THE CUT LOCUS AND THE DIASTASIS OF A HERMITIAN SYMMETRIC SPACE OF COMPACT TYPE

HIROYUKI TASAKI

(Received October 9, 1984)

1. Introduction

For a complete Riemannian manifold M and a point p in M, we denote by $C_p(M)$ the cut locus of M with respect to p. As a property of the cut locus of a simply connected compact symmetric space M, it is known in [2] that the cut locus $C_p(M)$ coincides with the first conjugate locus of M with respect to p. Sakai [5] proved that in general the cut locus of a compact symmetric space is determined by that of its maximal totally geodesic flat submanifold (see Section 4 for details). Using this, Sakai [6] and Takeuchi [8], [9] gave stratifications of the cut loci of compact symmetric spaces.

Calabi [1] introduced the notion "diastasis" to study Kähler imbeddings. The diastasis of a Kähler manifold M is a real analytic function defined on its domain of real analyticity in $M \times M$ containing the diagonal set and behaves like as the square of the geodesic distance in the small (see Section 2 for the definition). The most characteristic property of the diastasis proved by Calabi will be that the diastasis of a Kähler submanifold N of a Kähler manifold M coincides with the restriction of the diastasis of M to N. Making use of these properties, Calabi obtained various fundamental results of Kähler imbeddings. In particular, he proved the rigidity of a Kähler submanifold of a space of constant holomorphic sectional curvature.

It seems to be interesting to study relations between the geodesic distance and the diastasis in the large. In this note we shall show a relation between the cut locus and the diastasis of a Hermitian symmetric space of compact type. More precisely, the main result of this note is the following:

Theorem. Let M be a Hermitian symmetric space of compact type and D be the diastasis of M. Then, for each point p in M, the cut locus $C_p(M)$ is equal to the set of points q at which D(p, q) cannot be defined.

In other words, $M-C_p(M)$ is the domain of real analyticity of the real analytic function $q \mapsto D(p, q)$. This result gives a relation between the cut locus of a Hermitian symmetric space of compact type and that of its symmetric

H. TASAKI

Kähler submanifold (Corollary 8). In particular, the cut locus of a symmetric Kähler submanifold of a complex projective space is a hyperplane section of the submanifold.

2. The diastasis

In this section we shall give the definition of the diastasis of a Kähler manifold due to Calabi [1] and state some basic properties of the diastasis. At the end of this section we shall show that, for $P = P^1(C) \times \cdots \times P^1(C)$ with the product metric of Hermitian symmetric metrics on $P^1(C)$ and a point p in P, the cut locus $C_p(P)$ is the set of points q at which the diastasis D(p, q) cannot be defined.

Let M be a k-dimensional complex manifold with an analytic Kähler metric and \overline{M} be its conjugate manifold. For each point p in M, the point corresponding to p in \overline{M} is denoted by \overline{p} . For each complex coordinate system (z^1, z^2, \dots, z^k) in M, put

$$z^{a*}(\overline{q}) = \overline{z^{a*}(q)}$$
 .

Then (z^{1*}, \dots, z^{k*}) is a complex coordinate system in \overline{M} and $(z^1, \dots, z^k, z^{1*}, \dots, z^{k*})$ is a complex coordinate system in the product complex manifold $M \times \overline{M}$. Imbedding M into $M \times \overline{M}$ as the diagonal set $\{(p, \overline{p}); p \in M\}$, we can uniquely extend a real analytic functional element in M to a complex analytic functional element in $M \times \overline{M}$.

Let

$$ds^2 = g_{\alpha\beta^*}(z, \bar{z}) dz^{\alpha} dz^{\beta^*} \tag{1}$$

be the Kähler metric of M, then there exists a real analytic function $\Phi(z, \bar{z})$ such that

$$g_{\alpha\beta^*}(z, \bar{z}) = \frac{\partial^2 \Phi(z, \bar{z})}{\partial z^{\alpha} \partial z^{\beta^*}}.$$
(2)

We can extend $\Phi(z, \bar{z})$ to a complex analytic function defined on an open subset of $M \times \overline{M}$. For each points p and q in the open set on which the complex coordinate system (z^1, \dots, z^k) is defined, we define the functional element

$$D(p, q) = \Phi(z(p), z(p)) + \Phi(z(q), z(q)) -\Phi(z(p), \overline{z(q)}) - \Phi(z(q), \overline{z(p)}).$$
(3)

These functional elements generate a real analytic function, which is called the *diastasis of* M and denoted by D.

The following proposition is due to Calabi [1].

Proposition 1. Let M be a Kähler submanifold of a Kähler manifold N

with an analytic Kähler metric. Then the diastasis of M is the restriction of the diastasis of N to M.

The following lemma follows from (1), (2), and (3).

