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0. Introduction

Let G be a cyclic group of an odd prime order m and let t be a generator
of the complex representation ring R(G) of G; i.e. R(G)=Z[t]l(l—tm). Let
X be a closed G manifold homotopy equivalent to P(Cn) the space consisting
of complex lines in Cn. Suppose G acts smoothly on X with isolated fixed
points {pi}ϊ=ι (Bredon's theorem asserts the number of fixed points equals
n [2]). Then the tangential representation Tp.X of G at pi defines a function
ψί(f) on G— 1 (up to multiplication by tk) for each i; see p. 137 in [12]. In
particular, if X is G homotopy equivalent to P(A) for some complex represen-
tation A of G (we call such X a G homotopy P(A))y then it has an expression

where λ-ι(F) is the Euler class of a G representation V. Therefore one can
regard tyi(t) as quantities which describe to what extent the action resembles
a linear action on P(Cn).

Petrie's conjecture in [12] suggests that ψv(£) is independent of ί for an
S1 manifold homotopy equivalent to P(C") and the Pontrjagin classes are pre-
served under the homotopy equivalence. Particularly, in [13] Petrie showed
that if X is S1 homotopy equivalent to P(A) for some complex representation
A of S1, then ψv(*)=±l for each ί. In contrast to S1 actions we construct

infinitely many families of G homotopy P(C2d) such that ^(OΦdb'ΨvOO f°r

ί=l=y. Here is a brief statement of our main theorem (Theorem 4.1).

Main Theorem. Let m be an odd prime number and 2d\m—\ for some
integer d>2. Then there are infinitely many homotopy complex projective spaces
Pu~l of dimension 4d—2 such that Zm acts on P2d~l with 2d isolated fixed points.
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As a corollary of Theorem 4.1, there exist counterexamples to the "mod m"
version of the Petrie conjecture for all primes m>5. These are the first ex-
amples of exotic homotopy complex protective spaces which support nontrivial

Zm actions.

We use the first Pontrjagin classes to distinguish G homotopy P(On)'s
and study the relations between tangential representations at fixed points and
the first Pontrjagin classes. Specializing 4.1 to 2d—4 and applying 6.1, we

are able to show that every homotopy P(C4) supports Zm action for infinitely

many prime numbers m (Theorem 6.2). This concerns a conjecture of Lϋfrler
and Raussen (strong form) which asserts that a closed simply connected mani-

fold admits non-trivial Zm actions for almost all primes m ([21]).

As to the method, we apply the equivariant surgery theory which is de-

veloped by T. Petrie, K.H. Dovermann and others. It consists of three steps

in our construction. First, we construct a nice G homotopy equivalence ώ:

V-+U between G vector bundles over P(A). Next convert this map <& to
a map h which is transverse to the zero section P(A) C U via a proper G homo-

topy. The resulting transverse map h produces a G normal map (see [14]).
A more general theory of these techniques is discussed in [16]. Then we check

that the surgery obstruction of this G normal map vanishes. After these three

steps, we obtain a homotopy complex projective space X which supports a
G action with certain properties.

This paper is organized as follows. The above three steps are discussed
in sections 1-3 respectively. As a consequence of these sections we obtain

our first main theorem which is stated in section 4. In sections 5 and 6 we
treat a related topic concerned with the relations between the first Pontrjagin

classes and tangential representations and study the actions on homotopy P(O4)

at the end of section 6.

Here are some conventions. Throughout this paper m stands for an odd

prime number, G a cyclic group of order m and t the complex one dimensional

representation of G on which a (preassigned) generator of G acts via the multi-

plication of exp(2πi/m).

We would like to express our hearty thanks to Professor Ted Petrie, K.H.

Dovermann and R. Schultz for their valuable suggestions.

1. G fiber homotopy equivalences

Let A be a complex rc-dimensional representation of G with a G invariant
inner product. We denote the unit sphere of A by S(A). It supports an
action of GxS1 via (p, ξ) v=p v ζ for v^S(A) and (p, ζ)<=GxS1 where (1)

G acts on the left by p (̂ , •••, zn)
=(paι%ι> •••, pc"^») for the generator p=exp

(2πi/m)^G and some integers al9 •••, an (integers α/s are defined as A is a

representation of G), (2) S1 acts on the right by (zl9 #2> *"> #»)*? — (^iΓ?
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^2?> •'•> %nζ) f°r ζ^S1 and (#!, #2, •••, zn)^S(A) y i.e., this is the usual action
inherited from complex multiplication. Sometimes, we denote A by Λ+ί*2-|-

