A COMMUTATIVITY THEOREM FOR RINGS. II

Hiroaki KOMATSU

(Received October 22, 1984)

Throughout the present paper, R will represent a ring with center C, and D the commutator ideal of R. A ring R is called left (resp. right) s-unital if $x \in R x$ (resp. $x \in x R$) for every $x \in R ; R$ is called s-unital if R is both left and right s-unital. Given a positive integer n, we say that R has the property $Q(n)$ if for any $x, y \in R, n[x, y]=0$ implies $[x, y]=0$ (see [1]).

Our present objective is to generalize [2, Theorem] for left s-unital rings as follows:

Theorem. Let $n>0, r, s$ and t be non-negative integers and let $f(X, Y)=$ $\sum_{i=1}^{r} \sum_{j=2}^{s} f_{i j}(X, Y)$ be a polynomial in two noncommuting indeterminates X, Y with integer coefficients such that each $f_{i j}$ is a homogeneous polynomial with degree i in X and degree j in Y and the sum of the coefficients of $f_{i j}$ equals zero. Suppose a left s-unital ring R satisfies the polynomial identity

$$
\begin{equation*}
X^{t}\left[X^{n}, Y\right]-f(X, Y)=0 \tag{1}
\end{equation*}
$$

If either $n=1$ or $r=1$ and R has the property $Q(n)$, then R is commutative.
We shall use freely the following well known result stated without proof.
Lemma. Let x, y be elements of a ring with 1 , and let k be a positive integer. If $x^{k} y=0=(x+1)^{k} y$ then $y=0$.

Proof of Theorem. Let y be an arbitrary element of R, and choose an element e of R such that $e y=y$. Then (1) gives $y-y e^{n}=f(e, y) \in y R$. We have thus seen that R is right s-unital, and hence s-unital. Therefore, in view of [1, Proposition 1], it suffices to prove the theorem for R with 1.

Observe that D is a nil ideal of R, by a theorem of Kezlan-Bell (see, e.g., [1, Proposition 2]), since $x=e_{11}$ and $y=e_{12}$ fail to satisfy (1).
I) We consider first the case $n=1$. Let a, b be elements of R. By Lemma, it is easy to see that if $x^{t} a[x, b]=0$ for all $x \in R$ then $a[x, b]=0$. Noting this fact, we can apply the argument employed in the proof of [2, Theorem] to see the commutativity of R.
II) Next, suppose that $n>1, r=1$ and R has the property $Q(n)$. We claim that $D \subseteq C$. In fact, if $a \in D \backslash C$ then there exists a positive integer p such that $a^{p} \notin C$ and $a^{k} \in C$ for all $k>p$. For any $y \in R$, by repeated use of (1), we have $n\left(1+a^{p}\right)^{t}\left[a^{p}, y\right]=\left(1+a^{p}\right)^{t}\left[\left(1+a^{p}\right)^{n}, y\right]=f\left(1+a^{p}, y\right)=f(1, y)+f\left(a^{p}, y\right)$ $=f\left(a^{p}, y\right)=a^{p t}\left[a^{p n}, y\right]=0$. Since $1+a^{p}$ is a unit in R, we have

$$
\begin{equation*}
n\left[a^{p}, y\right]=0 \tag{2}
\end{equation*}
$$

Hence, $\left[a^{p}, y\right]=0$ by $Q(n)$, a contradiction. We have thus seen that $D \subseteq C$. We write $f_{1 j}(X, Y)=\sum_{k=0}^{j} \alpha_{j k} Y^{k} X Y^{j-k}$. Since $\sum_{k=0}^{j} \alpha_{j k}=0$ by assumption, we have $f_{1 j}(x, y)=\sum_{k=0}^{j-1} \alpha_{j k}\left(y^{k} x y^{j-k}-y^{j} x\right)=\sum_{k=0}^{j-1} \alpha_{j k} y^{k}\left[x, y^{j-k}\right]=\sum_{k=0}^{j-1}(j-k) \alpha_{j k} y^{j-1}[x, y]$ for any $x, y \in R$. Therefore, we can write $f(X, Y)=g(Y)[X, Y]$ with some polynomial g with integer coefficients, and (1) becomes

$$
\begin{equation*}
n X^{t}[X, Y]-g(Y)[X, Y]=0, \text { where } t^{\prime}=n+t-1>0 \tag{3}
\end{equation*}
$$

