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Introduction

BP is the Brown-Peterson spectrum at a fixed prime p. This spectrum
is an associative and commutative ring spectrum whose homotopy is BP*=Z(P)

[vι> •*•> vn> "•]• For each ^^0 there are associative ΰP-module spectra P(ri),
.BP<rc>, k(ri), LnBP, MnBP and NnBP. If E is an associative £P-module spec-
trum, then we can form a weak associative βP-module spectrum v^E. When
E=P(n), BP<n> or k(n), v~lE is written B(ri), E(n) or K(n) respectively.

For a CW-spectrum E we denote by <(£> the Bousfield class of E [3], Thus
it is the equivalence class under the equivalence relation: E~F when E*X
=0 if and only if F#X=Q. In [13] and [14] Ravenel has studied the Bousfield
classes of the above fiP-related spectra.

Theorem 0.1 ([13, Theorem 2.1] and [14, Lemma 3.1]).

ii)
iii)
iv) <k(n)y=<K(n)>v<HZ/pyy and

For a CίF-spectrum E we denote by <£>* the cohomological Bousfield
class of E. Thus <£>*=<F>* when E*X=Q if and only if F*X=Q. Given
a ^-local CίF-spectrum E there exists a p-loczl CPF-spectrum V# related by a
universal coefficient sequence

0 -» Eκt(E^Xy Z ( } -+ VE*X -* Rom(E*X, Z -* 0

(see [5] or [16]). By using this sequence we can show that
moreover <(£>*— <V#> if £ is of finite type. The SP-module spectrum P(w),
BP<n>, k(n) or ^(n) is of finite type, but v~lBPy B(n)y E(n), LnBP, MnBP
or NnBP is not of finite type. Nevertheless we obtain

Theorem 0.2. i)
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ii) <y?

iii)

iv)

v)

vi)

vii) <Λ(«)>*=<V%)>=<#Z//>> forn^l.

However it is not valid that <£>*=<( V^> in general. As examples we
have

Theorem 0.3. i) <n^^(n)>*=<n^J5:(«)>*=V^.<«(ii)>, fctf
<V(Πu^(n))>=<V(Πu*mK(n))>= V ̂ m

ii) <Π .̂

iii) <Π.^fi)>=<Pί»ι)> and

Let {En}n±m and {FJ^^ be families of CPF-spectra. If <£n>=-<.Fw> for
all w^m, then it is obvious that < yn^mEny=<^ Vn^mFny. So it might be expected
that <ΠM^m£'w>=<Π^wFw>. But this equality doesn't hold in general. If a

p-loca\ CW-spectrum E is of finite type, then we have that <ΠΛ£>=<£> for
any indexed set Λ. But this is also false in general unless E is of finite type or
Λ is finite. As examples we get

Theorem 0.4. i) <Π.̂ (n)>=<P(m)> but
ii) <ΠAK(n)y=<K(n)>, <ΠΔP(«)>=<P(fi)> but <

indexed set Λ M infinite.

In [14] Ravenel proved that the cofiber sequence NnS -* MnS -+ Nn+1S
realizes the short exact sequence Q-»NnBP*-+MnBP*-*Nn+1BP*-+Q of BP*-
modules defined inductively by NQBP*=BP* and MnBP^=vή1NnBP^ί. His
proof is established on the existence of certain finite CW-complexes Xn

recently constructed by Mitchell [12]. By virtue of RavenePs result we can
investigate the localizations of homologies P(ri)*(— ), BP<(ny*(—) and

Theorem 0.5. i) LPMX=2nF(NnS, LBPX),
ii) LBP<n>X=L(HZ/pjn)X and LVNnίiBPX=L(vpω)n)X where L(F^X denotes the
fiber of the composite map LFX-> CFX-*LnCFXfor F=HZ/ρ or VP(1).

In § 1 we study the Bousfield classes <(£*/> of well-known £P-related spec-
tra and give a proof of Theorem 0.1 in the different way from RevanePs [13, 14],
We next discuss the Bousfield classes <V£"> of the Anderson dual spectra in
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§2 and the cohomological Bousfield classes <CE>* in §3. As a result we obtain
Theorem 0.2. In §4 we treat of wedge sums V n ̂ mEn and products Hn^mEn

of .BP-related spectra and show Theorems 0.3 and 0.4. In § 5 we recall Rave-
neΓs result (Corollary 5.4) of the geometric realization and then discuss the
P(//)5ίc-, BP(ny*- and τ?Nn+1BP* -localizations in order to prove Theorem 0.5.

1. Bousfield classes of .RP-related spectra

1.1. Let E be a £P-module spectrum (with unit) having structure map
μ, and v be an element of BP% with dimension d. We can form a CW-spectrum

v~lE defined to be the mapping telescope limΣ~ l V /jE of the map μ(v/\\}: ΣdE

—>E. If E is associative, then v~lE is a jBP-module spectrum which is weak
associative. Even if E is weak associative, the map μ(v/\\) induces multiplica-
tion by v in homotopy groups and hence (v~lE)*X^v~lE*X. In this case
we write simply v in place of μ(ϋΛl).

For a CW-sρectrum E we denote by <£"> the Bousfield class of E [3]. They
are partially ordered by writing <Z?>^><.P1> when E#X=Q implies F*X= 0.
If Έ-*F-*G is a cofiber sequence of .BP-module spectra (and -BP-module maps),

then <F>^<J£>V<(?> and more generally

(1.1) <ϋ-1ίi>^<ϋ-1£>v<ϋ-1G>

for any element v of BP* (cf., [13, Proposition 1.23]). This is easily shown
by making use of Five lemma (or Verdier's lemma [1]).

