A COMMUTATIVITY THEOREM FOR RINGS. II

HIROAKI KOMATSU

(Received October 22, 1984)

Throughout the present paper, R will represent a ring with center C, and D the commutator ideal of R. A ring R is called left (resp. right) *s*-unital if $x \in Rx$ (resp. $x \in xR$) for every $x \in R$; R is called *s*-unital if R is both left and right *s*-unital. Given a positive integer n, we say that R has the property Q(n) if for any $x, y \in R$, n[x, y]=0 implies [x, y]=0 (see [1]).

Our present objective is to generalize [2, Theorem] for left s-unital rings as follows:

Theorem. Let n > 0, r, s and t be non-negative integers and let $f(X, Y) = \sum_{i=1}^{r} \sum_{j=2}^{s} f_{ij}(X, Y)$ be a polynomial in two noncommuting indeterminates X, Y with integer coefficients such that each f_{ij} is a homogeneous polynomial with degree i in X and degree j in Y and the sum of the coefficients of f_{ij} equals zero. Suppose a left s-unital ring R satisfies the polynomial identity

(1)
$$X^{t}[X^{n}, Y] - f(X, Y) = 0$$
.

If either n=1 or r=1 and R has the property Q(n), then R is commutative.

We shall use freely the following well known result stated without proof.

Lemma. Let x, y be elements of a ring with 1, and let k be a positive integer. If $x^k y=0=(x+1)^k y$ then y=0.

Proof of Theorem. Let y be an arbitrary element of R, and choose an element e of R such that ey=y. Then (1) gives $y-ye^{n}=f(e, y) \in yR$. We have thus seen that R is right s-unital, and hence s-unital. Therefore, in view of [1, Proposition 1], it suffices to prove the theorem for R with 1.

Observe that D is a nil ideal of R, by a theorem of Kezlan-Bell (see, e.g., [1, Proposition 2]), since $x=e_{11}$ and $y=e_{12}$ fail to satisfy (1).

I) We consider first the case n=1. Let a, b be elements of R. By Lemma, it is easy to see that if $x^t a[x, b]=0$ for all $x \in R$ then a[x, b]=0. Noting this fact, we can apply the argument employed in the proof of [2, Theorem] to see the commutativity of R.

H. KOMATSU

II) Next, suppose that n>1, r=1 and R has the property Q(n). We claim that $D\subseteq C$. In fact, if $a\in D\setminus C$ then there exists a positive integer p such that $a^{p}\notin C$ and $a^{k}\in C$ for all k>p. For any $y\in R$, by repeated use of (1), we have $n(1+a^{p})^{t}[a^{p}, y]=(1+a^{p})^{t}[(1+a^{p})^{n}, y]=f(1+a^{p}, y)=f(1, y)+f(a^{p}, y)$ $=f(a^{p}, y)=a^{pt}[a^{pn}, y]=0$. Since $1+a^{p}$ is a unit in R, we have

$$n[a^p, y] = 0.$$

Hence, $[a^{p}, y]=0$ by Q(n), a contradiction. We have thus seen that $D\subseteq C$. We write $f_{1j}(X, Y) = \sum_{k=0}^{j} \alpha_{jk} Y^{k} X Y^{j-k}$. Since $\sum_{k=0}^{j} \alpha_{jk} = 0$ by assumption, we have $f_{1j}(x, y) = \sum_{k=0}^{j-1} \alpha_{jk} (y^{k} x y^{j-k} - y^{j} x) = \sum_{k=0}^{j-1} \alpha_{jk} y^{k} [x, y^{j-k}] = \sum_{k=0}^{j-1} (j-k) \alpha_{jk} y^{j-1} [x, y]$ for any $x, y \in R$. Therefore, we can write f(X, Y) = g(Y) [X, Y] with some polynomial g with integer coefficients, and (1) becomes

(3)
$$nX''[X, Y] - g(Y)[X, Y] = 0$$
, where $t' = n + t - 1 > 0$.