+f:
The orbit space S(A)/S1 is a standard complex projective space, denote

it by P(A). On which there is a G action via p ( :̂ #2

: "* : #»)— (p*1^ p"2#2:

•••: ρa" zn). Suppose a{Φaj (mod m) for z=t=/, then the G action on P(A) have
only isolated fixed points. The fixed point set P(A)G consists of n points which
are_p, =(0: 0: •••: 1: •••: 0), for \<ί<ny with all coordinates zero except the
i-th coordinate. Then it is easy to see TpiP(A)=^Σ tar*J as a representation
of G. See [12]. '*'

Given a proper S1 map ω: V-*U of degree one between two complex
representations of S1. Then ω yields an G X S1 map

lXω:S(A)xV-*S(A)xU

where S1 acts on S(A) X V (or S(A) X U) by (#, U) ?=(Λ? ?, f1'*) and G acts
on S(A) as above and trivially on V and U. Taking their S1 orbit spaces, it
induces a fiber preserving G map

between complex G vector bundles V and £/ over P(^4). Since the degree
of ω is one, the fiber degree of ώ is also one; so & turns out to be a fiber homo-
topy equivalence. However, it is not necessary a G fiber homotopy equiva-
lence. The sufficient and necessary conditions for & to be a G fiber homotopy
equivalence is that the fiber degree of the restricted map ώG: VG-+UG to G
fixed point sets is also one. The details about these techniques are discussed in
[16].

Let ts be the standard complex one dimensional S1 module. Let p and
q be relatively prime integers, γ an integer prime to m and set

Choose integers a and b such that —ap-\-bq—l and define a proper S1 map
ω:

ω(#!, £2) ~ (zί #:

It is well known that the degree of ω is one [13, 14]. In this case, & is a G
fiber homotopy equivalence if and only if p and q are both prime to m.

2. G transversality conditions

We proceed to making a G fiber homotopy equivalence ώ: V-+U over
P(A) transverse to the zero section P(A) C U via a proper G homotopy in this
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section. This is not always possible; i.e., there are obstructions to achieving
transversality. The complete obstruction theory is developed in [14]. In
our case, G acts semifreely on P(A) and fiber dimension of T^— U is zero. The
following lemma is a direct consequence of Corollary 4.13 in [14].

Lemma 2.1. Suppose P(A)G consists of isolated points {/>,-}. Then one
can convert & to a map transverse to the zero section P(A) C U via a proper G

homotopy if (TP(A)J

ΓV — U)\pi is a true real representation of G at each fixed
point p^

From now on we shall identify G with the additive group Zm. Let G*
denote the multiplicative group of units of G, which is cyclic of order m— 1.
Suppose that 2d\m— 1, then there is #eG* with order 2d in G*.

Now we set

Lemma 2.2. Suppose that p, q, γ are relatively prime to m and (p, f)=l.
If 7 = ±(ar—l) (mod m) and 7pq=±(ar/—ί) (mod m) for r^pr' and l<r, r'

<2d—l, then & is properly G homotopic to a map which is transverse the to zero
section P(A) C U.

Proof. It is easy to see that

Tj\pi = t'^+t0'™ = ̂ '

Since fV-D+f V'-υ is a factor of ^V^"1', (TP(A)+Ψ-U)\pί is a true

real representation of G for ί=0, 1, •••, 2d— 1. Hence the lemma follows from
Lemma 2.1. Q.E.D.

REMARK 2.3 If p=±l or q=±l (mod m), then ft\pi=U\p. as real re-
presentations for all /. This is a special case, where we do not need to put
any condition on p and q for achieving transversality. In this case, we have
ψ.f.(ί)=l for all /. If we want to avoid this, we have to put one more con-

straint on the choices of p, q\ i.e., pΦ±l (mod m) and qΦ±l (mod m),

3. G surgery obstructions

Let h: V->U be a G map which is transverse to the zero section and G

properly homotopic to &. Since <£> is a G fiber homotopy equivalence, it produces
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a triple κ=(X, /, β) where X=h"1(P(A))9 f=h\x: X-+P(A) is a map of degree
one and β is a stable G bundle isomorphism between TX and f*(TP(A)-{- V

— U)\ i.e., K is a G normal map.
Since m is a prime number, every G action is semifree. There are only

two steps in doing equivariant surgery to convert a G normal map (X, /, β)

to (X',f'y β f ) with/' a G homotopy equivalence. The first step is on the fixed
point set, second is on the free part. The reader should consult [4, 15, 16]
for more general theory of G surgery.