For any positive integers k, l, we denote by $h_{k l}(X, Y)$ the polynomial $(k+1)\left(n^{k l}\right.$ $\left.-g(Y)^{k l}\right)[X, Y]$. By repeated use of (3), for any $x, y \in R$ we have $(k+1) n^{k l}$ $x^{t+k}[x, y]=(k+1) n^{k l-1} x^{k}[x, y] g(y)=n^{k l-1}\left[x^{k+1}, y\right] g(y)=n^{k l} x^{(k+1) t t}\left[x^{k+1}, y\right]=(k+$ 1) $n^{k l} x^{(k+1) t^{\prime+k}}[x, y]$. Then, $(k+1) n^{k l} x^{t+k}[x, y]=(k+1) n^{k l} x^{t+k}[x, y] x^{k t^{\prime}}=(k+$ 1) $n^{k l} x^{t+k}[x, y] x^{k l t^{\prime}}=(k+1) x^{t+k} g(y)^{k l}[x, y]$. Therefore, $(k+1) x^{t /+k}\left(n^{k l}-g(y)^{k l}\right)$ $[x, y]=0$, and hence $h_{k l}(x, y)=0$ (Lemma). In particular, $n^{2}\left[x,\left(1-x^{2 t}\right) y\right]=n^{2}$ $\left(1-x^{2 t \prime}\right)[x, y]=\left(n^{2}-g(y)^{2}\right)[x, y]=h_{21}(x, y)-h_{12}(x, y)=0$, and therefore $\left(1-x^{2 t \prime}\right)$ $[x, y]=0$. Exchanging x and y, we have $[x, y]=y^{2 t^{\prime}}[x, y]$, which comes under the case I). This completes the proof.

As an application of our theorem, we shall prove the following which includes [3, Theorem], [4, Theorem] and [5, Theorems 1 and 2].

Corollary 1. Let $n>0, m, t$ and s be fixed non-negative integers such that $(n, t, m, s) \neq(1,0,1,0)$. Suppose a left s-unital ring R satisfies the polynomial identity

$$
\begin{equation*}
X^{t}\left[X^{n}, Y\right]-\left[X, Y^{n}\right] Y^{s}=0 \tag{4}
\end{equation*}
$$

(a) If R has the property $Q(n)$ then R is commutative.
(b) If n and m are relatively prime then R is commutative.

Proof. Let x, y be arbitrary elements of R, and choose an element e of R such that $e x=x$ and $e y=y$. If $(m, s) \neq(1,0)$ then (4) gives $y=y e^{n}+e y^{m+s}$ $-y^{m} e y^{s} \in y R$. On the other hand, if $(m, s)=(1,0)$ then $(n, t) \neq(1,0)$ and (4) gives $x=x e-x^{n+t} e+x^{n+t} \in x R$. We have thus seen that R is s-unital. Therefore, by [1, Proposition 1], we may assume that R has 1 .

If $m=0$ (in the case of (a)), the assertion is clear by Theorem. Next,
we consider the case $n=1$. If $m>0$ and $(m, s) \neq(1,0)$ then $m+s>1$, and hence the assertion is clear, again by Theorem. Also, if $(m, s)=(1,0)$ then, exchanging the roles of X and Y, we get the assertion. Similarly, we can prove the assertion for $m=1$. Therefore, we may assume henceforth that $n>1$ and $m>1$. For the case (a), the assertion is immediate by Theorem. So, we consider the case (b). Let $a \in D$, and $y \in R$. If a is not in C then there exists a positive integer p such that $a^{p} \notin C$ and $a^{k} \in C$ for all $k>p$ and $n\left[a^{p}, y\right]=0$ by (2); similarly we can prove $m\left[a^{p}, y\right]=0$. Hence, $\left[a^{p}, y\right]=0$. This contradiction shows that $D \subseteq C$, and (4) becomes

$$
\begin{equation*}
n X^{n+t-1}[X, Y]=m Y^{m+s-1}[X, Y] \tag{5}
\end{equation*}
$$

If $n[x, y]=0(x, y \in R)$ then (5) gives $m y^{m+s-1}[x, y]=n x^{n+t-1}[x, y]=0=n x^{n+t-1}$ $[x, y+1]=m(y+1)^{m+s-1}[x, y]$, whence $m[x, y]=0$ follows by Lemma, and hence $[x, y]=0$. This prove that R has the property $Q(n)$. Hence, R is commutative by Theorem, completing the proof.

Corollary 2. Let $n>0$ and m be fixed non-negative integers. Suppose a left s-unital ring R satisfies the polynomial identity $\left[X Y, X^{n}+Y^{m}\right]=0$. If either R has the property $Q(n)$ or n and m are relatively prime, then R is commutative.

Proof. Actually, R satisfies the polynomial identity $X\left[X^{n}, Y\right]-\left[X, Y^{m}\right] Y$ $=0$. Hence R is commutative by Corollary 1 .

Remark. In case $n>0$ and $m=0$, Corollary 1 need not be true for right s-unital rings (see [3, Remark]).

The author wishes to express his indebtedness and gratitude to Prof. H. Tominaga for his helpful suggestions and valuable comments.

References

[1] Y. Hirano, Y. Kobayashi and H. Tominaga: Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ. 24 (1982), 7-13.
[2] T.P. Kezlan: On identities which are equivalent with commutativity, Math. Japon. 29 (1984), 135-139.
[3] H. Komatsu: A commutativity theorem for rings, Math. J. Okayama Univ. 26 (1984), 109-111.
[4] E. Psomopoulos: A commutativity theorem for rings involving a subset of the ring, Glasnik Mat. 18 (1983), 231-236.
[5] E. Psomopoulos: Commutativity theorems for rings and groups with constraints on commutators, to appear in Internat. J. Math. Math. Sci.

Department of Mathematics
Osaka City University
Sumiyoshi-ku, Osaka 558
Japan