For any positive integers k, l, we denote by $h_{kl}(X, Y)$ the polynomial (k+1) $(n^{kl} - g(Y)^{kl})$ [X, Y]. By repeated use of (3), for any x, $y \in R$ we have $(k+1)n^{kl} x^{t'+k}[x, y] = (k+1) n^{kl-1} x^k[x, y] g(y) = n^{kl-1}[x^{k+1}, y] g(y) = n^{kl} x^{(k+1)t'}[x^{k+1}, y] = (k+1) n^{kl} x^{(k+1)t'+k}[x, y]$. Then, $(k+1) n^{kl} x^{t'+k}[x, y] = (k+1) n^{kl} x^{t'+k}[x, y] x^{kt'} = (k+1) n^{kl} x^{t'+k}[x, y] x^{kt'} = (k+1) x^{t'+k} g(y)^{kl}[x, y]$. Therefore, $(k+1) x^{t'+k}(n^{kl} - g(y)^{kl})$ [x, y] = 0, and hence $h_{kl}(x, y) = 0$ (Lemma). In particular, $n^2[x, (1-x^{2t'}) y] = n^2 (1-x^{2t'}) [x, y] = (n^2 - g(y)^2) [x, y] = h_{21}(x, y) - h_{12}(x, y) = 0$, and therefore $(1-x^{2t'}) [x, y] = 0$. Exchanging x and y, we have $[x, y] = y^{2t'} [x, y]$, which comes under the case I). This completes the proof.

As an application of our theorem, we shall prove the following which includes [3, Theorem], [4, Theorem] and [5, Theorems 1 and 2].

Corollary 1. Let n > 0, m, t and s be fixed non-negative integers such that $(n, t, m, s) \neq (1, 0, 1, 0)$. Suppose a left s-unital ring R satisfies the polynomial identity

(4)
$$X^{t}[X^{n}, Y] - [X, Y^{n}]Y^{s} = 0.$$

- (a) If R has the property Q(n) then R is commutative.
- (b) If n and m are relatively prime then R is commutative.

Proof. Let x, y be arbitrary elements of R, and choose an element e of R such that ex=x and ey=y. If $(m, s) \neq (1, 0)$ then (4) gives $y=ye^{n}+ey^{m+s}$ $-y^{m}ey^{s} \in yR$. On the other hand, if (m, s)=(1, 0) then $(n, t) \neq (1, 0)$ and (4) gives $x=xe-x^{n+t}e+x^{n+t} \in xR$. We have thus seen that R is s-unital. Therefore, by [1, Proposition 1], we may assume that R has 1.

If m=0 (in the case of (a)), the assertion is clear by Theorem. Next,

812

we consider the case n=1. If m>0 and $(m, s) \neq (1, 0)$ then m+s>1, and hence the assertion is clear, again by Theorem. Also, if (m, s)=(1, 0) then, exchanging the roles of X and Y, we get the assertion. Similarly, we can prove the assertion for m=1. Therefore, we may assume henceforth that n>1 and m>1. For the case (a), the assertion is immediate by Theorem. So, we consider the case (b). Let $a \in D$, and $y \in R$. If a is not in C then there exists a positive integer p such that $a^{p} \notin C$ and $a^{k} \in C$ for all k>p and $n[a^{p}, y]=0$ by (2); similarly we can prove $m[a^{p}, y]=0$. Hence, $[a^{p}, y]=0$. This contradiction shows that $D \subseteq C$, and (4) becomes

(5)
$$nX^{n+t-1}[X, Y] = mY^{m+s-1}[X, Y].$$

If n[x, y]=0 (x, $y \in R$) then (5) gives $my^{m+s-1}[x, y]=nx^{n+t-1}[x, y]=0=nx^{n+t-1}[x, y]=1$ [x, $y+1]=m(y+1)^{m+s-1}[x, y]$, whence m[x, y]=0 follows by Lemma, and hence [x, y]=0. This prove that R has the property Q(n). Hence, R is commutative by Theorem, completing the proof.

Corollary 2. Let n>0 and m be fixed non-negative integers. Suppose a left s-unital ring R satisfies the polynomial identity $[XY, X^n + Y^m] = 0$. If either R has the property Q(n) or n and m are relatively prime, then R is commutative.

Proof. Actually, R satisfies the polynomial identity $X[X^n, Y] - [X, Y^m]Y = 0$. Hence R is commutative by Corollary 1.

REMARK. In case n > 0 and m = 0, Corollary 1 need not be true for right s-unital rings (see [3, Remark]).

The author wishes to express his indebtedness and gratitude to Prof. H. Tominaga for his helpful suggestions and valuable comments.

References

- [1] Y. Hirano, Y. Kobayashi and H. Tominaga: Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ. 24 (1982), 7-13.
- [2] T.P. Kezlan: On identities which are equivalent with commutativity, Math. Japon. 29 (1984), 135-139.
- [3] H. Komatsu: A commutativity theorem for rings, Math. J. Okayama Univ. 26 (1984), 109-111.
- [4] E. Psomopoulos: A commutativity theorem for rings involving a subset of the ring, Glasnik Mat. 18 (1983), 231-236.
- [5] E. Psomopoulos: Commutativity theorems for rings and groups with constraints on commutators, to appear in Internat. J. Math. Math. Sci.

H. Komatsu

Department of Mathematics Osaka City University Sumiyoshi-ku, Osaka 558 Japan