Lemma 2. Let M_1, \dots, M_n be Kähler manifolds with analytic Kähler metrics and D_i be the diastasis of M_i for $i=1, \dots, n$, then the diastasis of $M_1 \times \dots \times M_n$ is equal to $D_1 + \dots + D_n$.

At the end of this section we consider the diastasis of $P^{1}(C) \times \cdots \times P^{1}(C)$.

Proposition 3. For $P = P^1(C) \times \cdots \times P^1(C)$ with the product metric of Hermitian symmetric metrics on $P^1(C)$ and a point p in P, the cut locus $C_p(P)$ is equal to the set of points q at which the diastasis D(p, q) cannot be defined.

Proof. We denote by $[z^0, z^1]$ the homogeneous coordinate of $P^1(C)$. Without loss of generality it may be assumed that the homogeneous coordinate of p is [1, 0]. Let

$$\boldsymbol{O} = \{ q \in \boldsymbol{P}^{1}(\boldsymbol{C}); z^{0}(q) \neq 0 \} .$$

O is an open subset containing p and z^1/z^0 is a complex coordinate on O. The diastasis D of $P^1(C)$ is given by

$$D(p, q) = \alpha \log \left[1 + \left|\frac{z^1(q)}{z^0(q)}\right|^2\right]$$

for some $\alpha > 0$. Let p' be the point whose homogeneous coordinate is [0, 1], then the set of points q at which D(p, q) cannot be defined is $\{p'\}$, which is equal to the cut locus $C_p(\mathbf{P}^1(\mathbf{C}))$. This proves Proposition 3 for $P = \mathbf{P}^1(\mathbf{C})$. Proposition 3 follows from Lemma 2 and the fact that, for complete Riemannian manifolds M_1, \dots, M_n and points p_i in M_i $(1 \le i \le n)$,

$$C_{(p_1,\cdots,p_n)}(M_1\times\cdots\times M_n)$$

= $C_{p_1}(M_1)\times M_2\times\cdots\times M_n\cup M_1\times C_{p_2}(M_2)\times M_3\times\cdots\times M_n$
 $\cup\cdots\cup M_1\times M_2\times\cdots\times M_{n-1}\times C_{p_1}(M_n).$

3. Certain submanifolds of a Hermitian symmetric space of compact type

Let M be a Hermitian symmetric space of compact type. In this section we shall construct a maximal totally geodesic flat submanifold A of M and a totally geodesic Kähler submanifold P of M which includes A. For details about the results without proofs, see Helgason [3].

Let (\mathfrak{u}, θ) be the orthogonal symmetric Lie algebra associated with M. We have the canonical direct sum decomposition of \mathfrak{u} : H. TASAKI

 $\mathfrak{u} = \mathfrak{k} + \mathfrak{p}$,

where

$$\mathfrak{k} = \{X \in \mathfrak{u}; \theta(X) = X\}$$
 and $\mathfrak{p} = \{X \in \mathfrak{u}; \theta(X) = -X\}$.

Take a maximal Abelian subalgebra \mathfrak{h} of \mathfrak{k} . We denote the complexifications of \mathfrak{u} , \mathfrak{k} , \mathfrak{p} , and \mathfrak{h} by \mathfrak{g} , \mathfrak{k} , \mathfrak{p} , and \mathfrak{h} respectively. \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} . Let Δ be the set of nonzero roots of \mathfrak{g} with respect to \mathfrak{h} . For each root α in Δ , put

$$\mathfrak{g}^{\boldsymbol{a}} = \{X \in \mathfrak{g}; [H, X] = \alpha(H)X \quad \text{for each } H \in \widetilde{\mathfrak{h}}\}$$

Since $\tilde{\mathfrak{h}} \subset \tilde{\mathfrak{k}}$, for each α in Δ , $\mathfrak{g}^{\alpha} \subset \tilde{\mathfrak{k}}$ or $\mathfrak{g}^{\alpha} \subset \tilde{\mathfrak{p}}$. A root α is called *compact* [resp. *noncompact*], if $\mathfrak{g}^{\alpha} \subset \tilde{\mathfrak{k}}$ [resp. $\mathfrak{g}^{\alpha} \subset \tilde{\mathfrak{p}}$]. By the root space decomposition of \mathfrak{g} , we obtain

$$\tilde{\mathfrak{k}} = \tilde{\mathfrak{h}} + \sum_{\mathfrak{a}: \text{ compact}} \mathfrak{g}^{\mathfrak{a}}, \ \tilde{\mathfrak{p}} = \sum_{\mathfrak{\beta}: \text{ non-compact}} \mathfrak{g}^{\mathfrak{\beta}}.$$

We introduce a lexicographic order in the dual of the real vector space $\sqrt{-1}\mathfrak{h}$. Note that each root is real valued on $\sqrt{-1}\mathfrak{h}$.

