GENERALIZATIONS OF NAKAYAMA RING I

Manabu HARADA

(Received October 11, 1984)
T. Nakayama found a very important ring in ring theory, which we call a generalized uniserial ring [6]. He showed that a left and right artinian ring R is a generalized uniserial ring if and only if every (finitely generated) left (resp. right) R-module is a direct sum of uniserial modules. We shall generalize further such a ring from this point of view.

We shall define Conditions ($*, 3$) and ($* *, 3$) (see $\S 1$) for a direct sum $D(3)$ of three hollow modules. If R is a generalized uniserial ring, $(*, 3)$ and $(* *, 3)$ are satisfied ([2] and [3]). In §2 we shall give a characterization of a right artinian ring R which satisfies $(* *, 3)$ for any $D(3)$. In $\S 3$ we shall expose several examples related to the results in the previous section.

We shall study Condition ($*, 3$) in a forthcoming paper.

1. Definitions. Let R be throughout a right artinian ring with identity. Modules in this note are unitary right R-modules with finite length. Let e be a primitive idempotent in R. If $e R \supset e J \supset e J^{2} \supset \cdots \supset e J^{n}=0$ is a unique chain of the submodules of $e R$ for each e, R is called a right (generalized uni-) serial ring (Nakayama ring), where $J=\mathrm{J}(R)$ is the Jacobson radical of R.

As a generalization of a serial ring, we have considered the following two conditions [1]:
$(*, n) \quad$ Every (non-zero) maximal submodule of a direct sum $D(n)$ of n non-zero hollow modules is also a direct sum of hollow modules, and
(**, n) Every (non-zero) maximal submodule of the $D(n)$ above contains a nontrivial direct summand of $D(n)$.
By Nakayama [6], if R is a right and left serial ring, $(*, n)$ holds for any $D(n)$ and any n as right (resp. left) R-modules. Further R is a right serial ring if and only if ($*, \mathrm{n}$), replaced hollow by uniserial, holds for any $D(n)$ and any n as right R-modules [5].

In general, if $J^{2}=0,(*, 2)$ holds for any $D(2)$ by [3], Proposition 3. Let $\left\{N_{i}\right\}_{i=1}^{n}$ be a set of hollow modules, and put $D(n)=\sum_{i=1}^{n} \oplus N_{i}$. Let M_{1} be a maximal submodule of $D(n-1)=\sum_{i=1}^{m-1} \oplus N_{i}$. Then $M=M_{1} \oplus N_{n}$ is a maximal submodule of D. If D satisfies $(*, n), M_{1}$ is also a direct sum of hollow modules
by Krull-Remak-Schmidt's theorem. Hence $D(n-1)$ satisfies (*, $n-1$). Contrarily, if $D(n-1)$ satisfies $(* *, n-1), D(n)$ does $(* *, n)$ by [2], Lemma 1.

Definition. A ring R is called a right US-n ring if $(* *, n)$ is satisfied for any $D(n)$ (US is an abreviation of uni-serial).

We have obtained the following theorem [2]:
Theorem 1. Let R be a right artinian ring. Then R is a right US-1 ring if and only if R is a semi-simple ring. R is a right US-2 ring if and only if R is a right generalized uni-serial ring.

Hence the next problem concerning ($* *, n$) is to study the structure of right US-3 rings.
2. US-3 rings. Let N_{1} and N_{2} be two hollow modules. Assume that $N_{1} \approx e R / e A_{1}$ and $N_{2} \approx e R / A_{2}$, where e is a primitive idempotent and the A_{i} are submodules of $e R$. If there exists an epimorphism of N_{1} to N_{2}, then there exists a unit element x in $e R e$ such that $x A_{1} \subset A_{2}$. If there exists an epimorphism of one to another between N_{1} and N_{2}, we indicate it by $N_{1} \sim N_{2}$ or $A_{1} \sim A_{2}$, namely there exists a unit element y in $e R e$ such that $y A_{1} \subset A_{2}$ or $y A_{2} \subset A_{1}$. Since $y\left(e R / A_{1}\right)=e R / y A_{1}$, we may assume, in this case, that $A_{1} \subset A_{2}$ or $A_{2} \subset A_{1}$.

