THE CUT LOCUS AND THE DIASTASIS OF A HERMITIAN SYMMETRIC SPACE OF COMPACT TYPE

Hiroyuki TASAKI

(Received October 9, 1984)

1. Introduction

For a complete Riemannian manifold M and a point p in M, we denote by $C_{p}(M)$ the cut locus of M with respect to p. As a property of the cut locus of a simply connected compact symmetric space M, it is known in [2] that the cut locus $C_{p}(M)$ coincides with the first conjugate locus of M with respect to p. Sakai [5] proved that in general the cut locus of a compact symmetric space is determined by that of its maximal totally geodesic flat submanifold (see Section 4 for details). Using this, Sakai [6] and Takeuchi [8], [9] gave stratifications of the cut loci of compact symmetric spaces.

Calabi [1] introduced the notion "diastasis" to study Kähler imbeddings. The diastasis of a Kahler manifold M is a real analytic function defined on its domain of real analyticity in $M \times M$ containing the diagonal set and behaves like as the square of the geodesic distance in the small (see Section 2 for the definition). The most characteristic property of the diastasis proved by Calabi will be that the diastasis of a Káhler submanifold N of a Kähler manifold M coincides with the restriction of the diastasis of M to N. Making use of these properties, Calabi obtained various fundamental results of Kahler imbeddings. In particular, he proved the rigidity of a Kahler submanifold of a space of constant holomorphic sectional curvature.

It seems to be interesting to study relations between the geodesic distance and the diastasis in the large. In this note we shall show a relation between the cut locus and the diastasis of a Hermitian symmetric space of compact type. More precisely, the main result of this note is the following:

Theorem. Let M be a Hermitian symmetric space of compact type and D be the diastasis of M. Then, for each point p in M, the cut locus $C_{p}(M)$ is equal to the set of points q at which $D(p, q)$ cannot be defined.

In other words, $M-C_{p}(M)$ is the domain of real analyticity of the real analytic function $q \mapsto D(p, q)$. This result gives a relation between the cut locus of a Hermitian symmetric space of compact type and that of its symmetric

Kahler submanifold (Corollary 8). In particular, the cut locus of a symmetric Kähler submanifold of a complex projective space is a hyperplane section of the submanifold.

2. The diastasis

In this section we shall give the definition of the diastasis of a Kahler manifold due to Calabi [1] and state some basic properties of the diastasis. At the end of this section we shall show that, for $\boldsymbol{P}=\boldsymbol{P}^{1}(\boldsymbol{C}) \times \cdots \times \boldsymbol{P}^{1}(\boldsymbol{C})$ with the product metric of Hermitian symmetric metrics on $\boldsymbol{P}^{1}(\boldsymbol{C})$ and a point p in P, the cut locus $C_{p}(P)$ is the set of points q at which the diastasis $D(p, q)$ cannot be defined.

Let M be a k-dimensional complex manifold with an analytic Kahler metric and \bar{M} be its conjugate manifold. For each point p in M, the point corresponding to p in \bar{M} is denoted by \bar{p}. For each complex coordinate system $\left(z^{1}, z^{2}, \cdots, z^{k}\right)$ in M, put

$$
z^{\alpha *}(\bar{q})=\overline{z^{\omega}(q)} .
$$

Then ($z^{1^{*}}, \cdots, z^{k^{*}}$) is a complex coordinate system in \bar{M} and ($z^{1}, \cdots, z^{k}, z^{1^{*}}, \cdots$, $z^{k^{*}}$) is a complex coordinate system in the product complex manifold $M \times \bar{M}$. Imbedding M into $M \times \bar{M}$ as the diagonal set $\{(p, \bar{p}) ; p \in M\}$, we can uniquely extend a real analytic functional element in M to a complex analytic functional element in $M \times \bar{M}$.

