Yosimura, Z. Osaka J. Math 22 (1985), 875-893

ACYCLICITY OF BP-RELATED HOMOLOGIES AND COHOMOLOGIES

Dedicated to Professor Itiro Tamura on his sixtieth birthday

Zen-ichi YOSIMURA

(Received October 25, 1984)

Introduction

$B P$ is the Brown-Peterson spectrum at a fixed prime p. This spectrum is an associative and commutative ring spectrum whose homotopy is $B P_{*}=Z_{(p)}$ $\left[v_{1}, \cdots, v_{n}, \cdots\right]$. For each $n \geqq 0$ there are associative $B P$-module spectra $P(n)$, $B P\langle n\rangle, k(n), L_{n} B P, M_{n} B P$ and $N_{n} B P$. If E is an associative $B P$-module spectrum, then we can form a weak associative $B P$-module spectrum $v_{n}^{-1} E$. When $E=P(n), B P\langle n\rangle$ or $k(n), v_{n}^{-1} E$ is written $B(n), E(n)$ or $K(n)$ respectively.

For a $C W$-spectrum E we denote by $\langle E\rangle$ the Bousfield class of E [3]. Thus it is the equivalence class under the equivalence relation: $E \sim F$ when $E_{*} X$ $=0$ if and only if $F_{*} X=0$. In [13] and [14] Ravenel has studied the Bousfield classes of the above $B P$-related spectra.

Theorem 0.1 ([13, Theorem 2.1] and [14, Lemma 3.1]).
i) $\langle B(n)\rangle=\langle K(n)\rangle=\left\langle M_{n} B P\right\rangle$,
ii) $\left\langle v_{n}^{-1} B P\right\rangle=\langle E(n)\rangle=V_{0 \leq i \leq n}\langle K(i)\rangle=\left\langle L_{n} B P\right\rangle$,
iii) $\langle P(n)\rangle=\langle K(n)\rangle \vee\langle P(n+1)\rangle=\left\langle N_{n} B P\right\rangle$,
iv) $\langle k(n)\rangle=\langle K(n)\rangle{ }^{\vee}\langle H Z \mid p\rangle$, and
v) $\langle B P\langle n\rangle\rangle=\langle E(n)\rangle{ }^{\vee}\langle H Z \mid p\rangle$.

For a $C W$-spectrum E we denote by $\langle E\rangle^{*}$ the cohomological Bousfield class of E. Thus $\langle E\rangle^{*}=\langle F\rangle^{*}$ when $E^{*} X=0$ if and only if $F^{*} X=0$. Given a p-local $C W$-spectrum E there exists a p-local $C W$-spectrum ∇E related by a universal coefficient sequence

$$
0 \rightarrow \operatorname{Ext}\left(E_{*-1} X, Z_{(p)}\right) \rightarrow \nabla E^{*} X \rightarrow \operatorname{Hom}\left(E_{*} X, Z_{(p)}\right) \rightarrow 0
$$

(see [5] or [16]). By using this sequence we can show that $\langle\nabla E\rangle^{*}=\langle E\rangle$, and moreover $\langle E\rangle^{*}=\langle\nabla E\rangle$ if E is of finite type. The $B P$-module spectrum $P(n)$, $B P\langle n\rangle, k(n)$ or $K(n)$ is of finite type, but $v_{n}^{-1} B P, B(n), E(n), L_{n} B P, M_{n} B P$ or $N_{n} B P$ is not of finite type. Nevertheless we obtain

Theorem 0.2. i) $\langle B(n)\rangle^{*}=\langle\nabla B(n)\rangle=\langle K(n)\rangle^{*}=\langle\nabla K(n)\rangle=\langle K(n)\rangle$,
ii) $\left\langle v_{n}^{-1} B P\right\rangle^{*}=\left\langle\nabla v_{n}^{-1} B P\right\rangle=\langle E(n)\rangle^{*}=\langle\nabla E(n)\rangle=\left\langle v_{n}^{-1} B P\right\rangle$,
iii) $\left\langle M_{n} B P\right\rangle^{*}=\left\langle\nabla M_{n} B P\right\rangle=\left\langle L_{n} B P\right\rangle^{*}=\left\langle\nabla L_{n} B P\right\rangle=\left\langle v_{n}^{-1} B P\right\rangle$,
iv) $\left.\left\langle N_{n+1} B P\right\rangle^{*}=\left\langle\nabla N_{n+1} B P\right\rangle=\left\langle v_{n}^{-1} B P\right\rangle\langle \rangle P(1)\right\rangle$,
v) $\langle P(n)\rangle^{*}=\langle\nabla P(n)\rangle= \begin{cases}\langle\nabla P(1)\rangle^{\vee}\langle S Q\rangle & \text { if } n=0 \\ \langle\nabla P(1)\rangle & \text { if } n \geqq 1,\end{cases}$
vi) $\langle B P\langle n\rangle\rangle^{*}=\langle\nabla B P\langle n\rangle\rangle=\left\langle H Z_{(p)}\right\rangle$ for $n \geqq 0$, and
vii) $\langle k(n)\rangle^{*}=\langle\nabla k(n)\rangle=\langle H Z \mid p\rangle \quad$ for $n \geqq 1$.

However it is not valid that $\langle E\rangle^{*}=\langle\nabla E\rangle$ in general. As examples we have

Theorem 0.3. i) $\left\langle\Pi_{n \geqq m} B(n)\right\rangle^{*}=\left\langle\Pi_{n \geqq m} K(n)\right\rangle^{*}=\vee_{n \geqq m}\langle K(n)\rangle$, but $\left\langle\nabla\left(\Pi_{n \geq m} B(n)\right)\right\rangle=\left\langle\nabla\left(\Pi_{n \geq m} K(n)\right)\right\rangle=\vee_{n \geqq m}\langle K(n)\rangle\langle\langle H Z \mid p\rangle$.
ii) $\left\langle\Pi_{n \geqq m} M_{n} B P\right\rangle^{*}=\left\langle\Pi_{n \geqq m} L_{n} B P\right\rangle^{*}=\left\langle\Pi_{n \geqq m} N_{n} B P\right\rangle^{*}=\vee_{n \geq 0}\langle K(n)\rangle$, but $\left\langle\nabla\left(\Pi_{n \geq m} M_{n} B P\right)\right\rangle=\left\langle\nabla\left(\Pi_{n \geqq m} L_{n} B P\right)\right\rangle=\left\langle\nabla\left(\Pi_{n \geq m} N_{n} B P\right)\right\rangle=\langle B P\rangle$.
iii) $\left\langle\Pi_{n \geqq m} P(n)\right\rangle=\langle P(m)\rangle$ and $\left\langle\Pi_{n \geqq m} P(n)\right\rangle^{*}=\langle\nabla P(m)\rangle$, but $\left\langle\vee_{n \geqq m} \nabla P(n)\right\rangle^{*}=$ $\left\langle\nabla\left(\Pi_{n \geqq m} P(n)\right)\right\rangle= \begin{cases}\left\langle H Z_{(p)}\right\rangle & \text { if } k=0 \\ \langle H Z \mid p\rangle & \text { if } k \geqq 1 .\end{cases}$

Let $\left\{E_{n}\right\}_{n \geq m}$ and $\left\{F_{n}\right\}_{n \geqq m}$ be families of $C W$-spectra. If $\left\langle E_{n}\right\rangle=\left\langle F_{n}\right\rangle$ for all $n \geqq m$, then it is obvious that $\left\langle\bigvee_{n \geqq m} E_{n}\right\rangle=\left\langle\bigvee_{n \geqq m} F_{n}\right\rangle$. So it might be expected that $\left\langle\Pi_{n \geq m} E_{n}\right\rangle=\left\langle\Pi_{n \geq m} F_{n}\right\rangle$. But this equality doesn't hold in general. If a p-local $C W$-spectrum E is of finite type, then we have that $\left\langle\Pi_{\Lambda} E\right\rangle=\langle E\rangle$ for any indexed set Λ. But this is also false in general unless E is of finite type or Λ is finite. As examples we get

Theorem 0.4. i) $\left\langle\Pi_{n \geqq m} P(n)\right\rangle=\langle P(m)\rangle$ but $\left\langle\Pi_{n \geqq m} N_{n} B P\right\rangle=\langle B P\rangle$,
ii) $\left\langle\Pi_{\Lambda} K(n)\right\rangle=\langle K(n)\rangle,\left\langle\Pi_{\Lambda} P(n)\right\rangle=\langle P(n)\rangle$ but $\left\langle\Pi_{\Lambda} M_{n} B P\right\rangle=\left\langle v_{n}^{-1} B P\right\rangle$, $\left\langle\Pi_{\Lambda} N_{n} B P\right\rangle=\langle B P\rangle$ if the indexed set Λ is infinite.

In [14] Ravenel proved that the cofiber sequence $N_{n} S \rightarrow M_{n} S \rightarrow N_{n+1} S$ realizes the short exact sequence $0 \rightarrow N_{n} B P_{*} \rightarrow M_{n} B P_{*} \rightarrow N_{n+1} B P_{*} \rightarrow 0$ of $B P_{*^{-}}$ modules defined inductively by $N_{0} B P_{*}=B P_{*}$ and $M_{n} B P_{*}=v_{n}^{-1} N_{n} B P_{*}$. His proof is established on the existence of certain finite $C W$-complexes X_{n} recently constructed by Mitchell [12]. By virtue of Ravenel's result we can investigate the localizations of homologies $P(n)_{*}(-), B P\langle n\rangle_{*}(-)$ and $\nabla N_{n+1} B P_{*}$ (一).

Theorem 0.5. i) $\quad L_{P(n)} X=\Sigma^{n} F\left(N_{n} S, L_{B P} X\right)$,
ii) $L_{B P\langle n\rangle} X=L_{(H Z / p, n)} X$ and $L_{\nabla N_{n}, 1 B P} X=L_{(\nabla P(1), n)} X$ where $L_{(F, n)} X$ denotes the fiber of the composite map $L_{F} X \rightarrow C_{F} X \rightarrow L_{n} C_{F} X$ for $F=H Z / p$ or $\nabla P(1)$.

In $\S 1$ we study the Bousfield classes $\langle E\rangle$ of well-known $B P$-related spectra and give a proof of Theorem 0.1 in the different way from Revanel's [13, 14]. We next discuss the Bousfield classes $\langle\nabla E\rangle$ of the Anderson dual spectra in
$\S 2$ and the cohomological Bousfield classes $\langle E\rangle^{*}$ in $\S 3$. As a result we obtain Theorem 0.2. In $\S 4$ we treat of wedge sums $\vee_{n \geqq m} E_{n}$ and products $\Pi_{n \geqq m} E_{n}$ of $B P$-related spectra and show Theorems 0.3 and 0.4 . In $\S 5$ we recall Ravenel's result (Corollary 5.4) of the geometric realization and then discuss the $P(n)_{*}, B P\langle n\rangle_{*}$ and $\nabla N_{n+1} B P_{*}$-localizations in order to prove Theorem 0.5.

1. Bousfield classes of $B P$-related spectra

1.1. Let E be a $B P$-module spectrum (with unit) having structure map μ, and v be an element of $B P_{*}$ with dimension d. We can form a $C W$-spectrum $v^{-1} E$ defined to be the mapping telescope $\lim _{\longrightarrow} \Sigma^{-i d} E$ of the map $\mu\left(v_{\wedge} 1\right): \Sigma^{d} E$ $\rightarrow E$. If E is associative, then $v^{-1} E$ is a $B P$-module spectrum which is weak associative. Even if E is weak associative, the map $\mu(v \wedge 1)$ induces multiplication by v in homotopy groups and hence $\left(v^{-1} E\right)_{*} X \cong v^{-1} E_{*} X$. In this case we write simply v in place of $\mu\left(v_{\wedge} 1\right)$.