Lemma 1.1. Let v and w be elements of .BP*, E be an associative BP-
module spectrum and F be the cofiber of the map w: ΣdE-*E where d= dime*;.
Then <y-lEy=(w-lv-lEyv<y-lFy and in particular <K>=<?o-lE>v<F> (cf.,
[13, Lemma 1.34]).

Proof. From (1.1) it follows immediately that <£>~1£'>^<zΓ1F>, and so
<j}-lEy^w-lv-lEy^<v'lFy. If (v'1F)^X=09 then the map w induces an
isomorphism (v~1E)*X-*(v~1E)*X, and hence there is an isomorphism (v~lE)*X
-*(w-lv-lE)*X. This gives that ^v^Ey^w^v^E^v^Fy, and the result
follows.

For Oίg&^m-f Irgoo, there are associative PP-module spectra BP[k,

m+1) whose homotopy are BP[k, m+l)*=BP*l(p, vl9 — , vk.l9 vm+Jί, vm+2, •••).
In convention we write BP[n9 oo)=P(ri), BP[0, n+\)=BP<ny and BP[ny n+1)
=k(n) (see [6]). In particular, P(0)=BP<ooy=BP, BP<θy=k(Q)=HZ(p) and
P(°°)=BPζ—iy=k(—l)=HZ/p. Multiplication by vm gives cofiber sequences

> BPΪk, m)
(1-2) v

m , n+l) -2 BP[my n+1) -> BP[m+l, n+1)



878 Z. YOSIMURA

of associative .BP-module spectra.
When E is P(ri), BP<n> or k(ri), v?E is denoted by B(ri)y E(n) or K(n)

respectively. Lemma 1.1 implies

(1.3) i)

ii) <BP<n» = V^ίn<β(k}^<HZlpy, and

iii)

1.2. Let us denote by LnE the localization of E with respect to the homol-
ogy theory (vήlBP)%(— ), and by 2"nΛΓn+1£' the cofiber of the localization map
ηn:E^LnE. Recall that

(1.4) LnEΛX = Ln(EΛX) and Nn+1EΛX = Nn+1(EAX)

when E is an (associative) JSP-module spectrum [18, Corollary 2.4]. The
former gives

(1.5) LnE*X =0 if and only if vήlBP*(E/^X) = 0 .

Lemma 1.2. Let E and F be BP-module spectra.

i) (LnEy= V tek^n\v~klEy when E is weak associative, and
ii) <

Proof, i) Suppose that LnE*X=Q, thus vήlBP* (EΛX) = 0. Then
vήlιBP*(EΛX)=Q by means of [7, Theorem 0.1], and moreover (v^
vή1E^X=0 since μ*: BP*(E^X)-+E*X is epic. This shows that <

<LΛ_1£'>V<^^1£>, and hence <LM£">^ V0^^X^Γ1^> For showing the opposite
inequality we suppose that v'£1E*X=Q for all k,Q^k^n. Then it follows from
[18, (2.3)] that vή1BP^(E/\X)^vή1BP^(v-1E/^X)=0. So the equality holds.

ii) is immediate by use of (1.5).

Given an invariant regular ideal J=(q0, ft, •••, qm-ι) in BP* of length m
there is an associative 5P-module spectrum BPJ whose homotopy is BPJ*
=BP*/(q0y ft, -.., qm^). When / is Im=(p, vl9 -, υM^)9 BPJ is just P(πί). [7,
Proposition 2.5] says that (v^BPjy^v^BPjy. So Lemma 1.2 i) implies

Corollary 1.3. (LnBPjy=(v^lBPjy for any invariant regular ideal J
in BP*. In particular, <LnBPy=<j)-lBPy and

Proposition 1.4. Let J be an invariant regular ideal in BP* of length m
and m^n. Then <BPjy=(NmBPy and <LnBPJ>=Vm^n<B(k)y. In parti-
cular, <P(n)y=<NnBP> and <LnBP>=

Proof. For J=(q0, ft, •••, qm^) we set Jk=(q0, ft, — , ft-0, k^m. Con-

sider the cofiber sequence Ί,dNmBPJk_
 ί^lNmBPJk_l-*NmBPJk where J=di
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qk,1. NmBPJk^ is τ;,-torsion for any i, Q^i^m— 1, and qk^ is contained in
the ideal Im=(p, vly •-•, vm^) which is just the radical of the ideal / [11, Theo-
rem 1]. Therefore NmBPJk^ is g^-torsion. Hence Lemma 1.1 implies that
<NmBPJk^y=<NmBPJky for each Λ, l^k^m, and so <NmBP>=<NmBPJ>

=<BPJ>.
Next, consider the cofiber sequence ^2^m^LJP(m)^

Applying Lemma 1.2 i) to E=LnP(m) we obtain that <^
(m)y=<LmP(m)y=<B(m)y. So Lemma 1.1 gives that
v<LΛP(w+l)>, and hence <LnP(w)>= V „<;*«;„<£(&)>• This result means that
<LJBPf>= V.**.<B(*)> since

Setting MnE=LnNnE we have cofiber sequences

NnE-+MnE->Nn+1E
( ' ' Σ

(see [13]). Combining Proposition 1.4 with Lemma 1.2 ii) and Corollary 1.3
we get

Corollary 1.5. <MΛSP>=<5(«)>.

By putting Corollary 1.3 and Proposition 1.4 together we obtain the equality
<yήlBPy=V te^n<B(i)y. This shows especially that Vn1BP^X=0 implies
B(ri)*X=Q. In [13, Theorem 2.11] Ravenel proved that the converse is true
under the finiteness restriction on X. We here give a simple proof of this
result.

Proposition 1.6 (Ravenel). Assume that X is a finite CW-spectrum. If
B(ri)*X=0, then v^BP^X^O.