Let

$$
\begin{equation*}
d s^{2}=g_{\alpha \beta^{*}}(z, \bar{z}) d z^{\omega} d z^{\beta *} \tag{1}
\end{equation*}
$$

be the Kahler metric of M, then there exists a real analytic function $\Phi(z, \bar{z})$ such that

$$
\begin{equation*}
g_{\alpha \beta^{*}}(z, \bar{z})=\frac{\partial^{2} \Phi(z, \bar{z})}{\partial z^{\alpha} \partial z^{\beta *}} . \tag{2}
\end{equation*}
$$

We can extend $\Phi(z, \bar{z})$ to a complex analytic function defined on an open subset of $M \times \bar{M}$. For each points p and q in the open set on which the complex coordinate system $\left(z^{1}, \cdots, z^{k}\right)$ is defined, we define the functional element

$$
\begin{align*}
& D(p, q)=\Phi(z(p), \overline{z(p)})+\Phi(z(q), \overline{z(q)}) \\
& \quad-\Phi(z(p), \overline{z(q)})-\Phi(z(q), \overline{z(p)}) \tag{3}
\end{align*}
$$

These functional elements generate a real analytic function, which is called the diastasis of M and denoted by D.

The following proposition is due to Calabi [1].
Proposition 1. Let M be a Kähler submanifold of a Kähler manifold N
with an analytic Kähler metric. Then the diastasis of M is the restriction of the diastasis of N to M.

The following lemma follows from (1), (2), and (3).
Lemma 2. Let M_{1}, \cdots, M_{n} be Kähler manifolds with analytic Kähler metrics ahd D_{i} be the diastasis of M_{i} for $i=1, \cdots, n$, then the diastasis of $M_{1} \times \cdots$ $\times M_{n}$ is equal to $D_{1}+\cdots+D_{n}$.

At the end of this section we consider the diastasis of $\boldsymbol{P}^{1}(\boldsymbol{C}) \times \cdots \times \boldsymbol{P}^{1}(\boldsymbol{C})$.
Proposition 3. For $\boldsymbol{P}=\boldsymbol{P}^{1}(\boldsymbol{C}) \times \cdots \times \boldsymbol{P}^{1}(\boldsymbol{C})$ with the product metric of Hermitian symmetric metrics on $\boldsymbol{P}^{1}(\boldsymbol{C})$ and a point p in P, the cut locus $C_{p}(P)$ is equal to the set of points q at which the diastasis $D(p, q)$ cannot be defined.

Proof. We denote by $\left[z^{0}, z^{1}\right]$ the homogeneous coordinate of $\boldsymbol{P}^{1}(\boldsymbol{C})$. Without loss of generality it may be assumed that the homogeneous coordinate of p is $[1,0]$. Let

$$
O=\left\{q \in \boldsymbol{P}^{1}(\boldsymbol{C}) ; z^{0}(q) \neq 0\right\}
$$

O is an open subset containing p and z^{1} / z^{0} is a complex coordinate on O. The diastasis D of $\boldsymbol{P}^{1}(\boldsymbol{C})$ is given by

$$
D(p, q)=\alpha \log \left[1+\left|\frac{z^{1}(q)}{z^{0}(q)}\right|^{2}\right]
$$

for some $\alpha>0$. Let p^{\prime} be the point whose homogeneous coordinate is $[0,1]$, then the set of points q at which $D(p, q)$ cannot be defined is $\left\{p^{\prime}\right\}$, which is equal to the cut locus $C_{p}\left(\boldsymbol{P}^{1}(\boldsymbol{C})\right)$. This proves Proposition 3 for $P=\boldsymbol{P}^{1}(\boldsymbol{C})$. Proposition 3 follows from Lemma 2 and the fact that, for complete Riemannian manifolds M_{1}, \cdots, M_{n} and points p_{i} in $M_{i}(1 \leqq i \leqq n)$,

$$
\begin{aligned}
& C_{\left(p_{1} \cdots, p_{n}\right)}\left(M_{1} \times \cdots \times M_{n}\right) \\
= & C_{p_{1}}\left(M_{1}\right) \times M_{2} \times \cdots \times M_{n} \cup M_{1} \times C_{p_{2}}\left(M_{2}\right) \times M_{3} \times \cdots \times M_{n} \\
& \cup \cdots \cup M_{1} \times M_{2} \times \cdots \times M_{n-1} \times C_{p_{n}}\left(M_{n}\right) .
\end{aligned}
$$

3. Certain submanifolds of a Hermitian symmetric space of compact type

Let M be a Hermitian symmetric space of compact type. In this section we shall construct a maximal totally geodesic flat submanifold A of M and a totally geodesic Kahhler submanifold P of M which includes A. For details about the results without proofs, see Helgason [3].