Now we put $\Delta=e R e / e J e$, a division ring, and $\Delta\left(A_{1}\right)=\{x \mid \in \Delta$, there exists x^{\prime} in $e R e$ such that $x^{\prime} A_{1} \subset A_{1}$, and $\left.x-x^{\prime} \in e J e\right\}$. If we put $\mathrm{S}\left(A_{1}\right)=\{x \mid \in e R e$, $\left.x A_{1} \subset A_{1}\right\}$, then $\mathrm{S}\left(A_{1}\right)$ is a subring of $e R e$. Let ν be the natural epimorphism of $e R e$ onto $e R e / e J e=\Delta$. Then $\Delta\left(A_{1}\right)=\nu\left(\mathrm{S}\left(A_{1}\right)\right)$, and $\Delta\left(A_{1}\right)$ is a sub-division ring of Δ. We may regard Δ as a right $\Delta\left(A_{1}\right)$-module, and hence we denote the dimension of Δ over $\Delta\left(A_{1}\right)$ by $\left[\Delta: \Delta\left(A_{1}\right)\right]$ (see [1]). $\left|A_{1}\right|$ means the length of A_{1}.

Lemma 1. Let $\left\{A_{i}\right\}_{i=1}^{3}$ be a set of three submodules in eR. If $A_{i}=e J$ for some $i, D=\sum_{i=1}^{3} \oplus e R / A_{i}$ satisfies ($* *, 3$). Conversely, if D satisfies ($* *, 3$), $A_{i} \sim A_{j}$ for some pair (i, j).

Proof. If $A_{1}=e J, e R / A_{1}$ is simple. Let M be a maximal submodule of D. Then $M \supset e R / A_{1}$ or $D=M \oplus e R / A_{1}$. Hence (**,3) holds. If $A_{i}=e J$ for some i, then $A_{i} \sim A_{j}$ for certain j, since $e J$ is a unique maximal submodule of $e R$. Assume that $A_{i} \neq e J$ for all i. Then any $e R / A_{i}$ does not satisfy ($* *, 1$). Hence $A_{i^{\prime}} \sim A_{j^{\prime}}$ for some pair (i^{\prime}, j^{\prime}) by [4], Corollary 2.

Proposition 1. Assume that R is a US-3 ring. Then 1) $[\Delta: \Delta(A)] \leqslant 2$ for any submodule A in $e R$. 2) If there exists a submodule B in $e R$ such that $[\Delta: \Delta(B)]=2$, then $B \sim C$ for any submodule C in $e R$. 3) $t=\left|e J^{i}\right| e J^{i+1} \mid \leqslant 2$ for all i. 4) Assume that eJ contains a maximal submodule $A_{k}\left(\supset e J^{i+1}\right)$ with $\Delta\left(A_{k}\right)=$ Δ. Then i) eJ contains at most two maximal submodules A_{1} and A_{2}. ii) $\Delta\left(A_{1}\right)$
$=\Delta\left(A_{2}\right)=\Delta$. iii) A_{1} and A_{2} are characteristic in $e R$. iv) Either A_{1} or A_{2} is hollow, provided $t=2$.

