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0. Introduction

In this paper we consider the existence and uniqueness of solutions of
the following Bellman equation:

(0.1)
d

Σ bi(a, s, x)dvldXi—c(ay sy x)v-\-L(μy sy x)} = 0 ,
ί = l

v{T, x) = h{x)

where ί^p<d, A is a separable metric space and (αt>), 1^/, 7^^, is a positive
definite matrix.

W.H. Fleming already considered in [1] the following equation which
is more restrictive than Eq. (0.1):

(0.2)

dv/ds+lβ Σ au(s, x)d2vldXidxj+ Σ bfa x)dvjdxt
l^/.y^v , =v+i

+ίnf {Σ bi(a, s, x)dvldXi-c(a, s, x)v+L(a, s, x)} = 0,

v(T, x) = h(x).

In [1] he also considered the deterministic case that v=0 in Eq. (0.2). His
approach to this equation is as follows; consider stochastic control problem
for a system described by the following stochastic differential equation:

(0.3) dXt = b(at, t, Xt)dt+σ{t, Xt)dBty Xs = xy

where b^a, s, χ)=bi(s, x) for all i=v-\-l9 •••, d, σ"=(n Q)» σ is a nonsingular

(y, z )̂-matrix, (Bt) is a vector valued Brownian motion, x is a vector of Rd and
(at) is a non-anticipative control variable having values in A. Define the cost
v by the following formula:

(0.4) v(s, x) = inf E[^L(aty t, j ??^)exp{- j 'c(a r, r, X*r'
s'x)dr}dt

i-\Tc(at, t, X1's'x)dt}],
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where inf is taken over all non-anticipative control variables and (X"tS*x) is
a solution of Eq. (0.3) associated with (a, s, x). Then W.H. Fleming proved
that the function v is continuous in (s, x) and it has generalized derivatives
(in distribution sense) dvjds, dvldXi(ί^i^d) and ^vfQxiQxj ( l^z, jίίv) be-
longing to Lλ>loc((0, T)xRd) for all l<Ξλ<°o and, furthermore, it satisfies Eq.
(0.2) (α=σσ*j at almost all points of (0, T)xRd.

We shall extend his results to Eq. (0.1) in which all the coefficients in-
cluding their derivatives are assumed to satisfy the polynomial growth condi-
tions. In §2 we shall treat the existence problem of solutions of Eq. (0.1)
and we shall obtain the results similar to those in [1]. The method of [1] es-
sentially depends on general theory of linear differential equations of parabolic
type, but this method cannot be applied to Eq. (0.1). Instead, we depend on
some estimates due to N.V. Krylov [6] in the theory of stochastic control and
on some properties of convex functions. In §3 and §4 we shall discuss the
uniqueness problem of solutions of Eq. (0.1) under more additional assump-
tions, which has been treated also in [6] (Chap. 5, §4) in a restrictive sense
(see Remark 4.2). Moreover, in §5 we shall extend the results obtained in
§ 1/—'§4 to the case where the coefficients are unbounded with respect to a.

Besides [1], [6], there are several results concerning these problems. In
[3] the author studied the same problem as in [1] with respect to Eq. (0.2) in
which b^v+l^i^d) also depend on a. [3] is a special case of Eq. (0.1), never-
theless the results in [3] are not necessarily contained in the present paper (cf.
Remark 1.1). In [5] N.V. Krylov considered Eq. (0.1) (*>=d) in elliptic case
with degeneration in such a way that there is an admissible control variable
for which controlled process does not degenerate. Note that in [5] the co-
efficients are unbounded with respect to a(cf. §5 below). P.L. Lions also
solved in [7], [8] Eq. (0.1) (y=d) in elliptic case, in which the matrix a may
degenerate but the coefficients including their derivatives are bounded.
Especially, in [8] he discussed about "viscosity solution'' of differential equa-
tion and its application to Eq. (0.1) (v=d).

As an application of our results, we can show the existence of generalized
solutions for some nonlinear differential equations of parabolic type with de-
generation, which will be explained in detail in §2 and §5. For example,
the following three differential equations have generalized solutions :d= 2, v=l.

(0.5) vs+lj2vxx-{(vxr+(vy)y*+L(s, x,y) = 0,

(0.6) v,+vXI- i(vxx)
2l2+vxxvx+vxxvy+(vxf+(vyf}^+L(s, x, y) = 0 ,

(0.7) vs+\β vxx- {(vsγ+(υyft +L(s, x, y) = 0 ,

where vs, vxx, vx and vy denote dvjds, d^jdx2, dvjdx and dvjdy respectively.
We can consider more examples different from (0.5)~(0.7).
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1. Formulations and preliminaries

Let T be a finite positive number (fixed). Let A be a separable metric
space and Jl be the Borel subsets of A. Put 0Γ=(O, T)xRd and Qτ=[0, T]
χRd. Consider the following control problem for a system described by
stochastic differential equations of the type:

j dXt = b(aty s+t, Xt)dt+σ(aty s+t, Xt)dBty

( Xo = x

where 0 < ^ T , x is a Λrf-vector and (Bt)y O ^ ί ^ Γ , is a i^-valued process of
independent Brownian motions. Suppose that the coefficients b and σ satisfy
the following conditions throughout in

(A.I) b(ay tyx):AxQτW^Rd and σ(ay ty x): AxQτW^>Rd®Rd ((dy </)-matrix).
We assume that they are continuous with respect to (ay t, x). Furthermore,
for some constant k^0y for all α G i , f e[0,Γ], x, y^Rd, let

(1.2) \b(a, ty x)-b(a, t,y)\+\\σ(a} t, x)-σ(a, t,y)\\£k\x-y\ ,

(1.3)

where || || denotes the norm of matrix. For all a^A and l^Rd

y let the deri-
vatives 7(»(a, t, x), 7(/)(/)(α, t, x)(1\ (d/dήj (a, t, x) exist and be continuous
with respect to (ί, x) on Qτ uniformly over a (y=b, σ). Assume that the fore-
going derivatives do not exceed ^(1+ | ΛT| )w in norm for all a^A, l^Rd

y (t> x)
^Qτ> where m is a nonnegative constant. •

We introduce here the concept of strategy by the following way.

DEFINITION 1.1. By a strategy we mean a process tf^ω), O^t^T, de-
fined on a probability space (Ω, £F, £Ft; P) satisfying the standard conditions(2),
which is progressively measurable with respect to (3?t)> having values in A.
We denote by Sϊ the set of all strategies. •

Remark that from the assumption (A.I) about b and σ, for each strategy
α e δ l and (s, x)^Qτ, there is a unique solution of Eq. (1.1). Then we denote
it by (X*'s x). We often write b*(t, x) and σ*(ty x) instead of b(ay ty x) and
σ{ay ty x) respectively. Next, define the cost by the following formula: for
each αeSC, (s, x)^QTy let

(1) Tu~)(t, x) and Toχo(t, x) denote first and second derivatives of τ{t> x) along spacial
direction / respectively. Generalized derivatives of v in the /-direction, VQ^ and ϋc/XO>
are also defined in a usual way (see [6], p. 47~50).

(2) (Ω, £F, P) is a complete probability space, (SFt) is a nondecreasing family of sub σ-
fields of 3 and right continuous in ί, and 3?0 is trivial with respect to P. Here after
we always assume these conditions for all probability spaces unless otherwise mentioned.
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(1.4) v«{sy x) = E[[L(at, s+ty
Jo

+h(X«τ i's
x)exp(-φ«τΊ's

x)]y

where φ? s ' * = Γc(αr, s+r, X"r'
s'x)dry and (X°t's x) is the solution of Eq. (1.1)

Jo
associated with (a, sy x). Suppose that the functions L, c and h in (1.4) always
satisfy the following conditions in § 1.—'§4:

(A.2) L(ay ty x) (c(a, t, x)):AxQτW^>R(R+)y h(x): RdW^>R. We assume that
the function L(c) is continuous with respect to (α, ty x). For all aEiAy lEΐRd

}

let the derivatives 7(/)(α, t, x)y 7u)u)(a, t, x) and (3/3ί)γ(α, t, x) exist and be
continuous with respect to (ty x)^Qτ (y=Ly cy h). Furthermore, assume that
rγ(=Ly cy h) itself and the foregoing derivatives satisfy the following conditions:
for all (α, ty x)(=AxQTy

(1.5) Iy«(ty x)\ + \(dldt)Ύ»(ty x)\ + \7fo(ί, x)\ + \γ?/)(/)(ί, x)\

\x\)m. D

Then we have the following well known result which will be often used
in this paper (for the proof, see, for example, [2], Chap. 5, §4, Theorem 4.2).

Proposition 1.1. (a) For each λ = l , 2, •••, there is a constant kλ^0 such
that for all (α, s, x) eSl x QTy

(1.6) E[ sup \Xr>x\^kλ(l+\x\)\

where kλ depends on (ky λ).
(b) There is a constant N=N(ky m)^0 such that for all (a, $y x) eSί x QTy

(1.7) \v«(syx)\^N(l+\x\)nt. Π

For each (s, x)^QTy put

(1.8) v(s, x) = inf v"(sy x).

Then the finiteness of v will be given in Proposition 1.2 (see below).

Let l^v<d and let σ be a {vy z>)-matrix such that for all (ty x)^Qτ and
such that ξl+ ••• +ξl=l,

(1.9) sup (ξ, σ«(ty X)σ«(ty x)*?)>0 ,

where σ* denotes a transposed matrix of σ. From now on we assume that
the (dy J)-matrix σ in Eq. (1.1) is written as follows:

( U 0 ) ' - V O t t
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Then our object in § 1-—'§2 is to show that v of (1.8) is a "generalized solution"
of Eq. (0.1) with <z=σσ*, whose meanings will be given rigorously in the next
paragraph. The rest of this one is devoted to state preparatory results about vy

which are mainly due to W.H. Fleming and Rishel [2] (Chap. VI, §8), and
N.V. Krylov [6] (Chap. 3~4). The following results are fundamental for
our discussions, some of which are easily verified by hand.

Proposition 1.2. (a) The function v(sy x) is continuous on Qτ and v(Ty x)
=h(x). Moreover, there exists a constant N=N(ky nί) such that for all (sy x)

(1.11) \v(syx)\^N(ί+\x\)m.