Let (\mathfrak{u}, θ) be the orthogonal symmetric Lie algebra associated with M. We have the canonical direct sum decomposition of \mathfrak{u} :

$$
\mathfrak{u}=\mathfrak{t}+\mathfrak{p},
$$

where

$$
\mathfrak{t}=\{X \in \mathfrak{u} ; \theta(X)=X\} \text { and } \mathfrak{p}=\{X \in \mathfrak{u} ; \theta(X)=-X\}
$$

Take a maximal Abelian subalgebra \mathfrak{G} of \mathfrak{f}. We denote the complexifications of $\mathfrak{l t}, \mathfrak{l}, \mathfrak{p}$, and \mathfrak{G} by $\mathfrak{g}, \tilde{f}, \tilde{\mathfrak{p}}$, and $\tilde{\mathfrak{G}}$ respectively. $\tilde{\mathfrak{G}}$ is a Cartan subalgebra of g. Let Δ be the set of nonzero roots of g with respect to $\tilde{\mathfrak{h}}$. For each root α in Δ, put

$$
\mathfrak{g}^{\infty}=\{X \in \mathrm{~g} ;[H, X]=\alpha(H) X \quad \text { for each } H \in \widetilde{\mathfrak{h}}\}
$$

Since $\tilde{\mathfrak{h}} \subset \tilde{\mathfrak{f}}$, for each α in $\Delta, \mathfrak{g}^{\infty} \subset \tilde{f}$ or $\mathfrak{g}^{\infty} \subset \mathfrak{p}$. A root α is called compact [resp. noncompact], if $\mathfrak{g}^{\infty} \subset\left\{\begin{array}{l}\left.\text { [resp. } \mathfrak{g}^{\infty} \subset \mathfrak{p}\right] \text {. By the root space decomposition }\end{array}\right.$ of g , we obtain

$$
\mathfrak{f}=\tilde{\mathfrak{h}}+\sum_{\alpha: \text { compact }} \mathfrak{g}^{\alpha}, \tilde{\mathfrak{p}}=\sum_{\beta: \text { non-compact }} \mathfrak{g}^{\beta}
$$

We introduce a lexicographic order in the dual of the real vector space $\sqrt{-1} \mathfrak{h}$. Note that each root is real valued on $\sqrt{-1} \mathfrak{h}$.

Let Q be the set of positive noncompact roots in Δ and r be the rank of M. Then there is a strongly orthogonal root system $\left\{\gamma_{1}, \cdots, \gamma_{r}\right\}$ in Q, that is, $\gamma_{i} \pm \gamma_{j} \notin \Delta$ for $1 \leqq i, j \leqq r$. We can choose nonzero vectors $X_{\infty} \in \mathrm{g}^{\infty}$ for each roots α in Δ such that

$$
\begin{gather*}
X_{a}-X_{-\alpha}, \sqrt{-1}\left(X_{\infty}+X_{-a}\right) \in \mathfrak{H} \tag{4}\\
{\left[X_{\alpha}, X_{-\alpha}\right]=\frac{2}{\alpha\left(H_{\infty}\right)} H_{\infty}} \tag{5}
\end{gather*}
$$

where H_{∞} is the dual vector of α with respect to the Killing form of g. Since $\gamma_{i} \pm \gamma_{j} \notin \Delta$,

$$
\begin{equation*}
\left[X_{ \pm \gamma_{i}}, X_{ \pm \gamma_{j}}\right]=\left[H_{ \pm y_{i}}, X_{ \pm \gamma_{j}}\right]=0, \quad \text { if } i \neq i \tag{6}
\end{equation*}
$$

By this property

$$
\begin{equation*}
\mathfrak{a}_{\mathfrak{p}}=\sum_{i=1}^{r} \boldsymbol{R} \sqrt{-1}\left(X_{\boldsymbol{\gamma}_{i}}+X_{-\boldsymbol{y}_{i}}\right) \tag{7}
\end{equation*}
$$

is a maximal Abelian subspace in \mathfrak{p}.
Let U be a simply connected Lie group with Lie algebra \mathfrak{H} and K be the analytic subgroup of U with Lie algebra t. Since M is simply connected, $M=U / K$. The action of U on M is isometric and holomorphic.

Put

$$
A=\exp \left(\mathfrak{a}_{\mathfrak{p}}\right) o
$$

where o is the origin of $M=U / K$. The submanifold A is a maximal totally
geodesic flat submanifold of M, because $\mathfrak{a}_{\mathfrak{p}}$ is a maximal Abelian subspace in \mathfrak{p}.