Proof. 1) and 2). They are immediate consequences of [2], Theorem 2 and [4], Corollary 1, respectively.
3) Let $e J^{i} / e J^{i+1}=\bar{C}_{1} \oplus \bar{C}_{2} \oplus \cdots \oplus \bar{C}_{t}$, where the \bar{C}_{i} are simple modules and $e J^{i} \supsetneq$ C_{k} き $e J^{i+1}$. It is clear that $\left|C_{1}\right|=\left|C_{k}\right|=1+\left|e J^{i+1}\right|$ for all k. Assume that $\Delta\left(C_{i}\right)$ $=\Delta$ and $C_{1} \sim C_{2}$. Then there exists a unit x in $e R e$ such that $x C_{1}=C_{2}$. Since $\Delta\left(C_{1}\right)=\Delta$, put $x=x_{1}+j$, where $x_{1} C_{1}=C_{1}$ and $j \in e J e$. Then $C_{2}=x C_{1}=\left(x_{1}+j\right) C_{1}$ $\subset x C_{1}+j C_{1} \subset C_{1}+e J^{i+1}=C_{1}$. Hence, if $\Delta\left(C_{i}\right)=\Delta$ for all $i, t \leqslant 2$ by Lemma 1. Next assume that $\Delta\left(C_{1}\right) \neq \Delta$. Then $\Delta\left(C_{i}\right) \neq \Delta$ for all i by 2) and the above proof. There exists, from 2), a unit x_{2} in $e R e$ with $C_{2}=x_{2} C_{1}$. Then $x_{2} \notin \Delta\left(C_{1}\right)$. Since $\left[\Delta: \Delta\left(C_{1}\right)\right]=2, \quad \Delta=\Delta\left(C_{1}\right)+\vec{x}_{2} \Delta\left(C_{1}\right)$. From the observation above, $e J^{i} / e J^{i+1}=\Delta \bar{C}_{1}=\Delta\left(C_{1}\right) \bar{C}_{1}+\bar{x}_{2} \Delta\left(C_{1}\right) \bar{C}_{1}=\bar{C}_{1}+\bar{C}_{2}$. Hence $t \leqslant 2$.
4), ii) and iii). They are clear from the first part of the proof of 3).
4), i). Assume that A_{1} is a maximal submodule of $e J^{i}$ with $\Delta\left(A_{1}\right)=\Delta$. Then A_{1} is characteristic from iii). Let A_{2} be another maximal submodule of $e J^{i}$. Then $\Delta\left(A_{2}\right)=\Delta$ from 1) and 2). Hence $A_{1} \nsim A_{2}$, so $e J^{i}$ contains at most two maximal submodules A_{1} and A_{2}.
4), iv). Assume that $A_{1} \neq A_{2}$. Then $A_{1} \cap A_{2}=e J^{i+1}$. Let B be a maximal submodule in A_{1}. If $B \sim e J^{i+1}, B=e J^{i+1}$ since $e J^{i+1}$ is characteristic. Hence, if $\left|A_{1}\right| A_{1} J \mid \geqslant 2, A_{1}$ conatins a maximal submodule B_{1} such that $B_{1} \propto e J^{i+1}$. Let B^{\prime} be a maximal submodule of A_{2}. If $B^{\prime} \neq e J^{i+1}$ and $\left|A_{1}\right| A_{1} J \mid \geqslant 2, B^{\prime} \sim B_{1}$. Hence there exists a unit element x in $e R e$ such that $B^{\prime}=x B_{1} \subset x A_{1}$, and so $B^{\prime} \subset A_{1} \cap A_{2}=e J^{i+1}$, which is a contradiction. Hence A_{2} is hollow.

Corollary. Let R be a right artinian ring. Then R is a right US-3 ring if and only if we have the following properties for each primitive idempotent e : 1) For any three submodules A_{i} of $e R$ such that $\Delta\left(A_{i}\right)=\Delta, A_{i} \sim A_{j}$ for some pair (i, j). 2) $[\Delta: \Delta(A)] \leqslant 2$ for any submodule A of $e R$. 3) If $[\Delta: \Delta(B)]=2$ for a submodule B of $e R, B \sim A$.

Proof. "Only if" part is clear from Lemma 1 and Proposition 1. Assume 1)~3) and put $D=e R / A_{1} \oplus e R / A_{2} \oplus e R / A_{3}$. If the A_{i} satisfy 1), then D satisfies $(* *, 2)$ and hence $(* *, 3)$ by $[4]$, Corollary 3. Assume that $\left[\Delta: \Delta\left(A_{1}\right)\right]=2$. Then we may assume that $A_{1} \subset A_{2}$ or $A_{2} \subset A_{1}$ from 3). If $\Delta=\Delta\left(A_{2}\right)$, then $\Delta\left(A_{1}, A_{2}\right)$ $=\left\{x \mid x \in e R e, x A_{1} \subset A_{2}\right\}=\Delta$ or $\Delta\left(A_{2}, A_{1}\right)=\Delta$, respectively. Hence D satisfies $(* *, 2)$ by [4], Theorem 2. Finally assume that $\left[\Delta: \Delta\left(A_{i}\right)\right]=2$ for all i. Then D satisfies ($* *, 3$) by 3) and [4], Corollary 4.

