HOMOTOPY REPRESENTATIONS AND SPHERES OF REPRESENTATIONS

Inumitsu NAGASAKI

(Received November 6, 1984)

0. Introduction

T. tom Dieck and T. Petrie have introduced and studied homotopy representations in [7] and [8]. Let G be a finite group. A $G-C W$-complex X is called a homotopy representation of G if the H-fixed point set X^{H} is homotopy equivalent to a $\left(\operatorname{dim} X^{H}\right)$-dimensional sphere for each subgroup H of G. (If X^{H} is empty, then we set $\operatorname{dim} X^{H}=-1$ and S^{-1} is empty.) A homotopy representation of G is called linear if it is G-homotopy equivalent to a unit sphere of a real representation of G. (See [7].) We denote the set of G-homotopy classes of homotopy representations [resp. linear homotopy representations] of G by $V^{+}\left(G, h^{\infty}\right)$ [resp. $\left.V^{+}(G, \ell)\right]$. These sets are commutative semi-groups with addition induced by join. Let $V(G, \lambda)$ be the Grothendieck group associated to $V^{+}(G, \lambda)$ for $\lambda=\ell$ or h^{∞}. We call $V\left(G, h^{\infty}\right)$ the homotopy representation group of G and $V(G, l)$ the linear homotopy representation group of G. The group $V\left(G, h^{\infty}\right)$ has been studied by tom Dieck and Petrie ([7], [8]) and the group $V(G, \ell)$ has been studied by many authors. (See [1], [4], [10], [11], [13], [15], [18] and [19].)

Let $\phi(G)$ be the set of conjugacy classes of subgroups of G and $C(G)$ be the ring of all integer valued functions on $\phi(G)$. For any homotopy representation $X, \operatorname{Dim} X \in C(G)$ is defined by $(\operatorname{Dim} X)(H)=\operatorname{dim} X^{H}+1$, which is called the dimension function of X. Since $\operatorname{Dim} X * Y=\operatorname{Dim} X+\operatorname{Dim} Y$ (* means the join), the homomorphism $\operatorname{Dim}: V(G, \lambda) \rightarrow C(G)$ is induced by the assignment $X \mapsto \operatorname{Dim} X$. This homomorphism is called the dimension homomorphism of $V(G, \lambda)$. The kernel of Dim is denoted by $v(G, \lambda)$. tom Dieck and Petrie have shown that $v\left(G, h^{\infty}\right)$ is isomorphic to the Picard group $\operatorname{Pic}(A(G))$ of the Burnside ring of G in [7].

We are interested in the difference between $V(G, \ell)$ and $V\left(G, h^{\infty}\right)$. We observe the homomorphisms which are induced from the inclusion $V^{+}(G, l)$ $\rightarrow V^{+}\left(G, h^{\infty}\right)$:

$$
\begin{aligned}
I_{G}: V(G, \ell) & \rightarrow V\left(G, h^{\infty}\right) \\
i_{G}: v(G, \ell) & \rightarrow v\left(G, h^{\infty}\right) .
\end{aligned}
$$

These homomorphisms are injective ([7]). We obtain the following results.
Theorem A. The homomorphism I_{G} is isomorphic if and only if G is a cyclic group or a dihedral 2-group $D_{n}(n \geq 2)$.
Here

$$
D_{n}=\left\langle a, b \mid a^{2^{n-1}}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle
$$

Theorem B. Suppose that G is nilpotent. Then the homomorphism i_{G} is isomorphic if and only if G is a cyclic group or a dihedral 2-group $D_{n}(n \geq 2)$.
T. Petrie has already announced the analogous theorem of Theorem A for oriented homotopy representations in [16]. Our Theorems are the unoriented versions.

This paper is organized as follows. In section 1 we shall have the necessary conditions. In section 2 and section 3 we shall compute the order of $v\left(G, h^{\infty}\right)$. In section 4 the proofs of the main theorems will be completed.

The author would like to thank Professor K. Kawakubo for many helpful conversations and suggestions.

1. Necessary conditions

Using the results in [5] and [11], we shall show the following proposition.
Proposition 1.1. Let G be an abelian group. Then the homomorphsim i_{G} is an isomorphism if and only if G is a cyclic group or $\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$.