(b) For each ίG[0, T], the function v has first-order generalized derivatives with
respect to Xi(l^i^d), and for each x^Rd it is absolutely continuous with respect to
se[0, T]y has also on this interval a generalized derivative with respect to s. Fur-
thermore, there is a constant N—N(k,m) such that for almost all (s, x)^QTy

(1.12) I(θlds)v(s, x)\ + \Vxv(sy x)\ £N(1+ \x|))2m

where Vxv{sy x)=(dvjdxly •••, dvjdxd) (sy x ) .
(c) There is a constant N=N(k> m) such that for each ίG[0, T]

(1.13) v(sy X ) - Λ ^ ( 1 + | Λ : | 2 ) ( 3 ^ ) + 1

is a concave function with respect to x.
(d) Especially, in Qτ, v(sy x) has second-order generalized derivatives with re-
spect to XiXj(ί^i, jί^v) and, further, the foregoing derivatives are locally bounded
in Qτ.
(e) For each a^A, define operators F06 and F by the following:

(1.14) FΛ(u0, uijy uiy uy sy x) = uo+\β Σ aϊfa x)ui§

+ Σ b1(sy xfo-c^s, x)u+L«(sy x),

and

(1.15) F(uoy uijy uiy uy sy x) = infF*(uoy uijy uiy uy s, x).

Then it holds that

(1.16) F[v] (s, x) = F(vsy vx.xp vx.y vy sy x)^0 a.e. {Qτ),

where vsy vXiXj and vXi denote dvjdsy d^jdxβXj and dvjdxiy respectively. Q

Proof, (a) and (b) are due to [6] (Theorem 3.1.5 and 4.4.3). (c) is also
due to [6] (Theorem 4.2.3) but it is also verified directly by hand, (d) and
(e) are just simple applications of N.V. Krylov [6] (Theorem 4.3.5 and 4.7.4).
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To prove these, we introduce some notations follow him. For any <χξ=Ay

(1.17) n\ty x) = ϋ+tr a\ty x)+ \b\ty x) \ +c«(ty x)+ \L«(ty x)\}~ι,

(1.18) μ(l) = μ(t, X) ΐ) = jnf sup n*(ty x) (aa(ty x)Xy X),

(1.19) Q(l) = {(ty X)<EQT; μ(t, xy /)>0} .

Notice that ri*(t> x) is continuous in (ty x) and 0<na(ty x)^ί from the assump-
tions (A.I) and (A.2), and notice also that Q(l) is a Borel set with respect to
(ty x). We can show easily that if σa is of the form (1.10) with (1.9), then Q(l)
~QT for all l^Rd

y | / | = 1 , li—0(v-\-l<^i^d). Indeed, to prove this, remark
first the following equivalent relation: for such /, μ(ty xy /)>0<=» inf

sup (a*(ty x)\ λ)>0, by the fact that 0<nΛ(ί, x)^ 1 for all (ί, x)(=Qτ (note that

for such /, if (/, λ ) = l , then there is a number / (l^i^v) such that λ t 4=0).
Next, put μ(ty x)= inf sup(#*(£, x)ξy ξ) (where a—σσ*). Then, inf sup(<zΛ

(ty x)Xy X)^μ(ty x)>0 from the assumption (1.9). The rest of proof for (d) and
(e) is quite the same as N.V. Krylov ([6], Theorem, 4.3.5, p. 187). •

REMARK 1.1. In (d) of Proposition 1.2, it is shown actually that for any
unit vector lE:Rd such that lχ+ι=:-'=ld—Q> the second-order generalized deri-
vatives V(t)Q) satisfy the inequality: there exist a constant N—N(kγ m) such that

(1.20) -N(l+\x\γημ(ty xy l)^vωω(ty x)^N(ί+\x\y- a.e. (Qτ).

Suppose, further, that σ* satisfies the following stronger condition than (1.9):
there exists a constant

(1.21)

for all α G i , (ty x)^Qτ and ?e i? v . Then it holds from (1.20) that vωω satisfy
also the polynomial growth condition as VQ) (see, [6], Theorem 4.7.4, cf. [1]
and [3]). •

2. Bellman equation

In this section we shall show that the function v of (1.8) satisfies the Bell-
man equation (0.1), i.e. we have the following.

Theorem 2.1. For almost all (sy x)^QTy F[v] (sy x)=0. •

According to Proposition 1.2 (e), it suffices to verify that for a.e. (Qτ),
F[v](sy x)^0y which will be shown by perturbation method. Let l > £ > 0 ,
and for any (α, /, x)&AxQTy put
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(2.D

Then clearly σ*'z is (d, </)-matrix such that a"'9=σ"'\σ*'9)* satisfies that for
each 6>0, for any unit vector 1<=R4, inf sup n* 2(t, x) (aΛ-\t, x)\ λ ) > 0 for

C/,λ)=l a&A
¥{t, x)e=@Γ, by (1.9), where n* % x) = \l+tr a" \t, x)+\b*(t, x)\+c*(t, x)+
IL"(t, x) I}~\ For any £>0, (a, s, x) eSt X Q r, consider the following stochastic
differential equation associated with σ" β :

f J ^ = b*>(s+t, Xt)dt+σ">.*(s+t, Xt)dBt, 0<t^T-s ,
( } U = *
and denote by (X*tSfXf2) a unique solution of Eq. (2.2) associated with (α, s,
x, S). In the same way as (1.4) and (1.8), define vα*z and υz by the formulas:

(2.3) v">\sf x) = £ [ J o

Γ L * * ( s + t 9 X«t>
s-x>*)exp(-φ"t>

s>x>*)dt+

where φT f * f = ( W ^ + ^ W'*'9)*, and
Jo

(2.4) z;8(ί,(, ) ()
αeϊl

Then, like the function v, it is easily shown that v2 is also continuous with re-
spect to (ί, A:)E5Γ, ^^T1? Λ?)=A(ΛΪ) and, in addition, it satisfies the same inequality
as (1.11); i.e. there is a constant N=N(k, m) such that

(2.5) I v\sy x) I ̂ ΛΓ(1+ I x \ )m for all (£, s, x).

We introduce here the following notations: for each ί^y^dy p^ί we
say that a function u(s, x) over Qτ belongs to Wlpt\£, (Qτ) if u has a first order
generalized derivative with respect to s, first order generalized derivatives with
respect to x{ (ί^i^d) and second order generalized derivatives with respect
to Xi(l^i^j) on Qτ and, moreover, for any bounded open set Q(ZQT the fore-
going derivatives belong to LP(Q). Put

(2.6) I M l

where IMI,fβ=(JJ l*& x)\pdsdxψK We write W\ΊJQT) when <y=d. It is

well known that the function v* has the following properties ([6], Chap. 4).

Lemma 2.2. (a) lim v*(s, x)=v(s, x) and the convergence is uniform in
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each cylinder QTtRy where QTR=[0, T]x {x^Rd; \x\^R}.
(b) For allp^l, v*^Wp'Joc (Qτ) and, moreover, there is a number N=N(ky m)
^ 0 such that for all (sy x)^Qτ, £>0,

(2.7) I(d/ds)v\sy x)\ + \Vxv*(s, x)\ ̂ N(\ +1x|)2* .

(c) For all a(ΞAy 0 < £ < l , define F*>* and F* by the following formulas:

(2.8) F«>\uoy uijy uh uy sy x) = F«(uoy uijy ui9 u, s, *)+(£ 2 /2) Σ κ« ,
t=V + l

and

(2.9) F*(uoy uijy uiy u, s, x) = inf F"-*(u0, uijy uh uy s, x).

Then it holds that for each £ ( 0 < £ < 1)

(2.10) F'[v'](s,x)=FXv's,vliXpvl.,v\s,x) = O a.e. (Qτ). D

For all (a, s, x)^AxQτ, £>0, set

(2.11) %" 8(ί. *) = g *?(*, *K(f, ^)+i"(i, *) , and

(2.12) X*(s, x) = ± *?(*, *)»„(*, *)+£"(*, *)

Then we can get easily the following inequality by means of (1.3), (1.5), (1.11)
and (2.7): for all (a, s, x)eίAxQτ,

(2.13) I X* '(s, x) I + 1 X*(s, x) | £ΛΓ(1 + 1 * | ) 3 m ,

where N=N(ky m)^0 is a constant.
Now we consider the following transformation of variables (sy x)^QTy due

to W.H. Fleming and R. Rishel ([2], Chap. 6, §8): let fix arbitrary (ξ, S)
such that l=(?v+i> •••, ξd)^Rd~v and 0 < f < l , and define new variables (syy)
^QT by the following way.

s = s

(2.14)

For any y^Rd, let y and j> denote the first ẑ  and the last d—v components of
y respectively (similar for x—(%y i)). Then (2.14) is equivalent to say that
y=χ and ε$=Jt—ξ. Let also ψ\s, y)=v\s, x). Note that the function i/rε

depends on (|, £). For simplicity, for the moment, suppose that aΛfZ does not
depend on x. From (2.10) it is easy to verify that ψ* satisfies the following
equation: for a.e. (sy y)^QTy

(2.15) in

(l/2)v+Σ J&llylW-*t \'> y)Ψ'+%* \s, y)}=0,
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where

%*•'(*, y) = X«-*(s,x)(=X*-χs,y,

c ' (sy y) = c (sy x) (== c (sy j

We have the following result about the function

Lemma 2.3. (a) For «κΛ £>0, /or αify ^ 1 ,

(b) There is a number N=N(k, m, ξ)^0 such that for all (£, sy y),

(2.17) I ψ\s, y)\ \ (i)ψ\y y) \ \

and, furthermore, ψl.y.(l^i, j^d) are locally bounded in (s, y) uniformly with

respect to 8.

(c) lim φζ(sy y)=υ(s, y, ξ) and its convergence is uniform in each cylinder QTfR.