In Corollary to Proposition 1, we have given the condition under which $(* *, 3)$ holds for any $D(3)$. Using this corollary, we shall give the complete form of the lattice of submodules of $e R$, provided R is a right US-3 ring.

First we consider the following situation:
$X \supset Y$ are characteristic submodule of eJ, X / Y is simple and Y is hollow.
Let $\left\{D_{i}\right\}$ be the set of submodules of $e R$ containing Y such that $\left|D_{i}\right|=|X|$ and $D_{i} \neq X$. Then $D_{i} \cap X=Y$ and $D_{i} \nsim X$, so $D_{1} \sim D_{2}$ provided $i \geqslant 2$. Since $D_{1} \cap D_{3}=Y, D_{1}$ and D_{2} can not contain a common maximal submodule except Y. Let $B_{i}(\neq Y)$ be a maximal submodule of D_{i} for each i (note that $D_{i} \approx D_{1}$). Then $B_{1} \neq B_{2}$, and put $E=B_{1}+B_{2} . \quad D_{1} / B_{1}=\left(B_{1}+Y\right) / B_{1} \approx Y /\left(B_{1} \cap Y\right)$ is simple and Y is hollow by assumption, and so $B_{1} \cap Y=\mathrm{J}(Y)(=Z)$. Similarly, $B_{2} \cap$ $Y=Z$. Since $D_{1} / Y \approx B_{1} / Z$ and $B_{1} \cap B_{2}=Z,|E|=\left|D_{1}\right|=\left|D_{2}\right|$, and $E \sim D_{i}$, for $E \neq X$. From the fact: $D_{i} \supset Y$ and Y is characteristic, $E \supset Y$, and so $E=D_{j}$ for some j. However, $D_{j} \cap D_{1} \supset B_{1}$ implies $D_{j}=D_{1}$, and similarly $D_{j}=D_{2}$, which is a contradiction. Hence, whenever $i \geqslant 2$, each D_{i} is hollow. Thus we obtain

i) -2

Now following Proposition 1, we divide the situations into the following cases:
I^{\prime}
$\left.\right|_{e J^{i}} \quad$ (eJ i hollow)

III'

(A_{1} and A_{2} are chacteraristic, either A_{1} or A_{2} is hollow and $\left.\Delta\left(A_{i}\right)=\Delta(i=1,2)\right)$ ($e J^{i+1}$ is hollow)

IV'

(C_{1} and C_{2} are characteristic, either C_{1} or C_{2} is hollow and $\left.\Delta\left(C_{i}\right)=\Delta(i=1,2)\right)$
V^{\prime}

$\alpha \geqslant 2$
VI^{\prime}

$e e^{i+1}$

$$
\alpha \geqslant 2
$$

($e J^{i+1}$ is hollow)

In the above and following observations, every chain of a diagram means a composition series, all modules located on the same horizontal line in the diagram have the same length, and all modules with same length appear in the diagrams below. It may happen that some modules in the diagrams do not appear. Further we always consider a case where $e J^{i}$ is a waist (every composition series contains $e J^{i}$) or D_{1} in the diagram exists.
I^{\prime} Let $D^{\prime}\left(\neq e J^{i}\right)$ be a submodule of $e R$ with $\left|D^{\prime}\right|=\left|e J^{i}\right|$. Since there exists D_{1} containing $e J^{i+1}$ with $\left|D_{1}\right|=\left|e J^{i}\right|$ by assumption, $D^{\prime} \sim D_{1}$ by Lemma 1. Hence $D_{1} \supset e J^{i+1}$ implies $D^{\prime} \supset e J^{i+1}$. Thus we obtain from i)