Proof. It is sufficient to show that B(n— l)*X=Q if Sfa^J^O. By Land-
weber's invariant prime filtration theorem [9] (or [18]) there is a finite filtration
P(n-l)*X=MsnMs-lll ••• DM^Mo^ίO} consisting of P(n—\)*P(n—\)-
comodules so that for l<^k^s each subquotient Mk\Mk^ is stably isomorphic
to P(mk)* f°r some mk^n— 1. By induction on k^s we will show that vήlMk

s^VnlP(n—\)*X under the hypothesis that 5(̂ )̂ .̂ —0. The k—s is trivial,
so we assume that VnlMk+λ^VnlP(n— V)*X. Our hypothesis implies that
VnlP(n— \)*X is uniquely z;n_rdivisible, and hence vή\Mk+l/Mk) is ^.^-divi-
sible. Then we find that mk+l^n-\-l9 and so VnlMk^vήlMk+l. Consequently
we see that v~n

lP(n— l)*X=Q, which implies that J?(#— l^JY^O by use of [7,
Proposition 2.5], Thus B(ri)*X=Q implies B(n— 1)̂ .̂ =0 as desired.

1.3. Let / be an invariant regular ideal in BP*. A SP/-module
spectrum E is said to be (weak) quasi-associative if it admits a pairing μ : BPJ^E-+E
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with unit making the diagram below (weak) homotopy commutative

|ΓΛ1
φΛΠ μ I BP^BPJ^E

|φΛl
BPJf^E -- > E < - BPJAE

μ μ

where φ denotes the SP-module structure map of BPJ and j=jm-ι j0' BP

^BPJr+BPJr* - -+BPJ.=BPJ (c£., [7, Remark 5.3]).
A BPJ*-module M is said to be βfl/-flat if the functor M®BPJ*(— ) is

SPt

exact (see [10] or [18]). Recall that a P(ί/z)*-module M is /0(**)-flat if and
only if

(1.7) multiplication by vk is monic on M®P(k)* for every k^m .
BP*

The following result is a useful tool in determining Bousfield classes of
.BP-related spectra.

Lemma 1.7. Let J be an invariant regular ideal in BP* of length m, E
be a (weak) quasi-associative BPJ -module spectrum and n^.m.
i) // ϋ-lE* is £P#-flat such that vήlE*®P(ri)**Q, then <y-lEy=<vήlP(nϊ)y.

ii) // E* is £P/-flat such that E* <g) P(oo)# φ 0, then <£>=

Proof, i) The 5P/-module structure map of E gives an isomorphism
vήlE*® BPJ*X-*(vήlE)*X. By making use of [18, Proposition 2.6] we

BP

observe *that (vήlE)*X=Q if and only if vϊlBPJ*X=Q, thus <vήlE> =
<vήlBPJ>. On the other hand, <v~lBPjy=<j)-lP(m)y by putting Corollary
1.3 and Proposition 1.4 together. So the result follows.

ii) Obviously <SP/>^<Jf?> since E is a J3P/-module spectrum. Sup-
pose that BPJ*XΦθ and choose a non-zero primitive element x in BPJ*X.
The annihilator ideal Aιm(x)={\,^BP* y λ Λ?=0} is at least contained in the

ideal I00=(py vly •••, vn, •••) because the radical x/Ann^^iXeBPii.; λ* Λ:=0
for some Λ} is the ideal /„=(/>, ^i, •••, ^Λ-ι) for a certain w, m^n^oo (see [11]
or [18]). So our hypothesis implies that E# ® SP%/Ann(Λj) Φ0. On the other

hand, there is a monomorphism E*®BP%/Aim.(x)-^>E*®BPJ*X^E*X. Hence

it is obvious that E*X3=Q. Consequently <#P/> <:<£>. The result is now
immediate from Proposition 1.4.

According to [15] BP\ky m+1) is a quasi-associative P(&)-module
spectrum, and so VnlBP[ky m-\~V) becomes a weak quasi-associative one. Note
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that vήlBP[k> w+1)* is /^)-flat. So Lemma 1.7 i) implies

Corollary 1.8. <VnlBP[k, m+l}y=<^ήlP(k)y for Q^k^n^m^oo, and
in particular <y-lBPy=<β(n)y and

Theorem 0.1 is obtained as a summary of (1.3), Proposition 1.4 and
Corollaries 1.3, 1.5 and 1.8.

2. Bousfield classes of Anderson dual spectra

2.1.. Given a ^-local CW-spectrum E we can construct a universal
coefficient sequence

(2.1) 0 -> ExtCE*.̂ , Z(,,) -> V£*X -> Hom(£**, Z(,>) -* 0

(see [5] or [16]). The p-local CPF-spectrum ^E has the same homotopy type
as the function spectrum F(E, V*SrZ(/>)). Therefore this Anderson duality
functor V is categorical and exact. Note that HZ(p^ HZ/p and K(n) are self-
dual, i.e., vHZ(p}=HZ(p^ vHZ/p=?,-ΉZlp and vK(n)=^~lK(n) for every
w^O. Moreover we notice that

(2.2) E = WE if E is of finite type.

Let E be a SP-module spectrum which is connective. The JSP-module
spectrum ^E is then coconnective. By dimension reason V^ * is ^-torsion
for all v in BP% with dim v>0. This means

(2.3) ζv~l^Ey = 0 if E is connective and

Apply the duality functor V to the cofiber sequences (1.2) and use Lemma
1.1 and (2.3). Then we have

Proposition 2.1. i) <V#P>=<VP(l)>v<Sζ?> and <vP(n)y=<VP(l)> far

ii) <v5P<Λ»=<flZ(ί)>=<flZ/j>>v<Sρ>/or each n^O, and
iii) <V#P[&, ί»+l)>=<flZ/ρ> for l^k<*m<°°, and in particular

or each n^l.