Proof. Since (b) implies (a), we shall prove only (b) and (c). First,
it is clear that for all (s, y) eQ T i \ ψ\s, y) \ ̂ N{\ + | y \ )m for a constant N=N(ky

m, ξ). Indeed, by means of (2.5) and (2.14), it is sufficient to remark the in-
equality: I * | 2 ^iV(l+ \y\ )2, where N=N(ξ)^0 is a constant so long as ξ(^Rd'")
is fixed. Since ψ](s, y)=v*s(s, x) and \v](s, x)\^N(ί+\x\)2m, it holds that
\ψl(sy y)\^N{\+\y\)2m for a constant N=N(k, m, ξ)^0. Concerning ψyi

( l ^ i ^ ) , \Ψ9

yi(s, y)\ = \v9

Xi(s9 x)\£N(l+\y\Y", while, for v+l^i^d, \ψyi

(s,y)\ = \6vli(s,x)\^N(l+\y\)2m, where N=N(k, m, ξ)^0 is a constant.
Finally, since \c*'\s, y)\ + \X*'\s, y)\ ^N(ί+ \y\)3m by means of (2.13), it
follows from (2.15) and N.V. Krylov ([6], Theorem 4.3.5, p. 187) that ψ ; , y

(s, y) (l<^i, j^d) are locally bounded in (s,y) uniformly with respect to £. As
to (c), suppose that \ζ\^R. Note that if ( ί j ) G g Γ | ί , then (s, yy ξ)έQτy*R-
Therefore, it holds that

\syy)-υ(s, y,ξ)\t£\υ\s, yy eβ+ξ)~v\sy y,ξ)\ + \v\s, yy ξ)
sup I *•(*,*)-*(*,*) I->0

by Lemma 2.2 (a) and (b). Here we used the estimate that there is a constant
NR=N(ky my R)^0 such that for all £>0, (s, x)y (sy x')tΞQTtRy \v*(sy X)—Ό\S, X') \
£NR\x-x'\. D

Proof of Theorem 2.1. Since v2 satisfies Eq. (2.10) associated with σ*
(a=σσ*)y it holds that for almost all (syx)^QTy

0 - F*[υ*](sy x) = inf iv\+{\β)JϊjΛ

u{s)vliX,

?+(e2β) Σ vltSi+xr \s9 χ)-?{sy χ)v*},
V + l^i^d

and then we have the following:
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(2.18)

s, x)-c"(s, x)v'}+m{{X* *(s, x)-X*(s, x)} ,

and we denote by f[(s, x) the second term of the right side:

(2.19) f\(s9 x) = inf {%"•*(*, x)-X«(s, x)} .

If we change the variables (s, x) into (s, y) as we have seen in (2.14), then it
holds that for a.e. (s, y)^Qτ,

(2.20) 0^inf{ψ:(*,y)+(l/2) Σ al{s)ψliyj(s, y)

+ ( 1 / 2 ) ^ ^ ^ . ( 5 , y ) - ϊ - f(ί, y)Ψe(ί, y ) + ^ 8(^. y)} +/!(*, J-),

where

(2.21) /J(ί, y) = /ί(ί, y, 6i>+ξ) and %Λ s(ί, y) = Xa(s, y, €j)+ξ).

Define F by the following:

(2.22) T{unuφuit,y) = vai{u.+(\β) Σ «l(ί)%

where

(2.23) 2-(ί, j ) = cα(ί, y, ξ) and XΛ(ί, y) = X»(s, y, ξ).

For all (i, y)eQτ, 0 < £ < l , put

(2 24) 1 / l ( ί ) y) = j

Then it is easily seen from (2.20) that for a.e. (s9

(2.25) OSsJM (s, y)+±?){s, y),

where ί»[ψη (*, y)=F(ψ], ψ'Wj, ψ*, s, y).
In order to complete the proof of Theorem 2.1, we have to show further

the following two lemmas.

Lemma 2.4. For any i ( = 1 , 2, 3) and {£„} such that £Λ-*0, lim f\»(s, y)
= 0 a.e. (Qτ).

Proof. First, it is easy to verify that lim/f(s,jΛ=0 v(s,y)&Qτ. Indeed,

where N—N(k, m, ξ) is a constant^O (see (1.5), (2.16), (2.17), (2.23) and (2.24)).

Second, for /{, \fl(sty)\ ^sup|χ (ί, y, £y+?)-X*(s, j , ξ)\^sup\(b"(s,y,
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ί, y, εy+ξ))-(b»(s, y, ξ), v»(*, y, £))| + suP|Lα(s, y,
06

L°{s, y, ξ)\ ̂ suP\b»(s, y, e$+ξ)\\Vv(s, y, €y+ξ)-Vv(s, y, ξ)\ + sup\b*(s, y,
Ob Ob

εy+ξ)-b»(s, y,ξ)\\ Vv(s, y, ξ) | +sup \L»(s, y, εy+ξ)-L*(s, y, ξ) | Ξ
Ob

It is easily shown from (A.I), (1.5) and (1.11) that the last two terms 72 and
73 tend to 0 as f->0 for v(syy)^Qτ. As for Ily we have the following: |7J
£N(1+ \y\)\Vv(s, 9: S$+ξ)-Vv(s, y,ξ)\, where N=N(ky ξ) is a constant^O.
Here we can assume that v is diίferentiable with respect to x at (s, ̂ , ξ) and
also at (s, y, £wj>+lr) for all n^\. Indeed, from Proposition 1.2 (b) and simple
observations, for each s there are such points almost everywhere in Rd. We
denote by [vXf], ί^i^d, first-order (ordinary) derivatives with respect to x.
Then it is well known ([10], Theorem 25.4, p. 244) that [vXt] is continuous at
(sy x, ξ), from which it follows that lim|[ϋxj (s, y, Sj+ξ)-[vXt] (ί, y, f ) | = 0 ,

8 > 0

\<^i<Ld, and this implies that ^J-^O as Sn-*0 because vX{=[vXi],

Finally, as for / I , |/ϊ(j, y)\ ̂ suplX05'8^, x)-X«{s, x)\ ^
a

+ξ)\ \Vυ'(s, y3 ε$+ξ)-Vv(s, y, βj>+ξ)\ ^N(ί+ \y\)\Vv*(s,

y}Sj}+ξ)\, due to (A.I), where N=N(k, ξ) is a constant^O. On the other
hand, remark that [vlt], l^i^d, exist on the whole space from Sobolev's
Lemma and that there exist a constant N^=N(k>m)'^:0 such that for each s,
for any £>0, the function v*(s, x)—N(ί+\x\2)(3m/2)+1 is concave with respect
to xy which can be shown by the way similar to Proposition 1.2 (c) (cf. [6], Chap.
4. §6). Since lim v*(s, x)=v(sy x) uniformly in each cylinder Qτ Rj it follows

from the well known result (see, for example, [10], Theorem 25.7, p. 248) that
for each s, i(ί^i^d)y for a.e. y and ξ, lim| [©if] (sy yy Sj+ξ)-[vXt] {sy yy 6j

ε«->o

=0, from which follows immediately lim fln(s, y)=0 a.e. ($9y)^Qτ. •
2 > 0

Lemma 2.5. Let QdQτ be a bounded open set. Then it holds that for
a.e.{syy)tΞQy

(2.26) Rm F[ψ*} (sy y)^F[ψ] (sy y),

where ψ(sy y) = lim ^ 8 (^, y).

Proof. According to Lemma 2.3 (c), ψ(syy)=v(Sy yy ξ) for all (syy)^Qτ.
Since vεΞWl±l(Qτ) and *,,„(*, y)=0 {v+lkh j^d), ψtΞW{'2(Q) for any
λ ^ l . On the other hand, for any £>0, clearly ψ*^W{'2(Q)y from Lemma

2.3 (a). Moreover, it is also shown that sup sup |i^8(s, y)\<i°° and lim \\yjr*

~ψlllrf+ifo=0, where ψ°=Λ]ry by the fact that lim ψ*(s9 y)=ψ(sy y) uniformly

in each cylinder QTR. Due to N.V. Krylov ([6], Theorem 4.5.1, p. 193), in
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order to obtain the inequality (2.26), it is sufficients to show that ΛJT* and

satisfy the following two conditions:

(a) sup F[-ψ*]£ΞLd+1(Q), and

(b) sup ί-ψl-Έ Ψ

But remark that the foregoing functions ψ, ψsy ψy.(l^i^d) and

j^d) are locally bounded in (s, y), while it follows from Lemma 2.3 (b) that

i/rε, ψs

sy ΨlJiy^i^d) and ψy.y.(l^i, j^d) are also locally bounded in (s, y)

uniformly with respect to £ ( 0 < £ < l ) . Recalling that the coefficients a, c

and % in the formula (2.22) of F are also locally bounded in (s, y) uniformly

with respect to or, therefore, we get the assertions (a) and (b) immediately. •

Let complete the proof of Theorem 2.1. For any {£„}, letting £n-*0

in (2.25), then it follows from Lemma 2.4 that we have the following:

(2.27) O^Πm F[ψ*»] (s, y) a.e. (Qτ).

By means of (2.26) and (2.27) we have the following:

(2.28) 0^F[ψ](s,y) a.e.(0Γ).

Since ψ(ί,y)=o(ί, y, ξ) for all (s,y)(=QT, it holds that P[>lr](s,y)=F[v\{s, y, ξ)

(note the equalities such that ψs=vs, ψ ,,»/=ϊ'>/,y, l^Li,jtίv, ^^{=0, " + l ί ϊ

i^d) for all (s, y)^Qτ. Then we have the following inequality relative to v:

(2.29) 0^F[v](s, y, ξ) a.e. (*, y)e(0, T)xR\

Since ξ&Rd~v is arbitrary, we can conclude from (2.29) that for a.e. (s,x)^Qτ,

(2.30) 0^F[υ](sy x). •

REMARK 2.1. It is not essential that α*'8 is assumed to be independent

of x, made in the proof of Theorem 2.1. Indeed, we have to show in this case

that Lemma 2.3 (b) still holds and that for any ξ^Rd~\ (s,y)<=QTy lim inf Σ

{^j(s9yyζ)—a1j(s9y9ε^+ξ)}XΛjrl{y.(s9y)==0. Note, however, that to prove

the former, only important thing is that aΛ>z=σ<AtZ{σΛ'zγ does not degenerate

and, furthermore, it is locally bounded uniformly with respect to α, which

are easily derived by virtue of (1.3) and (1.9). On the other hand, the latter

follows from (1.2) and Lemma 2.3 (b). •

We can now apply the above results to some interesting partial differ-

ential equations of parabolic type whose examples are given in the following:

EXAMPLE 2.1. Let d=2, v=\ and A={(a, β)^R2; a2+β2^l}> and con-

sider the following Bellman equation:
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(2.31) inf {o,+(l/2K,+αo,+iS»,+Z(ί, *, y)} = 0 ,

where L(s> x, y) is independent of a. It is easy to verify that inf {ocvx-\-βvy}

= - V K f + K ) 2 ( t a k e («> £)=-(*>« vy)lV(vx)
2+(vy)

2). Then it follows from

Proposition 1.2 and Theorem 2.1 that there exist a generalized solution of Eq.

(0.5) satisfying the conditions such as (1.7), (1.12) and Proposition 1.2 (d). •

EXAMPLE 2.2. Let (d, z>, A) be the same as Example 2.1, and consider

the following Bellman equation:

(2.32) inf ίvs+(l/2) (a+β+2)vxx+avx+βvy+L(s, xy y)} = 0 .
Oβ)e4

Then it is easily shown like as Example 2.1 that the above equation is equiva-

lent to Eq. (0.6). Since α + / 3 + 2 > 0 for all (a, β)^A, there is a generalized

solution of Eq. (0.6) possessing the properties stated in Proposition 1.2. •

Thus we can consider many other examples analogous to Examples 2.1

and 2.2. See also Example 5.2 in the case where A is not bounded.