(We shall know later that the B_{t} are hollow)

II' Let $\left\{D_{p}\left(\neq e J^{i}\right)\right\}_{p=1}^{n}$ be a set of submodules of $e J$ such that $D_{p} \supset e J^{i+1}$ and $\left|D_{p}\right|=\left|e J^{i}\right|$ (see the initial part of I^{\prime}). Let $B_{k}(k=1,2, \cdots)$ be maximal submodules of D_{1} different from $e J^{i+1}$. Since D_{1} / B_{1} is simple and $e J^{i+1}$ contains at most two maximal submodules C_{j}, we may assume that $B_{1} \cap e J^{i+1}=C_{1}$. Then since $B_{2}=x B_{1}$ for a unit $x, B_{2} \cap e J^{i+1}=x\left(B_{1} \cap e J^{i+1}\right)=x C_{1}=C_{1}$. Let C be a
maximal submodule of B_{1}. Since $B_{1} \cap e J^{i+1}=C_{1} \nsim C_{2}, C \sim C_{1}$ or $C \sim C_{2}$. However, since C_{1} and C_{2} are characteristic and $|C|=\left|C_{1}\right|=\left|C_{2}\right|, C=C_{1}$ or $C=$ C_{2}. Therefore C_{1} is a unique maximal submodule of B_{1}. Next assume that n $\geqslant 2$, i.e. $D_{1} \neq D_{2}$. If D_{i} is not hollow, D_{2} contains a maximal submodule $B_{1}^{\prime}(\neq$ $e J^{i+1}$) which contains also a unique maximal submodule C_{k} from the above argument ($k=1$ or 2). Since $B_{1}^{\prime} \sim B_{1}$ by Lemma 1 and $C_{1} \nsim C_{2}, k=1$. Therefore $B_{1} \cap B_{1}^{\prime}=C_{1}$. If we replace $\mathrm{J}(Y)$ by C_{1} in the proof of i), we obtain the same situation (put $E=B_{1}+B_{1}^{\prime}$) and the D_{i} are hollow. Thus we have

III' The A_{i} are characteristic. Replacing C_{i} in II) by A_{i}, we obtain from i)
III) -1

or

(D_{i} is hollow and $\Delta=$ $\Delta\left(D_{i}\right)$ for all i)
III) -2

(B_{i} is hollow and $\Delta=$ $\beta \geqslant 2 \quad \Delta\left(B_{i}\right)$ for all $\left.i\right)$
or

(We shall know later that the B_{i} are hollow.)
IV' Similarly to II' and the above, we obtain

In order to study the remaining cases, we consider the following:
(We omit other forms similar to the second form in III)

Since $\Delta\left(A_{i}\right) \neq \Delta$ by Proposition 1, 4), for any submodule E of $e R, E \sim A_{1}$ by Proposition 1, 2). Hence $E \supset e J^{i+1}$ provided $|E|=\left|A_{1}\right|$, since $A_{1} \supset e J^{i+1}$ and $e J^{i+1}$ is characteristic, and so maximal submodules of D consist of a subset of $\left\{A_{i}\right\}$. Therefore D is hollow. On the other hand, $\Delta=\Delta(D)$ and $\Delta \neq \Delta\left(A_{i}\right)$ by assumption and Proposition 1,2). Therefore there exists a unit x in $e R e$ such that $(x+j) A_{1} \neq A_{1}$ for any j in eJe. Since $\Delta=\Delta(D)$, there exists j^{\prime} in $e J e$ with $\left(x+j^{\prime}\right) D=D$. Hence D contains A_{1} and $\left(x+j^{\prime}\right) A_{1}$, and so $D \supset A_{1}+\left(x+j^{\prime}\right) A_{1}=$ $e J^{i}$, which is a contradiction. Hence $D=e J^{i}$. Therefore $e J^{i}$ is a waist from the assumption of this observation. If further A_{1} is not hollow, there exists a maximal submodule $B_{1}\left(\neq e J^{i+1}\right)$ of A_{1}. Then $\Delta\left(B_{1}\right)=\Delta$ and we obtain the same situation as above. Hence $B_{1} \subset A_{1} \cap\left(x+j^{\prime}\right) A_{1}=e J^{i+1}$, a contradiction. Therefore $e J^{i+1}$ is also a waist. Thus from the argument above and the consideration of I) $\sim \mathrm{IV}$) we obtain