Let E be a coconnective CPF-spectrum. It is represented as the direct
limit of the Postnikov systems E(—n, oo). This fact gives

(2.4) <£>^<#Z(,)>, and moreover <£>:g<#Z/^> */ E*® Q = 0 .

Remark that P(l)*HZ/p= 0, because .HZ/p is dissonant and P(l) is harmo-
nic [13]. This is equivalent to say that

(2.5)
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(use (3.2)). By use of (2.5) we notice

(2.6) i) <flZ/ί>^<VP(l)>, and

ii)

2.2. The cofiber sequence 'Σ2(p'-1>P(kp(k)-*P(k+ΐ) induces short
exact sequences

0 -> vMnP(k)* -

0

for each k, Q^k^n. Hence we observe

(2.7) vMnBP* and v~lvNn+lBP* are both βp-flat.

Proposition 2.2. i) <χMnBPy=<χLnBPy=<yήlBPyy and
ii) <vNn+lBPy=<v?BPyv<vP(l)>.

Proof, i) Use Lemma 1.7 i) and (2.7) to show that
We here consider the cofiber sequence

Then <^nlVLnBPy=<j}-l^Nn+lBPy because by (2.3)
=0 for all w^l and VN^BP^VBP)^^ So we get that

ζyήlVLnBPy=ζyήlBPy. The opposite inequality is shown by induction on ny

the n=0 case being trivial. Assume that <^7Ln^BPy^^vήlιBPy and consider
the cofiber sequence VLM_1.BP-»VLΛβP->ΣwVMMβP. Then it is immediate
that <VLrtSP>^<VLrt-1BP>v<VMn5P>-<^^1

JBP>, and so <VLΛβP>-<^n IBP).
ii) Obviously <^Nn^BPy^v-lVNn+lBPy=<^vήlBPy. On the other

hand, an iterated use of (1.1) gives that <VΛΓΛ+1βP>^<VΛ^Λ+1P(w+l)> =
<VP(n+l)>. Hence we obtain that <VΛr

n+15P>^<^-1

JBP>v<VP(l)> by means
of Proposition 2.1 i). Conversely it is immediately seen that ζVNn+lBPy^,
<^LnBPy^VBPy=<vή 15P>V<VP(1)>. So the equality holds.

We don't know whether the sequence (1.2) after localized at vn remains
still a cofiber sequence. But we have

Lemma 2.3. The sequence Vv~lBP[k+\, m+V)-*Vv-lBP[k, m+l)*^
Σ~2(pk~l}Vv~lBP[k, m+ί) is a cofiber sequence for each k, O^k^n^m^oo.

Proof. The k= 0 case is trivial because BP[1, m+l)=BP<m>Zlp and
so vήlBP[\, m+l) = (vήlBP<jny)Zlp. We may assume that k ̂  1. Then
VnlBP[k, m-\-\)*X is always a torsion group, and hence VvnlBP\k, m+l)*X

, m-\-\}*X, Z(p^). As is easily checked, the triangle

, m+l)*X
\
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is exact. Moreover the right diagonal map δ is trivial when X is the sphere
spectrum S. By using these facts the k^l cases follow immediately from [17,
Lemma A].

Proposition 2.4. <^v~lBP[k, m+ !)>=
In particular, <^V

Proof. Lemma 1.1 combined with Lemma 2.3 shows that φvή
Vk1WήlBP[kί m+l)>v<yv?BP[k+l, w+l)>. Notice that

BP[k, m-\-ί) is a quasi-associative P(Λ)-module spectrum and v~klVvn
m+l)* is /?(,έ)-flat. Use Lemma 1.7 i) to see that <VklVv~lBP[ky

The result is now shown by induction onk^n.

Obviously <5P> = <Ln5P>%ftTn+1£P>. We use Corollary 1.3 and
Proposition 1.4 to replace this equality by

(2.8) <BP> = <v?BP>v<P(n+iy>.

From [19, (2.3)] it follows that v?BP#P(n+l)=0 (see [13, Lemma 2.3]).
But Vn lBP*P(ri)s^ BP*B(ri) Φθ. So we remark

(2.9) <fnlBP^<^ήlιBF> and

Lemma 2.5. HZlp*VNn+1P(ri)=Q and K(m)*VNu+lP(n)=Q for all m<n,
but K(n)J7NMP(n)*0.

Proof. Consider the cofiber sequence Σn+1VP(w+ l)
VATn+1P(/z). There is an isomorphism HZlp^VNn^P(n)
because HZlp*VP(n+l)=Q by (2.5). Note that VNn+lP(n)* is ΐ ^-torsion for
each k<n. Then [19, (2.3)] gives that HZlp*VnlVNn+lP(ri)^vήΉZlρ*v-1

VNn+1P(n)=0 and also vήlιBP^VNn+lP(n)^VnlιBP^Vnl1VNn+lP(n)=0. Hence
HZlp*VNH+ίP(n)=Q and K(m)*VNn+1P(n)=Q for all m<n. However v»lBP*
VΛΓn+1P(w)ΦO because VnlVNn^P(n)^^vήlΈ^NMP(n)^ Z^JΦO. There-
fore we observe that ̂

By use of (1.3), (2.6), Proposition 2.2 and Lemma 2.6 we here verify

(2.10) <SP<tt»$<J3P<n- 1» and

3. Cohomological Bousfield classes

3.1. Let us denote by <(£>* the cohomological Bousfield class of E, thus
<P>* when £*^=0 implies F*X=0. Recall that the Anderson dual

spectrum VE is related by the universal coefficient sequence (2.1). Then [2,
Proposition 2.3] implies that for a jp-local E, VE*X=Q if and only if E*X= 0.
This means
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(3.1)

Moreover we remark

(3.2) <£>* = <V£> ί f E ί s of finite type,

because of (2.2). As the above E we can take BP, P(ri), BP<rί>, k(n\ K(n)
and so on.