Now we perform equivariant surgery on the G normal map K without
touching XG to produce a new G normal map κ'=(X',f, β') with/': X'-+P(A)

a G homotopy equivalence. In constructing the transverse G map h, we already

have the bijection over the fixed point set since the map &G: VG-*-UG is bijective

and h is obtained via a proper G homotopy. Therefore, the surgery obstruc-
tion we encounter is only one, written as σ(/), which belongs to the Wall group

Ltί-2(G, 1) (see [5] or [9]). We shall verify that σ(/) vanishes if we carefully

choose two relatively prime integers p and q, or simply choose γ even.

Theorem 3.1. Under conditions of Lemma 2.2, σ(/) vanishes if γ is even.

Proof. Step J. By Rothenberg exact sequence

Li<-2(G, 1)->LL-2(G, l

Here Wh(G) is the Whitehead group of G and Li(G, 1) is the Wall group con-

cerning the simple homotopy equivalence. It is known that the Wh(G) has
no torsion (see p. 374 of [10]); so H4d~\Z2, Wh(G))=Q. On the other hand
the recent result of Dovermann-Rothenberg (see §2 and §10 of [5]) tells us that
αG(er(/))=0 because the real representations TP{X and Tpi+dX (they are con-
jugate as complex representations and equal as real representations) appear in

pairs. These mean that σ(f) comes from an unique element of Ltf_2(G, 1),
which we shall denote by σ(/) again.

Step 2. The multisignature map Sign: Lld-2(G, 1)-»JR(G) sends σ(f)

into R(G) (see [11] or [18]). The evaluated value (Sign σ ( f ) ) ( g ) at^eG-1
has a description

(Sign σ(f)) (g) = Sign(£, X)-Sign(g, P(A))

where Sign(£, M) denotes the G signature of M evaluated at g ([!]). We apply
the Atiyah-Singer G signature theorem to compute Sign(£, X) and Sign(£,
P(Λ)). Since the representations TpiX and Tpi+dX are of an odd complex di-

mension and conjugate to each other, the contributions to Sign(£, X) are can-

celled. Therefore, Sign(£, X) vanishes. Similarly, Sign(#, P(A)) vanishes.

Step 3. It is known that the kernel of Sign is isomorphic to Z2 and is

detected by the Kervaire invariant of the normal map K forgetting the group
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action (see p. 168 in [18]). The proof of Theorem 3.1 is completed by assum-
ing the following lemma. Q.E.D.

Lemma 3.2. The Kervaίre invariant of σ(f) is equal to 0 if γ is even.

Proof. We lift the fiber homotopy equivalence <£: V-+U over P(C2d) to
P(R4d) through the Hopf map: P(C2d)-»P(R4d) and then restrict it to
Obviously the resulting fiber homotopy equivalence over P(R4d~l) is given by

ω : V = (S(R4d~1) x V)/Z2 -*U = (S(P4d~1} x U)/Z2

where ω is induced from ω as usual. Here we note that the Kervaire invariant
of fc coincides with that of a normal map obtained from ώ (see pp. 196-197 of
[18]). Since exponents of irreducible factors in U and V are all even, the ac-
tions of Z2 on them are trivial and so ω splits into the direct product l X ω :
P(R4d-1)χV->P(R4d-1)xU. Namely, ώ is a pullback of the fiber homotopy
equivalence ω over a point. The Sullivan formula (see §13B in [18]) then
implies that the Kervaire invariant of ώ vanishes. Q.E.D.

REMARK 3.3. A more general version of Lemma 3.2 was proved by the
first author ([8]) and R. Schultz ([17]) independently. It is stated as follows:
the Kervaire invariant c(ώ) of

ώ: S(A) Xsι(fίp+f>9) -> S(A) Xsl(fί+tr

s

pq)

is given by

1 if γ2(/-l) (ί2-l) = 24 (mod 48)

. 0 if T2(/-1) (j*-l) = 0 (mod 48).

Hence, we can prove that the surgery obstruction σ(/) vanishes if J\p2— 1) (ff—
l)=Ξθ(mod48).