REMARK 2.2. It is not difficult to consider examples of such stochastic

control problem as §1 whose state and cost are given by Eq. (1.1) and (1.4)

respectively. For instance, let consider a movement of an object in which

only some components (or directions) receive random disturbances but not

so are others. Then the state may be written as Eq. (1.1). Moreover, actual-

ly we know an example of stochastic control model lying in our framework,

which is induced by linear partially observable one with non-gaussian initial

distribution (see [4] and also [3]). •

3. Superharmonic function

In the following two paragraphs we shall consider the uniqueness of solu-

tions of Eq. (0.1). From the preceding discussions in §1 and §2 we already

know that the cost function vy defined by (1.8), is a generalized solution of

Eq. (0.1) where a—σσ^ and σ is of the form (1.9). Therefore, it is sufficient

to show that any ' 'solution" u is equal to v.

Let C(QT) be a space of real-valued continuous functions defined over

Qτ. We define a superharmonic function on Qτ by the following manner,

similar to one due to N.V. Krylov ([6], p. 229).

DEFINITION 3.1. We say that a real-valued function u given on Qτ is

superharmonic if there exist constants p> λ, &^0 such that MG W\'\OC(QT) Π C(QT)

and

(3.1) \u(t, x)\^k(l+\x\f,
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and, furthermore, F[u](t, x)^0 a.e. (Qτ) with u(T, x)<^h(x) for all χ(=Rd. Π

Our main concern is the following:

Theorem 3.1. Let u be a superharmonic function on Qτ. Moreover, sup-

pose that du/dXi (l^i^d) and d^jdxfiXj (1 ̂ / , j^v) are locally bounded. Then,

for all (s, x)^QTy u(s x)?£v(s, x). Π

Proof. Let £ > 0 and let p82^0 be a molifier function defined over

such that p2^Co(Rd+1) and \ d+ip2(t,y)dtdy=l. Let £n-+0 as n->oo, and for
JRd+1 *

any w=l, 2, ••, define un by the formula: t φ , x)=u*p,m(s, x) = )Rd+u(ty y)ρtn

(ί—£, x—y)dtdy, here we extend M to i?rf+1 by the way that u = 0 outside of Qτ

and we write it again u. For any (a, s, x)^^ίχQTy let (XΛ

t

tS*x) be a unique

solution of Eq. (1.1) on a probability space (Ω, £F, P) and define a pro-

cess (YΐStX), s^t^T, by the formula:

(3.2) Y«t-
S>x - X?:fs * .

Then Y°l's>x is £F?-adapted process, where £F? stands for the σ-field g?t_s (t^s),

and it also satisfies the following equality for all t^sy

(3.3) Yt = Λ+JV«Γ, r, yr)ir+jσ(Sr, r, yr)Jfr a.e. ,

where άfί(ω)=αί_s(ω) and (| s), s^t^T. is a vector valued Brownian motion

with respect to £?*, due to Eq. (1.1). Notice also that (Y°t's'x) is a unique

solution of Eq. (3.3) with initial condition Ys=x associated with (a, s, x), and

it follows from (1.6) that for any λ ^ O there is a constant kλ such that

(3.4) E[ sup I Y«t>
s'xIx]^*λ(l + IxI ) λ for all (s, x, a).

For any sufficiently large number R, let

(3.5) TS ' * - inf it^s; \ Y1SX\>R}, rV'x =T if { } = φ .

Then it holds that P ( τ Λ < T) ̂ P ( sup | y? | ^R)^E[ sup | Y"t \ ]/R (we omit from

now on supersufHces (s, x) because they are fixed).

Since un is a smooth function over Rd+1, applying Ito's formula to the func-

tion un(s, x)e~y, for any n, R and s^t^T, we have the following:

(3.6) un(tAr%, y?Λ rg)exp(—φ?Λ r j)—^(J, Λ?) =

+(1/2) Σ ^θytt.+ Σ^ίθΛ-^ii.} (r,

*.(r> Y% σ*'(r, Y«r)dξ,),
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~ ct rt-s
where φ1=\ c(ary ry Y«r)dr=\ c(ary s+r, X*r)dr and dsun = dunjdsy didiun =

J s Jθ Λ

L(ary ry Y*)e~Kdr to the both terms
s

of (3.6), and, further, taking the mathematical expectation with respect to P,

we have the following:

(3.7) E[un(tΛτ%, F?Λτί)exp(-φf Λ τ s)-fφ, *)

τ"*e-*?F~«r[un] (r, Y?)dr] .

Indeed the second term of the right side of (3.6) is a square integrable martin-

gale with respect to (ίFf, P), by the assumption (A.I). It follows easily from

(3.7) and (1.15) that we have the following inequality:

(3.8) E[un(tΛτ%, r?Λrί)exp(-φ?Λrj)-tt.(*, * ) + \tAT*L(ar, r, Y«r)e-**dr]

On the other hand, since u is a superharmonic function on QT from the assump-

tion,

(3.9) F[u](s, x)^0 a.e.

Taking the convolution of (3.9) and ptn (we extend ay b, c and L on Rd+1)> we

have:

(3.10) O^θ.n.+ί ' .MX on Qτ,

where for uf=Wti&QT),

(3.11) F^it, x)=mi{(\β) Σ a1jdidjU+(b»,Vu)-cau+L*}(t,x),

and for convenience sake let's write JF?[M] the parenthesis of (3.11). Note

also that {dsu)*pΈn=dsun and moreover we shall use the well known relations

that for each n, φu)*ρ9n=.VuH and (9, 9yM)*pβjl=8, 9J fill l<i,j<v. It holds

from (3.10) and (3.11) that for all (sy x),

(3.12) F[un] (s, x) = a A + ^ K ] (s, x^-F^uYp^s, X)+

F1[uu] (ί, x)^-inf(Fΐ[u]*Ptu) (st x)+F1[un] (sy x)
Cύ

^-supl-FfK] (s, x)-Ft[u]*Ptu(s, x)\ .

The second inequality is due to the fact that (inf Pf[w])*p8 ^ inf Fi

and the third one is due to the well known inequality that \'mif*—\vάg*\ ^

\ fa—g*\- We need the following result which is rather general and it is veri-
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fied easily by hand.
For each Λf=l, 2. ••-, let SM be a ball of radius M in Rd+1.

Lemma 3.2. Let 1>S>O. Let f be a real valued locally Lίpshitz continu-
ous function on Rd+1, i.e., for each M there exists a constant kM^0 such that for
all (s, x) and (s\ x') in SMy \ f(sy x)—f(s'9 x') \ ̂ kM( \ s-s' \ + \ x-x' | ) . Further-
more, let g be a real valued function on Rd+1 which is locally bounded. Then we
have the following inequality: for each M there exists a constant N=
such that

(3.13) sun I(fg)*P.(s, x)-f(g*p<) (s, x) \ <

where 11g\\Sjt+1=sup|g(s. x)\. •

It follows from the formula (3.11) that we have the following inequality:
for all (a, s, x)^AxQτ

(3.14) \Fΐ[un}(s,x)-Fΐ[u]*Pt!i(s,x)\

Σ J « ί , x)didjun(s, xi-tfjdfljuFpiJίs, x)\

\c«un(s, x)-(c«u)*Pen(s, x)\ + \L«(s, x)-L**Ptn(s, x)\

Since for all / and j , aΛj is locally Lipshitz on Rd+1 uniformly with respect to
a, from the assumption (A.I) and, furthermore, 9t 9y« is locally bounded on
i?^ 1 by the assumption of this theorem, (aijf 9, 9 ; w) satisfy the assumptions
of Lemma 3.2 above. Therefore it holds that for any M^O, \aa

ij{s, x)didjUn

(s9 x)-(a*jdidju)*Pttt(s, x) I ̂ Sn iV||9t 9yw||Sjf+1 for all ae=A, (s, x)<=SM9 all n^N,
where N=N(M) is a constant^O. Since (6?, 9,-w) (l^i^d), (c"9u) and V
also satisfy the assumptions of Lemma 3.2, we have the same estimate as («?y,
didjύ) to the rest terms of the right side of (3.14). Consequently, we can con-
clude that for each M^O there is a constant N=N(M)^0 such that for all
n— 1, 2, •••, (s, x)^SM and

(3.15) I [FflKj (s, x)-F^[u]*P9u(s9 x) \ ^SnN.

It follows from (3.12) and (3.15) that for all (t, y)^SM and n^

(3.16) F[un](tfy)^-£nN where N =

Note that if s^r^tAτR9 then (r, Y*r)<=SM for some M=M(R)^0. Then it
follows from (3.8) and (3.16) that for all R^O, w^l, (α, s, x)

(3.17) E[uH(tΛτi9

L(ar> r, Ya

r)e-*rdr] ̂  -6nNE[\
s Js
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where N=N(R) is a constant^0.

Let n—> °o in (3.17). It is well known that if u is continuous on QTy then

un converges to u as n —> oo uniformly in each cylinder QTtR, so that for any Ry

\un{tΛτ"R, Y?Aτ»)-u(tΛτ"R, F?Λτ*) | -*0 as ?*-> oo for a.a. (P). Next, it is easily

shown that

\un(tΛτi, yrΛrί)exp(-φ?Λrί)l £\u»(tΛTJ, Y

a.e. (P), where M=M(R) and N=N(R) are nonnegative constants. There-
fore, by virtue of Lebesgue's bounded convergence theorem, for any i?2^0,
lim £[MB(ίΛτ£, Γ?Λ r )exp(-φ?Λ r»)]=£[M(ίΛτ£, F?Λ τ-)exp(-φ?Λ r»)]. On the

e~φrdr] is independent of ?z, the

right side of (3.17)->0 as n->oo. It follows from (3.17) that for any R^O

(3.18) E[u(tΛτ%, ^?Λ^)exp(-φ?Λ^) + J'ΛΓ">L{ar, r, Y?)e-**dr]^u(s, x).