Let E be a connective CW-spectrum. It is represented as the inverse
limit of the Postnikov systems E(—oo. n). This fact yields

(3.3) <£>* ̂  <HZ(P)>, and moreover <£>* ̂  <HZ\£> if Hom(0, E*) = Q =
Ext(0, £*) .

Let E be a jBP-module spectrum and v be an element of BP% with dimen-
sion d. We can form a CPF-spectrum lim^B defined to be the mapping

cotelescope of the map μ(v/\\): ΣdE-*E. If E is associative, then lin^E is a

.BP-module spectrum. By dimension reason we see

(3.4) <limpJ5>*=0 if E is connective and dim ^>0 .

Let M be a PP^-module and ϋ be an element of BP*. Denote by K
and C the kernel and the cokernel of multiplication by v on M respectively.
As is easily seen, liπvfiΓ=0=limϊX' and lim0C=0=limiC. An easy diagram

chasing shows

(3.5) linipM and HmjM are both uniquely v-divίsible.

This gives

Lemma 3.1. Let E be an associative BP-modult spectrum and v be an

element of BP*. Then the BP*-module (limvE)% is uniquely v-divisible.

Similarly to (1.1) we have

(3.6) <y~lFy*^v-lEy*v<y-lGy*

for any element v of BP*y if E~-*F-+G is a cofiber sequence of JSP-module
spectra. By a parallel argument to Lemma 1.1 we can show

Lemma 3.2. Let v and w be elements of BP*, E be an associative BP-
module spectrum and F be the cofiber of the map w: *ΣdE—*Έ where d=ά\τn. w.
Then <^-1£>*=<limM;ί;-

1£1>*v<ϊ;-1P>*. In particular,

A BPJ* -module M is said to be £P$-injective if the functor IϊomBPj(BPJ*
(— ), M) is exact (see [8] or [18]). Recall that a P )̂* -module M is P(**)-
injective if
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(3.7) multiplication by vk is epic on Ή.oiΏ.BP^(P(k)^ M) for every k"^.m, and in
addition w. diτnp(^)M is finite.

Note that w. άimp^v^M^n— m. As a dual of Lemma 1.7 we have
a useful tool in determining some cohomological Bousfield classes.

Lemma 3.3. Let J be an invariant regular ideal in BP* of length my E
be a (weak) quasi-associative BPJ -module spectrum and n^m.
i) // VnlE* is £PI-injective such that HomΛPφ(P(n)#, ΐ -^φO, then (vήlEy*

ii) // E* is BPj-injective such that Hom (̂P( oo ) # , E*) Φ 0, then <£>* = <P(m)>.

Proof, i) The .Z?P/-module structure map of E gives an isomorphism
(VnlE)*X^HomBPJίBPJ*Xy v~lE*). So we use [18, Proposition 3.4] to show
that (vnlEy* = <yήlBPy. Now the result follows from the fact that

ii) is also proved by a parallel argument to the proof of Lemma 1.7 ii),
so we omit it.

REMARK. In proving Lemma 3.3 i) the (weak) quasi-associativity of E
is only needed to show that there is an isomorphism (vή1E)*X-+HomBPJ(BPJχX>

vήlE*). We may assume instead the existence of such a natural isomorphism,
if it is not easy to check whether E becomes a (weak) quasi-associative BPJ-

module spectrum.

3.2. Consider the short exact sequences

MnP(k)* -0

0 ^Nn+1P(k+l)^Nn+1P(k)^Nn+1P(k)^0

for each k, Q^k^n. Since UmίwΛΓn+1P(&-|- 1 )#=(), we see easily

(3.8) MnBP* and limVnNn+lBP* are both £P-injective.

As an analogous result to Proposition 2.2 we have

Proposition 3.4. i) <MnfiP>*=<L,BP>*-<^-1J5P>, and
ii)

Proof, i) First apply Lemma 3.3 i) to E=MnBP to obtain that <MM£P>*
= <y'lBPy. Note that (^ΛNn+lBP)^^\^ΛNn+lBP^. The 5P-module

structure map of Nn+lBP gives a natural homomorphism (Imi^Λ^+jβP)*^

^+iβPϊjc), which becomes an isomorphism. So <lim,,Λ

by using Remark following Lemma 3.3. We then



886 Z. YOSIMURA

observe that <LnβP>*^<l̂ MLΛβP>* = <lkn,nΛΓn+1JBP>*^<^-1

JBP> by use of

(3.4). The opposite inequality is easily shown by induction on n.

ii) Obviously <JVll+1BP>*^<JV.+1P(n + l)>* = <P(ii +!)>*. Then it
follows from (3.2) and Proposition 2.1 i) that <ΛΓn+1βP>*^<li

. The converse is easily seen because

As an analogous result to Proposition 2.4 we have

Proposition 3.5. <^1βP[Λ,ιw+l)>*= V^M<X(*)> for O^
In particular, <yήlBPy*=<β(n)y*=<y-lBPy and

Proof. Assume that k<n. Note that (lim,^1 BP[k,

vήlBP[k, m+l)* and it is /^(-έ)-flat and /^(^-injective because of (3.5). Since
the P(&)-module spectrum vήlBP\k, m+1) is weak quasi-associative, its struc-

ture map gives a natural homomorphism (\mιl

v kvήl BP[ky m+l)*)®P(k)*X
"*"" -frP*

-» (Hm^ ΓlBPfΛ, m+l))*X which is an isomorphism. Therefore we can define

a natural homomorphism (V\mυkVnlBP[ky m-{-l))*X-*IlomBpt(P(k)*X, lim^ϊ;^1

BP[k, W+!)HC) in the canonical way. This is an isomorphism, too. Hence
<$\mυkvήlBP[k, m+l)y*=(B(k)y by means of Remark following Lemma 3.3.