4. Main theorem

Now as a consequence of previous sections, we have established

Theorem 4.1. Suppose G is a cyclic group of odd prime order m. If 2d\
m— 1 for some integer d>2, then there exists a closed G manifold X(γ, p> q) together
with a G homotopy equivalence f: X(γ, p> q)-*P(A) such that

(1) TX(γ,py q) is stably isomorphίc tof*(TP(A)+ Ψ—U)asG vector bundles,
(2) X(γ, p, q)G consists of 2d points,

where A, F, U are as in Lemma 2.2 (i.e. α, p, q and γ satisfy the assumptions of
Lemma 2.2) and moreover γ is even.

Using Theorem 4.1 (1), the total Pontrjagin class p(X) of X=X(y,py q) the
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can be computed as follows:

p(X) =

where x is a generator of H2(X Z). So, the first Pontrjagin class of X is equal
to {2d+j2(p2— 1)(1— <f)} of. It is easy to see that there exist infinitely many
prime numbers m such that tyi(t)^tyj(t), i^pj for each d. Moreover, there
are infinitely many homotopy complex projective spaces which support Zm

actions for any prime m>5. They are distinct from P(C2d) because p, <?Φ1.
(We distinguish them by the first Pontrajgin classes).

Corollary 4.2. There exists X(γ, p, q) with a nontrivail G action and
p1(X(fγ9 p, q))Φ2dx2 (mod m)for every prime m>5.

Proof. Case 1: m>7. Choose an even γ such that γ=α— 1 (mod m) for
α€ΞG* with order 2d. Then choose two relatively prime odd integers p and
q such that <γpq=ar — 1 (mod m) for 2<r'<2d — 1. Such % p and q always
exist. The above two congruences mean that pq=l-{-a+ -\-ar ~λ (mod m).
Denote l + α+ ---- \-ar'~l by x. There exists an integer p such that pΦQ, ±1,
±x (mod m), since m>7. Suppose s be the order of p in the multiplicative
group G*, then x=xps=p(xps~1+mμ) (mod m). It is easy to see that p and
xp^^+m* are relatively prime for μ>l and xps~1Φ±:l (mod m). Therefore,
q=xps"1-\-mμ fit our requirement for μ>l.

Case 2: m=5. Choose α=3, j=2 and an integer p = 2 (mod 5), q=p

Hence, we can construct the required X(fγy p, q) because J2(p2— 1)(1— f)
Φθ (mod m) for above choices of p, q. This completes the proof. Q.E.D.

These are the first examples of exotic homotopy complex projective spaces
which support Zm actions with isolated fixed points. The above corollary im-
plies that the "mod m'9 version of the Petrie conjecture is false for m>5.

5. Tangential representations and first Pontrjagin classes

It is well-known that tangential representations of a G manifold are closely
related to its Pontrjagin classes. We shall restrict our concern to the first
Pontrjagin class and discuss some relations between it and tangential re-
presentations.

We begin with the following lemma.

Lemma 5.1. Let X be a homotopy P(Cn). Then the first Pontrjagin class
p^X) of X is of the form

p,(X) = (n+24k(X))x2 (k(X)^Z)

where oc^H\X\ Z) is a generator.
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Proof. It is well-known that X admits a Sρinc(2ra—2) structure; i.e.,

there is a principal Spme(2n—2) bundle over X with total space P such that

TX=P x R2n~2

(see [12]). The half Sp'mc(2n—2) modules Δ+ and Δ_ yield vector bundles
E+ and EL over TX

and there is a complex over TX\ E+->E_ which defines an element 8X of a K

group K(TX).
On the other hand let ηx be a complex line bundle over X whose first chern

class is x and consider an element (ηx—1)Λ~3 of K(X). Since K(TX) has a

natural jSΓ(-XΓ) module structure, the above two element yield an element

We apply the Atiyah-Singer index homomorphism Idx: K(TX)-*Z to this
element. Then the Atiyah-Singer index theorem implies that

where ch denotes the Chern character, A(X) the A class of X and [X] a funda-
mental class of X. Write pl(X)=(n+2^k(X))x2 with a rational number k(X).

Then the above integrality condition reduces to (n—l)(n—2)l2—k(X)^Z

which shows the integrality of k(X). Q.E.D.

REMARK 5.2. For dimensions, in which framed closed manifolds with

the Kervaire invariant one exist, the function k(X) takes any integer (at present

n=2, 4, 8, 16, 32 are known to be such dimensions). For other even n one

can see that k(X) can take any even integer. Conversely an improved Sullivan
formula for spin manifolds in terms of Wu class (see p. 255 in [18]) implies
that k(X) must be even in case n=2 (mod 4). For odd n the value of k(X)

are more restrictive and complicated.