Proof. It is known that the group $v\left(G, h^{\infty}\right)$ is isomorphic to

$$
\prod_{H \subseteq G} Z_{|G / H|} * /\{ \pm 1\}
$$

and the group $v(G, \ell)$ is isomorphic to

$$
\prod_{\substack{H \subseteq G \\ G / H: \text { cyclic }}} Z_{|G / H|} * /\{ \pm 1\} \quad([11]) .
$$

Here $\boldsymbol{Z}_{|G / H|}$ * is the group of invertible elements in $\boldsymbol{Z}_{|G / H|}$. Hence it is easy to see this proposition since i_{G} is injective.

Let H be a normal subgroup of G and X a homotopy representation of G. Since X^{H} is a homotopy representation of G / H, the correspondence $X \mapsto X^{H}$ induces a homomorphism $f: v(G, \lambda) \rightarrow v(G / H, \lambda)$ for $\lambda=\ell$ or h^{∞}. The following lemma is elementary.

Lemma 1.2. Under the above situation,
i) The homomorphism f is surjective.
ii) The following diagram is commutative.

iii) If i_{G} is isomorphic, then $i_{G / H}$ is also isomorphic.

Proof. i): Let $\ell: v(G / H, \lambda) \rightarrow v(G, \lambda)$ be the homomorphism which is induced by considering G / H-spaces as G-spaces via the canonical projection $G \rightarrow G / H$. Then, the composition $f \circ l$ is the identity on $v(G, \lambda)$ and so f is surjective.
ii): This follows from the definitions of f and i_{G}.
iii): This follows directly from the injectivity of $i_{G / H}$, i) and ii).

Let us apply lemma 1.2 to the commutator subgroup $[G, G]$ of G. Then we have:

Proposition 1.3. If i_{G} is an isomorphism, then $G /[G, G]$ is a cyclic group or $\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$. Furthermore suppose that G is nilpotent, then G is one of the following groups;
(1) cyclic group
(2) dihedral 2-group $D_{n}(n \geq 2)$

$$
D_{n}=\left\langle a, b \mid a^{2^{n-1}}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle
$$

(3) quaternion 2 -group $Q_{n}(n \geq 3)$

$$
Q_{n}=\left\langle a, b \mid a^{2^{n-1}}=1, b^{2}=a^{2 n-2}, b^{-1} a b=a^{-1}\right\rangle
$$

(4) semi-dihedral 2-group $S D_{n}(n \geq 4)$

$$
S D_{n}=\left\langle a, b \mid a^{2^{n-1}}=b^{2}=1, b^{-1} a b=a^{-1+2^{n-2}}\right\rangle
$$

Proof. The first half is clear from Proposition 1.1. Suppose that G is nilpotent. We may put $G=P_{1} \times \cdots \times P_{r}$, where P_{1} is a 2-group and P_{i} is a p_{i}-group (p_{i} : odd prime) for $i>1$. If $G /[G, G]$ is cyclic, then G is also cyclic. In the case $G /[G, G]=\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}, P_{i} /\left[P_{i}, P_{i}\right]$ is trivial for $i>1$. Hence P_{i} must be trivial for $i>1$, so that G is 2 -group. Therefore, if G is abelian, then G is $D_{2}\left(=\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}\right)$. If G is not abelian, then G is $D_{n}(n \geq 3), Q_{n}(n \geq 3)$ or $S D_{n}(n \geq 4)$ by [9 , Chap. 5, Theorem 4.5].

2. The order of the Picard group of the Burnside ring

The group $v\left(G, h^{\infty}\right)$ is isomorphic to the Picard group $\operatorname{Pic}(A(G))$ of $A(G)$, where $A(G)$ is the Burnside ring of G. In this section we compute the order of $\operatorname{Pic}(A(G))$. We recall the Burnside ring $A(G)$. The set of G-isomorphism
classes of finite G-sets becomes a commutative semi-ring with addition induced by disjoint union and multiplication induced by cartesian product. The Grothendieck ring of the semi-ring is called the Burnside ring. Let S be a finite G-set. The correspondence $S \mapsto\left|S^{H}\right|$ induces the ring homomorphism χ : $A(G) \rightarrow \prod_{(H) \in \phi(G)} \boldsymbol{Z}_{H}$, where $\boldsymbol{Z}_{H}=\boldsymbol{Z}$. As is well-known, the ring homomorphism χ is injective and if we consider $A(G)$ as a subring of $\prod_{(H) \in \phi(G)} Z_{H}$ via χ, then

$$
A(G)=\left\{\left(d_{H}\right) \in \prod_{(B)} Z_{H} \mid \text { congruences }\left({ }^{*}\right)_{H} \quad \text { for }(H) \in \phi(G)\right\}
$$

where

$$
()_{H}: \quad \sum_{(K)}|N H / N H \cap N K| \varphi(|K / H|) d_{K} \equiv 0 \bmod |N H / H| .
$$