Next, let i?->oo in (3.18). First, it is not difficult to show that for s^t

^ Γ , lim u(tΛτ*Ry F?ΛτΛ)=w(ί, Y«) a.e. because of (3.5) (and the note following

it) and the continuity of u. Similarly, it holds that lim exp(—φ?Λrα>)=exρ

(—φi) a.e. Now it follows from (3.1) that \u(tAτ%y Y?Λτ«)exρ(—φ?Λrj)l ^

F ? | ) λ and, moreover, £[(1+ sup | Y? |) λ ]< oo,

because of (3.4). Using again Lebesgue's theorem, we can prove that lim E[

u(tAτ%, YfΛτί)cxp(-φ^Aτί)]=E[u(t, YΙ)exp(-φf)] for all (a, s,x)<=yίχQτ

and ίε[$, T\. Similarly, we can show that

r, r, Ya

r)e~

Thus, letting R—> oo in (3.18), we have the following:

(3.19) E[u(t, Y1)e-+?+ ( L(Sr, r, y?>-<
J s

Since M(Γ, x)^h(x) for all *ei? r f, by the assumption, letting t f Γ in (3.19),
we get finally the following inequality: for all (α, s, x)

(3.20) £[A(y? s > - ^ s '"+(L(α r, r, F? 5 ' Λ ) ^ ' s ^ r ] ^ φ , x).

Recall that Y<f's'x=X<f'Jsx

i s^t^T, (and also the definitions of a and φΛ).
Then it is clear that (3.20) is equivalent to say that va(sy x)^>u(sy x) for all (a,
sy x)y so that v(sy x)^.u(sy x) for all (sy x)€ΞQTy which is what we wanted to show. •
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REMARK 3.1. It is obvious that the function v of (1.8) satisfies the assump-
tions of Theorem 3.1, by virtue of Proposition 1.2 (a), (b), (d) and (e) (cf. [6],
Theorem 5.3.11, p. 237).

4. Uniqueness

In §3 we proved that if u is a superharmonic function satisfying the auxi-
liary conditions relative to its derivatives, then u^v on Qτ. Let's show the
inverse relation. For any function / over QT)(s, x)^Qτ, l^Rd such that |/ |
= 1 and δe(0, 1), define Djι8f(sy x) by the formula:

(4.1) D?.δ/(j, x) = {f(s, x+δl)+f(s, x-8l)-2f(s, *)}/δ2.

It is easily seen that if / is twice continuously differentiate with respect to
x at (sy x), then D2ιt8f(s> #)-*[/(/)(/)]($, x) as δ—>0. In this paragraph we as-
sume the condition (1.21) instead of (1.9), and assume also that u satisfies (3.1).
Then we have:

Theorem 4.1. Suppose that a function u belongs to Wι

p'^c (Qτ) Π C(QT)
(p^>d+l), F[u]^0 a.e. (Qτ) and u(T, x)^>h(x) for all x^Rd. Moreover, suppose
that there are nonnegatίve constants k and λ such that for all (s, x)EiQτ, 0 < δ < l ,
ltΞRd such that | / | = 1 ,

(4.2) Diδu(s,

Then it holds that u*tv on Qτ. •

Remark that v also satisfies (4.2) by means of Proposition 1.2 (see Remark 4.1
below). In order to prove Theorem 4.1, we need two auxiliary results which
are rather general for our purpose.

Lemma 4.2. For some p, let u&Wι

p \&(Qτ)nC(Qτ). Also, let F
a.e. (QT)' Then, for each κ=l, 2, •••, there is a Borel function ak over Qτ with
values in A such that

(4.3) llκ>FΛ*[u](s,x) a.e.(Qτ),

where

(4.4) F*[u](s,x) = u,+(II2) Σ au(aκ(s, x), s, x)ux.Xj+

(b(aκ(s, x), s, x), Vu(s, x))—c(aκ(s, x)y s, x)u+L(aκ(s, x), s, x). Π

Proof. By virtue of the assumption that A is separable metric space,
there is a countable subset {a(i)}y z=l , 2, •••, dense everywhere in A. Since,

for each (s, x), Fa[u] (s, x) is continuous with respect to α, it holds that for all

(s, x)
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(4.5) F[u] (s, x) = inf Fmi[u] (sy X) .

Therefore, for all (s, x)y there is a function aκ(sy x)—a{iκ{sy x))y Borel measur-

able with respect to (sy x), where iκ(s9 x) is the minimum number such that

(4.6) Hκ>FΛ&[u\ (sy x) a.e. (Qτ) .

The measurability of the function aκ follows from the fact that for any

ί(s, x); aκ(sy x ) G Γ } = U ί(s, x)\ l/fOF^u] (s, x) and \jκ^Fau)[u\ (s, x),

j<i} and that F*[u\ (s> x) is Borel measurable with respect to (s, x). •

For each 7 = 1 , 2, •••, let ?7Y(x) be a C°°-function over i?rf such that

^1, ηy(x)=l if IΛ?I ^ γ , ?7Y(Λ:)=0 if | # | ^ γ + l , and, moreover,

for all γ and Λ. For each (μ> ty x)^AχQτ, γ = l , 2, •••, put

(4.7) σV(ί, x) = σfj(t, η,{x)x) and b^{ty x) = bϊ(t, Vy(x)x), 1 ̂ ί , i ^ r f .

Then it follows from (A.I) that for each γ, σ?)7^?'7) is continuous with re-

spect to (a, t, x). Furthermore, it holds that for each 7 = 1 , 2, •••, there is a

constant ky such that for all a^A f G[0, TΊ, Λ?,

(4.8) ||σΛ '7(ί, ^ ) - σ Λ ' 7 ( ί , ^ ) l l + I**'*('» x)-b*'Ί{t, x')\^ky\x-x'\ , and

(4.9) | | σ Λ ^ ,

Note also that σ?)γ(ό?'γ) converges to σf^bf) as 7 —> oo uniformly on any

compact set of A? and uniformly over (a, f)y from the fact that σ°ij{b*) is Lipshitz

continuous with respect to x uniformly over (α, t).

For each 6(0<£<ί) and (α, ί, x)<=AχQτ, define σΛ '7 'ε(ί, Λ?) by the for-

mula: σϊ?'% x)=σϊf(t, ηi{x)x), ί^hj^d (see (2.1)). Let {ccκ(s, x)} be the
sequence obtained in Lemma 4,2 and consider the following stochastic differential

equation associated with {aκy s, xy γ, 6):

„ 1 Λ N ί dXt = b\aκ{s+ty Xt)y s+ty Xt)dt+cr^(aκ(s+ty Xt)y s+ty Xt)dBt,

(4 1 0) 1 v

[ XQ = x .

Remark that for each 7, by(aκ(ty x)y ty x) and σΊ>fi{aκ{ti x), ty x) are bounded and

Borel measurable with respect to (ty x) from (4.9) and Lemma 4.2. Moreover,

the matrix ay'*=σy'*(&**'*)* is uniformly positive definite, because for each

£ > 0 there is a constant μ ε > 0 such that (ay>*(ty x)ξy ξ)^με\ξ\2 for all 7 = 1 , 2, •••,

(ty x)^QTy ξ^Rd (in fact, take min(μ, £2) as μzy where μ is given in (1.21)). Then

the following result is well known ([6], Theorem 2.6.1, p. 87).

L e m m a 4.3. There exists a solution of Eq. (4.10) on a probability space

satisfying the standard conditions on which is given a Brownian motion (Bty 3ϊt).

Furthermore, this solution is progressively measurable with respect to (£?,). •
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Denote by (Xϊ s'*'7'8) a solution of Eq. (4.10) associated with (αrκ, s, x, γ,
£) on a probability space (Ω, £?, P).

Proof of Theorem 4.1. As in §3, define a process (Y* 5 '*'7 '8), s^t^T, and
a stopping time τ#'s:*>7'8 by the formulas:

(4.11) Yκ

t'
s'x y'* = Xκ

tΊ?'y \ s^t^T, and

(4.12) τ ^ * γ ε = inίit^s; | YV* γ f | > # } , τ*/ * 7 ε = T if

Then, by the same reason as §3, (F*'7'8) is a solution of the following stochastic
differential equation:

(4.13) dYt = έ*>7(ί, Yt)dt+σ^(t} Yt)dξu Ys=t,

where iκ 7(ί, y)=b\aκ(t, y\ t, y\ σκ>y'\t, y)=σ^\aκ(t) y), t, y) and (f,) is a
vector valued Brownian motion with respect to £?£ (we omit supersuffices (s, x)
like as §3). Define un by the formula: un=u^ρ^n{n=\, 2, •••), where p9n

is the same as one given in §3. Then it is well known that for any bounded
region QczQTi \\un—w|L1»2»v

(o)"
>0 a s ft-*00- Fix an arbitrary number i?>0

such that ( i ,»)Gg T ( i . Then it is easily seen that P(τKEy'*<T)^(NIR)(l+\x\),
where N=N(k)^0 is a constant, (see (3.5) and the remark following it). Ap-
plying Ito's formula to the function un(t, x)e~y, we have the following: for
any

(4.14) ί

(£2β) Σ d]un+(bκ>\ Vun)-cκun}(r, Yκ^)dr

+(square integrable martingale),

t*where φ?' 7 ' ε=\ cκ(r, Yκ

r'
y'*-K)dr and cκ(t,y)=c(aκ(t,y), t,y). By the way similar

J s

to §3, we have the following:

(4.15) E[uu(t AτY'\

e'W Σ

where Lκ(ί, y)=L(aκ(t, y), t, y) and

(4.16) F<V[«»] ί«, y) = as
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(t, y), Vun)-c% y)uu+L*(t, y).

Now remark that there is a constant N=N(ky λ ) ^ 0 such that for all (s, x)
^QT) w^l, d]un(sy x)^N(l+\x\)λ. In fact, from the assumption (4.2) it is
easily shown that for each (s, x) and for any δ(O<δ<l), l^Rd such that |/ |
= 1, D2ιtδun(s, x)^N(lJr\x\)λ, from which the assertion follows immediately
by the fact that un is smooth. Then we can conclude that

(4.17)

where N=N(k, λ ) ^ 0 is a constant.
Letting n—>oo in (4.15), then by virtue of the same reason as in the proof

of Theorem 3.1, un(tAτ7'\ Y]'^)^u{tArY'\ Y ^ Y . ) (n-»oo) in L2(Ω,
3", P). On the other hand, as for Il9 it is shown that F**.y[uu]-*>F"*.y[u] (n->
oo) in Ld+1(Q), where Q is any bounded region Qτ. Indeed, since wGΞJFj jfόc
(QT) (P^d+l)y it is easily seen that φn(=un, dsun, dμm l^i^d, didjUny ί^ifj
^v) converges to φ(=u, dsu, d{Uy dβjUy respectively) in LpΛoc{Qτ). Since (Yκ

t'
y'*)

is nondegenerate process and bκ>y is bounded, it follows from N.V. Krylov ([6],
Theorem 2.2.4, p. 54) that

—>0 (τz->oo), so long as R is fixed, where N=N(rγy 6, R) is a constant ̂  0.
Therefore, letting n-> oo in (4.15), we have the following:

(4.18) E[u(tAτή

y>\ YKtΛi

EC iy'* - K V *

e-+r ' F**.y[u] (r,

Now remark that for each R^O if |Λ?| ̂ Λ, then JPΛ«Λ[M] (ί, Λ?)=Ffll«[M](ί, Λ?)

for all (ί, x)egrj? for sufficiently large 7. From this we deduce the fact that
FV[iί] (r, Yκ

r

 y'*)=F**[u] (r, Yκ/7'ε) a.e. on {s<r<τ κ / 8}. While, using again the
result due to N.V. Krylov (see above), we can show from Lemma 4.2 that
F*[u\ (r, YK/V'S)^1/Λ; a.e. on {S<T<TKR%*} . Then by means of (4.18) we have
the following: for sufficient large γ,

ΓΛ r* ' e-+Kr'y'9L*(r, Yκ

r'
y'*)dr]^u(sy x)+(T-s)ltc+(S2N) ( l + | * | ) λ .