Let Q be the set of positive noncompact roots in Δ and r be the rank of M. Then there is a strongly orthogonal root system $\{\gamma_1, \dots, \gamma_r\}$ in Q, that is, $\gamma_i \pm \gamma_j \oplus \Delta$ for $1 \leq i, j \leq r$. We can choose nonzero vectors $X_a \in \mathfrak{g}^a$ for each roots α in Δ such that

$$X_{\boldsymbol{\omega}} - X_{-\boldsymbol{\omega}}, \sqrt{-1}(X_{\boldsymbol{\omega}} + X_{-\boldsymbol{\omega}}) \in \mathfrak{u} , \qquad (4)$$

$$[X_{\alpha}, X_{-\alpha}] = \frac{2}{\alpha(H_{\alpha})} H_{\alpha} , \qquad (5)$$

where H_{α} is the dual vector of α with respect to the Killing form of g. Since $\gamma_i \pm \gamma_j \equiv \Delta$,

$$[X_{\pm\gamma_i}, X_{\pm\gamma_j}] = [H_{\pm\gamma_i}, X_{\pm\gamma_j}] = 0, \quad \text{if } i \neq i.$$
(6)

By this property

$$a_{\mathfrak{p}} = \sum_{i=1}^{r} \mathbf{R} \sqrt{-1} \left(X_{\gamma_i} + X_{-\gamma_i} \right) \tag{7}$$

is a maximal Abelian subspace in p.

Let U be a simply connected Lie group with Lie algebra \mathfrak{u} and K be the analytic subgroup of U with Lie algebra \mathfrak{k} . Since M is simply connected, M = U/K. The action of U on M is isometric and holomorphic.

Put

$$A = \exp(\mathfrak{a}_{\mathfrak{p}})o$$
 ,

where o is the origin of M=U/K. The submanifold A is a maximal totally

866

geodesic flat submanifold of M, because a_p is a maximal Abelian subspace in p.

We define a linear map $\phi_i : \mathfrak{Su}(2) \rightarrow \mathfrak{u}$ by

$$\begin{bmatrix} 1\\ -1 \end{bmatrix} \mapsto X_{\mathbf{y}_{i}} - X_{-\mathbf{y}_{i}},$$
$$\begin{bmatrix} \sqrt{-1} \\ \sqrt{-1} \end{bmatrix} \mapsto \sqrt{-1} (X_{\mathbf{y}_{i}} + X_{-\mathbf{y}_{i}}),$$
$$\begin{bmatrix} \sqrt{-1} \\ \sqrt{-1} \end{bmatrix} \mapsto \frac{2\sqrt{-1}}{\gamma_{i}(H_{\mathbf{y}_{i}})} H_{\mathbf{y}_{i}}.$$

By (4) and (5) ϕ_i is a well-defined injective Lie algebra homomorphism of $\mathfrak{su}(2)$ to u. Since

$$[\phi_i(\mathfrak{su}(2)), \phi_j(\mathfrak{su}(2))] = \{0\}, \quad 1 \le i \ne j \le r,$$

by (6), we can define an injective Lie algebra homomorphism ϕ from the *r*-fold direct sum $\mathfrak{su}(2)^r$ of $\mathfrak{su}(2)$ into u by

$$\phi(X_1, \dots, X_r) = \sum_{i=1}^r \phi_i(X_i) \quad \text{for } X_i \in \mathfrak{su}(2)$$

 ϕ also denotes the homomorphism from the *r*-fold direct product $SU(2)^r$ of SU(2) into U induced by the Lie algebra homomorphism ϕ . Then ϕ induces an equivariant holomorphic imbedding

$$\rho \colon SU(2)^r / S(U(1) \times U(1))^r \to M$$
$$xS(U(1) \times U(1))^r \mapsto \phi(x)o \qquad \text{for } x \in SU(2)^r.$$

Note that the *r*-fold direct product $P^{1}(C)^{r}$ of $P^{1}(C)$ is canonically identified with $SU(2)^{r}/S(U(1) \times U(1))^{r}$.

We denote by P the image of the imbedding ρ . By the definition of ϕ and (7), $\mathfrak{a}_{\mathfrak{p}} \subset \phi(\mathfrak{su}(2)^r)$, so $A \subset P$. Since

$$\phi(\mathfrak{su}(2)^r) = \mathfrak{k} \cap \phi(\mathfrak{su}(2)^r) + \mathfrak{p} \cap \phi(\mathfrak{su}(2)^r),$$

P is a totally geodesic submanifold of *M*. The induced metric on $P^{1}(C)^{r}$ is the product metric of Hermitian symmetric metrics on $P^{1}(C)$, because the imbedding ρ is equivariant.

By a theorem of Cartan to the effect that M is given by

$$M = \bigcup_{k \in K} kA,$$

we obtain

$$M=\bigcup_{k\in\mathcal{K}}kP.$$

The following proposition summarizes this section.