The sum is over the $N H$-conjugacy classes (K) such that H is a normal subgroup in K and K / H is cyclic. φ denotes the Euler function and $N H$ denotes the normalizer of H in G. We can rewrite $\left({ }^{*}\right)_{H}$ as the following:

$$
(* *)_{H}: \sum_{(K)} n(H, K) d_{K} \equiv 0 \bmod |N H / H|
$$

where each $n(H, K)$ is a certain integer and $n(H, H)=1$ for any $(H),(K) \in \phi(G)$ such that K / H is cyclic. The sum is over the G-conjugacy classes (K) such that H is normal in K and K / H is cyclic (see [6]).

We put $\phi(G)=\left\{\left(H_{1}\right), \cdots,\left(H_{n}\right)\right\}$ and assume that $\left(H_{i}\right) \leq\left(H_{j}\right)$ implies i $\geq j$, where $\left(H_{i}\right) \leq\left(H_{j}\right)$ means that H_{i} conjugates to a certain subgroup of H_{j}. We set

$$
R_{k}=\left\{\left(d_{H_{i}}\right)_{1 \leq i \leq k} \in \Pi_{i=1}^{k} Z_{H_{i}} \mid(* *)_{H_{i}}, 1 \leq i \leq k\right\}
$$

Note that $R_{1}=\boldsymbol{Z}$ and $R_{n}=A(G)$.
Lemma 2.1. R_{k} is the subring of $\prod_{i=1}^{k} Z_{H_{i}}$,
Proof. It is trivial that R_{k} is an additive subgroup of $\prod_{t=1}^{k} \boldsymbol{Z}_{H_{i}}$. We note that there exists $\left(d_{H_{i}}^{\prime}\right)_{1 \leq i \leq n} \in A(G)$ such that $d_{H_{i}}=d_{H_{i}}^{\prime}, 1 \leq i \leq k$, for any $\left(d_{H_{i}}\right)_{1 \leq i \leq k} \in R_{k}$. Let $\left(d_{H_{i}}\right)_{1 \leq i \leq k}$ and $\left(e_{H_{i}}\right)_{1 \leq i \leq k}$ be any two elements in R_{k}. Since $A(G)$ is the ring, $\left(d_{H_{i}}^{\prime} e_{H_{i}}^{\prime}\right)_{1 \leq i \leq n}$ is in $A(G)$. Hence $\left(d_{H_{i}} e_{H_{i}}\right)_{1 \leq i \leq k}$ satisfies $\left({ }^{* *}\right)_{H_{j}}$, $1 \leq j \leq k$, since $\left(d_{H_{i}}^{\prime} e_{H_{i}}^{\prime}\right)_{1 \leq i \leq n}$ satisfies $\left({ }^{* *}\right)_{H_{j}}, 1 \leq j \leq n$. Therefore $\left(d_{H_{i}} e_{H_{i}}\right)_{1 \leq i \leq k}$ is in R_{k}.

We define a map $p: R_{k-1} \rightarrow \boldsymbol{Z}_{\left|W H_{k}\right|}, W H_{k}=N H_{k} \mid H_{k}$, by

$$
\left(d_{H_{i}}\right)_{1 \leq i \leq k-1} \mapsto-\sum_{1 \neq H_{j} / H_{k}: \text { cyclic }} n\left(H_{k}, H_{j}\right) d_{H_{j}} \bmod \left|W H_{k}\right|
$$

Lemma 2.2. p is the ring homomorphism.
Proof. It is trivial to be an additive homomorphism. For $\left(d_{H_{i}}\right)_{1 \leq i \leq k}$ [resp. $\left.\left(e_{H_{i}}\right)_{1 \leq i \leq k}\right] \in R_{k-1}$, we choose $\left(d_{H_{i}}^{\prime}\right)_{1 \leq i \leq n}\left[\operatorname{resp} .\left(e_{H_{i}}^{\prime}\right)_{1 \leq i \leq n}\right] \in A(G)$ like the proof of
(2.1). Then

$$
\begin{aligned}
& d_{H_{k}}^{\prime} e_{H_{k}}^{\prime} \equiv-\sum_{1 \neq H_{j} / H_{k}: \operatorname{cyclic}} n\left(H_{k}, H_{j}\right) d_{H_{j}} e_{H_{j}} \bmod \left|W H_{k}\right| \\
& d_{H_{k}}^{\prime} \equiv-\sum_{1 \neq H_{j} / H_{k} ; \operatorname{cyclic}}^{j} n\left(H_{k}, H_{j}\right) d_{H_{j}} \bmod \left|W H_{k}\right| \\
& e_{H_{k}}^{\prime} \equiv-\sum_{1 \neq H_{j} / H_{k}: \operatorname{cyclic}} n\left(H_{k}, H_{j}\right) e_{H_{j}} \bmod \left|W H_{k}\right| .
\end{aligned}
$$