For a $C W$-spectrum E we denote by $\langle E\rangle$ the Bousfield class of E [3]. They are partially ordered by writing $\langle E\rangle \geqq\langle F\rangle$ when $E_{*} X=0$ implies $F_{*} X=0$. If $E \rightarrow F \rightarrow G$ is a cofiber sequence of $B P$-module spectra (and $B P$-module maps), then $\langle F\rangle \leqq\langle E\rangle^{\mathrm{V}}\langle G\rangle$ and more generally

$$
\begin{equation*}
\left\langle v^{-1} F\right\rangle \leqq\left\langle v^{-1} E\right\rangle \bigvee\left\langle v^{-1} G\right\rangle \tag{1.1}
\end{equation*}
$$

for any element v of $B P_{*}$ (cf., [13, Proposition 1.23]). This is easily shown by making use of Five lemma (or Verdier's lemma [1]).

Lemma 1.1. Let v and w be elements of $B P_{*}, E$ be an associative $B P$ module spectrum and F be the cofiber of the map $w: \Sigma^{d} E \rightarrow E$ where $d=\operatorname{dim} w$. Then $\left\langle v^{-1} E\right\rangle=\left\langle w^{-1} v^{-1} E\right\rangle^{\vee}\left\langle v^{-1} F\right\rangle$ and in particular $\langle E\rangle=\left\langle w^{-1} E\right\rangle^{\vee}\langle F\rangle$ (cf., [13, Lemma 1.34]).

Proof. From (1.1) it follows immediately that $\left\langle v^{-1} E\right\rangle \geqq\left\langle v^{-1} F\right\rangle$, and so $\left\langle v^{-1} E\right\rangle \geqq\left\langle w^{-1} v^{-1} E\right\rangle \vee\left\langle v^{-1} F\right\rangle$. If $\left(v^{-1} F\right)_{*} X=0$, then the map w induces an isomorphism $\left(v^{-1} E\right)_{*} X \rightarrow\left(v^{-1} E\right)_{*} X$, and hence there is an isomorphism $\left(v^{-1} E\right)_{*} X$ $\rightarrow\left(w^{-1} v^{-1} E\right)_{*} X$. This gives that $\left\langle v^{-1} E\right\rangle \leqq\left\langle w^{-1} v^{-1} E\right\rangle^{\vee}\left\langle v^{-1} F\right\rangle$, and the result follows.

For $0 \leqq k \leqq m+1 \leqq \infty$, there are associative $B P$-module spectra $B P[k$, $m+1)$ whose homotopy are $B P[k, m+1)_{*}=B P_{*} /\left(p, v_{1}, \cdots, v_{k-1}, v_{m+1}, v_{m+2}, \cdots\right)$. In convention we write $B P[n, \infty)=P(n), B P[0, n+1)=B P\langle n\rangle$ and $B P[n, n+1)$ $=k(n)$ (see [6]). In particular, $P(0)=B P\langle\infty\rangle=B P, B P\langle 0\rangle=k(0)=H Z_{(p)}$ and $P(\infty)=B P\langle-1\rangle=k(-1)=H Z \mid p$. Multiplication by v_{m} gives cofiber sequences

$$
\begin{align*}
& \Sigma^{2\left(m^{m}-1\right)} B P[k, m+1) \xrightarrow{v_{m}} B P[k, m+1) \rightarrow B P[k, m) \\
& \Sigma^{2\left(m^{m}-1\right)} B P[m, n+1) \xrightarrow{v_{m}} B P[m, n+1) \rightarrow B P[m+1, n+1) \tag{1.2}
\end{align*}
$$

of associative $B P$-module spectra.
When E is $P(n), B P\langle n\rangle$ or $k(n), v_{n}^{-1} E$ is denoted by $B(n), E(n)$ or $K(n)$ respectively. Lemma 1.1 implies

$$
\begin{equation*}
\text { i) }\langle P(n)\rangle=\langle B(n)\rangle \vee\langle P(n+1)\rangle \tag{1.3}
\end{equation*}
$$

ii) $\langle B P\langle n\rangle\rangle=\vee_{0 \leqq k \leqq n}\langle E(k)\rangle \vee\langle H Z \mid p\rangle$, and
iii) $\langle k(n)\rangle=\langle K(n)\rangle \bigvee\langle H Z \mid p\rangle$.
1.2. Let us denote by $L_{n} E$ the localization of E with respect to the homology theory $\left(v_{n}^{-1} B P\right)_{*}(-)$, and by $\Sigma^{-n} N_{n+1} E$ the cofiber of the localization map $\eta_{n}: E \rightarrow L_{n} E$. Recall that

$$
\begin{equation*}
L_{n} E_{\wedge} X=L_{n}\left(E_{\wedge} X\right) \text { and } N_{n+1} E_{\wedge} X=N_{n+1}\left(E_{\wedge} X\right) \tag{1.4}
\end{equation*}
$$

when E is an (associative) $B P$-module spectrum [18, Corollary 2.4]. The former gives

$$
\begin{equation*}
L_{n} E_{*} X=0 \text { if and only if } v_{n}^{-1} B P_{*}\left(E_{\wedge} X\right)=0 \tag{1.5}
\end{equation*}
$$

Lemma 1.2. Let E and F be BP-module spectra.
i) $\left\langle L_{n} E\right\rangle=\vee_{0 \leq k \leq n}\left\langle v_{k}^{-1} E\right\rangle$ when E is weak associative, and
ii) $\left\langle L_{n} E\right\rangle \geqq\left\langle L_{n} F\right\rangle$ if $\langle E\rangle \geqq\langle F\rangle$.

Proof. i) Suppose that $L_{n} E_{*} X=0$, thus $v_{n}^{-1} B P_{*}\left(E_{\wedge} X\right)=0$. Then $v_{n-1}^{-1} B P_{*}\left(E_{\wedge} X\right)=0$ by means of [7, Theorem 0.1], and moreover $\left(v_{n}^{-1} E\right)_{*} X \cong$ $v_{n}^{-1} E_{*} X=0$ since $\mu_{*}: B P_{*}\left(E_{\wedge} X\right) \rightarrow E_{*} X$ is epic. This shows that $\left\langle L_{n} E\right\rangle \geqq$ $\left\langle L_{n-1} E\right\rangle \vee\left\langle v_{n}^{-1} E\right\rangle$, and hence $\left\langle L_{n} E\right\rangle \geqq \vee_{0 \leqq k \leq n}\left\langle v_{k}^{-1} E\right\rangle$. For showing the opposite inequality we suppose that $v_{k}^{-1} E_{*} X=0$ for all $k, 0 \leqq k \leqq n$. Then it follows from $[18,(2.3)]$ that $v_{n}^{-1} B P_{*}\left(E_{\wedge} X\right) \cong v_{n}^{-1} B P_{*}\left(v_{n}^{-1} E_{\wedge} X\right)=0$. So the equality holds.
ii) is immediate by use of (1.5).

Given an invariant regular ideal $J=\left(q_{0}, q_{1}, \cdots, q_{m-1}\right)$ in $B P_{*}$ of length m there is an associative $B P$-module spectrum $B P J$ whose homotopy is $B P J_{*}$ $=B P_{*} /\left(q_{0}, q_{1}, \cdots, q_{m-1}\right)$. When J is $I_{m}=\left(p, v_{1}, \cdots, v_{m-1}\right), B P J$ is just $P(m)$. [7, Proposition 2.5] says that $\left\langle v_{k}^{-1} B P J\right\rangle \geqq\left\langle v_{k-1}^{-1} B P J\right\rangle$. So Lemma 1.2 i) implies

Corollary 1.3. $\left\langle L_{n} B P J\right\rangle=\left\langle v_{n}^{-1} B P J\right\rangle$ for any invariant regular ideal I in $B P_{*}$. In particular, $\left\langle L_{n} B P\right\rangle=\left\langle v_{n}^{-1} B P\right\rangle$ and $\left\langle L_{n} P(n)\right\rangle=\langle B(n)\rangle$.

Proposition 1.4. Let J be an invariant regular ideal in $B P_{*}$ of length m and $m \leqq n$. Then $\langle B P J\rangle=\left\langle N_{m} B P\right\rangle$ and $\left\langle L_{n} B P J\right\rangle=\vee_{m \leq k \leq n}\langle B(k)\rangle$. In particular, $\langle P(n)\rangle=\left\langle N_{n} B P\right\rangle$ and $\left\langle L_{n} B P\right\rangle=\vee_{0 \leq k \leq n}\langle B(k)\rangle$.

Proof. For $J=\left(q_{0}, q_{1}, \cdots, q_{m-1}\right)$ we set $J_{k}=\left(q_{0}, q_{1}, \cdots, q_{k-1}\right), k \leqq m$. Consider the cofiber sequence $\Sigma^{d} N_{m} B P J_{k-1} \xrightarrow{q_{k-1}} N_{m} B P J_{k-1} \rightarrow N_{m} B P J_{k}$ where $d=\operatorname{dim}$
$q_{k-1} . \quad N_{m} B P J_{k-1^{*}}$ is v_{i}-torsion for any $i, 0 \leqq i \leqq m-1$, and q_{k-1} is contained in the ideal $I_{m}=\left(p, v_{1}, \cdots, v_{m-1}\right)$ which is just the radical of the ideal J [11, Theorem 1]. Therefore $N_{m} B P J_{k-1^{*}}$ is q_{k-1}-torsion. Hence Lemma 1.1 implies that $\left\langle N_{m} B P J_{k-1}\right\rangle=\left\langle N_{m} B P J_{k}\right\rangle$ for each $k, 1 \leqq k \leqq m$, and so $\left\langle N_{m} B P\right\rangle=\left\langle N_{m} B P J\right\rangle$ $=\langle B P J\rangle$.

Next, consider the cofiber sequence $\Sigma^{2\left(\rho^{m}-1\right)} L_{n} P(m) \xrightarrow{v_{m}} L_{n} P(m) \rightarrow L_{n} P(m+1)$. Applying Lemma 1.2 i) to $E=L_{n} P(m)$ we obtain that $\left\langle v_{m}^{-1} L_{n} P(m)\right\rangle=\left\langle L_{m} L_{n} P\right.$ $(m)\rangle=\left\langle L_{m} P(m)\right\rangle=\langle B(m)\rangle$. So Lemma 1.1 gives that $\left\langle L_{n} P(m)\right\rangle=\langle B(m)\rangle$ $\vee\left\langle L_{n} P(m+1)\right\rangle$, and hence $\left\langle L_{n} P(m)\right\rangle=\vee_{m \leq k \leqq n}\langle B(k)\rangle$. This result means that $\left\langle L_{n} B P J\right\rangle=V_{m \leq k \leq n}\langle B(k)\rangle$ since $\langle B P J\rangle=\langle P(m)\rangle$.

Setting $M_{n} E=L_{n} N_{n} E$ we have cofiber sequences

$$
\begin{align*}
N_{n} E & \rightarrow M_{n} E
\end{align*} \rightarrow N_{n+1} E,
$$

(see [13]). Combining Proposition 1.4 with Lemma 1.2 ii) and Corollary 1.3 we get

Corollary 1.5. $\left\langle M_{n} B P\right\rangle=\langle B(n)\rangle$.
By putting Corollary 1.3 and Proposition 1.4 together we obtain the equality $\left\langle v_{n}^{-1} B P\right\rangle=\vee_{0 \leq i \leq n}\langle B(i)\rangle$. This shows especially that $v_{n}^{-1} B P_{*} X=0$ implies $B(n)_{*} X=0$. In [13, Theorem 2.11] Ravenel proved that the converse is true under the finiteness restriction on X. We here give a simple proof of this result.