We define a linear map $\phi_{i}: \mathfrak{n} \mathfrak{u}(2) \rightarrow \mathfrak{u}$ by

$$
\begin{aligned}
& {\left[\begin{array}{ll}
& 1 \\
\hline
\end{array}\right] \mapsto X_{\gamma_{i}}-X_{-\gamma_{i}}} \\
& {[\sqrt{-1} \sqrt{-1}] \mapsto \sqrt{-1}\left(X_{\gamma_{i}}+X_{-\gamma_{i}}\right)} \\
& {\left[\begin{array}{ll}
\sqrt{-1} & \\
& \sqrt{-1}
\end{array}\right] \mapsto \frac{2 \sqrt{-1}}{\gamma_{i}\left(H_{\gamma_{i}}\right)} H_{\gamma_{i}}}
\end{aligned}
$$

By (4) and (5) ϕ_{i} is a well-defined injective Lie algebra homomorphism of $\mathfrak{Z u t}(2)$ to \mathfrak{u}. Since

$$
\left[\phi_{i}(\mathfrak{\mathfrak { H }}(2)), \phi_{j}(\mathfrak{\mathfrak { H }}(2))\right]=\{0\}, \quad 1 \leqq i \neq j \leqq r,
$$

by (6), we can define an injective Lie algebra homomorphism ϕ from the r-fold direct sum $\mathfrak{A u}(2)^{r}$ of $\mathfrak{H u}(2)$ into \mathfrak{u} by

$$
\phi\left(X_{1}, \cdots, X_{r}\right)=\sum_{i=1}^{r} \phi_{i}\left(X_{i}\right) \quad \text { for } X_{i} \in \mathfrak{Z u}(2)
$$

ϕ also denotes the homomorphism from the r-fold direct product $S U(2)^{r}$ of $S U(2)$ into U induced by the Lie algebra homomorphism ϕ. Then ϕ induces an equivariant holomorphic imbedding

$$
\begin{aligned}
\rho: & S U(2)^{r} / S(U(1) \times U(1))^{r} \rightarrow M \\
& x S(U(1) \times U(1))^{r} \mapsto \phi(x) o \quad \text { for } x \in S U(2)^{r} .
\end{aligned}
$$

Note that the r-fold direct product $\boldsymbol{P}^{1}(\boldsymbol{C})^{r}$ of $\boldsymbol{P}^{1}(\boldsymbol{C})$ is canonically identified with $S U(2)^{r} / S(U(1) \times U(1))^{r}$.

We denote by P the image of the imbedding ρ. By the definition of ϕ and (7), $\mathfrak{a}_{\mathfrak{p}} \subset \phi\left(\mathfrak{Z u t}(2)^{r}\right)$, so $A \subset P$. Since

$$
\phi\left(\mathfrak{W u}(2)^{r}\right)=\mathfrak{t} \cap \phi\left(\mathfrak{Z u} \mathfrak{u}(2)^{r}\right)+\mathfrak{p} \cap \phi\left(\mathfrak{H u}(2)^{r}\right),
$$

\boldsymbol{P} is a totally geodesic submanifold of M. The induced metric on $\boldsymbol{P}^{1}(\boldsymbol{C})^{r}$ is the product metric of Hermitian symmetric metrics on $\boldsymbol{P}^{1}(\boldsymbol{C})$, because the imbedding ρ is equivariant.

By a theorem of Cartan to the effect that M is given by

$$
M=\bigcup_{k \in \mathbb{K}} k A
$$

we obtain

$$
M=\bigcup_{k \in \mathbb{K}} k P
$$

The following proposition summarizes this section.

Proposition 4. a) A is a maximal totally geodesic flat submanifold of M through o.
b) $P \cong \boldsymbol{P}^{1}(\boldsymbol{C})^{r}$ is a totally geodesic Kähler submanifold of M which includes A and its metric is the product metric of Hermitian symmetric metrics on $\boldsymbol{P}^{1}(\boldsymbol{C})$.
c)

$$
M=\bigcup_{k \in \mathbb{K}} k P
$$

Remark. The imbedding ρ was used by Takagi and Takeuchi [6] in order to determine the degree of symmetric Kähler submanifolds of a complex projective space.
4. The cut locus and the diastasis of a Hermitian symmetric space of compact type

In this section we shall prove the following main theorem stated in Introduction.