Hence $p\left(\left(d_{H_{i}} e_{H_{i}}\right)_{1 \leq i \leq k}\right)=p\left(\left(d_{H_{i}}\right)_{1 \leq i \leq k}\right) p\left(\left(e_{H_{i}}\right)_{1 \leq i \leq k}\right)$
Let $s: R_{k} \rightarrow R_{k-1}$ and $r: R_{k} \rightarrow \boldsymbol{Z}$ be the ring homomorphisms defined by

$$
\begin{aligned}
& s:\left(d_{H_{i}}\right)_{1 \leq i \leq k} \mapsto\left(d_{H_{i}}\right)_{1 \leq i \leq k-1} \\
& r:\left(d_{H_{i}}\right)_{1 \leq i \leq k} \mapsto d_{H_{k}} .
\end{aligned}
$$

We have the following lemma. (See [5].)
Lemma 2.3. The following diagram is the pull-back of ring.

Here q is the canonical projection.
Proof. It is easy to show this lemma from the definitions of R_{k}, s, p and r. The next proposition is the main result in this section.

Proposition 2.4. Let G be any finite group. Then

$$
|\operatorname{Pic}(A(G))|=2^{-n}\left|A(G)^{*}\right| \prod_{(B) \in \phi(G)} \varphi(|N H / H|),
$$

where $n=|\phi(G)|$ and $A(G)^{*}$ is the unit group of $A(G)$.
Proof. The pull-back diagram in Lemma 2.3 yields the Mayer-Vietoris exact sequence of the Picard group [6]. That is, the sequence:

$$
\begin{aligned}
0 & \rightarrow R_{k}^{*} \rightarrow R_{k-1} * \oplus Z^{*} \rightarrow Z_{\left|W H_{k}\right|}{ }^{*} \\
& \rightarrow \operatorname{Pic} R_{k} \rightarrow \operatorname{Pic} R_{k-1} \oplus \operatorname{Pic} \boldsymbol{Z} \rightarrow \operatorname{Pic} Z_{\left|W H_{k}\right|}
\end{aligned}
$$

is exact, $2 \leq k \leq n$. Since Pic $\boldsymbol{Z}=0$ and $\operatorname{Pic} \boldsymbol{Z}_{\left|W H_{k}\right|}=0$ by ([2], chap. 2, 5), we obtain the exact sequence:

$$
\begin{aligned}
0 & \rightarrow R_{k}^{*} \rightarrow R_{k-1} * \oplus Z^{*} \rightarrow Z_{\left|W H_{k}\right|} * \\
& \rightarrow \operatorname{Pic} R_{k} \rightarrow \operatorname{Pic} R_{k-1} \rightarrow 0 \quad(2 \leq k \leq n) .
\end{aligned}
$$

Inductively, Pic R_{k} has a finite order and then we have

$$
\frac{\left|\operatorname{Pic} R_{k}\right|}{\left|\operatorname{Pic} R_{k-1}\right|}=\frac{\varphi\left(\left|W H_{k}\right|\right)}{2} \frac{\left|R_{k}^{*}\right|}{\left|R_{k-1}^{*}\right|} \quad(2 \leq k \leq n) .
$$

Therefore,

$$
\frac{\left|\operatorname{Pic} R_{n}\right|}{\left|\operatorname{Pic} R_{1}\right|}=\frac{1}{2^{n-1}} \frac{\left|R_{n}^{*}\right|}{\left|R_{1}^{*}\right|} \prod_{k=2}^{n} \varphi\left(\left|W H_{k}\right|\right)
$$

Since $R_{n}=A(G), R_{1}=\boldsymbol{Z}$ and $\varphi\left(\left|W H_{1}\right|\right)=1$, the desired result holds.
Corollary 2.5. $\left|v\left(G, h^{\infty}\right)\right|=2^{-n}\left|A(G)^{*}\right| \prod_{(H)} \varphi(|N H / H|), n=|\phi(G)|$.