Proposition 1.6 (Ravenel). Assume that X is a finite $C W$-spectrum. If $B(n)_{*} X=0$, then $v_{n}^{-1} B P_{*} X=0$.

Proof. It is sufficient to show that $B(n-1)_{*} X=0$ if $B(n)_{*} X=0$. By Landweber's invariant prime filtration theorem [9] (or [18]) there is a finite filtration $P(n-1)_{*} X=M_{s} \supset M_{s-1} \supset \cdots \supset M_{1} \supset M_{0}=\{0\}$ consisting of $P(n-1)_{*} P(n-1)-$ comodules so that for $1 \leqq k \leqq s$ each subquotient M_{k} / M_{k-1} is stably isomorphic to $P\left(m_{k}\right)_{*}$ for some $m_{k} \geqq n-1$. By induction on $k \leqq s$ we will show that $v_{n}^{-1} M_{k}$ $\simeq v_{n}^{-1} P(n-1)_{*} X$ under the hypothesis that $B(n)_{*} X=0$. The $k=s$ is trivial, so we assume that $v_{n}^{-1} M_{k+1} \cong v_{n}^{-1} P(n-1)_{*} X$. Our hypothesis implies that $v_{n}^{-1} P(n-1)_{*} X$ is uniquely v_{n-1}-divisible, and hence $v_{n}^{-1}\left(M_{k+1} / M_{k}\right)$ is v_{n-1}-divisible. Then we find that $m_{k+1} \geqq n+1$, and so $v_{n}^{-1} M_{k} \cong v_{n}^{-1} M_{k+1}$. Consequently we see that $v_{n}^{-1} P(n-1)_{*} X=0$, which implies that $B(n-1)_{*} X=0$ by use of [7, Proposition 2.5]. Thus $B(n)_{*} X=0$ implies $B(n-1)_{*} X=0$ as desired.
1.3. Let J be an invariant regular ideal in $B P_{*}$. A $B P J$-module spectrum E is said to be (weak) quasi-associative if it admits a pairing $\mu: B P J_{\wedge} E \rightarrow E$
with unit making the diagram below (weak) homotopy commutative

where ϕ denotes the $B P$-module structure map of $B P J$ and $j=j_{m-1} \cdots j_{0}: B P$ $=B P J_{0} \rightarrow B P J_{1} \rightarrow \cdots \rightarrow B P J_{m}=B P J$ (cf., [7, Remark 5.3]).

A $B P J_{*}$-module M is said to be $\beta \rho \rho_{-}$flat if the functor $M \underset{B P_{*}}{\otimes} B P J_{*}(-)$ is exact (see [10] or [18]). Recall that a $P(m)_{*}$-module M is $\rho(m)$-flat if and only if
(1.7) multiplication by v_{k} is monic on $M \underset{B P_{*}}{\otimes} P(k)_{*}$ for every $k \geqq m$.

The following result is a useful tool in determining Bousfield classes of $B P$-related spectra.

Lemma 1.7. Let J be an invariant regular ideal in $B P_{*}$ of length m, E be a (weak) quasi-associative BPJ-module spectrum and $n \geqq m$.
i) If $v_{n}^{-1} E_{*}$ is BP $g_{-f l a t ~ s u c h ~ t h a t ~} v_{n}^{-1} E_{*_{B P *}} \otimes_{P} P(n)_{*} \neq 0$, then $\left\langle v_{n}^{-1} E\right\rangle=\left\langle v_{n}^{-1} P(m)\right\rangle$.
ii) If E_{*} is $\beta \rho \rho_{\text {-flat such that }} E_{*_{B P_{*}}}^{\otimes} P(\infty)_{*} \neq 0$, then $\langle E\rangle=\langle P(m)\rangle$.

Proof. i) The $B P J$-module structure map of E gives an isomorphism $v_{n}^{-1} E_{*_{B P}} \otimes P J_{*} X \rightarrow\left(v_{n}^{-1} E\right)_{*} X$. By making use of [18, Proposition 2.6] we observe that $\left(v_{n}^{-1} E\right)_{*} X=0$ if and only if $v_{n}^{-1} B P J_{*} X=0$, thus $\left\langle v_{n}^{-1} E\right\rangle=$ $\left\langle v_{n}^{-1} B P J\right\rangle$. On the other hand, $\left\langle v_{n}^{-1} B P J\right\rangle=\left\langle v_{n}^{-1} P(m)\right\rangle$ by putting Corollary 1.3 and Proposition 1.4 together. So the result follows.
ii) Obviously $\langle B P J\rangle \geqq\langle E\rangle$ since E is a $B P J$-module spectrum. Suppose that $B P J_{*} X \neq 0$ and choose a non-zero primitive element x in $B P J_{*} X$. The annihilator ideal $\operatorname{Ann}(x)=\left\{\lambda \in B P_{*} ; \lambda \cdot x=0\right\}$ is at least contained in the ideal $I_{\infty}=\left(p, v_{1}, \cdots, v_{n}, \cdots\right)$ because the radical $\sqrt{\operatorname{Ann}(x)}=\left\{\lambda \in B P_{*} ; \lambda^{k} \cdot x=0\right.$ for some $k\}$ is the ideal $I_{n}=\left(p, v_{1}, \cdots, v_{n-1}\right)$ for a certain $n, m \leqq n \leqq \infty$ (see [11] or [18]). So our hypothesis implies that $E_{*_{B P_{*}}} B P_{*} / \operatorname{Ann}(x) \neq 0$. On the other hand, there is a monomorphism $E_{*_{B P_{*}}}^{\otimes} B P_{*} / \operatorname{Ann}(x) \rightarrow E_{*_{B P_{*}}}^{\otimes} B P J_{*} X \cong E_{*} X$. Hence it is obvious that $E_{*} X \neq 0$. Consequently $\langle B P J\rangle \leqq\langle E\rangle$. The result is now immediate from Proposition 1.4.

According to [15] $B P[k, m+1)$ is a quasi-associative $P(k)$-module spectrum, and so $v_{n}^{-1} B P[k, m+1)$ becomes a weak quasi-associative one. Note
that $v_{n}^{-1} B P[k, m+1)_{*}$ is $\rho(k)$-flat. So Lemma 1.7 i) implies
Corollary 1.8. $\left\langle v_{n}^{-1} B P[k, m+1)\right\rangle=\left\langle v_{n}^{-1} P(k)\right\rangle$ for $0 \leqq k \leqq n \leqq m \leqq \infty$, and in particular $\left\langle v_{n}^{-1} B P\right\rangle=\langle E(n)\rangle$ and $\langle B(n)\rangle=\langle K(n)\rangle$.

Theorem 0.1 is obtained as a summary of (1.3), Proposition 1.4 and Corollaries 1.3, 1.5 and 1.8.

2. Bousfield classes of Anderson dual spectra

2.1. Given a p-local $C W$-spectrum E we can construct a universal coefficient sequence
(2.1) $\quad 0 \rightarrow \operatorname{Ext}\left(E_{*-1} X, Z_{(p)}\right) \rightarrow \nabla E^{*} X \rightarrow \operatorname{Hom}\left(E_{*} X, Z_{(p)}\right) \rightarrow 0$
(see [5] or [16]). The p-local $C W$-spectrum ∇E has the same homotopy type as the function spectrum $F\left(E, \nabla S Z_{(p)}\right)$. Therefore this Anderson duality functor ∇ is categorical and exact. Note that $H Z_{(p)}, H Z / p$ and $K(n)$ are selfdual, i.e., $\nabla H Z_{(p)}=H Z_{(p)}, \nabla H Z / p=\Sigma^{-1} H Z \mid p$ and $\nabla K(n)=\Sigma^{-1} K(n)$ for every $n \geqq 0$. Moreover we notice that
(2.2) $E=\nabla \nabla E$ if E is of finite type.

Let E be a $B P$-module spectrum which is connective. The $B P$-module spectrum ∇E is then coconnective. By dimension reason ∇E_{*} is v-torsion for all v in $B P_{*}$ with $\operatorname{dim} v>0$. This means

$$
\begin{equation*}
\left\langle v^{-1} \nabla E\right\rangle=0 \text { if } E \text { is connective and } \operatorname{dim} v>0 . \tag{2.3}
\end{equation*}
$$

Apply the duality functor ∇ to the cofiber sequences (1.2) and use Lemma 1.1 and (2.3). Then we have

Proposition 2.1. i) $\langle\nabla B P\rangle=\langle\nabla P(1)\rangle \vee\langle S Q\rangle$ and $\langle\nabla P(n)\rangle=\langle\nabla P(1)\rangle$ for each $n \geqq 1$,
ii) $\langle\nabla B P\langle n\rangle\rangle=\left\langle H Z_{(p)}\right\rangle=\langle H Z \mid p\rangle \vee\langle S Q\rangle$ for each $n \geqq 0$, and
iii) $\langle\nabla B P[k, m+1)\rangle=\langle H Z \mid p\rangle$ for $1 \leqq k \leqq m<\infty$, and in particular $\langle\nabla k(n)\rangle$ $=\langle H Z \mid p\rangle$ for each $n \geqq 1$.

Let E be a coconnective $C W$-spectrum. It is represented as the direct limit of the Postnikov systems $E(-n, \infty)$. This fact gives

$$
\begin{equation*}
\langle E\rangle \leqq\left\langle H Z_{(p)}\right\rangle, \text { and moreover }\langle E\rangle \leqq\langle H Z \mid p\rangle \text { if } E_{*} \otimes Q=0 . \tag{2.4}
\end{equation*}
$$

Remark that $P(1)^{*} H Z / p=0$, because $H Z / p$ is dissonant and $P(1)$ is harmonic [13]. This is equivalent to say that
(2.5) $\nabla P(1)_{*} H Z / p=0$
(use (3.2)). By use of (2.5) we notice
i) $\langle H Z \mid p\rangle \cong\langle\nabla P(1)\rangle$, and
ii) $\langle P(n)\rangle \nsupseteq V_{i \geq n}\langle K(i)\rangle \vee\langle H Z \mid p\rangle$.
2.2. The cofiber sequence $\Sigma^{2\left(p^{k}-1\right)} P(k) \xrightarrow{v_{k}} P(k) \rightarrow P(k+1)$ induces short exact sequences

$$
\begin{aligned}
& 0 \rightarrow \nabla M_{n} P(k)_{*} \xrightarrow{v_{k}} \nabla M_{n} P(k)_{*} \rightarrow \nabla M_{n} P(k+1)_{*} \rightarrow 0 \\
& 0 \rightarrow \nabla N_{n+1} P(k)_{*} \xrightarrow{v_{k}} \nabla N_{n+1} P(k)_{*} \rightarrow \nabla N_{n+1} P(k+1)_{*} \rightarrow 0
\end{aligned}
$$

for each $k, 0 \leqq k \leqq n$. Hence we observe
(2.7) $\nabla M_{n} B P_{*}$ and $v_{n}^{-1} \nabla N_{n+1} B P_{*}$ are both $\beta \rho_{-f l a t .}$

Proposition 2.2. i) $\left\langle\nabla M_{n} B P\right\rangle=\left\langle\nabla L_{n} B P\right\rangle=\left\langle v_{n}^{-1} B P\right\rangle$, and
ii) $\left\langle\nabla N_{n+1} B P\right\rangle=\left\langle v_{n}^{-1} B P\right\rangle{ }^{\vee}\langle\nabla P(1)\rangle$.