Now we need some convention about an orientation: for W a homotopy
P(Cn) we choose a generator % of H2(W\ Z) and define a fundamental class

[W] of W by ^-s*"1, [I ]̂>=1. Therefore, in case n is odd, an orientation on
W is uniquely determined, but in case n is even, it depends on the choice of

a generator #.

Recall that if X supports an action of G with isolated fixed points {/>,•},
then the tangential representations TpiX admit a complex structure (which is
not unique). We choose a complex structure on it such that the orientations

induced from the complex structure agree with the given one and specify the
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resulting complex G representations by TPiX~ .

Theorem 5.3. Let X and Y be oriented homotopy P(Cn) with actions of G

whose fixed point set consists of isolated points {pi}ϊ=\ and {qά*=\ respectively.
Suppose that for each i

(i) TpiX= Tq. Y as real representations of G.
(ii) The orientation on Tq.Y ihduced from the complex structure of TPiX~
via (i) agrees with the given one on Y.

Then k(X)=k(Y) (mod m). In case n=2 (mod 4), the congruence is improved
tok(X)=k(Y)(mod2m).

Proof. The argument used in the proof of Lemma 5.1 still holds in equi-
variant category; we shall use the same notations in equivariant category.

We apply the equivariant Atiyah-Singer index theorem to Idx((ηx— l)n~3 Sx)
and Idγ((ηx—\y~* 8Y). It is easy to see that they are elements of R(G) and their
values evaluated at each element of G—ί are equal by hypotheses. This means
that we can write

with some element f(t) of R(G). If we substitute t by the identity element 1
in this equation, it turns into

<fh(ηx-\γ-* e»*fi A(X), [X]y-
Since /(I) is an integer, this equation reduces to — k(X)+k(Y) = 0 (mod m)y

which verifies the former assertion.

When n=2 (mod 4), both k(X) and k(Y) are even by Remark 5.2. This
implies the latter assertion. Q.E.D.

6. The realization of Theorem 5.3

We shall consider a realization problem of Theorem 5.3 and show that
every homotopy P(C4) supports Zm-actions for infinitely many prime numbers
m. It is motivated by a conjecture of Lϋffler and Raussen (see §0).

First we show the realization part of Theorem 5.3.

Theorem 6.1. Let X be an oriented homotopy P(C2d) with an action of G
whose fixed point set consists of isolated points {pέ} . Suppose we are given an
integer k such that

(i) k=k(X) (mod m) if d=2, 4, 8, 16,
(ii) k=k(X) (mod 2m) otherwise.

Then there exists an oriented G manifold Y together with an orientation preserxing
Gmapf: Y-^X such that

(1) fis a G homotopy equivalence,
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(2) Y satisfies the conditions (i) and (ii) in Theorem 5.3,
(3) k(Y)=k.

Proof. We apply the equivariant surgery theory again. The method is
almost the same as that developed in §l-§3. We start with the following G
fiber homotopy equivalence.

Let S be an S1 bundle over X whose first Chern class is a generator of
H\X\ Z). Since H\X', Z)=0 and H\X; Z}G=H\X\ Z), the action of G on
X lifts to that on S ([6]). We consider two S1 maps

defined in §1. By using the construction of §1 to S (instead of S(A)), one gets
G fiber homotopy equivalences ώ{ (i=l, 2). Generally a G fiber homotopy
equivalence ώ: V-^U has a homotopy inverse which is a map from U to V.
We denote it by —ώ: —V—>—U. Then our desired G fiber homotopy equiva-
lence is given by

-*([*-*(*)]/«) (

We shall abbreviate this as &: K->C7. One can see that

(V-U)\pi = 0 for each/.

In particular, the conditions of Lemma 2.1 are satisfied. Therefore, we can
convert ώ transverse to the zero section XdU. This produces a G normal
map κ=(W,g, β).

From §3, g° is a bijection. Therefore, the next and final surgery obstruc-
tion σ(^), which belongs to Lld-2(G, 1), emerges.

We shall investigate it along the same line as in §3. Since the tangential
representations of W and X are equal at every corresponding fixed point, steps
1 and 2 in §3 work. It suffices to show that the Kervaire invariant of g
vanishes. We need to distinguish cases (i) and (ii) in Theorem 6.1.

In the case (ii), k—k(X) is even by the assumption. This means that
the fiber homotopy equivalence ώ: V ^>U is two times a fiber homotopy equiva-
lence. Therefore, the vanishing of the Kervaire invariant of g follows from
the Sullivan formula (see §13B in [18]).