3. Examples

We indeed compute the order of $\operatorname{Pic}(A(G))$ (i.e. $v\left(G, h^{\infty}\right)$) for some groups.
Example 3.1. Let G be $D_{n}(n \geq 2)$ in $\operatorname{Proposition~1.3.~Then~}|\operatorname{Pic}(A(G))|$ $=2^{N}$, where $N=(n-2)(n-3) / 2$.

Proof. Conjugacy classes of subgroups of D_{n} are the following:

$$
\begin{aligned}
& \left(D_{n}\right) \\
& \left(\left\langle a^{a^{i}}\right\rangle\right), i=0,1, \cdots, n-1 \\
& \left(\left\langle a^{a^{i}}, b\right\rangle\right), i=1,2, \cdots, n-1 \\
& \left(\left\langle a^{a^{i}}, a b\right\rangle\right), i=1,2, \cdots, n-1
\end{aligned}
$$

and $W H$ of these subgroups in G are the following:

$$
\begin{aligned}
& W D_{n}=1 \\
& W\left\langle a^{2^{i}}\right\rangle=D_{i+1}, i=0,1, \cdots, n-1 \\
& W\left\langle a^{2^{i}}, b\right\rangle=Z_{2}, i=1,2, \cdots, n-1 \\
& W\left\langle a^{2^{i}}, a b\right\rangle=Z_{2}, i=1,2, \cdots, n-1
\end{aligned}
$$

Hence $|\phi(G)|=3 n-1$ and $\prod_{(B)} \varphi(|W H|)=2^{n(n-1) / 2}$. We see that $\left|A(G)^{*}\right|$ is 2^{n+2} by Theorem 4.1 or Example 4.8 in [14]. By Proposition 2.4,

$$
\begin{aligned}
|\operatorname{Pic}(A(G))| & =2^{-(3 n-1)} \times 2^{n(n-1) / 2} \times 2^{n+2} \\
& =2^{N}
\end{aligned}
$$

One can show the following Examples 3.2 and 3.3 by the same argument.
Example 3.2. Let G be $Q_{n}(n \geq 3)$ in Proposition 1.3. Then $|\operatorname{Pic}(A(G))|$ $=2^{N+1}$, where $N=(n-2)(n-3) / 2$.

Example 3.3. Let G be $S D_{n}(n \geq 4)$ in Proposition 1.3. Then $|\operatorname{Pic}(A(G))|$
$=2^{N}$, where $N=(n-2)(n-3) / 2$.
Example 3.4. If $v\left(G, h^{\infty}\right)=0$, then $|G|=2^{n}$ or $2^{n} p_{1} p_{2} \cdots p_{r}$, where p_{i}, $1 \leq i \leq r$, are distinct odd primes of forms $2^{e}+1$.

Proof. Put $|G|=2^{n} p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, where $p_{i}, 1 \leq i \leq r$, are distinct odd primes. Then $\varphi(|G|)=2^{n-1}\left(p_{1}-1\right) p_{1^{e^{-1}}} \cdots\left(p_{r}-1\right) p_{r}^{e_{r}-1}$. If $v\left(G, h^{\infty}\right)=0$, then $\varphi(|G|)$ must be 2-power by Corollary 2.5. Hence $e_{i}=1$ and $p_{i}-1$ is 2-power for any i.

Example 3.5. Let S_{r} be the symmetric group on r letters, where $r=3$, 4 or 5 . We have the following table.

G	$V(G, \iota)$	$V\left(G, h^{\infty}\right)$
S_{3}	\boldsymbol{Z}^{3}	\boldsymbol{Z}^{4}
S_{4}	\boldsymbol{Z}^{5}	\boldsymbol{Z}^{8}
S_{5}	\boldsymbol{Z}^{7}	$\boldsymbol{Z}^{15} \oplus \boldsymbol{Z}_{2}$
$\boldsymbol{Z}^{n}=\boldsymbol{Z} \oplus \boldsymbol{Z} \oplus \cdots \oplus \boldsymbol{Z}(n$-times $)$		