Proof. i) Use Lemma 1.7 i) and (2.7) to show that $\left\langle\nabla M_{n} B P\right\rangle=\left\langle v_{n}^{-1}\right.$ $\left.\nabla N_{n+1} B P\right\rangle=\left\langle v_{n}^{-1} B P\right\rangle$. We here consider the cofiber sequence $\Sigma^{n} \nabla N_{n+1} B P$ $\rightarrow \nabla L_{n} B P \rightarrow \nabla B P$. Then $\left\langle v_{n}^{-1} \nabla L_{n} B P\right\rangle=\left\langle v_{n}^{-1} \nabla N_{n+1} B P\right\rangle$ because by (2.3) $\left\langle v_{n}^{-1}\right.$ $\nabla B P\rangle=0$ for all $n \geqq 1$ and $\nabla N_{1} B P=(\nabla B P) \hat{Z}_{p}$. So we get that $\left\langle\nabla L_{n} B P\right\rangle \geqq$ $\left\langle v_{n}^{-1} \nabla L_{n} B P\right\rangle=\left\langle v_{n}^{-1} B P\right\rangle$. The opposite inequality is shown by induction on n, the $n=0$ case being trivial. Assume that $\left\langle\nabla L_{n-1} B P\right\rangle \geqq\left\langle v_{n-1}^{-1} B P\right\rangle$ and consider the cofiber sequence $\nabla L_{n-1} B P \rightarrow \nabla L_{n} B P \rightarrow \Sigma^{n} \nabla M_{n} B P$. Then it is immediate that $\left\langle\nabla L_{n} B P\right\rangle \leqq\left\langle\nabla L_{n-1} B P\right\rangle \vee\left\langle\nabla M_{n} B P\right\rangle=\left\langle v_{n}^{-1} B P\right\rangle$, and so $\left\langle\nabla L_{n} B P\right\rangle=\left\langle v_{n}^{-1} B P\right\rangle$.
ii) Obviously $\left\langle\nabla N_{n+1} B P\right\rangle \geqq\left\langle v_{n}^{-1} \nabla N_{n+1} B P\right\rangle=\left\langle v_{n}^{-1} B P\right\rangle$. On the other hand, an iterated use of (1.1) gives that $\left\langle\nabla N_{n+1} B P\right\rangle \geqq\left\langle\nabla N_{n+1} P(n+1)\right\rangle=$ $\langle\nabla P(n+1)\rangle$. Hence we obtain that $\left\langle\nabla N_{n+1} B P\right\rangle \geqq\left\langle v_{n}^{-1} B P\right\rangle{ }^{V}\langle\nabla P(1)\rangle$ by means of Proposition 2.1 i). Conversely it is immediately seen that $\left\langle\nabla N_{n+1} B P\right\rangle \leqq$ $\left\langle\nabla L_{n} B P\right\rangle^{\mathrm{V}}\langle\nabla B P\rangle=\left\langle v_{n}^{-1} B P\right\rangle \mathrm{V}^{\prime}\langle\nabla P(1)\rangle$. So the equality holds.

We don't know whether the sequence (1.2) after localized at v_{n} remains still a cofiber sequence. But we have

Lemma 2.3. The sequence $\nabla v_{n}^{-1} B P[k+1, m+1) \rightarrow \nabla v_{n}^{-1} B P[k, m+1) \xrightarrow{v_{k}}$ $\Sigma^{-2\left(p^{k}-1\right)} \nabla v_{n}^{-1} B P[k, m+1)$ is a cofiber sequence for each $k, 0 \leqq k \leqq n \leqq m \leqq \infty$.

Proof. The $k=0$ case is trivial because $B P[1, m+1)=B P\langle m\rangle Z \mid p$ and so $v_{n}^{-1} B P[1, m+1)=\left(v_{n}^{-1} B P\langle m\rangle\right) Z \mid p$. We may assume that $k \geqq 1$. Then $v_{n}^{-1} B P[k, m+1)_{*} X$ is always a torsion group, and hence $\nabla v_{n}^{-1} B P[k, m+1)^{*} X$ $\cong \operatorname{Ext}\left(v_{n}^{-1} B P[k, m+1)_{*} X, Z_{(p)}\right)$. As is easily checked, the triangle

$$
\begin{gathered}
\nabla v_{n}^{-1} B P[k, m+1)^{*} X \xrightarrow{v_{k}} \nabla v_{n}^{-1} B P[k, m+1)^{*} X \\
\nwarrow_{\swarrow} \delta \\
\nabla v_{n}^{-1} B P[k+1, m+1)^{*} X
\end{gathered}
$$

is exact. Moreover the right diagonal map δ is trivial when X is the sphere spectrum S. By using these facts the $k \geqq 1$ cases follow immediately from [17, Lemma A].

Proposition 2.4. $\left\langle\nabla v_{n}^{-1} B P[k, m+1)\right\rangle=\vee_{k \leqq i \leqq n}\langle K(i)\rangle$ for $0 \leqq k \leqq n \leqq m \leqq \infty$. In particular, $\left\langle\nabla v_{n}^{-1} B P\right\rangle=\langle\nabla E(n)\rangle=\left\langle v_{n}^{-1} B P\right\rangle$ and $\langle\nabla B(n)\rangle=\langle\nabla K(n)\rangle=\langle K(n)\rangle$.

Proof. Lemma 1.1 combined with Lemma 2.3 shows that $\left\langle\nabla v_{n}^{-1} B P[k\right.$, $m+1)\rangle=\left\langle v_{k}^{-1} \nabla v_{n}^{-1} B P[k, m+1)\right\rangle{ }^{V}\left\langle\nabla v_{n}^{-1} B P[k+1, m+1)\right\rangle$. Notice that ∇v_{n}^{-1} $B P[k, m+1)$ is a quasi-associative $P(k)$-module spectrum and $v_{k}^{-1} \nabla v_{n}^{-1} B P[k$, $m+1)_{*}$ is $\rho(k)$-flat. Use Lemma 1.7 i) to see that $\left\langle v_{k}^{-1} \nabla v_{n}^{-1} B P[k, m+1)\right\rangle$ $=\langle K(k)\rangle$. The result is now shown by induction on $k \leqq n$.

Obviously $\langle B P\rangle=\left\langle L_{n} B P\right\rangle^{\vee}\left\langle N_{n+1} B P\right\rangle$. We use Corollary 1.3 and Proposition 1.4 to replace this equality by

$$
\begin{equation*}
\langle B P\rangle=\left\langle v_{n}^{-1} B P\right\rangle^{\vee}\langle P(n+1)\rangle . \tag{2.8}
\end{equation*}
$$

From [19, (2.3)] it follows that $v_{n}^{-1} B P_{*} P(n+1)=0$ (see [13, Lemma 2.3]). But $v_{n}^{-1} B P_{*} P(n) \cong B P_{*} B(n) \neq 0$. So we remark

$$
\begin{equation*}
\left\langle v_{n}^{-1} B P\right\rangle \nsupseteq\left\langle v_{n-1}^{-1} B P\right\rangle \text { and }\langle P(n)\rangle \geqq\langle P(n+1)\rangle . \tag{2.9}
\end{equation*}
$$

Lemma 2.5. $H Z \mid p_{*} \nabla N_{n+1} P(n)=0$ and $K(m)_{*} \nabla N_{n+1} P(n)=0$ for all $m<n$, but $K(n)_{*} \nabla N_{n+1} P(n) \neq 0$.

Proof. Consider the cofiber sequence $\Sigma^{n+1} \nabla P(n+1) \rightarrow \nabla N_{n+1} P(n) \xrightarrow{v_{n}} \Sigma^{-2\left(p^{n}-1\right)}$ $\nabla N_{n+1} P(n)$. There is an isomorphism $H Z / p_{*} \nabla N_{n+1} P(n) \rightarrow H Z / p_{*} v_{n}^{-1} \nabla N_{n+1} P(n)$ because $H Z \mid p_{*} \nabla P(n+1)=0$ by (2.5). Note that $\nabla N_{n+1} P(n)_{*}$ is v_{k}-torsion for each $k<n$. Then [19, (2.3)] gives that $H Z / p_{*} v_{n}^{-1} \nabla N_{n+1} P(n) \cong v_{n}^{-1} H Z \mid p_{*} v_{n}^{-1}$ $\nabla N_{n+1} P(n)=0$ and also $v_{n-1}^{-1} B P_{*} \nabla N_{n+1} P(n) \cong v_{n-1}^{-1} B P_{*} v_{n-1}^{-1} \nabla N_{n+1} P(n)=0$. Hence $H Z \mid p_{*} \nabla N_{n+1} P(n)=0$ and $K(m)_{*} \nabla N_{n+1} P(n)=0$ for all $m<n$. However $v_{n}^{-1} B P_{*}$ $\nabla N_{n+1} P(n) \neq 0$ because $v_{n}^{-1} \nabla N_{n+1} P(n)_{*} \cong v_{n}^{-1} \operatorname{Ext}\left(N_{n+1} P(n)_{*}, Z_{(p)}\right) \neq 0$. Therefore we observe that $K(n)_{*} \nabla N_{n+1} P(n) \neq 0$.

By use of (1.3), (2.6), Proposition 2.2 and Lemma 2.6 we here verify

$$
\begin{equation*}
\langle B P\langle n\rangle\rangle \gtreqless\langle B P\langle n-1\rangle\rangle \text { and }\left\langle\nabla N_{n+1} B P\right\rangle \doteqdot\left\langle\nabla N_{n} B P\right\rangle . \tag{2.10}
\end{equation*}
$$

3. Cohomological Bousfield classes

3.1. Let us denote by $\langle E\rangle^{*}$ the cohomological Bousfield class of E, thus $\langle E\rangle^{*} \geqq\langle F\rangle^{*}$ when $E^{*} X=0$ implies $F^{*} X=0$. Recall that the Anderson dual spectrum ∇E is related by the universal coefficient sequence (2.1). Then [2, Proposition 2.3] implies that for a p-local $E, \nabla E^{*} X=0$ if and only if $E_{*} X=0$. This means

$$
\begin{equation*}
\langle\nabla E\rangle^{*}=\langle E\rangle . \tag{3.1}
\end{equation*}
$$

Moreover we remark

$$
\begin{equation*}
\langle E\rangle^{*}=\langle\nabla E\rangle \text { if } E \text { is of finite type, } \tag{3.2}
\end{equation*}
$$

because of (2.2). As the above E we can take $B P, P(n), B P\langle n\rangle, k(n), K(n)$ and so on.

Let E be a connective $C W$-spectrum. It is represented as the inverse limit of the Postnikov systems $E(-\infty, n)$. This fact yields
(3.3) $\langle E\rangle^{*} \leqq\left\langle H Z_{(p)}\right\rangle$, and moreover $\langle E\rangle^{*} \leqq\langle H Z \mid p\rangle$ if $\operatorname{Hom}\left(Q, E_{*}\right)=0=$ $\operatorname{Ext}\left(Q, E_{*}\right)$.

Let E be a $B P$-module spectrum and v be an element of $B P_{*}$ with dimension d. We can form a $C W$-spectrum $\lim _{\hookleftarrow} E$ defined to be the mapping cotelescope of the map $\mu(v \wedge 1): \Sigma^{d} E \rightarrow E$. If E is associative, then $\lim _{\leftarrow} E$ is a $B P$-module spectrum. By dimension reason we see
$\left\langle\lim _{\leftarrow_{v}} E\right\rangle^{*}=0$ if E is connective and $\operatorname{dim} v>0$.
Let M be a $B P_{*}$-module and v be an element of $B P_{*}$. Denote by K and C the kernel and the cokernel of multiplication by v on M respectively. As is easily seen, $\lim _{\hookleftarrow} K=0=\lim _{v}^{1} K$ and $\lim _{\hookleftarrow} C=0=\lim _{{ }^{1}}{ }_{v} C$. An easy diagram chasing shows
(3.5) $\lim _{\hookleftarrow} M$ and $\lim _{\varsigma_{v}}^{1} M$ are both uniquely v-divisible.