Since P(τ* 7 8^:Γ) = l, the left side of (4.19) is equal to E[u(t, Yκry'*)

X exp (-$•*••)+f V*r * fL"(r, Fκ/γ β) ir] + £ [«(ί Λτκ/ ε, Y^ir . ) exp ( - ̂ Λ ^ . )
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-u(t, n

In the following we shall estimate two terms I2 and /3. For 72,
by virtue of Schwartz's inequality, we have the following:

\I2\^{E[\u{tAW, Y^.*) exp (-«££*/•')-"(*> W)xexp(-4rt-->-*)\2y/2

P(τψ''<T)1/2. N o t e that P ( T K / - 8 < T)^k(l + \x\)IR and, furthermore,

I u(t ATV-', Y K ; Z γ & &
K

due to (3.1), where N=N(k,X) is a constant^O. It follows from the above
estimations and (3.5) that \I2\^N(l+\x\)λ+^l(R)1/2

9 where N=N(ky λ ) ^ 0 .
Because Lκ(ty x) also satisfies (1.5), by the way similar to I2 we can obtain the
similar inequality relative to I3 as 72, so that we have the following:

(4.20) E[u(t, Y P ) exp (-fty'*)

for all s^t^T, R>0, sufficiently large γ, and N'=N'(k> λ) is a constant^O.
Letting t=T and taking the infimum with respect to α e S ί in (4.20), we have
the following:

(4.21) inf E[h(Xψl':)txp(-ψn':)+[e-φar'y'2L(an s+r,

^u(sy x)+(T-s)/tc+S2N(l+\x\)λ+N'(l+ \x\

(recall that u(T, x)^h(x) for all x(ΞRd)y where φft>*= \ϊc(ar, s+r, Xa

r^
ζ)dr, and

Jo

(X**y>2) is a solution of the following stochastic differential equation:

(4.22) dXt = έγ(α,, s+t, Xt)dt+σy>\aty s+ty Xt)dBt, X0=x.

In order to prove the theorem, we need further an auxiliary lemma:

Lemma 4.4. Let £(0<£<l) be fixed. For any αeSl , 7=1,2, -. : let {XΛ

t^)
and (XI'2) be unique solutions of Eq. (4.22) and Eq. (2.2) respectively. Then it
holds that for each £ > 0

(4.23) lim sup E[\h{Xψl^M--φrJ)+\T-se-^\L{ s + χ«i,t)dr
?->•" αeSI Jo ;

- A ( ^ l , ) e φ ( - Φ τ l . ) - (Γ"V*" βL(«r( ί+r, X* e)rf/ |] = 0 .
Jo

Proof. Let's show at first that for each £ > 0

(4.24) lim sup E[ sup \XV-X*t-
9\*] = 0

For any (α, s, x)^$lxQτ the difference X?)<y'ε—X">* can be written as follows:
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(4.25) Xr '-XV = j V(«,, s+r, Xa

r^)-b(ar, s+r, X«r *)dr} +

[W(ar, s+r, X? γ'e)-<r(αr) s+r, Xa

r *)}dBr, Xf-* = XV = x .
Jo

Since \b\a, t, x)-b(a, t, y)\+\W{a, t, x)-σ{a, t,y)\\^k{\x-y\ + \y\ \VΊ{X)

- l | } ( v M * ) | ^ l ) for all (a,s, x,y)<=Ax\0, T]χRM and 7=1,2, •••, it fol-
lows from (4.25) and the martingale inequality that

(4.26) £[sup I Xa

r

 y *-X"r>* |2] ^N{E[[ sup | X«r;i-*-X«r;* \ 2dr]+

where N=N(k)^0 is a constant. By means of GrownwelΓs inequality, we
get the following:

(4.27) E[sup \Xoύ

r^-Xr\2}^NeN^τ-s)E[[TS\XΛ

r^\2x \Vy(X«r>*)-l\2dr].

Now by virtue of Schwarz's inequality and (1.6), it holds that

Jo Jo Jo
dr}1/2^N(ί+ IxI)3/γ1 / 2, where N=N(k) is a constant. This implies immediately
(4.24) because the right side of (4.27) is dominated by a function independent
of a. The assertion (4.23) follows immediately from (4.24) and the assump-
tion (A.I) relative to (L, cy h) (see (1.5) especially), whose details are routine
works and omitted here (see, for examples, [2] or [6]). •

Letting γ->oo, /c-»oo and i?->oo in (4.21), and in view of Lemma 4.4
just proved above, we have the following:

(4.28) inf E[h(X«τls)exp(-φ«τ>ls) + \e-*"r'*L(an s+r,

where N=N(k, λ ) ^ 0 is a constant. But if we recall that the left side of (4.28)
is equal to ^ε(s, x) (see (2.4)), then it holds that for all (s, x)^Qτ

(4.29) v\s9 x)£u(s, x)+ε2N(ί+ \x\)λ .

Let £->0 in (4.29). Then v*(s, x)->v(sy x), by virtue of Lemma 2.2 (a), and,
on the other hand, the right side tends to u(sy x). Thus the proof of the theo-
rem is completed. •

By combining Theorem 3.1 with Theorem 4.1, we have the following
uniqueness result concerning the Bellman equation (0.1), where a=σσ* and
σ satisfies (1.21).
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Corollary 4.5. Let u<EWl

p\\£{QT) Π C(QT) (p^d+1) be such that F[u](syx)
=0 a.e. (Qτ) and u(T, x)=h(x) for all x^Rd. Suppose that the function u satisfies
(3.1), (4.2) and that, furthermore, dujdx^l^i^d) and Q^jdXidx^l^iyj^v) are
locally bounded. Then u=v on Qτ. •

REMARK 4.1. The function v also satisfies (4.2). Let's show this. Notice
first the fact that for all (s, x)<ΞQτ, 0 < δ < l , l(ΞRd such that |/ | = 1 , Dlsv(s, x)
^sup D2

lty(s, x). Since, for each a<=% SEΞ[0, T]y v*(s, )(ΞC2(QT) and there

exists a constant N=N(k, m) such that v*)ω(s, x)^N(ί+ \x\fm ([6], Lemma
4.2.2, p. 176), it follows from Taylor's expansion that D2ιtBv*(s,x)={ϋ*i)(ι)(s,ξ)
+</)(/)(*> £')}/2> w h e r e ξ=x+θl(0<θ<S) and ξr=x-ΘΊ(0<θ'<8). From
this it holds that D2

t8v(s, x)^N(l+ \x\)3m, where N=N(k> m) is a constant^O.
In general, if D2ιt8u(sf x)^0> then u is a concave function with respect to x
([9], p. 15), therefore we can also say that v satisfies (4.2) if and only if Pro-
position 1.2 (c) is valid. •

REMARK 4.2. In [6] (Theorem 5.3.14, p. 239), N.V. Krylov proved the
uniqueness of solutions of the Bellman equation in the case where u^W],'2loc

(QT) Π C(QT). Although his method of proof is different from ours, it is ap-
plicable to our case if we modify it slightly so as to approximate u by a sequence
of smooth functions (c.f. [6]). •

5. The normed Bellman equation

In §1-—'4 we studied about controlled processes on a finite interval under
the conditions that the coefficients σ*(t, x)> b*(t, x)y c"(t, x) and La(t, x)
are bounded functions of a for each (/, x). The objective of this paragraph
is to carry the results obtained in §1~4 over to controlled processes with
coefficients unbounded with respect to a. Although processes and cost func-
tions of which we treat below are quite simple, it is not difficult to extend the
results to general cases (see Remark 5.1 below). More general results about
controlled processes with unbounded coefficients on an infinite interval will
appear in a forthcoming paper.

Let A be a separable metric space which is a countable union of non-empty
CO

increasing sets An: A={jAn> An+1Z)An (possively, Aχ=A2= ••• =A) and we

fix this representation throughout this section. For each (ί, x)€ΞQτ and α G j ,
we assume that the functions σ(a, t, x), b(a> t, x), c(a, t, x) and L(a> t, x) (but
h(x) = 0) have the same meanings as the functions given in §1 have. We
always assume (1.9) and, also, assume that the functions σ and b are continuous
with respect to (α, t, x) and, further, σ(α, t, x) does not depend on x. More-
over, let there exist a sequence of nonnegative constants {kn}> n=ly 2, •••, such
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that for each

1(5.2) \\<τ"(t)\\+\b«(t,x)\<:kn(l+\x\),

for all x, y^Rd

y *e[0, T] and a(=An.

(A.4) We assume that the functions L and c are nonnegative and continuous

with respect to (a, ί, x), and, also, assume that c(a, ty x) does not depend on

(t, x). Moreover, let there exist a constant m ^ O such that for all Λ = 1 , 2, •••,

(5.3) L"(*, x)+c(a)^kn(l+\x\)m, for all (α, *, x)^AnxQτ .

We also assume that for each a^A the foregoing functions are continuously

(in (t, x)) diίFerentiable with respect to ί, and twice continuously (in (t, x)) dif-

ferentiable with respect to x, and, in addition, they are all bounded functions

of (ί, x), that is, for all (a, t, x)^AnχQTy l<=Rd, (γ Λ =σ Λ , iΛ, or LΛ)

(5.4) I(8γ790 (t, x)\

Finally, we assume that for all (a, t, x)

(5.5) c»^ 81 V^"(ί, *) I +1 V^#(ί, *) 12,

and, further, assume that there is a function u(t, #)Ξ>0, e C u ( § Γ ) such that

(5.6) ί j 19, Z/V, *)12+ IdsL"(t, x)\2+\dsb
a(t, x)\*+\dsσ»(t)|2+

d a d

»,y=i ««y=i

for all (a, t, x)(=AxQTy 0 < £ < l , where X*>*u{1, x) = ut+(lβ) Σ afj(t)ux.Xj+
d d i^*»^ v

DEFINITILN 5.1. Let n^l. We denote by SlΛ a set of all strategies (in

the sense of Definition 1.1) having values in An. Let §l=USί r t and the ele-

ments of a set St are said to be strategies. •

Using the usual notations given in §1, now we put

(5.7) vn(sy x) = inf v"(s, x),

and

(5.8) v(s, x) = inf υ*(s, x) (see (1.4)).