Proof. We note that $V(G, \lambda)=\operatorname{Dim} V(G, \lambda) \oplus v(G, \lambda)$ and $\operatorname{Dim} V(G, \lambda)$ is a free abelian group, $\lambda=\ell$ or h^{∞}. The rank of $\operatorname{Dim} V(G, \ell)$ is equal to the number of conjugacy classes of cyclic subgroups of G by [6]. The rank of $\operatorname{Dim} V\left(G, h^{\infty}\right)$ is equal to the number of conjugacy classes (H) of subgroups H of G such that $H /[H, H]$ is cyclic by [7]. By these facts $\operatorname{Dim} V(G, \lambda)$ is computable. For the symmetric group on n letters $S_{n}, v\left(S_{n}, \downarrow\right)=0$ by [12] or [6]. Now we compute $v\left(S_{r}, h^{\infty}\right)$ for $r=3,4$ or 5. In case $r=3$, the diagram of conjugate subgroups of S_{3} is the following:

and $W S_{3}=1, W Z_{3}=Z_{3}, W Z_{2}=1$ and $W 1=S_{3}$. Hence $\left|\phi\left(S_{3}\right)\right|=4$ and $\prod_{(G)} \varphi$ $(|W H|)=2$. The order of $A\left(S_{3}\right)^{*}$ is 8 by using the congruences $\left({ }^{*}\right)_{H}$ in section 2. Therefore $V\left(S_{3}, h^{\infty}\right)=0$. In cases $r=4$ and $r=5$, using the diagrams of conjugate subgroups of S_{4} and S_{5} in [14], one can show $\left|v\left(S_{4}, h^{\infty}\right)\right|=1$ and $\left|v\left(S_{5}, h^{\infty}\right)\right|=2$ respectively. Hence $v\left(S_{4}, h^{\infty}\right)=0$ and $v\left(S_{5}, h^{\infty}\right)=\boldsymbol{Z}_{2}$.

Example 3.6. Let G be the symmetric group on n letters. Then i_{G} is
an isomorphism if $n \leq 4$ and is not an isomorphism if $n>4$.
Proof. By [12], $v\left(S_{n}, \ell\right)=0$ for any positive integer n. If $n \geq 6$, then $v\left(S_{n}, h^{\infty}\right) \neq 0$ by Example 3.4. Since $v\left(S_{r}, h^{\infty}\right)=0(r \leq 4)$ and $v\left(S_{5}, h^{\infty}\right)=\boldsymbol{Z}_{2}$ by Example 3.5, the desired result follows.

Remark. $v\left(G, h^{\infty}\right)=0$ implies that the stable G-homotopy class of the homotopy representation X is decided by its dimension function $\operatorname{Dim} X$, where homotopy representations X and Y are stable G-homotopy equivalent if there exists a homotopy representation Z such that $X * Z$ and $Y * Z$ are G-homotopy equivalent.

4. Proofs

We shall prove Theorem B by compairing orders of $v(G, l)$ and $v\left(G, h^{\infty}\right)$. Let m be the exponent of G and u_{m} a primitive m-th root of unity. Let Γ be the Galois group $\operatorname{Gal}\left(\boldsymbol{Q}\left(u_{m}\right) / \boldsymbol{Q}\right) . \quad \Gamma$ acts on the set $\operatorname{Irr}(G, \boldsymbol{R})$ of real irreducible characters of G by $(\gamma \cdot \chi)(g)=\gamma(\chi(g))$ for $\chi \in \operatorname{Irr}(G, \boldsymbol{R}), \gamma \in \Gamma$ and $g \in G$. We need the following theorem in [4] and [6] in order to compute the order of $v(G, l)$.

Theorem 4.1 (T. tom Dieck). Let G be a p-group. Then $v(G, \ell)$ is isomorphic to $\underset{A \in X}{\oplus} \Gamma / \Gamma_{A}$, where $X=\operatorname{Irr}(G, \boldsymbol{R}) / \Gamma$ and $\Gamma_{A}=\{\gamma \in \Gamma \mid \gamma \cdot \chi=\chi\},(\chi \in A)$.

Remark. For any group $G, v(G, \ell)$ is isomorphic to a quotient group of $\underset{A \in X}{\oplus} \Gamma / \Gamma_{A}$. (See [4] or [6].)

Lemma 4.2. For D_{n}, Q_{n} and $S D_{n}$ in Proposition 1.3, we have $\left|v\left(D_{n}, \ell\right)\right|$ $=2^{N},\left|v\left(Q_{n}, l\right)\right|=2^{N}$ and $\left|v\left(S D_{n}, l\right)\right|=2^{N-1}$. Here $N=(n-2)(n-3) / 2$.