($e J^{i}$ is a"waist)
(A_{i} is hollow and $\left[\Delta: \Delta\left(A_{i}\right)\right]=$ 2 for all i)
($e J^{i+1}$ is a waist)

(D_{i} is hollow and $\Delta=$ $\Delta\left(D_{i}\right)$ for all $\left.i\right)$
($e J^{i+1}$ is a waist)
(C_{i} is hollow and [Δ : $\left.\Delta\left(C_{i}\right)\right]=2$ for all i)
($e J^{i+2}$ is a waist)

($e J^{i}$ is a waist)
(A_{i} is hollow and $\left[\Delta: \Delta\left(A_{i}\right)\right]=2$ for all i)
($e J^{i+1}$ is a waist)
($e J^{i+2}$ is a waist)

XI)

(isomorphism classes)

If the B_{i} in I) -3 or III) -2 are not hollow, we should obtain a circle around $e J^{i+2}$ (note that $\beta \geqslant 2$), which is directly connected to the circle around $e J^{i+1}$ like a cylinder. However, there are no circles directly connected in the diagrams. Hence B_{i} is hollow.

If we start from $e J$ and use the diagrams and induction on the nilpotency of J, we know that either $e J^{k}$ is a waist or D_{1} in each diagram exists. Thus we obtain the lattice of all submodules in $e R$ by connecting the diagrams I) \sim IX). For example see X), XI) and
XII)

If we consider the lattice of isomorphism classes given by the left-sided multiplication of unit elements in $e R e$, we obtain Diagrams XI) and XIII). Checking each diagram, we know that $|A| A J \mid \leqslant 2$ for any submodule A of $e R$ and that the A satisfy the conditions in Corollary to Proposition 1.

Theorem 2. Let R be a right artinian ring. Then the following conditions are equivalent:

1) R is a right US-3 ring.
2) Let e be a primitive idempotent in R. For any submodule A of eR, $A \mid A J$ $=\bar{A}_{1} \oplus \bar{A}_{2}$, where $A \supset A_{i} \supset A J$ and \bar{A}_{i} is simple or zero, and one of the following situations occurs:
i) $\bar{A}_{2}=0$, i.e., A is hollow.
ii) $\bar{A}_{1} \nsim \bar{A}_{2}$ and $A_{1} J=A J$.
iii) There exists a unique characteristic and maximal submodule C in A, and for any maximal submodule $B_{i} \neq C$, there exists a unit element x_{i} in eRe such that $x_{i} B_{1}=B_{i}$, and further $B_{i} J=A J$ and $\Delta\left(B_{i}\right)=\Delta$.
iv) There are no characteristic and maximal submodules in A, and for any maximal submodules B_{i} in A, there exists a unit element x_{i} in e Re such that $x_{i} B_{1}=$ B_{i}, and further $B_{i} J=A J$ and $\left[\Delta: \Delta\left(B_{i}\right)\right]=2$.

In case of iii) and iv) $\bar{A}_{1} \approx \bar{A}_{2}$.
3) The lattice of the submodules of $e R$ is obtained by connecting Diagrams I) $\sim I X$).

Proof. We note that A contains exactly two maximal submodules if and only if $A / A J=\bar{A}_{1} \oplus \bar{A}_{2}$ and $\bar{A}_{1} \propto \bar{A}_{2}$. Hence 1) $\leftrightarrow 3$) and 3) $\rightarrow 2$) are clear from the argument before Theorem 2. 2) $\rightarrow 3$). We can easily see by induction on $e J^{i}$ that D in Diagram ii') is hollow and $\left(D+e J^{i}\right) / D$ is simple. Hence we obtain this implication from the same argument.