This gives
Lemma 3.1. Let E be an associative BP-module spectrum and v be an element of $B P_{*}$. Then the $B P_{*}$-module $\left(\lim _{\leftarrow} E\right)_{*}$ is uniquely v-divisible.

Similarly to (1.1) we have

$$
\begin{equation*}
\left\langle v^{-1} F\right\rangle^{*} \leqq\left\langle v^{-1} E\right\rangle^{*} \backslash\left\langle v^{-1} G\right\rangle^{*} \tag{3.6}
\end{equation*}
$$

for any element v of $B P_{*}$, if $E \rightarrow F \rightarrow G$ is a cofiber sequence of $B P$-module spectra. By a parallel argument to Lemma 1.1 we can show

Lemma 3.2. Let v and w be elements of $B P_{*}, E$ be an associative $B P$ module spectrum and F be the cofiber of the map $w: \Sigma^{d} E \rightarrow E$ where $d=\operatorname{dim} w$. Then $\left\langle v^{-1} E\right\rangle^{*}=\left\langle\lim _{w^{2}} v^{-1} E\right\rangle^{*}\left\langle\left\langle v^{-1} F\right\rangle^{*}\right.$. In particular, $\langle E\rangle^{*}=\left\langle\lim _{w} E\right\rangle^{*}\left\langle\langle F\rangle^{*}\right.$.

A $B P J_{*}$-module M is said to be $B \rho \rho_{- \text {-injective }}$ if the functor $\operatorname{Hom}_{B P_{*}}\left(B P J_{*}\right.$ $(-), M)$ is exact (see [8] or [18]). Recall that a $P(m)_{*}$-module M is $\rho(m)$ injective if
(3.7) multiplication by v_{k} is epic on $\operatorname{Hom}_{B P_{*}}\left(P(k)_{*}, M\right)$ for every $k \geqq m$, and in addition $\mathrm{w} . \operatorname{dim} \rho(m) M$ is finite.

Note that w. $\operatorname{dim} \rho(m) v_{n}^{-1} M \leqq n-m$. As a dual of Lemma 1.7 we have a useful tool in determining some cohomological Bousfield classes.

Lemma 3.3. Let J be an invariant regular ideal in $B P_{*}$ of length m, E be a (weak) quasi-associative BPJ-module spectrum and $n \geqq m$.
i) If $v_{n}^{-1} E_{*}$ is $\beta \rho \rho_{-i n j e c t i v e ~ s u c h ~ t h a t ~} \operatorname{Hom}_{B P_{*}}\left(P(n)_{*}, v_{n}^{-1} E_{*}\right) \neq 0$, then $\left\langle v_{n}^{-1} E\right\rangle^{*}$ $=\left\langle v_{n}^{-1} P(m)\right\rangle$.
ii) If E_{*} is $\beta \rho \rho_{-i n j e c t i v e ~ s u c h ~ t h a t ~} \operatorname{Hom}_{B P_{*}}\left(P(\infty)_{*}, E_{*}\right) \neq 0$, then $\langle E\rangle^{*}=\langle P(m)\rangle$.

Proof. i) The $B P J$-module structure map of E gives an isomorphism $\left(v_{n}^{-1} E\right) * X \rightarrow \operatorname{Hom}_{B P_{*}}\left(B P J_{*} X, v_{n}^{-1} E_{*}\right)$. So we use [18, Proposition 3.4] to show that $\left\langle v_{n}^{-1} E\right\rangle^{*}=\left\langle v_{n}^{-1} B P J\right\rangle$. Now the result follows from the fact that $\left\langle v_{n}^{-1} B P J\right\rangle=\left\langle v_{n}^{-1} P(m)\right\rangle$.
ii) is also proved by a parallel argument to the proof of Lemma 1.7 ii), so we omit it.

Remark. In proving Lemma 3.3 i) the (weak) quasi-associativity of E is only needed to show that there is an isomorphism $\left(v_{n}^{-1} E\right)^{*} X \rightarrow \operatorname{Hom}_{B P_{*}}\left(B P J_{*} X\right.$, $\left.v_{n}^{-1} E_{*}\right)$. We may assume instead the existence of such a natural isomorphism, if it is not easy to check whether E becomes a (weak) quasi-associative BPJmodule spectrum.
3.2. Consider the short exact sequences

$$
\begin{aligned}
& 0 \rightarrow M_{n} P(k+1)_{*} \rightarrow M_{n} P(k)_{*} \xrightarrow{v_{k}} M_{n} P(k)_{*} \rightarrow 0 \\
& 0 \rightarrow N_{n+1} P(k+1)_{*} \rightarrow N_{n+1} P(k)_{*} \xrightarrow{v_{k}} N_{n+1} P(k)_{*} \rightarrow 0
\end{aligned}
$$

for each $k, 0 \leqq k \leqq n$. Since $\lim _{v_{v}}^{1} N_{n+1} P(k+1)_{*}=0$, we see easily

$M_{n} B P_{*}$ and $\lim _{\leftarrow}{ }_{0_{n}} N_{n+1} B P_{*}$ are both $B \rho_{-i n j e c t i v e . ~}^{\text {in }}$

As an analogous result to Proposition 2.2 we have
Proposition 3.4. i) $\left\langle M_{n} B P\right\rangle^{*}=\left\langle L_{n} B P\right\rangle^{*}=\left\langle v_{n}^{-1} B P\right\rangle$, and
ii) $\left\langle N_{n+1} B P\right\rangle^{*}=\left\langle v_{n}^{-1} B P\right\rangle^{\vee}\langle\nabla P(1)\rangle$.

Proof. i) First apply Lemma 3.3 i) to $E=M_{n} B P$ to obtain that $\left\langle M_{n} B P\right\rangle^{*}$ $=\left\langle v_{n}^{-1} B P\right\rangle$. Note that $\left(\lim _{v_{n}} N_{n+1} B P\right)_{*} \cong \lim _{v_{n}} N_{n+1} B P_{*}$. The $B P$-module structure map of $N_{n+1} B P$ gives a natural homomorphism $\left(\lim _{v_{n}} N_{n+1} B P\right) * X$ $\rightarrow \operatorname{Hom}_{B P *}\left(B P_{*} X, \lim _{v_{v_{n}}} N_{n+1} B P_{*}\right)$, which becomes an isomorphism. So $\left\langle\lim _{\leftarrow} v_{v_{n}}\right.$ $\left.N_{n+1} B P\right\rangle^{*}=\left\langle v_{n}^{-1} B P\right\rangle$ by using Remark following Lemma 3.3. We then
observe that $\left\langle L_{n} B P\right\rangle^{*} \geqq\left\langle\lim _{\leftarrow}{ }_{v_{n}} L_{n} B P\right\rangle^{*}=\left\langle\lim _{v_{n}} N_{n+1} B P\right\rangle^{*}=\left\langle v_{n}^{-1} B P\right\rangle$ by use of (3.4). The opposite inequality is easily shown by induction on n.
ii) Obviously $\left\langle N_{n+1} B P\right\rangle^{*} \geqq\left\langle N_{n+1} P(n+1)\right\rangle^{*}=\langle P(n+1)\rangle^{*}$. Then it follows from (3.2) and Proposition 2.1 i) that $\left\langle N_{n+1} B P\right\rangle^{*} \geqq\left\langle\lim _{v_{n}} N_{n+1} B P\right\rangle^{*}$ $\langle P(n+1)\rangle^{*}=\left\langle v_{n}^{-1} B P\right\rangle^{\vee}\langle\nabla P(1)\rangle$. The converse is easily seen because $\left\langle N_{n+1} B P\right\rangle^{*}$ $\leqq\left\langle L_{n} B P\right\rangle^{*}\left\langle\langle B P\rangle^{*}\right.$.

As an analogous result to Proposition 2.4 we have
Proposition 3.5. $\left\langle v_{n}^{-1} B P[k, m+1)\right\rangle^{*}=\vee_{k \leqq i \leqq n}\langle K(i)\rangle$ for $0 \leqq k \leqq n \leqq m \leqq \infty$. In particular, $\left\langle v_{n}^{-1} B P\right\rangle^{*}=\langle E(n)\rangle^{*}=\left\langle v_{n}^{-1} B P\right\rangle$ and $\langle B(n)\rangle^{*}=\langle K(n)\rangle^{*}=\langle K(n)\rangle$.

Proof. Assume that $k<n$. Note that $\left(\lim _{v_{k}} v_{n}^{-1} B P[k, m+1)\right)_{*} \cong \lim _{v_{k}}^{1}$ $v_{n}^{-1} B P[k, m+1)_{*}$ and it is $\rho(k)$-flat and $\rho(k)$-injective because of (3.5). Since the $P(k)$-module spectrum $v_{n}^{-1} B P[k, m+1)$ is weak quasi-associative, its structure map gives a natural homomorphism $\left(\lim _{v_{v}}^{1} v_{n}^{-1} B P[k, m+1)_{*}\right) \otimes_{B P_{*}}^{\otimes} P(k)_{*} X$ $\rightarrow\left(\lim _{v_{k}} v_{n}^{-1} B P[k, m+1)\right)_{*} X$ which is an isomorphism. Therefore we can define a natural homomorphism $\left(\lim _{v_{v_{k}}} v_{n}^{-1} B P[k, m+1)\right)^{*} X \rightarrow \operatorname{Hom}_{B P_{*}}\left(P(k)_{*} X, \lim _{w_{v_{k}}}^{1} v_{n}^{-1}\right.$ $B P[k, m+1)_{*}$) in the canonical way. This is an isomorphism, too. Hence $\left\langle\lim _{v_{k}} v_{n}^{-1} B P[k, m+1)\right\rangle^{*}=\langle B(k)\rangle$ by means of Remark following Lemma 3.3. Now induction on $k \leqq n$ shows the desired equality, the $k=n$ case being trivial by use of Lemma 3.3 i).

Theorem 0.2 follows from Propositions 2.1, 2.2, 2.4, 3.4 and 3.5, and (3.2).

4. Bousfield classes of sums and products

4.1. Fix $m \geqq 0$ and take a family $\left\{E_{n}\right\}_{n \geqq m}$ of $C W$-spectra. Trivially we have

$$
\begin{equation*}
\left\langle\vee_{n \geqq m} E_{n}\right\rangle=\vee_{n \geqq m}\left\langle E_{n}\right\rangle \text { and }\left\langle\Pi_{n \geq m} E_{n}\right\rangle^{*}=\vee_{n \geq m}\left\langle E_{n}\right\rangle^{*} \tag{4.1}
\end{equation*}
$$

Denote by C, D and F the cofibers of the maps $\vee_{n \geqq m} E_{n} \rightarrow \Pi_{n \geqq m} E_{n}, \vee_{n \geq m}$ $\nabla E_{n} \rightarrow \Pi_{n \geqq m} \nabla E_{n}=\nabla\left(\vee_{n \geqq m} E_{n}\right)$ and $\vee_{n \geqq m} \nabla E_{n} \rightarrow \nabla\left(\Pi_{n \geqq m} E_{n}\right)$ respectively. By Verdier's lemma we have a cofiber sequence $\nabla C \rightarrow F \rightarrow D$. As is easily seen,
i) $\left.\left\langle\Pi_{n \geq m} E_{n}\right\rangle=\left\langle\nabla\left(\Pi_{n \geq m} E_{n}\right)\right\rangle^{*}=V_{n \geqq m}\left\langle E_{n}\right\rangle\right\rangle\langle C\rangle$,
ii) $\left\langle\vee_{n \geq m} E_{n}\right\rangle^{*}=\vee_{n \geqq m}\left\langle E_{n}\right\rangle^{*}\langle C\rangle^{*}$,
iii) $\left.\left\langle\Pi_{n \geq m} \nabla E_{n}\right\rangle=\vee_{n \geq m}\left\langle\nabla E_{n}\right\rangle\right\rangle\langle D\rangle$,
iv) $\left\langle\vee_{n \geq m} \nabla E_{n}\right\rangle^{*}=\vee_{n \geq m}\left\langle E_{n}\right\rangle\left\langle\langle D\rangle^{*}\right.$, and
v) $\left\langle\nabla\left(\Pi_{n \geq m} E_{n}\right)\right\rangle=\vee_{n \geq m}\left\langle\nabla E_{n}\right\rangle{ }^{\vee}\langle F\rangle$.