Proof. We need the real irreducible character tables of D_{n}, Q_{n} and $S D_{n}$. By [17, Chap. 13, 2.], we have the next tables.
In the D_{n} case:

	a^{k}	$a^{k} b$
θ_{1}	1	1
θ_{2}	1	-1
θ_{3}	$(-1)^{k}$	$(-1)^{k}$
θ_{4}	$(-1)^{k}$	$(-1)^{k+1}$
χ_{h}	$u_{m}^{h k}+u_{m}^{-h k}$	0

Here $1 \leq h<m / 2, m=2^{n-1}$.

In the Q_{n} case:

	a^{k}	$a^{k} b$
θ_{1}	1	1
θ_{2}	1	-1
θ_{3}	$(-1)^{k}$	$(-1)^{k}$
θ_{4}	$(-1)^{k}$	$(-1)^{k+1}$
χ_{h}	$u_{m}^{2 h k}+u_{m}^{-2 h k}$	0
ψ_{s}	$\psi_{s}\left(a^{k}\right)$	0

Here $\psi_{s}\left(a^{k}\right)=2\left(u_{m}^{(2 s-1) k}+u_{m}^{-(2 s-1) k}\right)$
$1 \leq h<m / 4,1 \leq s \leq m / 4, m=2^{n-1}$.
In the $S D_{n}$ case:

	a^{k}	$a^{k} b$
θ_{1}	1	1
θ_{2}	1	-1
θ_{3}	$(-1)^{k}$	$(-1)^{k}$
θ_{4}	$(-1)^{k}$	$(-1)^{k+1}$
χ_{h}	$u_{m}^{2 h k}+u_{m}^{-2 h k}$	0
ψ_{s}	$\psi_{s}\left(a^{k}\right)$	0
Here $\psi_{s}\left(a^{k}\right)=u_{m}^{(2 s-1) k}+u_{m}^{-(2 s-1) k}$		
$+u_{m}^{(m / 2-(2 s-1)) k}+u_{m}^{-(m / 2-(2 s-1)) k}$		
$1 \leq h<m / 4,1 \leq s<m / 8, m=2^{n-1}$		

By the irreducible character tables of D_{n}, Q_{n} and $S D_{n}$, we have

$$
\begin{aligned}
X & =\operatorname{Irr}(G, \boldsymbol{R}) / \Gamma \\
& = \begin{cases}\left\{\left\{\theta_{i}\right\}, A_{t} \mid 1 \leq i \leq 4,1 \leq t \leq n-2\right\} & \text { if } G=D_{n} \\
\left\{\left\{\theta_{i}\right\}, A_{t}, B \mid 1 \leq i \leq 4,1 \leq t \leq n-3\right\} & \text { if } G=Q_{n} \\
\left\{\left\{\theta_{i}\right\}, A_{t}, C \mid 1 \leq i \leq 4,1 \leq t \leq n-3\right\} & \text { if } G=S D_{n} .\end{cases}
\end{aligned}
$$

Here $A_{t}=\left\{\chi_{h} \mid h \equiv 2^{t-1} \bmod 2^{t}\right\}$

$$
\begin{aligned}
& B=\left\{\psi_{s} \mid 1 \leq s \leq m / 4\right\} \\
& C=\left\{\psi_{s} \mid 1 \leq s \leq m / 8\right\}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left|\Gamma / \Gamma_{A_{t}}\right|=\left|A_{t}\right|= \begin{cases}2^{n-2-t} & \text { if } G=D_{n} \\
2^{n-3-t} & \text { if } G=S D_{n} \text { or } Q_{n}\end{cases} \\
& \left|\Gamma / \Gamma_{B}\right|=2^{n-3}
\end{aligned}
$$

and

$$
\left|\Gamma / \Gamma_{c}\right|=2^{n-4}
$$

Therefore, by Theorem 4.1, we have

$$
|v(G, \ell)|=\left\{\begin{aligned}
\prod_{t=1}^{n-1}\left|A_{t}\right|=2^{N} & \text { if } G=D_{n} \\
|B| \prod_{t=1}^{n-3}\left|A_{t}\right|=2^{N} & \text { if } G=Q_{n} \\
|C| \prod_{t=1}^{n-3}\left|A_{t}\right|=2^{N-1} & \text { if } G=S D_{n}
\end{aligned}\right.
$$

Proposition 4.3. The homomorphism i_{G} is an isomorphism if $G=D_{n}(n \geq 2)$ and is not an isomorphism if $G=Q_{n}(n \geq 3)$ or $S D_{n}(n \geq 4)$.