Finally we consider a case of $\Delta=\Delta(A)$ for any submodule A of $e R$. If $e R$ is uniserial, every submodule of $e R$ is characteristic. From this pcint of view, we consider

Condition II'. Every hollow module is quasi-projective [3].
If R is a US-3 ring and Condition II' fulfils, every submodule A of $e R$ contains at most two maximal submodules A_{1} and A_{2} by Lemma 1. Put $B=A_{1} \cap$ A_{2}. If A_{1} / B is isomorphic to A_{2} / B via $f, A_{3}=\left\{a_{1}+a_{2} ; f\left(a_{1}+B\right)=a_{2}+B\right\}$ is a submodule of A and $A_{3} / B \approx A_{1} / B$. It is clear that $A_{1} \searrow A_{3}$ and $A_{2} \mp A_{3}$ which contradicts the assumption. Hence $A / A_{1} \not \approx A / A_{2}$ provided $A_{1} \neq A_{2}$. Thus we obtain the following diagrams:
a)

where the A / A_{i} are simple and $A / A_{1} \approx A / A_{2}$, and $\left\{A_{i}\right\}$ is the set of maximal submodules of A. Conversely, assume that A is characteristic in the diagrams $a)$ and b). Then $A_{1}=\mathrm{J}(A)$ for a). Hence A_{1} is also characteristic. Consider the diagram b). Let x be any element in $e R e$. Since $\left\{A_{i}\right\}$ is the set of maximal submodules of $A, x A_{1} \subset A_{1}$ or $x A_{1} \subset A_{2}$. Assume $x A_{1} \nsubseteq A_{1}$. Since $(e+x) A_{1} \subset$ $A,(e+x) A_{1} \subset A_{1}$ or $\subset A_{2} . \quad x A_{1} \subseteq A_{1}$ implies $(e+x) A_{1} \subset A_{2} . \quad$ On the other hand, $x A_{1} \subset A_{2}$ for $x A_{1} \mp A_{1}$. Hence $A_{1} \subset A_{2}$, which is a contradiction. Therefore the A_{i} are also characteristic.

Theorem 3. Let R be as in Theorem 2. Then the following conditions are equivalent:

1) R is a right US-3 ring and Condition $I I^{\prime}$ holds.
2) For each primitive idempotent e, any submodule A of $e R$ contains at most two maximal submodules A_{1} and A_{2}, and either A_{1} or A_{2} is hollow, provided $A_{1} \neq 0$ and $A_{2} \neq 0$.
3) The lattice of the submodules of $e R$ is of Diagram XIV) below, where each parallelogram is of Diagram b).

Proof. The first two conditions are equivalent from the argument before Theorem 3.
2) $\rightarrow 3$) is trivial from Diagram XIV).
$3) \rightarrow 2$). It is clear from the same argument that we obtain Diagram a) or b). We can show by induction on $e J^{i}$ that there exists one of the following situations:

Hence we obtain Diagram XIV).
3. Examples. Let R be a ring with $J^{3}=0$. We shall give the complete list of the lattice of submodules of $e R$, when R is US-3.
a_{1}).

a_{2})

1
(

c_{1})

c_{2})

(It may happen that some modules do not appear)

We shall construct a ring for each case. Let $L \supset K$ be fields with $[L: K]$ $=2$.
a $\left.\mathbf{a}_{\mathbf{1}}\right) \quad R=\left(\begin{array}{llll}K & K & K & K \\ 0 & K & K & K \\ 0 & 0 & K & 0 \\ 0 & 0 & 0 & K\end{array}\right)$
a a_{2}) $R=\left(\begin{array}{lll}L & L & L \\ 0 & L & L \\ 0 & 0 & K\end{array}\right)$
$\left.\mathrm{b}_{1}\right) \quad R=\left(\begin{array}{llll}L & L & L & L \\ 0 & K & L & L \\ 0 & 0 & L & 0 \\ 0 & 0 & 0 & L\end{array}\right)$
$\left.\mathrm{b}_{2}\right) \quad R=\left(\begin{array}{lll}L & L & L \\ 0 & K & L \\ 0 & 0 & K\end{array}\right)$
c_{1}) ([3], Example 2). Let R be a vector space over K with basis $\left\{e_{1}, x_{11}, y_{12}\right.$, $\left.x_{12}, e_{2}, x_{22}, y_{21}, x_{21}\right\}$. Define $e_{i} e_{j}=e_{i} \delta_{i j}, e_{i} x_{j k} e_{p}=x_{j k} \delta_{i j} \delta_{k p}, e_{i} y_{j k} e_{p}=y_{j k} \delta_{i j} \delta_{k p}$, $x_{11} x_{12}=y_{12}$ and $x_{22} x_{21}=y_{21}$. Putting other multiplications to be zero, we see that R is a ring with $J^{3}=0$. Put $e=e_{1}, A_{1}=x_{11} K+y_{12} K, A_{2}=y_{12} K$ and $B_{1}=x_{12} K$. Then