Theorem 5. Let M be a Hermitian symmetric space of compact type and D be the diastasis of M. Then, for each point p in M, the cut locus $C_{p}(M)$ is equal to the set of points q at which $D(p, q)$ cannot be defined.

We retain the notations in Section 3.

Lemma 6.

$$
C_{o}(M) \cap A=C_{o}(A) \text { and } C_{o}(M)=\bigcup_{k \in K} k C_{o}(A)
$$

This lemma is due to Sakai [5].

Lemma 7.

$$
C_{o}(M)=\bigcup_{k \in K} k C_{o}(P)
$$

Proof. Put

$$
U_{1}=\phi\left(S U(2)^{r}\right) \text { and } K_{1}=U_{1} \cap K
$$

Then (U_{1}, K_{1}) is a Riemannian symmetric pair and $P=U_{1} / K_{1}$.
Since P is a totally geodesic submanifold of M, A is also a maximal totally geodesic flat submanifold of P. Applying Lemma 6 to $P=U_{1} / K_{1}$ and A, we have

$$
\begin{aligned}
C_{o}(P) & =\bigcup_{k_{1} \in K_{1}} k_{1} C_{o}(A) \\
& =\bigcup_{k_{1} \in K_{1}} k_{1}\left(A \cap C_{o}(M)\right) \\
& =P \cap C_{o}(M)
\end{aligned}
$$

hence from c) of Proposition 4

$$
\begin{aligned}
\bigcup_{k \in K} k C_{o}(P) & =\bigcup_{k \in K} k\left(P \cap C_{o}(M)\right) \\
& =M \cap C_{o}(M) \\
& =C_{o}(M)
\end{aligned}
$$

Now we shall prove Theorem 5. Without loss of generality we may assume that p is the origin o of $M=U / K$. Since P is a Kähler submanifold of M, the restriction of D to P is the diastasis of P by Proposition 1. The action of K on M is isometric and holomorphic, hence

$$
\begin{aligned}
& \{q \in M ; D(p, q) \text { cannot be defined }\} \\
= & \bigcup_{k \in K} k\{q \in P ; D(p, q) \text { cannot be defined }\} \\
= & \cup_{k \in K} k C_{o}(P) \\
= & C_{o}(M)
\end{aligned}
$$

This completes the proof of Theorem 5.
Corollary 8. Let M_{1} and M_{2} be Hermitian symmetric spaces of compact type. If M_{1} is a Kähler submanifold of M_{2}, then

$$
C_{p}\left(M_{1}\right)=M_{1} \cap C_{p}\left(M_{2}\right)
$$

for each point p in M_{1}.
Remark. In case of $M_{2}=\boldsymbol{P}^{n}(\boldsymbol{C})$, Theorem 4.3 in Nakagawa and Takagi [4] implies that the imbedding of M_{1} into $\boldsymbol{P}^{n}(\boldsymbol{C})$ is equivariant. So we can describe the behavior of a geodesic of M_{1} in $\boldsymbol{P}^{n}(\boldsymbol{C})$ and directly show the assertion of Corollary 8 in this case.

References

[1] E. Calabi: Isometric imbedding of complex manifolds, Ann. of Math. 58 (1953), 1-23.
[2] R. Crittenden: Minimum and conjugate points in symmetric spaces, Canad. J. Math. 14 (1962), 320-328.
[3] S. Helgason: Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978.
[4] H. Nakagawa and R. Takagi: On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan 28 (1976), 638-667.
[5] T. Sakai: On cut loci of compact symmetric spaces, Hokkaido Math. J. 6 (1977), 136-161.
[6] T. Sakai: On the structure of cut loci in compact Riemannian symmetric spaces, Math. Ann. 235 (1978), 129-148.
[7] R. Takagi and M. Takeuchi: Degree of symmetric Kählerian submanifolds of a complex projective space, Osaka J. Math. 14 (1977), 501-518.
[8] M. Takeuchi: On conjugate loci and cut loci of compact symmetric spaces I, Tsukuba J. Math. 2 (1978), 35-68.
[9] M. Takeuchi: On conjugate loci and cut loci of compact symmetric spaces II, Tsukuba J. Math. 3 (1979), 1-29.

Department of Mathematics Tokyo Gakugei University Koganei, Tokyo 184
Japan