Proof. The desired result follows from Examples 3.1, 3.2 and 3.3 and Lemma 4.2.

Corollary 4.4. In the case $G=Q_{n}$ or $S D_{n}, v(G, \ell)$ is a subgroup of index 2 of $v\left(G, h^{\infty}\right)$.

Proof of Theorem B. This follows directly from Propcsitions 1.1, 1.3 and 4.5.

Proof of Theorem A. Theorem A follows from Theorem B and the theorem of tom Dieck and Petrie ([3], [7]), that is, $\operatorname{Dim} V(G, \ell)=\operatorname{Dim} V\left(G, h^{\infty}\right)$ if and only if G is nilpotent. Indeed, if I_{G} is an isomorphism, then G is nilpotent since $\operatorname{Dim} V(G, \ell)=\operatorname{Dim} V\left(G, h^{\infty}\right)$. Since i_{G} is also isomorphic, G is a cyclic group or D_{n} by Theorem B.

Conversely, suppose that G is a cyclic group or D_{n}, then i_{G} is an isomorphism and $\operatorname{Dim} V(G, \ell)=\operatorname{Dim} V\left(G, h^{\infty}\right)$. It is sufficient to show that I_{G} is surjective. Let x be any element of $V\left(G, h^{\infty}\right)$. Then there exists an element $u \in v(G, \ell)$ such that $\operatorname{Dim} x=\operatorname{Dim} u$. Hence $x-I_{G}(u)$ is in $v\left(G, h^{\infty}\right)$. Since i_{G} is an isomorphism, there exists an element $v \in v(G, \ell)$ such that $x-I_{G}(u)$ $=i_{G}(v)$. Hence $x=I_{G}(u+v)$. Therefore I_{G} is surjective.

References

[1] M.F. Atiyah and D.O. Tall: Group representations, λ-rings and the J-homomorphism, Topology 8 (1969), 253-297.
[2] N. Bourbaki: Algèbre commutative, Hermann, Paris, 1961.
[3] T. tom Dieck: Homotopiedarstellung endlicher Gruppen: Dimensionsfunktionen, Invent. Math. 67 (1982), 231-252.
[4] T. tom Dieck: Homotopy equivalent group representations, Crelles J. Reine Angew. Math. 298 (1978), 182-195.
[5] T. tom Dieck: Homotopy equivalent group representations and Picard groups of the Burnside ring and the character ring, Manuscripta Math. 26 (1978), 179200.
[6] T. tom Dieck: Transformation groups and representation theory, Lecture Notes in Math. 766, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
[7] T. tom Dieck and T. Petrie: Homotopy representations of finite groups, Inst. Hautes Etudes Sci. Publ. Math. 56 (1982), 129-169.
[8] T. tom Dieck and T. Petrie: The homotopy structure of finite group actions on spheres, Proc. of Waterloo topology Conference (1978), 222-243.
[9] D. Gorenstein: Finite groups, Harper's Series in Modern Math., Haper \& Row, New York, Evanston and London, 1968.
[10] S. Kakutani: On the groups $J_{z_{m}, q}(*)$, Osaka J. Math. 17 (1980), 512-534.
[11] K. Kawakubo: Equivariant homotopy equivalence of group representations, J. Math. Soc. Japan 32 (1980), 105-118.
[12] K. Kawakubo: Weyl group actions and equivariant homotopy equivalence, Proc. Amer. Math. Soc. 80 (1980), 172-176.
[13] C.N. Lee and A.G. Wasserman: On the group $J O(G)$, Mem. Amer. Math. Soc. 159 (1975).
[14] T. Matsuda: On the unit groups of Burnside rings, Japan. J. Math. 8 (1982), 71-93.
[15] M. Morimoto: On the groups $J_{G}(*)$ for $G=S L(2, p)$, Osaka J. Math. 19 (1982), 57-78.
[16] T. Petrie: Transformation groups and representation theory, Proc. of Symposia in Pure Math. 37 (1980), 621-631.
[17] J.P. Serre: Linear representations of finite groups, Graduate Texts in Math., Springer, New York-Heidelberg-Berlin, 1977.
[18] V.P. Snaith: J-equivalence of groups representations, Proc. Cambridge Philos. Soc. 70 (1971), 9-14.
[19] P. Traczyk: On the G-homotopy equivalence of spheres of representations, Math. Z. 161 (1978), 257-261.

Department of Mathematics
Osaka University
Toyonaka, Osaka 560
Japan