Now induction on k^n shows the desired equality, the k=n case being trivial
by use of Lemma 3.3 i).

Theorem 0.2 follows from Propositions 2.1, 2.2, 2.4, 3.4 and 3.5, and (3.2).

4. Bousfield classes of sums and products

4.1. Fix 7/z^O and take a family {En}n^m of CPF-spectra. Trivially we
have

(4.1) < V.*A> = VΛ.<&> and <ΠΛA>* = V. *.

Denote by C, D and F the cofibers of the maps Vn^mEn-*Πn^mEn, V n^m
VEn-*Un>mVEn = V(Vn>mEn} and V,&mVEn-»V(τiΛ±mEn) respectively. By
Verdier's lemma we have a cofiber sequence VC-+F-+D. As is easily seen,

(4.2) i)

ϋ)
iii)
iv)
v)

Consider the families {P(w)}BS)B) {k(n)}nίm and {ίC(M)}Bέ(Λ of BP-module
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spectra. Then C=Un>mP(n)l\/ nίmP(n), ΠHίmk(n)/y^mk(n) or Un^mK
K(ri) is the Eilenberg-MacLane spectrum HA of type A where A=ΐl χaZ/pl

θχβ 2ί/ί>, and hence VC=ΊI~
1HVA where VA=Ext(A, Z(ί)). Moreover D=

and so F=ΊrΉ(A®VA).

Proposition 4.1. i) <lW(π)>=<P(»)>,

ϋ)

iϋ)

Proof, i) is easy.
ii) and iii): From [2, Theorem 4.5] it follows that <JHAy=

<JSA>*=<H(A®VA)y*=<HZlp> because A is a Z//>-module. So the results
are shown easily by (2.6) and (4.2).

Next, consider the family {BPζri)}n^>m of .RP-module spectra. C=ΐln^m

B<nyiVn^mB<(ji)> is connective, and hence VC is coconnective. Also, D and F
are coconnective.

Proposition 4.2. i)

VSP<w»*-<SP>, and
π)

Proof, i) Since BP = lπnn^ BP<n> and VBP= limn^wV^P<w>, it is

immediate that <Πn^wβP</z»-=<V^MV5P<w»*-:<SP>. On the other hand,
we remark that Πn^wlβP</z>Hί/0Λ^IMJBP<w>H: is A^-flat. Use Lemma 1.7 ii)
to show the remaining equality.

ii) Since C is connective and both D and F are coconnective, <C>*V

<D>v<P>^<#Z(/>)> by use of (2.4) and (3.3). So the desired equalities follow
from Proposition 2.1 ii) and (4.2).

4.2. Let E be a />-local CPF-spectrum of finite type and {AΛ}Λ<=Δ be a
family of Z(/>) -modules. Then [16, Lemma 4] gives that
EAΛ. By use of [2, Proposition 2.3] we observe

(4.3)
not so.

In particular,

(4.4) <ΠA£> = <βyfor any indexed set Λ.

Lemma 4.3. Let E be a p-local CW-spectrum of finite type and A be a
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Z(pΓmodule. Then

if H°m(

if not so.

In particular, <^V(TlAE)y=<^7Eyfor any indexed set A.

Proof. Take a free resolution 0 -> Fλ -» JP0 -> -4 -> 0 of Z(/>) -modules and
put P|. = Hom(ί1

l , Zφ) for /=0, 1. From [16, Lemma 4] it follows that
V(EFi)=(VE)Pi for ί=0, 1. Let Γ denote the cofiber of the map SPQ-^SP1

of Moore spectra. Applying Five lemma we obtain immediately that V(EA)
=Σ~1VEAT. As is easily seen, .β®P0̂ J3<S)P1 if and only if B®AH=0 and
B®AE=Q=Tor(B, AE) for a Z(/))-module β where AH=Hom(A, Z(/>)) and

, Z(»). This shows that V(S4)*Jf=0 if and only if (V^)-4^*-y=0
thus <V(£'̂ )>=<(V£) ĵy>

v<(V£:)^£>. Now the result follows
from [2, Proposition 2.3].

To E=P(n), VP(«), BP<ri>, VJSP</z>, Λ(w), VΛ(w) and jfiC(w) we may apply
(4.4) and Lemma 4.3.

By Corollary 1.8 and Proposition 2.4 <B(n)> =
Corresponding to this result we have

Proposition 4.4. i) <Π^βS(
Vn^K(n)^<HZlpy, and

ii) <ΠΔβ(n)>-<

Proof, i) <Π^(n)>^<Π,fc.X(ίi)>s^
spectrum. According to [7, Theorem 4.10] the Boardmann map B(n) ->
K(n)/\B(n) induces a Hurewicz monomorphism 5(w)*J£-*jKΓ(w)*(β(w)ΛX). This
implies that (Π.n>mB(n))# Y-> (Hn>mK(n)/\B(n))% Y is a monomorphism for any
finite y, and for a general y when passing to the direct limit. Hence we get
a monomorphism (ΠΛ^wS(w))HίZ->(Π^wl^(w))ίfί((Π^IMβ(/z))ΛJί) and so <Πn^ΛI

S(n)>^<Π.*.*(Λ)>. Thus the equality <ΠΛ^mB(n)y=<ΠΛ^mK(n)y holds.
Since V(ΐln^mB(n)) and ΠM^IMVP(w) are both Hn^mB(n) -module spectra,

we see that <V(Π^WίS(τz))>^<Π l̂wβ(n)> and <Π^.Vfi(n)>^<Π^«B(Λ)>. Note
that ^(Λ)*, 5(/z)* and VPC^)^ are all /^(«)-flat. Obviously fi(»)#JC->jfi:(w)*-X:
is epic and jRΓ(w)#A"-> VS(w)#JSC is monic. Using the preceding argument we

can show that V(Πn>mK(n))*X-*V(Πn^mB(n))*X and (ΠΛ*mK(n))*X-+(ΏΛzm

VB(ri))*X are both monic for a general X. This implies that <V(ΠΛ^wβ(w)))>
^<V(ΠΛ^MK(n))y=<UM^MK(n)> and <Π^wVβ(/z)>^<Π^w^(/z)>. The desired
result is now immediate from Proposition 4.1 iii).

ii) Use Lemma 1.7 i).