Consider the families $\{P(n)\}_{n \geqq m},\{k(n)\}_{n \geqq m}$ and $\{K(n)\}_{n \geqq m}$ of BP-module
spectra. Then $C=\Pi_{n \geq m} P(n) / \vee_{n \geq m} P(n), \Pi_{n \geq m} k(n) / \vee_{n \geqq m} k(n)$ or $\Pi_{n \geq m} K(n) / \vee_{n \geq m}$ $K(n)$ is the Eilenberg-MacLane spectrum $H A$ of type A where $A=\Pi_{x_{0}} Z|p|$ $\oplus_{x_{0}} Z / p$, and hence $\nabla C=\Sigma^{-1} H \nabla A$ where $\nabla A=\operatorname{Ext}\left(A, Z_{(p)}\right)$. Moreover $D=$ $\Sigma^{-1} H_{\boldsymbol{\prime}}$ and so $F=\Sigma^{-1} H(A \oplus \nabla A)$.

Proposition 4.1. i) $\left\langle\Pi_{n \geq m} P(n)\right\rangle=\langle P(m)\rangle$,
ii) $\left\langle\vee_{n \geq m} P(n)\right\rangle^{*}=\left\langle\Pi_{n \geq m} \nabla P(n)\right\rangle=\left\langle V_{n \geq m} \nabla P(n)\right\rangle^{*}=\left\langle\nabla\left(\Pi_{n \geq m} P(n)\right)\right\rangle=\left\langle V_{n \geq m}\right.$ $k(n)\rangle^{*}=\left\langle\Pi_{n \geqq m} \nabla k(n)\right\rangle=\left\langle V_{n \geq m} \nabla k(n)\right\rangle^{*}=\left\langle\nabla\left(\Pi_{n \geqq m} k(n)\right)\right\rangle=\left\{\begin{array}{l}\left\langle H Z_{(p)}\right\rangle \text { if } m=0 \\ \langle H Z \mid p\rangle \text { if } m \geqq 1, \text { and }\end{array}\right.$ iii) $\left\langle\Pi_{n \geqq m} k(n)\right\rangle=\left\langle\Pi_{n \geqq m} K(n)\right\rangle=\left\langle\vee_{n \geqq m} K(n)\right\rangle^{*}=\left\langle\nabla\left(\Pi_{n \geqq m} K(n)\right)\right\rangle=\vee_{n \geqq m}\langle K(n)\rangle$ ${ }^{\vee}\langle H Z \mid p\rangle$.

Proof. i) is easy.
ii) and iii): From [2, Theorem 4.5] it follows that $\langle H A\rangle=\langle H(A \oplus \nabla A)\rangle=$ $\langle H A\rangle^{*}=\langle H(A \oplus \nabla A)\rangle^{*}=\langle H Z \mid p\rangle$ because A is a $Z \mid p$-module. So the results are shown easily by (2.6) and (4.2).

Next, consider the family $\{B P\langle n\rangle\}_{n \geq m}$ of $B P$-module spectra. $C=\Pi_{n \geq m}$ $B\langle n\rangle / \vee_{n \geq m} B\langle n\rangle$ is connective, and hence ∇C is coconnective. Also, D and F are coconnective.

Proposition 4.2. i) $\left\langle\Pi_{n \geqq m} B P\langle n\rangle\right\rangle=\left\langle\Pi_{n \geqq m} B P\langle n\rangle \mid \vee_{n \geqq m} B P\langle n\rangle\right\rangle=\left\langle\vee_{n \geqq m}\right.$ $\nabla B P\langle n\rangle\rangle^{*}=\langle B P\rangle$, and
ii) $\left\langle\vee_{n \geqq m} B P\langle n\rangle\right\rangle^{*}=\left\langle\Pi_{n \geqq m} \nabla B P\langle n\rangle\right\rangle=\left\langle\nabla\left(\Pi_{n \geqq m} B P\langle n\rangle\right)\right\rangle=\left\langle H Z_{(p)}\right\rangle$.

Proof. i) Since $B P=\lim _{m_{n \geqq m}} B P\langle n\rangle$ and $\nabla B P=\lim _{n \geqq m} \nabla B P\langle n\rangle$, it is immediate that $\left\langle\Pi_{n \geq m} B P\langle n\rangle\right\rangle=\left\langle\vee_{n \geqq m} \nabla B P\langle n\rangle\right\rangle^{*}=\langle B P\rangle$. On the other hand, we remark that $\Pi_{n \geqq m} B P\langle n\rangle_{*} \mid \oplus_{n \geqq m} B P\langle n\rangle_{*}$ is $B \rho$-flat. Use Lemma 1.7 ii) to show the remaining equality.
ii) Since C is connective and both D and F are coconnective, $\langle C\rangle^{*} \vee$ $\langle D\rangle{ }^{\vee}\langle F\rangle \leqq\left\langle H Z_{(p)}\right\rangle$ by use of (2.4) and (3.3). So the desired equalities follow from Proposition 2.1 ii) and (4.2).
4.2. Let E be a p-local $C W$-spectrum of finite type and $\left\{A_{\alpha}\right\}_{\alpha \in \Lambda}$ be a family of $Z_{(p)}$-modules. Then [16, Lemma 4] gives that $E\left(\Pi_{a \in \Lambda} A_{a}\right)=\Pi_{a \in \Lambda}$ $E A_{\alpha}$. By use of [2, Proposition 2.3] we observe

$$
\left\langle\Pi_{a \in \Lambda} E A_{a}\right\rangle= \begin{cases}\langle E Z \mid p\rangle & \text { if }\left(\Pi_{a \in \Delta} A_{\alpha}\right) \otimes Q=0 \tag{4.3}\\ \langle E\rangle & \text { if not so } .\end{cases}
$$

In particular,

$$
\begin{equation*}
\left\langle\Pi_{\Lambda} E\right\rangle=\langle E\rangle \text { for any indexed set } \Lambda . \tag{4.4}
\end{equation*}
$$

Lemma 4.3. Let E be a p-local $C W$-spectrum of finite type and A be a
$Z_{(p)}$-module. Then

$$
\langle\nabla(E A)\rangle= \begin{cases}\langle(\nabla E) Z \mid p\rangle & \text { if } \operatorname{Hom}\left(A, Z_{(p)}\right)=0=\operatorname{Ext}\left(A, Z_{(p)}\right) \otimes Q \\ \langle\nabla E\rangle & \text { if not so. }\end{cases}
$$

In particular, $\left\langle\nabla\left(\Pi_{\Lambda} E\right)\right\rangle=\langle\nabla E\rangle$ for any indexed set Λ.
Proof. Take a free resolution $0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow A \rightarrow 0$ of $Z_{(p)}$-modules and put $P_{i}=\operatorname{Hom}\left(F_{i}, Z_{(p)}\right)$ for $i=0$, 1. From [16, Lemma 4] it follows that $\nabla\left(E F_{i}\right)=(\nabla E) P_{i}$ for $i=0,1$. Let T denote the cofiber of the map $S P_{0} \rightarrow S P_{1}$ of Moore spectra. Applying Five lemma we obtain immediately that $\nabla(E A)$ $=\Sigma^{-1} \nabla E_{\wedge} T$. As is easily seen, $B \otimes P_{0} \cong B \otimes P_{1}$ if and only if $B \otimes A_{H}=0$ and $B \otimes A_{E}=0=\operatorname{Tor}\left(B, A_{E}\right)$ for a $Z_{(p)}$-module B where $A_{H}=\operatorname{Hom}\left(A, Z_{(p)}\right)$ and $A_{E}=\operatorname{Ext}\left(A, Z_{(p)}\right)$. This shows that $\nabla(E A)_{*} X=0$ if and only if $(\nabla E) A_{H^{*}} X=0$ $=(\nabla E) A_{E^{*}} X$, thus $\langle\nabla(E A)\rangle=\left\langle(\nabla E) A_{H}\right\rangle{ }^{\vee}\left\langle(\nabla E) A_{E}\right\rangle$. Now the result follows from [2, Proposition 2.3].

To $E=P(n), \nabla P(n), B P\langle n\rangle, \nabla B P\langle n\rangle, k(n), \nabla k(n)$ and $K(n)$ we may apply (4.4) and Lemma 4.3.

By Corollary 1.8 and Proposition $2.4\langle B(n)\rangle=\langle\nabla B(n)\rangle=\langle K(n)\rangle$. Corresponding to this result we have

Proposition 4.4. i) $\left\langle\Pi_{n \geq m} B(n)\right\rangle=\left\langle\Pi_{n \geq m} \nabla B(n)\right\rangle=\left\langle\nabla\left(\Pi_{n \geq m} B(n)\right)\right\rangle=$ $\vee_{n \geq m}\langle K(n)\rangle{ }^{\vee}\langle H Z \mid p\rangle$, and
ii) $\left\langle\Pi_{\Lambda} B(n)\right\rangle=\left\langle\Pi_{\Lambda} \nabla B(n)\right\rangle=\left\langle\nabla\left(\Pi_{\Lambda} B(n)\right)\right\rangle=\langle K(n)\rangle$.

Proof. i) $\left\langle\Pi_{n \geqq m} B(n)\right\rangle \geqq\left\langle\Pi_{n \geqq m} K(n)\right\rangle$ since $\Pi_{n \geqq m} K(n)$ is a $\Pi_{n \geqq m} B(n)$-module spectrum. According to [7, Theorem 4.10] the Boardmann map $B(n) \rightarrow$ $K(n)_{\wedge} B(n)$ induces a Hurewicz monomorphism $B(n)_{*} X \rightarrow K(n)_{*}\left(B(n)_{\wedge} X\right)$. This implies that $\left(\Pi_{n \geqq m} B(n)\right)_{*} Y \rightarrow\left(\Pi_{n \geqq m} K(n)_{\wedge} B(n)\right)_{*} Y$ is a monomorphism for any finite Y, and for a general Y when passing to the direct limit. Hence we get a monomorphism $\left(\Pi_{n \geqq m} B(n)\right)_{*} X \rightarrow\left(\Pi_{n \geqq m} K(n)\right)_{*}\left(\left(\Pi_{n \geqq m} B(n)\right)_{\wedge} X\right)$ and so $\left\langle\Pi_{n \geqq m}\right.$ $B(n)\rangle \leqq\left\langle\Pi_{n \geq m} K(n)\right\rangle$. Thus the equality $\left\langle\Pi_{n \geqq m} B(n)\right\rangle=\left\langle\Pi_{n \geqq m} K(n)\right\rangle$ holds.

