,R)B,

where & are in K.

C,) C3)

L LLL K KK KK
R_OLOL 0 K00 K
—100 LL R,=|/0 0 KKK
000K 0 00 KO | (thisis a case a=1)
0 000K
However if
LL LLL
0KO0OOL
R,={00 LLL
00 0LO
00 00L
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then the lattice of submodules of ¢,R, has the same form as c3), but [A: A(B;)]
=2. Hence R, is not US-3.

Let R; be a vector space over K with basis {e, f, a, b, x, y, u}. Define
the multiplication of elements in the basis as follows: é*=e¢, f’=f, eae=a,
ebf=b, exf=x, eye=y, fue=u, ab=x, bu=y and aa=y. Other multiplications
are zero. Then R is a ring and the lattice of the submodules of eR; is

eR,

:e!]=<a) b, X, y>

(this is a case a>1)

If B)/Ci&C; in ¢;), then B,=B;=---=0. Because, B,=xB, for some x in
eRe. Since A(B))=A, x=x,+§, where x,B;=B, and j=efJe. Then B,CB,+
iB,. If jB,cB, B,=0. jB,Ce¢jJcCeJ* and |B,|>|jB,|. Hence jB,=C,
provided jB,d B,, which implies that B,/Ci~C,. Therefore, if B,/C,AxC,,
JjB,C By, so B,=0.

References

[1] M. Harada: On maximal submodules of a direct sum of hollow modules 1, Osaka
J. Math. 21 (1984), 649-670.

[2] —: 1II, ibid. 671-677.

[3] ———: III, ibid. 22 (1985), 81-98.

[4] M. Harada and Y. Yukimoto: IV, ibid. 22 (1985), 321-326.

[5]1 M. Harada: Serial rings and direct decompositions, J. Pure Appl. Algebra 31 (1984),
55-61.

[6] T. Nakayama: On Frobeniusean algebra II, Ann of Math. 42 (1941), 1-21.

Department of Mathematics
Osaka City University
Osaka 558, Japan