where k are in K.
c_{2})
c_{3})

$$
R=\left(\begin{array}{llll}
L & L & L & L \\
0 & L & 0 & L \\
0 & 0 & L & L \\
0 & 0 & 0 & K
\end{array}\right) \quad R_{1}=\left(\begin{array}{ccccc}
K & K & K & K & K \\
0 & K & 0 & 0 & K \\
0 & 0 & K & K & K \\
0 & 0 & 0 & K & 0 \\
0 & 0 & 0 & 0 & K
\end{array}\right) \quad \text { (this is a case } \alpha=1 \text {) }
$$

However if

$$
R_{2}=\left(\begin{array}{lllll}
L & L & L & L & L \\
0 & K & 0 & 0 & L \\
0 & 0 & L & L & L \\
0 & 0 & 0 & L & 0 \\
0 & 0 & 0 & 0 & L
\end{array}\right)
$$

then the lattice of submodules of $e_{11} R_{2}$ has the same form as $\left.c_{3}\right)$, but $\left[\Delta: \Delta\left(B_{1}\right)\right]$ $=2$. Hence R_{2} is not US-3.

Let R_{3} be a vector space over K with basis $\{e, f, a, b, x, y, u\}$. Define the multiplication of elements in the basis as follows: $e^{2}=\epsilon, f^{2}=f$, eae $=a$, $e b f=b, e x f=x$, eye $=y, f u e=u, a b=x, b u=y$ and $a a=y$. Other multiplications are zero. Then R_{3} is a ring and the lattice of the submodules of $e R_{3}$ is

(this is a case $\alpha>1$)
If $B_{1} / C_{1} \not \approx C_{2}$ in c_{3}), then $B_{2}=B_{3}=\cdots=0$. Because, $B_{2}=x B_{1}$ for some x in $e R e$. Since $\Delta\left(B_{1}\right)=\Delta, x=x_{1}+j$, where $x_{1} B_{1}=B_{1}$ and $j \in e J e$. Then $B_{2} \subset B_{1}+$ $j B_{1}$. If $j B_{1} \subset B_{1}, \quad B_{2}=0 . j B_{1} \subset e j J \subset e J^{2}$ and $\left|B_{1}\right|>\left|j B_{1}\right|$. Hence $j B_{1}=C_{2}$ provided $j B_{1} \nsubseteq B_{1}$, which implies that $B_{1} / C_{1} \approx C_{2}$. Therefore, if $B_{1} / C_{1} \approx C_{2}$, $j B_{1} \subset B_{1}$, so $B_{2}=0$.

References

[1] M. Harada: On maximal submodules of a direct sum of hollow modules I, Osaka J. Math. 21 (1984), 649-670.
[2] -: II, ibid. 671-677.
[3] —: III, ibid. 22 (1985), 81-98.
[4] M. Harada and Y. Yukimoto: IV, ibid. 22 (1985), 321-326.
[5] M. Harada: Serial rings and direct decompositions, J. Pure Appl. Algebra 31 (1984), 55-61.
[6] T. Nakayama: On Frobeniusean algebra II, Ann of Math. 42 (1941), 1-21.

Department of Mathematics Osaka City University Osaka 558, Japan