Since $\nabla\left(\Pi_{n \geqq m} B(n)\right)$ and $\Pi_{n \geqq m} \nabla B(n)$ are both $\Pi_{n \geqq m} B(n)$-module spectra, we see that $\left\langle\nabla\left(\Pi_{n \geqq m} B(n)\right)\right\rangle \leqq\left\langle\Pi_{n \geqq m} B(n)\right\rangle$ and $\left\langle\Pi_{n \geqq m} \nabla B(n)\right\rangle \leqq\left\langle\Pi_{n \geqq m} B(n)\right\rangle$. Note that $K(n)_{*}, B(n)_{*}$ and $\nabla B(n)_{*}$ are all $\rho(n)$-flat. Obviously $B(n)_{*} X \rightarrow K(n)_{*} X$ is epic and $K(n)_{*} X \rightarrow \nabla B(n)_{*} X$ is monic. Using the preceding argument we can show that $\nabla\left(\Pi_{n \geqq m} K(n)\right)_{*} X \rightarrow \nabla\left(\Pi_{n \geqq m} B(n)\right)_{*} X$ and $\left(\Pi_{n \geq m} K(n)\right)_{*} X \rightarrow\left(\Pi_{n \geqq m}\right.$ $\nabla B(n))_{*} X$ are both monic for a general X. This implies that $\left\langle\nabla\left(\Pi_{n \geqq m} B(n)\right)\right\rangle$ $\geqq\left\langle\nabla\left(\Pi_{n \geqq m} K(n)\right)\right\rangle=\left\langle\Pi_{n \geqq m} K(n)\right\rangle$ and $\left\langle\Pi_{n \geqq m} \nabla B(n)\right\rangle \geqq\left\langle\Pi_{n \geqq m} K(n)\right\rangle$. The desired result is now immediate from Proposition 4.1 iii).
ii) Use Lemma 1.7 i).
4.3. By Corollary $1.8\left\langle v_{n}^{-1} B P\right\rangle=\langle E(n)\rangle$. Corresponding to this result
we have
Proposition 4.5. i) $\left\langle\Pi_{n \geq m} v_{n}^{-1} B P\right\rangle=\left\langle\Pi_{n \geqq m} E(n)\right\rangle=\langle B P\rangle$, and ii) $\left\langle\Pi_{\Lambda} v_{n}^{-1} B P\right\rangle=\left\langle\Pi_{\Lambda} E(n)\right\rangle=\vee_{0 \leq i \leq n}\langle K(i)\rangle$.

Proof. i) $\Pi_{n \geq m} v_{n}^{-1} B P_{*}$ and $\Pi_{n \geq m} E(n)_{*}$ are both $\beta \rho$-flat. We have an isomorphism $\left(\Pi_{n \geq m} E(n)_{*}\right) \otimes_{B P_{*}} P(k)_{*} \rightarrow \Pi_{n \geq k} v_{n}^{-1} B P[k, n+1)_{*}$ since $P(k)_{*}$ is finitely presented as a $B P_{*}$-module for each $k, m \leqq k<\infty$. So it is clear that ($\Pi_{n \geqq m}$ $\left.E(n)_{*}\right)_{B P_{*}} P(\infty)_{*} \neq 0$ and $\left(\Pi_{n \geq m} v_{n}^{-1} B P_{*}\right)_{B P_{*}} P(\infty)_{*} \neq 0$. Apply Lemma 1.7 ii) to obtain the desired equalities.
ii) Apply Lemma 1.7 i).

Proposition 4.6. i) $\left\langle\Pi_{n \geq m} L_{n} B P\right\rangle=\left\langle\Pi_{n \geq m} N_{n} B P\right\rangle=\langle B P\rangle$, and
ii) $\left\langle\Pi_{\Lambda} M_{n} B P\right\rangle=\left\langle\Pi_{\Lambda} L_{n} B P\right\rangle=\bigvee_{0 \leq i \leq n}\langle K(i)\rangle$ and $\left\langle\Pi_{\Lambda} N_{n} B P\right\rangle=\langle B P\rangle$ if the indexed set Λ is infinite.

Proof. i) [19, Theorem 4.8] says that $B P$ is s-harmonic, thus $B P=\lim _{n \geq m}$ $L_{n} B P$. Hence it is obvious that $\left\langle\Pi_{n \geqq m} L_{n} B P\right\rangle=\langle B P\rangle$. Next, consider the cofiber sequence $\Pi_{n \geqq m} N_{n} P(k+1) \rightarrow \Pi_{n \geqq m} N_{n} P(k) \xrightarrow{v_{k}} \Pi_{n \geq m} \Sigma^{-2\left(\rho^{k}-1\right)} N_{n} P(k)$ for each $k, 0 \leqq k \leqq m-1$. Since $\Pi_{n \geqq m} N_{n} P(k)_{*}$ is not v_{k}-torsion, $\left\langle v_{k}^{-1} \Pi_{n \geqq m} N_{n} P(k)\right\rangle=$ $\langle B(k)\rangle$ by means of Lemma 1.7 i$)$. An iterated use of Lemma 1.1 shows that $\left\langle\Pi_{n \geq m} N_{n} B P\right\rangle=\vee_{0 \leq k \leq m-1}\langle B(k)\rangle V\left\langle\Pi_{n \geq m} N_{n} P(m)\right\rangle$. So we use (2.8) to obtain that $\left\langle\Pi_{n \geqq m} N_{n} B P\right\rangle=\left\langle v_{m-1}^{-1} B P\right\rangle \vee\langle P(m)\rangle=\langle B P\rangle$.
ii) is obtained by a similar argument to the latter part of i).

Proposition 4.7. i) $\left\langle\Pi_{n \geqq m} \nabla M_{n} B P\right\rangle=\left\langle\nabla\left(\Pi_{n \geqq m} M_{n} B P\right)\right\rangle=\left\langle\Pi_{n \geqq m} \nabla L_{n} B P\right\rangle=$ $\left\langle\nabla\left(\Pi_{n \geq m} L_{n} B P\right)\right\rangle=\left\langle\Pi_{n \geq m} \nabla N_{n} B P\right\rangle=\left\langle\nabla\left(\Pi_{n \geq m} N_{n} B P\right)\right\rangle=\langle B P\rangle$,
ii) $\left\langle\Pi_{\Lambda} \nabla M_{n} B P\right\rangle=\left\langle\nabla\left(\Pi_{\Lambda} M_{n} B P\right)\right\rangle=\left\langle\Pi_{\Lambda} \nabla L_{n} B P\right\rangle=\left\langle\nabla\left(\Pi_{\Lambda} L_{n} B P\right)\right\rangle=\left\langle v_{n}^{-1} B P\right\rangle$ and $\left\langle\Pi_{\Lambda} \nabla N_{n+1} B P\right\rangle=\left\langle\nabla\left(\Pi_{\Lambda} N_{n+1} B P\right)\right\rangle=\left\langle v_{n}^{-1} B P\right\rangle \vee\langle\nabla P(1)\rangle$.

Proof. i) $\Pi_{n \geqq m} \nabla M_{n} B P_{*}$ and $\nabla\left(\Pi_{n \geqq m} M_{n} B P\right)_{*}$ are both $\beta \rho$-flat. Since $\left(\Pi_{n \geqq m} \nabla P(n)_{*}\right) \otimes_{B P_{*}} P(k)_{*} \cong \Pi_{n \geqq k} \nabla P(n)_{*}$ for each $k \geqq m$, it is easily seen that ($\Pi_{n \geqq m}$ $\left.\nabla P(n)_{*}\right) \bigotimes_{B P_{*}} P(\infty)_{*} \neq 0$ and hence $\left(\Pi_{n \geqq m} \nabla M_{n} B P_{*}\right) \bigotimes_{B P_{*}} P(\infty)_{*} \neq 0$. Apply Lemma 1.7 ii) to show that $\left\langle\Pi_{n \geqq m} \nabla M_{n} B P\right\rangle=\langle B P\rangle=\left\langle\nabla\left(\Pi_{n \geqq m} M_{n} B P\right)\right\rangle$.

Using the cofiber sequence $\Pi_{n \geqq m} \Sigma^{n} \nabla M_{n} B P \rightarrow \Pi_{n \geqq m} \nabla L_{n-1} B P \rightarrow \Pi_{n \geqq m} \nabla L_{n} B P$, it is immediate that $\left\langle\Pi_{n \geqq m} \nabla L_{n-1} B P\right\rangle \geqq\left\langle\Pi_{n \geqq m} \Sigma^{n} \nabla M_{n} B P\right\rangle=\langle B P\rangle$, and hence $\left\langle\Pi_{n \geq m} \nabla L_{n-1} B P\right\rangle=\langle B P\rangle$. The remaining equalities are similarly shown.
ii) is obtained by the same argument as in the proof of Proposition 2.2.

Theorems 0.3 and 0.4 follow from (4.1), Propositions 4.1, 4.4, 4.6 and 4.7.

5. $P^{\prime}(n)_{*}-$ and $B P\langle n\rangle_{*}$-localizations

5.1. In [12] Mitchell constructed a finite p-local $C W$-spectrum X_{n} such that

$$
\begin{equation*}
v_{n-1}^{-1} B P_{*} X_{n}=0 \text { and } v_{n}^{-1} B P_{*} X_{n} \neq 0 . \tag{5.1}
\end{equation*}
$$

We call such a finite $C W$-spectrum X_{n} a Mitchell complex of type n. Ravenel [14, Lemma 4] proved the following useful result.

Proposition 5.1. Let X_{n} be a Mitchell complex of type n. Then $\langle P(n)\rangle$ $=\left\langle P(n)_{\wedge} X_{n}\right\rangle$.

By making use of Proposition 5.1 we have
Lemma 5.2. Let X_{n+1} be a Mitchell complex of type $n+1$ and E be a $C W$ spectrum. Then
i) $\quad N_{n+1} B P_{\wedge} E=p t \quad$ if $X_{n+1 \wedge} E=p t$,
ii) $\quad X_{n+1 \wedge} L_{n} E=p t=X_{n+1} \wedge\left(L_{n} S, E\right)$, and
iii) $\quad N_{n+1} B P_{\wedge} L_{n} E=p t=N_{n+1} B P_{\wedge} F\left(L_{n} S, E\right)$.

Proof. i) Suppose that $X_{n+1 \wedge} E=p t$. Then $P(n+1)_{\wedge} X_{n+1 \wedge} E=p t$, which implies that $P(n+1)_{\wedge} E=p t$ by Proposition 5.1. Now we obtain the desired result since $\langle P(n+1)\rangle=\left\langle N_{n+1} B P\right\rangle$.
ii) X_{n+1} is $v_{n}^{-1} B P^{*}$-acyclic because $\left\langle v_{n}^{-1} B P\right\rangle^{*}=\left\langle v_{n}^{-1} B P\right\rangle$ by Proposition 3.5. Hence the Spanier-Whitehead dual $D X_{n+1}$ of X_{n+1} becomes $v_{n}^{-1} B P_{*^{-}}$ acyclic, too (or use [3, Proposition 2.10]). Therefore $L_{n} E^{*} D X_{n+1}=0$ and $D X_{n+1 \wedge} L_{n} S=L_{n} D X_{n+1}=p t$. These show that $L_{n} E_{*} X_{n+1}=0=F\left(L_{n} S, E\right)_{*} X_{n+1}$.
iii) is immediate from i) and ii).

Proposition 5.3. Let X_{n+1} be a Mitchell complex of type $n+1$. The following conditions are all equivalent:
i) a $C W$-spectrum E is $v_{n}^{-1} B P$-local,
ii) E is $B P$-local and $X_{n+1 \wedge} E=p t$, and
iii) E is $B P$-local and $N_{n+1} B P_{\wedge} E=p t$.