Note that we already studied about vn, n^l, in § 1-—'4, from the assumptions

(A.3) and (A.4). It is easily shown that υ(s, x) is locally bounded over Qτ by

the fact that 0^v(s, x)^^, x)^N(l+\x\)m (see Proposition 1.2 (a)). Now

we summarize some properties with respect to the functions vn and v.
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Proposition 5.1. (a) vn(s, x) is uniformly bounded, and also (b) equi-

continuous in each cylinder Qτ R. (c) lim vn(s, x)=v(s, x) uniformly in each

cylinder QTtR. (d) v is absolutely continuous in (s, x), hence there are first-order

generalized derivatives with respect to (s, x); dvjds and dvjdxiy l^ί^S-d. Fur-

thermore, the foregoing derivatives are bounded in each QTtR. (e) There are

second-order generalized derivatives; d2v/dXidXj, l^i,j^v, which are also bounded

in each QTtR. (f) For all a(=A, F"[v] (s, x)^0for a.e. (s, x)<=Qτ.

Proof, (a) Since there are constants N, m^tO such that for all (s, x)
and rc^l, O^vn(syx)^v1(syx)^N(ί-\- \x\)m, vn(s,x) is clearly uniformly bounded

in QTtR. (b) In order that vn is equicontinuous in each QTtR, it is sufficient
to show that dvn/dXi, l^i^d, and dvjds are bounded uniformly with respect
to n^N and (s, x)^QTyR. Since La(t, x) and X*iS>x are twice continuously dif-
ferentiable with respect to x, for each αeSIΛ, (s, X)^QT,R> ί^i^d,

div'is, x) = E[\T"e-+iίidjL*i(s+t9 Xl-'-'faXiirdt],
Jo y=i

where φ1=['c{a,)dr, 9yL
Λ(ί, |)=(9Lβ/9^ ) (*, ξ) and θ ^ j ^aXT j '/θ*,. By

Jo

the assumption (A.4), we can obtain easily the inequality: £"[exp( —φ?)

Σ \diXT.yx\2]^Ny where N=N(d) is a constant. It follows from (A.4) (5.5),
ί.y=i

(5.6) that for all (a, s, x)£Ξ$lnχQTy

(5.9) Σ Idtv
m(s9 x)\2£E[\T"e-+1 Σ IdjL^s+t, X1-'>η\*dt]X

t=i Jo y=i

Σ l ^ ί t i q j i ]
ι ,y=i ' Jo y=i

Further, since L(α, ί, x) and X°}'s>x are continuously differentiable with respect
to sy we have the following:

d,vm(s, x) = E[\T~Se-**{dsL
a>(s+t, ^ - * ) + Σ djL*>(s+t, X1-°-*)x

Jo y=i

- φ ? _ s ) ]

Σ 9ii- '(ί+ί, xi s")χdsxi:y}dt],
y=i

from the assumption that L^O. By the way similar to Vxv, it is shown from
(A.4) that there is a function uλ{s, # ) ^ 0 , e C l t 2 ( p Γ ) such that for all (α, 5, Λ?)

(5.10)
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Let's prove that dsvn is also bounded from below. For each w^l we
proved that the following equation holds:

(5.11) inf { 6 Λ + ( 1 / 2 ) Σ dtj(s)dfijVΛ+Σ b%sy x)QiVn-c«vn+L«(s, x)}

= 0 a .e . (ρ r ) ,

(see Theorem 2.1). If we fix n0 and a*^AnQ arbitrarily, then a*^An for
all n*zn0, and it follows from (5.11) that for all n^nOy

(5.12) 8,1^—[(1/2) Σ ^ ) 9 « 3 y f

(*, *)} a.e. (Qτ).

Here note that \vn\ and | 3 ^ Λ | ( l ^ ^ i ) are dominated by a locally bounded
function uniformly with respect to ny and also that didjVn(l^iy j^v) are domi-
nated from above by a locally bounded function uniformly with respect to
n. In fact, the first assertion has been proved in (a) above and (5.9). Next,
it is shown from the assumptions (A.3) and (A.4) that there exists a function
tt^O, <ΞCh2(Qτ) such that for all (ay sy # ) e § t x £ r , l<=Rd(\l\ =1),

(5.13) K/χ/)(ί, Λ?)|^t*(ί, * ) ,

from which 9, 9y^n(l^ί, j^v) are dominated by the function w from above.
Hence, by (5.12), dsvn is bounded from below uniformly with respect to n and
the assertion (b) is proved completely, (c) and (d) follow immediately from
(b). Finally, we can show (e) and (f) simultaneously like Proposition 1.2 by
taking into account the inequality (5.13) just mentioned above. That is, it
suffices to only apply the method used for vn in Proposition 1.2 to v on QTfR

for each i?>0. •

Let's consider whether the inverse inequality of (/) of Proposition 5.1 is
also valid. For this purpose, let us introduce some notations used by N.V.
Krylov ([6], Chap. 6, §3, p. 267). Let mjj, x) be a nonnegative function
given for a(=A, O^t^T, x(=Rd, and define Gm« by the formula:

(5.14) Gm*(uOi uφ uh ιι, t, x) = inf mΛ(t, x)

+ Σ b%ty x f a - )

DEFINITION 5.2. A nonnegative function ma(t, x) over A x [0, T] X Rd is
said to be a normalizing multiplier if for all uoy uiJy uiy uy ί e [0, T], x^Rd

y

(5.15) Gm»(uoy uijy uiy uy t, Λ?)>-OO. Π

The normalizing multiplier mΛ(t, x) is called regular if there exists a function
N(ty x)<oo such that for all (ay ty x) the inequality moiQ{ty x)^N{ty x)mob(ty x)
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holds,

(5.16)

where

m« It, x) =

\c*\2+\L'

M. FUJISAKI

Σ |α";(OIZ-f

~%x)\*}-lfl.

-Σ \h{t,χ)\2

Our object of this paragraph is to prove the following result on the normed

Bellman equation.

Theorem 5.2. Let ma(ty x) be a regular normalizing multiplier. Then it

holds that

(5.17) Gm«[v](tyx) = 0 a.e. (Qτ). D

Note, however, that Lemmas 6.3.6^8 of [6] still hold in our case. There-

fore, in order to obtain Theorem 5.2, it suffices to show the following:

Lemma 5.3. If ma{ty x)=ma0(ty x)y then the equality (5.17) is valid. •

To prove this we shall use the usual notations given in §2 for controlled

processes and cost functions. Let £ be an arbitrary number such that 0 < £

< 1, and for each £, (ay sy x)^AxQTy let σ*%z be the same meanings as the func-

tion given in (2.1). For each α e δ t , (sy x)<ΞQτ, let (X°l>s'x'*) and (v*'z) be given

in (2.2) and (2.3) respectively. Remark that for each (a, sy xy S) the existence

of the process (X?'s>*'8) follows from (A.3), and the finiteness of va>* follows

from (A.4). For each w^l , define v\ and vz by the following:

{ v*n(s, x) = inf τΛε(s, x), and{ v*n(s, x)

v*(sy x) m£υl(s, x).

Note that v\ and vz are obtained if we only replace SI by SlΛ and 51= U Sίw in

(2.4) respectively. In this connection, we have the following:

Proposition 5.4. (a) v\ is uniformly (in (£, n)) bounded, and also equi-

conΐinuous in (sf x) uniformly with respect to S in each cylinder QTfR. (b) For

each £>0, lim vl(s, x)=v*(s, x) uniformly in each Qτ R and v* is continuous in

(s, x). (c) For each £>0, n ^ l , v\^WY(Q) and vz^WY(Q)for any bound-

ed subregion QdQτ, p^ί. Moreover, their first-order generalized derivatives

with respect to s and Xi(l^i^d), and second-order generalized derivatives with

respect to #,•#,. (lfSz, j^-v) are locally bounded in Qτ uniformly with respect to

(£, n). (d) lim v*(s, x)=v(s, x), whose convergence is uniform in each cylinder

Qτ.«. Ώ ~

Proof, (a) The first assertion is obvious from the fact that 0^v^(sy x)

^>vl(s, x)^N(ί+\x\)m, where N=N(k, m) is a constant^ 0 (see (2.5)), for
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all (s, xy β, n). The second one can be obtained from the assumptions (5.5)
and (5.6) by the same method as Proposition 5.1. (b) and (c) are shown similar-
ly. Let us prove (d). In the equality:

(5.19) υ\s, x)-υ(s, x) = {v\sy x)-v*n(sy x)} + W(s, x)-vu(s, x)}

+ {vn(sy x)-v(sy x)} = h+h+h,

we want to estimate 72.

|/2I ^ sup \v*>\sy x)-v*{sy χ)\ = sup \E[\T 5

e-*1iL"is+t, X«t'
s>x-Z)

-L«is+t,X1>s-*)}dt]\

= sup \E[[T~Se-*1dt[\vxL«is+t, # ) , X1>»*9-W)d\]\
α ε ^ Jo Jo

^ sup { £ [ Γ V ^ α , ) ώ ] } ^
αe5I« Jo Jo

where jQ = XX*'StX'1i+ (l—\)X°ltS'x. Here we used Hadamard's inequality,
Schwarz's inequality and (5.5). Clearly the first part of the right side is bound-
ed uniformly with respect to n, while for the second one, by using also (5.5),
we can show that there is a constant N=N{dy Γ ) ^ 0 such that for all (ay sy # ) e

9LxQT9 El[T~Sexp(-φϊ)\X1's>x'*-X1's'x\2dt]^Nβ2. From these results we can
Jo

conclude that for some constant N=N(dy T)y \I2\ ^SNy for all (sy x). Let £ > 0
fix and w->oo. Then Ix and 73 converge to 0 uniformly in each cylinder QTtRy

by means of (b) just mentioned above, and Proposition 5.1 (c) respectively.
Next, letting £->0 in (5.19), we get the assertion (d). Q .