In the case (i), if the Kervaire invariant of g vanishes, then we have nothing
to do. Suppose it does not vanish. There exists a closed framed manifold M
with the Kervaire invariant one. We do connected sum of W with m copies
of M equivariantly. Since the Kervaire invariant is additive with respect to
connected sum operation and m is odd, the Kervaire invariant of the resulting
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normal map vanishes. The stable isomorphism β is preserved after doing
connected sums because M is framed.

Thus we can apply equivariant surgery to achieve a G normal map (Y,
/, β) such that

(1) /: Y-*X is a G homotopy equivalence,
(2) β: TY-*f*(TX+Ϋ-U) is a stable G vector bundle isomorphism.

This is a desired one. In fact, the conditions (i) and (ii) in Theorem 5.3 are
obtained by restricting the above (2) to p> and an elementary calculation shows

k( Y)=k. This completes the proof of Theorem 6. 1 . Q.E.D.

Now we pose

DEFINITION. For a smooth closed manifold M we define n(M)=sup
{m prime | M admits a nontrivial smooth actions of Zm} .

Clearly if N(M) (the degree of symmetry of M) is positive (i.e. M admits
a circle action), then n(M) = oo. Therefore, it is reasonable to ask

QUESTION. Is there a closed (simply connected) manifold M such that
N(M)=0 but n(M)= <*> ?

Our theorem is the following:

Theorem 6.2. <t) Each Xk (homotopy equivalent to P(C4)) with pl(Xk)=(4+
24k)x2 admits a smooth action of Zm (with isolated fixed points) if m is a prime
number such that m=\ (mod 4(6^+1) (6k— I)).

Given an integer k, it is easy to see that there are infinitely many primes
m satisfying the above congruence. On the other hand, N(Xk)>0 if and
only if k=Q [3,20]. Hence Xk (&ΦO) are manifolds which answer the above
question. Theorem 6.2 is also related to the conjecture of Lϋffler and Raussen.

Proof of Theorem 6.2. In this proof a congruence is modulo m unless
otherwise stated. Let αe(Zw)* with order 4. We take γ=α— 1 and jpq=a3

— 1 with γ even. Then there is a Zm homotopy P(C4) with pλ(X)= (4— γ2

(p2— 1) (<f— I))*2 by Theorem 4.1. An easy computation shows

Set p=Aa+B, p~l=-Aa,+B (A, B<EΞZ) where ^2+B2=l by p p~l=l and
a2 = — 1 . Then we have (*) = 8AB.

Now we impose AB = 3k (=Φ(*) = 24&). Namely our requirements are:
(1) A*+ff=l,

(2) AB=3k.

If these equations have solutions, then we obtain a Zm homotopy P(C4) X with
pl(X)=(4+24k+hm)x2, h^Z. However, since 24k+hm must be divisible
by 24, h is divisible by 24. Here we use Theorem 6.1. This together with
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the fact that homotopy P(C4) are classified by their first Pontrjagin classes ([19])

tells us that Xk withp1(Xk)=(4+24&)#2 admits a smooth action of Zm with isolated

fixed points. Therefore we only have to verify that the equations (1) and

(2) have solutions if m= 1 (mod 4(6&+l) (6k— 1)).

The proof is as follows. By the quadratic reciprocity law of Legendre-

Jacobi symbol (-f ) we have

This implies

some

/6k+l_γ^n_^ = (_1)SiL.«ϊ=L = j _

\ m 1

m\ = /
mK' for\ m I \6k+ί \6k+ί/

Similarly we get ( l~6k W. We notice (A+B)2= ί+6k=K2, i.e., A+B
\ m '

= ±K. Consider an equation xP^Kx+lk^Q (the solutions are precisely

A and B). This is equivalent to (2x±K)2=l-6k. Here since ( l~6k] =
\ m I

1, this equation has solutions. This completes the proof. Q.E.D.

We conclude this paper with a remark.

REMARK 6.3. Our argument developed in this paper works for groups

of prime power order nf with little modification if we consider a semifree action

of Zmr. It only requires to choose α^(Zmr)* with order 2d where 2d\m—l

(see §2). As a consequence, we can improve Theorem 6.2 that if m is a prime

number as in Theorem 6.2, then each Xk admits a nontrivial smooth action

of Zmr for any positive integer r.
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(t) Note added in proof.

K.H. Devermann and the first named author could improve this theorem in some
cases. For example we could prove that J£_4 admits a Zm action for every prime
numbr m.
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