Proof. The implications i) \rightarrow ii) and ii) \rightarrow iii) follow from Lemma 5.2 i) and ii).
iii) \rightarrow i): Note that $L_{n} B P_{\wedge} N_{n+1} E=p t=N_{n+1} B P_{\wedge} L_{n} E$ because of Corollary 1.3 and Lemma 5.2 iii). Then the localization map $\eta_{n}: E \rightarrow L_{n} E$ is a $B P_{*^{-}}$ equivalence under our hypothesis that $N_{n+1} B P_{\wedge} E=p t$. Hence it becomes an equivalence since E and $L_{n} E$ are both $B P$-local. Thus E is $v_{n}^{-1} B P$-local.

If E is a $B P$-module spectrum, then so is $E_{\wedge} X$ for any $C W$-spectrum X. However $E_{\wedge} X$ is not necessarily $B P$-local even if E is so. Bousfield [4] intro-
duced $B P$-nilpotent spectra E, which have the property that $E_{\wedge} X$ are also $B P$ nilpotent for any X. Each $B P$-module spectrum is $B P$-nilpotent, and each $B P$-nilpotent spectrum is $B P$-local.

Corollary 5.4 (Ravenel). If E is a $B P$-nilpotent spectrum, then $E_{\wedge} L_{n} X$ $=L_{n}\left(E_{\wedge} X\right)=L_{n} E_{\wedge} X$ and $E_{\wedge} N_{n+1} X=N_{n+1}\left(E_{\wedge} X\right)=N_{n+1} E_{\wedge} X$ for any $C W$-spectrum X. (See [14, Theorem 1]).

Proof. $E_{\wedge} L_{n} X$ and $L_{n} E_{\wedge} X$ are both $B P$-nilpotent, and hence they are $B P$-local. Moreover $X_{n+1 \wedge} E_{\wedge} L_{n} X=p t=X_{n+1 \wedge} L_{n} E_{\wedge} X$ by Lemma 5.2 ii). So Proposition 5.3 shows that $E_{\wedge} L_{n} X$ and $L_{n} E_{\wedge} X$ are both $v_{n}^{-1} B P$-local. Now the result follows immediately.

The above corollary gives easily

$$
\begin{equation*}
\left\langle L_{n} E\right\rangle \geqq\left\langle L_{n} F\right\rangle \text { and }\left\langle N_{n+1} E\right\rangle \geqq\left\langle N_{n+1} F\right\rangle \tag{5.2}
\end{equation*}
$$

if $\langle E\rangle \geqq\langle F\rangle$ for $B P$-nilpotent spectra E and F. (Cf., Lemma 1.2 ii)).
5.2. We here describe the $P(n)_{*^{-}}$-localization in terms of the $B P_{*^{-}}$and $v_{n}^{-1} B P_{*}$-localizations.

Lemma 5.5. Let E be a $B P$-nilpotent spectrum. If a $C W$-spectrum X is E-local, then the function spectrum $F\left(N_{n} S, X\right)$ is $N_{n} E$-local.

Proof. If Y is $N_{n} E_{*}$-acyclic, then $E_{*}\left(Y_{\wedge} N_{n} S\right) \cong N_{n} E_{*} Y=0$ by use of Corollary 5.4. Thus $Y_{\wedge} N_{n} S$ is E_{*}-acyclic. Hence $F\left(N_{n} S, X\right)^{*} Y \simeq X^{*}\left(Y_{\wedge} N_{n} S\right)$ $=0$ when X is E-local. So we obtain the desired result.

Theorem 5.6. Given a $C W$-spectrum X, the composite map $X \rightarrow L_{B P} X$ $\rightarrow \Sigma^{n} F\left(N_{n} S, L_{B P} X\right)$ is the $P(n)_{*}$-localization of X. Thus $L_{P(n)}=\Sigma^{n} F\left(N_{n} S, L_{B P}\right)$, where L_{E} denotes the E_{*}-localization functor for $E=B P$ or $P(n)$.

Proof. From Lemma 5.5 it follows that $F\left(N_{n} S, L_{B P} X\right)$ is $P(n)$-local because $\langle P(n)\rangle=\left\langle N_{n} B P\right\rangle$. Moreover $F\left(L_{n-1} S, L_{B P} X\right)$ is $P(n)_{*}$-acyclic by means of Lemma 5.2 iii). Hence the composite map $X \rightarrow L_{B P} X \rightarrow \Sigma^{n} F\left(N_{n} S, L_{B P} X\right)$ becomes a $P(n)_{*}$-equivalence. So we observe that $L_{P(n)} X=\Sigma^{n} F\left(N_{n} S, L_{B P} X\right)$.

We next study the $B P\langle n\rangle_{*^{-}}$and $\nabla N_{n+1} B P_{*^{-}}$-localizations. Recall that $\langle B P\langle n\rangle\rangle=\left\langle v_{n}^{-1} B P\right\rangle \vee\langle H Z \mid p\rangle$ and $\left\langle\nabla N_{n+1} B P\right\rangle=\left\langle v_{n}^{-1} B P\right\rangle^{\vee}\langle\nabla P(1)\rangle$.

Proposition 5.7. Let E be a $B P$-nilpotent spectrum with $\langle E\rangle \geqq\left\langle v_{n}^{-1} B P\right\rangle$. Then a $C W$-spectrum X is E-local if and only if X is $B P$-local and $F\left(N_{n+1} S, X\right)$ is $N_{n+1} E$-local.

Proof. The "only if" part: Note that $B P_{*} Y=0$ implies $E_{*} Y=0$ when E is $B P$-nilpotent. Thus X is $B P$-local if it is E-local. The latter part
follows from Lemma 5.5.
The "if" part: Suppose that $E_{*} Y=0$. By making use of Corollary 5.4 we see that $B P_{*}\left(Y_{\wedge} L_{n} S\right) \cong L_{n} B P_{*} Y=0$ since $\langle E\rangle \geqq\left\langle v_{n}^{-1} B P\right\rangle=\left\langle L_{n} B P\right\rangle$, and $N_{n+1} E_{*} Y \cong E_{*}\left(Y_{\wedge} N_{n+1} S\right)=0$. So the localities of X and $F\left(N_{n+1} S, X\right)$ give that $X^{*}\left(Y_{\wedge} L_{n} S\right)=0$ and $X^{*}\left(Y_{\wedge} N_{n+1} S\right) \cong F\left(N_{n+1} S, X\right)^{*} Y=0$, which imply $X^{*} Y=0$. Thus X is E-local.

Since $\left\langle N_{n+1} B P\langle n\rangle\right\rangle=\langle H Z \mid p\rangle$ and $\left\langle N_{n+1} \nabla N_{n+1} B P\right\rangle=\langle\nabla P(1)\rangle$ we have
Corollary 5.8. i) $A C W$-spectrum X is $B P\langle n\rangle$-local if and only if X is $B P$-local and $L_{P(n+1)} X$ is $H Z \mid p$-local.
ii) $A C W$-spectrum X is $\nabla N_{n+1} B P$-local if and only if X is $B P$-local and $L_{P(n+1)} X$ is $\nabla P(1)$-local.

When a $C W$-spectrum X is connective, it is $H Z_{(p) \text {-local. }}$ So Corollary 5.8 i) implies 3.1]).

Given a $C W$-spectrum F we denote by $C_{F} X$ the cofiber of the localization map $\eta_{F}: X \rightarrow L_{F} X$. When $F=v_{n}^{-1} B P, C_{F} X$ is written $\Sigma^{-n} N_{n+1} X$. Consider the composite map $L_{F} X \rightarrow C_{F} X \rightarrow L_{n} C_{F} X$, whose cofiber is denoted by $\Sigma^{1} L_{(F, n)} X$. Then we have a commutative diagram

involving four cofiber sequences.
Proposition 5.9. Let F be a $B P$-nilpotent spectrum and E be a $C W$ spectrum with $\langle E\rangle=\left\langle v_{n}^{-1} B P\right\rangle^{\vee}\langle F\rangle$. Then the map $X \rightarrow L_{(F, n)} X$ is the $E_{*^{-}}$ localization of X for any $C W$-spectrum X. Thus $L_{E}=L_{(F, n)}$.

Proof. Since $F_{*} N_{n+1} C_{F} X \cong N_{n+1}\left(F_{\wedge} C_{F} X\right)_{*}=0$ by Corollary 5.4, we see that $N_{n+1} C_{F} X$ is in fact E_{*}-acyclic. Moreover $L_{F} X$ and $L_{n} C_{F} X$ are both E local, so $L_{(F, n)} X$ is E-local, too. Hence we verify that $L_{E} X=L_{(F, n)} X$.

The above proposition states the $B P\langle n\rangle_{*^{-}}$and $\nabla N_{n+1} B P_{*^{-}}$-localizations in terms of the $v_{n}^{-1} B P_{*^{-}}, H Z \mid p_{*^{-}}$and $\nabla P(1)_{*^{-}}$-localizations.

Corollary 5.10. $L_{B P\langle n\rangle}=L_{(H Z / p, n)}$ and $L_{\nabla_{N_{n+1} B P}}=L_{(\nabla P(1), n)}$.
Theorem 5.6 and Corollary 5.10 give Theorem 0.5.

References

[1] J.F. Adams: Stable homotopy and generalized homology, Chicago Lecture in Math., Univ. of Chicago Press, 1974.
[2] A.K. Bousfield: Types of acyclicity, J. Pure Appl. Algebra 4 (1974), 293-298.
[3] A.K. Bousfield: The Boolean algebra of spectra, Comment. Math. Helv. 54 (1979), 368-377.
[4] A.K. Bousfield: The localization of spectra with respect to homology, Topology 18 (1979), 257-281.
[5] A.K. Bousfield: Cohomological localizations of spaces and spectra, to appear.
[6] D.C. Johnson and W.S. Wilson: BP operations and Morava's extraordinary K-theories, Math. Z. 144 (1975), 55-75.
[7] D.C. Johnson and Z. Yosimura: Torsion in Brown-Peterson homology and Hurewicz homomorphisms, Osaka J. Math. 17 (1980), 117-136.
[8] D.C. Johnson, P.S. Landweber and Z. Yosimura: Injective $B P_{*} B P$-comodules and localizations of Brown-Peterson homology, Illinois J. Math. 25 (1981), 599610.
[9] P.S. Landweber: Associated prime ideals and Hopf algebras, J. Pure Appl. Algebra 3 (1973), 43-58.
[10] P.S. Landweber: Homological properties of comodules over $M U_{*}(M U)$ and $B P_{*}(B P)$, Amer. J. Math. 98 (1976), 591-610.
[11] P.S. Landweber: New applications of commutative algebra to Brown-Peterson homology, Proc. Algebraic Topology Waterloo 1978, Lecture Notes in Math. 741, Springer-Verlag (1979), 449-460.
[12] S.A. Mitchell: Some new finite complexes obtained from the Steinberg module, to appear.
[13] D.C. Ravenel: Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351-414.
[14] D.C. Ravenel: The geometric realization of the chromatic spectral sequerce, Proc. J.C. Moore Conference, Princeton, 1983.
[15] N. Shimada and N. Yagita: Multiplication in the complex cobordism theory with singularities, Publ. Res. Inst. Math. Sci. 12 (1976), 259-293.
[16] Z. Yosimura: Universal coefficient sequences for cohomology theories of CW-spectra, I and II, Osaka J. Math. 12 (1975), 305-323 and 16 (1979), 201-217.
[17] Z. Yosimura: A note on the relation of Z_{2}-graded complex cobordism to complex K-theory, Osaka J. Math. 12 (1975), 583-595.
[18] Z. Yosimura: $B P$ operations and homological properties of $B P_{*} B P$-comodules, Osaka J. Math. 20 (1983), 123-136.
[19] Z. Yosimura: Localization of BP-module spectra with respect to BP-related homologies, Osaka J. Math. 21 (1984), 419-436.