We denote by Fl{uoy uijy uiy sy x) and G%«(u0, uijy uh uy s, x) the right side
in (2.9) and (5.14) respectively if we replace A by An. Moreover, define Gm«*z

by the formula:

(5.20) Gm«,*(uoy uijy uiy uy sy x) = inf ma(s, x) K + ( l / 2 ) ^ Σ ^ 7 ; ^ K i

+(£2/2) Σ ui§+ Σ b1(sy xfo-c'u+L*^ x)} .
ί=V+l ί=l

Then we have the following:

Lemma 5.5. For each £ > 0 it holds that

(5.21) Gm««.*[v*] (s, x) = 0 a.e. (Qτ).

Proof. It follows from Lemma 2.2 (c) that for all £ and ny Fn[vl](sy x)
= 0 a.e. (Qτ). Since A=\jAn and AndAn+1, for each nOy for all n^i

Flo[vl] (sy x)^0 a.e. (Qτ). Moreover, clearly for all n ^ l , Fe[υ*n] (sy x)^0 a.e.
(Qτ) From the fact that ma0 is nonnegative and bounded (^1), it also holds
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that for each nOy for all n^n0, G?*°,*[vl]^0 a.e., and for all w^l, G"*°. [ι>2]
(s, x)^0 a.e. (QT)- We take now the limit as /z-»oo for each £>0. Since
the functions m^d*, mΛOba> mΛ0c* and mΛJLa> are uniformly bounded, it follows
from Theorem 4.5.1 of [6] (see also Lemma 2.5 of §2) that 0^G^Λ°.8[^β] (sf x)
and GmΛ0»*[v*] (s> x)^0 a.e. (Qτ) Since n0 was an arbitrary number ^ 1 , let-
ting nQ f °°, we obtain the equality (5.21). •

We further take the limit in (5.21) as £->0. To show Lemma 5.3 we also
use the same transformation of variables as (2.14). For each £ > 0 and each
?ei? r f~v, we define new variables (s,y)&Qτ and a function ψ*(s,y) by (2.14);

where in this case vz is given by (5.18). If we change the variables (s, x) into
(st y) in (5.21), then it holds that

(5.22) 0 = inf Ko (s, y) Ws+(lβ)^aUs)ψe

yiyj+

where X*ft(s, y) is given in (2.16), and

(5.23) fh\O(J, y) = rnjs, x) (=mjs, j

Here it is easy to see that for all ξ, £, a and (s, y), 0<^^ 0 (ί, y)^ly therefore,
the value in parentheses of (5.22) is nonnegative for each a^A. By the way
similar to Lemma 2.3 we obtain the following:

Lemma 5.6. (a) For each £>0, ψ*re Wj;?oc(Qr), p^l. (b) The func-
tion ψ* itself and its generalized derivatives ψ], ψζ

y.(l^i^d)y ψliyj(l<ίi9 j^d)
are locally bounded in each cylinder QTtR uniformly with respect to 6. (c) For
any (s, y)^Qτ, lim ΛJΛS, y) = v(s, y, ξ) (y = (y, j))ei?rf), whose convergence is

ε->o

uniform in each cylinder QTtR. •

Proof of Lemma 5.3. It is sufficient to show that Gm**[v]^.O a.e., by vir-
tue of Proposition 5.1 (f). Like the proof of Theorem 2.1, we rewrite (5.22)
as follows:

(5.24) O^Gw*o[^] (s, y)+Σ fϊ(s, y) a.e. (Qτ),

where O^(uoy uφ u, s, y) = jnf MJs, y) {«#+(l/2)^Σ fa

(l/2>Σ\uH-c*u+X\s> y)}, mjs9 y) = tnjs~£ ξ),

/ί(ί, y) = bf {my*, y)-fΛJs, y)} W-

(1/2) Σ ψ *w—c' -ψ '} ,

and
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fl(s, y) = inf {ίti^s, y)%*'\s, y)-®^ # ( * , y)}

Let us prove that for any {Sn} such that Sn-*0 (w-*oo), Km f)n(s, y)=0

(*=1, 2) a.e. in each cylinder QTtR. It is easily seen from the definitions of
fftlo a n d fh^ t h a t

(5.25) \f\(s, y)I ^ s u p I m j s , y y S$+ξ)-mΛQ{sy yyζ)\{\ψj|
d

If we note that djtnΛ0(sy x) = — (l/2){wΛ0(*, #)}3{2Σ *?(*, *) X djb*{sy x) +

2L*{syx)djL"(syx)}, then |djtna0(s,x)I < {mjs,x)}2XΣ18^,*)I + IβyL^ί,x)\}.
ί = l

Since ma0(sy x)\djb
(f(sy x)\ and mΰύ0(sy x)\djL*(s, x)\ are bounded functions^ 1)

uniformly with respect to (ay sy x) from the assumption (5.5), we can conclude
that

(5.26) I djtna0(sy x)\£N mΛ0(s, *), for all (<xy sy x),

for some constant iV^O. Hence from (5.25) and (5.26) it holds that

x I * w I +(1/2) Σ 1 Ψw# I +1 <tyf I} ,χ Σ
where O < 0 < £ < 1 . Since ψj, ψ^^., ψ j ι w and ψ9 are locally bounded functions
uniformly with respect to 8, by means of Lemma 5.6 (b), it follows immediately
from (5.27) that lim f[(s, y) = 0 a.e. in each cylinder Qτ R. From the same

reason as f\y in order to prove that lim fln(sy v) = 0, it is sufficient to show

that lim |Vv*»(sy yy £„$+%)—Vv(sy yy ξ)\ = 0 . But this can be obtained by the

way similar to Lemma 2.4, because v is represented as difference of two convex
functions (with respect to x) and, hence, v is once differentiable with respect
to almost all x (c.f. Proposition 1.2 (b) and (c)).

On the other hand, in the same way as we prove Lemma 2.5 of §2, we

can show that fiϊn Gm«o\ψ?] (^ y)^G^^[ψ] (sy y) a.e., where
8>0

(sy y) (cf. Theorem 4.5.1, Lemma 6.3.5 of [6]). To complete the proof it re-
mains only to take the limit in (5.24) as £„->(), then we get the inequality:

(5.28) 0^O^[ψ](syy) a.e..

Since Gm*o[ψ] (sy y)=Gm*°[v\ (sy yy ξ) (see Lemma 5.6 (c)) and ξ was arbitrarily
fixed, we can conclude that Gm*°[v] (sy # ) ^ 0 . a.e. (Qτ). D

Now we give two examples in which the assumptions of Theorem 5.2 are
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verified easily.

EXAMPLE 5.1. Let d^2 andlet r ί ( γ 1 = σ , 72=by y3=L) be function of
the following type: <y"(ί, χ)=γi(a)γi(t, x). Assume that % (α) ( i = l , 2, 3) is
continuous function in A and, for any w^l, \Ύi(ot)\^*kH for all a^An (see
(A.3)). As for 7i(t,x)y it is assumed that [γ^ήl^k, |γ2(£,x)\ ^k(l + | * | ) ,
and \73(t, x)\ ίS&(l+l#\)m for all (t, x)^QTy where k and m are nonnegative
constants. Moreover, for each ί = l , 2, 3, α e i , let 7?eC l f2(J5r), and let all of
their first (in (t, x)) and second (in x) derivatives be dominated by a constant k
in absolute value when a is fixed. Concerning ca> we assume that for all a

(5.29) c"2i8k\72(a)\+k\73(ct)\2,(k^l) and

(5.30) C

Λ

It is easy to see that, in this case, (5.5) and (5.6) are derived immediately from
(5.29) and (5.30) respectively. In factv if we put u{t, x)—N} where N is a con-
stant such that ΛΓ;>£4, then the left side of (5.6) is less than Nc", while it holds
that Nc<Λ=-Xoi'9u(ΐi x) for all (or, ί, x)(=AxQτ> l>S>0y from which (5.6)
follows. •

EXAMPLE 5.2. Let d^2, A=Rd and An={a^Rd; \a\ ^n}. Assume that
σ*{t) is independent of α, b*(tyx)=a and L"(t, x)=\a\2. Note that in this
case the assumptions of Theorem 5.2 are clearly satisfied and that, further,
we can take c*=0. Then it follows from Theorem 5.2 that v of (5.8) satisfies
the normed Bellman equation:

(5.31) Gm«[v] (ί, x) = inf «.(*, x){vt+(lβ) Σ au(t)υstίίJ

+ Σα, ̂ + | α | 2 } =0 a.e..
ί = l

Note also that mΛ (ty x) = 1 (constant) is regular normalized multiplier so that
d

Gι[v] (t, x)=0 a.e. Now it is easy to see that for all a&Rd, Σ 0Wr,+ I α l 2 sδ
d i = 1

and the equality holds if and only Ίΐ ai——(vx.)l2f l^i^S-d, which

enables us to assure the existence of a generalized solution of Eq. (0.7). Re-
mark that this result is also correct in the case where L*(t, x) is written as
L*(t, x)=\a\2+L(tix), where 2 ^ 0 , ^CU2(QT) and its derivatives LfyLx and
Lxx are uniformly bounded. •

REMARK 5.1. It is not difficult to extend the results to the case where
the coefficients σΛ, ba

f c", La and h satisfy more general conditions than (5.1)~
(5.4). Indeed, for example, assume that h^βO and for each CC^LA, 7*(=CΓ*,

b*, c*y L* and h)^Ch2(Qτ) such that its derivatives 7?, γ?, and ηΛ

xx satisfy the
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polynomial growth condition. Then, in order that Theorem 5.2 holds, it is

sufficient to take ca(t9 x) and u(s, x) such that (5.5) and (5.6) hold (including

the derivatives of σΛ), and that, moreover, u(t, x)=k(ί-{- \x\)2m. The com-

putations, however, are quite complicate in that case (cf. Chap. 6, §2 of [6]). Π

REMAPK 5.2. Finally, we shall state about the uniqueness of solutions

of the normed Bellman equation (5.17). It is easy to obtain the result cor-

responding to Theorem 3.1, that is, suppose that u is a function in Wp'tlόl(Qτ)

ΠC(QT) such that |u(t, x)\^k(ί+\x\)m, ux. and uXiX. are locally bounded, and,

also, suppose that for all regular normalizing multiplier ma> Gm*[u] (t, x)^0

a.e., u(T, x)^h(x). Then u(t, x)<^v(t, x) in Qτ. On the other hand, in gener-

al, it is difficult to show the inverse relation (i.e. corresponding to Theorem

4.1) except the case where 1 is regular normalizing multiplier (see Example

5.2 and also [6], p. 272, Excercise 10), even then it is necessary to assume some

suitable conditions such as (5.5) and (5.6). •
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