H. TASAKI

Proposition 4. a) A is a maximal totally geodesic flat submanifold of M through o.

b) $P \simeq \mathbf{P}^1(\mathbf{C})^r$ is a totally geodesic Kähler submanifold of M which includes A and its metric is the product metric of Hermitian symmetric metrics on $\mathbf{P}^1(\mathbf{C})$.

c)
$$M = \bigcup_{k \in K} kP.$$

REMARK. The imbedding ρ was used by Takagi and Takeuchi [6] in order to determine the degree of symmetric Kähler submanifolds of a complex projective space.

4. The cut locus and the diastasis of a Hermitian symmetric space of compact type

In this section we shall prove the following main theorem stated in Introduction.

Theorem 5. Let M be a Hermitian symmetric space of compact type and D be the diastasis of M. Then, for each point p in M, the cut locus $C_p(M)$ is equal to the set of points q at which D(p, q) cannot be defined.

We retain the notations in Section 3.

Lemma 6.

$$C_o(M) \cap A = C_o(A) \text{ and } C_o(M) = \bigcup_{k \in K} k C_o(A).$$

This lemma is due to Sakai [5].

Lemma 7.

$$C_o(M) = \bigcup_{k \in K} k C_o(P)$$
.

Proof. Put

$$U_1 = \phi(SU(2)^r)$$
 and $K_1 = U_1 \cap K$.

Then (U_1, K_1) is a Riemannian symmetric pair and $P = U_1/K_1$.

Since P is a totally geodesic submanifold of M, A is also a maximal totally geodesic flat submanifold of P. Applying Lemma 6 to $P = U_1/K_1$ and A, we have

$$egin{aligned} & C_o(P) = \mathop{\cup}\limits_{k_1 \in \mathcal{K}_1} k_1 C_o(A) \ & = \mathop{\cup}\limits_{k_1 \in \mathcal{K}_1} k_1 (A \cap C_o(M)) \ & = P \cap C_o(M) \,, \end{aligned}$$

hence from c) of Proposition 4

868

CUT LOCUS AND THE DIASTASIS

$$igcup_{\mathbf{k}\in\mathcal{K}} kC_o(P) = igcup_{\mathbf{k}\in\mathcal{K}} k(P\cap C_o(M))$$

 $= M\cap C_o(M)$
 $= C_o(M)$.

Now we shall prove Theorem 5. Without loss of generality we may assume that p is the origin o of M=U/K. Since P is a Kähler submanifold of M, the restriction of D to P is the diastasis of P by Proposition 1. The action of K on M is isometric and holomorphic, hence

$$\{q \in M; D(p, q) \text{ cannot be defined}\}\$$

$$= \bigcup_{k \in K} k\{q \in P; D(p, q) \text{ cannot be defined}\}\$$

$$= \bigcup_{k \in K} kC_o(P)\$$

$$= C_o(M).$$

This completes the proof of Theorem 5.

Corollary 8. Let M_1 and M_2 be Hermitian symmetric spaces of compact type. If M_1 is a Kähler submanifold of M_2 , then

$$C_p(M_1) = M_1 \cap C_p(M_2)$$

for each point p in M_1 .

REMARK. In case of $M_2 = \mathbf{P}^n(\mathbf{C})$, Theorem 4.3 in Nakagawa and Takagi [4] implies that the imbedding of M_1 into $\mathbf{P}^n(\mathbf{C})$ is equivariant. So we can describe the behavior of a geodesic of M_1 in $\mathbf{P}^n(\mathbf{C})$ and directly show the assertion of Corollary 8 in this case.

References

- E. Calabi: Isometric imbedding of complex manifolds, Ann. of Math. 58 (1953), 1-23.
- R. Crittenden: Minimum and conjugate points in symmetric spaces, Canad. J. Math. 14 (1962), 320-328.
- [3] S. Helgason: Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978.
- [4] H. Nakagawa and R. Takagi: On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan 28 (1976), 638-667.
- [5] T. Sakai: On cut loci of compact symmetric spaces, Hokkaido Math. J. 6 (1977), 136-161.
- [6] T. Sakai: On the structure of cut loci in compact Riemannian symmetric spaces, Math. Ann. 235 (1978), 129–148.
- [7] R. Takagi and M. Takeuchi: Degree of symmetric Kählerian submanifolds of a complex projective space, Osaka J. Math. 14 (1977), 501-518.

H. Tasaki

- [8] M. Takeuchi: On conjugate loci and cut loci of compact symmetric spaces I, Tsukuba J. Math. 2 (1978), 35-68.
- [9] M. Takeuchi: On conjugate loci and cut loci of compact symmetric spaces II, Tsukuba J. Math. 3 (1979), 1-29.

Department of Mathematics Tokyo Gakugei University Koganei, Tokyo 184 Japan