4.3. By Corollary 1.8 <yήlBPy = <JE(ri)y. Corresponding to this result



-BP-RELATED HOMOLOGIES AND COHOMOLOGIES 889

we have

Proposition 4.5. i) <ΠHzmv-lBP>=^M±JE(n)>=<βP>, and

ii) <UAv^BPy=<ΠAE(n)y=V0^n<K(i».

Proof, i) Iίn>mv-lBP* and Tln^mE(n)* are both A^-flat. We have an

isomorphism (Πn^mE(ri)*)®P(k)*-+Πn:>kv»1BP[k, w+1)* since P(&)# is finitely
ZP*

presented as a BP* -module for each k, m^k<oo. So it is clear that (Hn^m

E(ri)*)®P(oo)^Q and (ΠΛ^wί;-15PHί)®P(oo)ίίίφO. Apply Lemma 1.7 ii) to
•δ f jjc BP '%.

obtain the desired equalities.

ii) Apply Lemma 1.7 i).

Proposition 4.6. i) <Un>mLnBPy==<ϊln>mNnBPy=<BP\ and
ii) <UAMnBPy=<UALnBPy=y0^^K(i)y and <ΠANnBPy=<BPy if the
indexed set Λ is infinite.

Proof, i) f 19, Theorem 4.8] says that BP is ^-harmonic, thus JBP— li

LnBP. Hence it is obvious that <ΠM^LΛ£P>=<.βP>. Next, consider the

cofiber sequence Π.fcJV^(A+l)^ΠΛJ^^

k9 O^k^m—1. Since UΛ^mNMP(k)^ is not ^-torsion, <VklUn>mNnP(k}y =

(B(k)y by means of Lemma 1.7 i). An iterated use of Lemma 1.1 shows that
<Πn>mNnBP>= Vo^^»ί-ι<^(^)>v<ΠM^ΛίΛ^P(m)>. So we use (2.8) to obtain that~

ii) is obtained by a similar argument to the latter part of i).

Proposition 4.7. i) <Ti^mVMnBPy=<V(U^mMnBP)y=<n

πnzmLttBP)y=<πnllmvNnBp>=<v(nnίsaNnBp)y=<Bpy,
ii) <ΠΔVM,,5P> = <V(ΠΔMΛβP)> = <ΠΛVLBJBP> = <V(ΠΛL,,JBP)> =<v?

Proof, i) !!„;>„, VMJSP* and V(Πa>mMnBP)* are both /SP-fiat. Since
* for each k^m, it is easily seen that (Πnfem

BP.

VP(«)*)®P(°°)*ΦO and hence (Π.ίβVAfJBP#) ® P(oo)!HφO. Apply Lemma

1.7 ii) to show that <Πn

Using the cofiber sequence

it is immediate that <Π^mVLΛ_1PP>^<Π^mΣwVΛfrt5P>=<JBP>, and hence

ζΠn^mVLκ-lBPy=(BPy. The remaining equalities are similarly shown.

ii) is obtained by the same argument as in the proof of Proposition 2.2.

Theorems 0.3 and 0.4 follow from (4.1), Propositions 4.1, 4.4, 4.6 and 4.7.
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5. P(Λ)*- and ^P<(n>^-localizations

5.1. In [12] Mitchell constructed a finite p-local CW-spectrum Xn such
that

(5.1) VnlιBP^Kn=Q and v^BP^X^Q.

We call such a finite CW-spectrum XH a Mitchell complex of type n. Ravenel
[14, Lemma 4] proved the following useful result.

Proposition 5.1. Let Xn be a Mitchell complex of type n. Then

By making use of Proposition 5.1 we have

Lemma 5.2. Let Xn+i be a Mitchell complex of type n-\-l and E be a CW-

spectrum. Then

ii) XH+1/,LnE=pt=Xn+lΛF(LnS, E), and
iii) Nn+1BPΛLΛE=pt=Nn+1BP/,F(LnSy E).

Proof, i) Suppose that Xn+lΛE=pt. Then P(n+l)^XΛ+]AE=pt9 which

implies that P(n+l)ΛE=pt by Proposition 5.1. Now we obtain the desired
result since <P(n+l)>-<ΛΓn+1SP>.

ii) XM+l is ϋ-lBPi'-acyclic because <y-lBPy*=<y~lBPy by Proposition
3.5. Hence the Spanier-Whitehead dual DXn+1 of Xn+ι becomes v^lBP%-
acyclic, too (or use [3, Proposition 2.10]). Therefore LnE*DXn+l=0 and
DXn+l/\LnS=LnDXn+1=pt. These show that LnE^Xn+1=0=F(LnSy E)*Xn+1.

iii) is immediate from i) and ii).

Proposition 5.3. Let Xn+ί be a Mitchell complex of type w+1. The
following conditions are all equivalent:

i) a CW-spectrum E is v~lBP-local,
ii) E is BPΊocal and Xn+1/\E=pt, and

iii) E is BP-local and Nn+1BP^E=pt.

Proof. The implications i)— *ii) and ii)— >iii) follow from Lemma 5.2 i)
and ii).

iii)-*i): Note that LnBPANn+1E=pt=Nn+1BPΛLnE because of Corollary
1.3 and Lemma 5.2 iii). Then the localization map ηn: Έ-+LnΈ is a BP%-
equivalence under our hypothesis that Nn+1BPΛE=pt. Hence it becomes an
equivalence since E and LnE are both BP-local. Thus E is ϋiΓ^

If E is a βP-module spectrum, then so is EAX for any CIF-spectrum X.
However E/\X is not necessarily βP-local even if E is so. Bousfield [4] intro-
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duced BP-nilpotent spectra £*, which have the property that E^X are also BP-
nilpotent for any X. Each ΰP-module spectrum is BP-nilpotent, and each
jBP-nilpotent spectrum is BP-local.

Corollary 5.4 (Ravenel). If E is a BP-nilpotent spectrum, then EΛLnX
=Ln(EΛX)=LΛE^X and E^Nn+1X=Nn+1(EΛX)=Nn+lE/\X for any CW-spectrum
X. (See [14, Theorem 1]).

Proof. E/\LnX and LJE^X are both jBP-nilpotent, and hence they are
BP-local. Moreover Xn+lΛE^LnX=pt=Xn+1/^LnE^X by Lemma 5.2 ii). So
Proposition 5.3 shows that E^LnX and LnEΛX are both tς ̂ BP-local. Now
the result follows immediately.

The above corollary gives easily

(5.2) <LnEy^LnFyand<Ntt+lEy^<Nn+lFy

if <£>^<OF> for 5P-nilpotent spectra E and F. (Cf., Lemma 1.2 ii)).

5.2. We here describe the P(ri)% -localization in terms of the BP*- and
-localizations.

Lemma 5.5. Let E be a BP-nilpotent spectrum. If a CW-spectrum X
is E-local, then the function spectrum F(NnS, X) is NJE-local.

Proof. If Y is ΛΓJξ^-acyclic, then E*(YΛNnS}^NnE*Y=Q by use of
Corollary 5.4. Thus Y^NΛS is £*-acyclic. Hence F(NΛS, X)* YzzX*( Y*NUS)
=0 when X is S-local. So we obtain the desired result.

Theorem 5.6. Given a CW-spectrum X, the composite map X-+LBPX
->ΣnjF(ΛΓnS, LBPX) is the P(n) ̂ -localization of X. Thus LPM=ZnF(NnS, LBP),
where LE denotes the E ̂ -localisation functor for E=BP or P(n).

Proof. From Lemma 5.5 it follows that F(NnS, LBPX) is P(n)-local
because <P(w)>=<NnJBP>. Moreover F(Ln^S, LBPX) is P(ri)* -acyclic by means
of Lemma 5.2 iii). Hence the composite map X-^LBPX^>^nF(NnSy LBPX)
becomes a P^^-equivalence. So we observe that LP(n-)X=^nF(NnS9 LBPX).

We next study the BPζny*- and VΛ^+^BP^-localizations. Recall that
and

Proposition 5.7. Let E be a BP-nilpotent spectrum with
Then a CW-spectrum X is E-local if and only if X is BP-local and F(Nn+1S, X)
is Nn+lE-local.

Proof. The "only if" part: Note that BP*Y=Q implies E*Y=Q when
E is fiP-nilpotent. Thus X is £P-local if it is E-local. The latter part
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follows from Lemma 5.5.
The "if" part: Suppose that E*Y=Q. By making use of Corollary 5.4

we see that BP*(YΛLnS)^LnBP*Y=Q since <£>^<^-lBP>=<LΛ£P>, and
Nn+1E*Y^E*(Y^Nn+1S)=Q. So the localities of X and F(Nn+1S, X) give

that X*(YΛLnS)=0 and X*(Y^NΛ+1S)^F(NΛ+1S9 X)*Y=0, which imply
X*Y=0. Thus X is JZ-local.

Since <NΛ+lBP<n»=<HZlp> and <Nn+lVNu+lBP>=<VP(iy> we have

Corollary 5.8. i) A CW-spectrum X is BP<jf>-local if and only if X is
BP-local and LP(n+1)X is HZ/p-local.
ii) A CW-spectrum X is VNn+1BPΊocal if and only if X is BP-local and LP(n+l)X
is VP(\γiocal.

When a CPF-spectrum X is connective, it is HZ(P) -local. So Corollary 5.8
i) implies

(5.3) LpωX = "Σ1F(N1Sί X) is HZ/p-local if X is connective. (Cf., [4, Theorem
3.1]).

Given a CW-spectrum F we denote by CFX the cofiber of the localization
map ηF: X->LFX. When F=v~1BP, CFX is written ^'nNn+1X. Consider
the composite map LFX—> CFX-*LnCFX, whose cofiber is denoted
Then we have a commutative diagram

X^L(F,n)X
II I

•Λ.

" i I %
LnCFX =^=^ LnCFX

involving four cofiber sequences.

Proposition 5.9. Let F be a BP-nίlpotent spectrum and E be a CW-
spectrum with <Ey=<y-lBPyv<py. Then the map X-+L(F>n)X is the E*-
localization of X for any CW-spectrum X. Thus LE=L(F>n).

Proof. Since F*Nn+lCFXs*Nn+1(FACFX)#=Q by Corollary 5.4, we see
that Nn+1CFX is in fact £"# -acyclic. Moreover LFX and LnCFX are both E-
local, so L(Ftn)X is jE"-local, too. Hence we verify that LEX=L(Fin)X.

The above proposition states the SP<(/z>^- and VNn+1BP* -localizations in
terms of the v~lBP*-> HZ/p*- and VP(l)*-localizations.

Corollary 5.10. LBP<n>=L(HZ/p>n ) and LVNn+iBP=L

Theorem 5.6 and Corollary 5.10 give Theorem 0.5.
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