Kobayashi, S. Osaka J. Math. 22 (1985), 797-803

ON NON-SINGULAR FPF-RINGS II

SHIGERU KOBAYASHI

(Received October 24, 1984)

In [2], we have proved that a right non-singular ring R is right FPF (=every finitely generated faithful right R-module generates the category of right Rmodules) if and only if (1) R is right bounded, (2) The multiplication map $Q \bigotimes_R Q \to Q$ is an isomorphism and Q is flat as a right R-module, where Q means the maximal right quotient ring of R, (3) For any finitely generated right ideal I of R, $Tr_R(I) \oplus r_R(I) = R$ (as ideals), where $Tr_R(I)$ means the trace ideal of Iand $r_R(I)$ means the right annihilator ideal of I. This characterization implies a following result of S. Page. "Let R be a right non-singular right FPF-ring and Q be the maximal right quotient ring of R. Then Q is also right FPF and is isomorphic to a finite direct product of full matrix rings over abelian regular self-injective rings." However, as we can see from an example in section 1, not all non-singular right FPF-rings arise in this fashion.

Therefore, in this paper, we shall give a necessary and sufficient condition for a non-singular right FPF-ring to split into a finite direct product of full matrix rings over FPF-rings whose maximal right quotient rings are abelian regular self-injective rings. More precisely, we shall prove the following theorem.

Theorem 1. Let R be a non-singular right FPF-ring. Then the following conditions are equivalent.

(1) $R \simeq \prod_{i=1}^{i} M_{n(i)}(S_i)$, where each S_i is a non-singular right FPF-ring whose maximal right quotient ring is an abelian regular self-injective ring.

(2) R contains a faithful and reduced FPF idempotent and R satisfies general comparability.

By Y. Utumi [5], non-singular (right) continuous rings are shown to be (Von Neumann) regular, and S. Page has determined the structure of regular (right) FPF-rings. Therefore we are interested in the structure on non-singular right quasi-continuous, right FPF-rings. In section 2, as an application of Theorem 1, we shall determine the structure of non-singular right quasi-continuons right FPF-rings.

0. Preliminaries

Throughout of this paper, we assume that a ring R has identity and all modules are unitary.

Let R be a ring. Then we say that R is right FPF if every finitely generated faithful right R-module is a generator in the category of right R-modules. If R is a right non-singular right FPF-ring, then R is also left non-singular by Theorem 3 of [4]. Therefore, we simply call R a non-singular right FPFring.

Let e be an element of id(R) (=the set of all idempotents of R), where R is a non-singular right FPF-ring. Then we say that e is a faithful and reduced FPF idempotent if the right R-module eR is faithful and the ring eRe is a non-singular right FPF-ring whose maximal right quotient ring is an abelian regular self-injective ring, where a regular ring R is said to be abelian if every idempotent of R is central.

A ring R satisfies general comparability provided that for any e, f in id(R), there exists $h \in B(R)$ (=the set of all central idempotents of R) such that $h(eR) \leq h(fR)$ and $(1-h)(fR) \leq (1-h)(eR)$, where $h(eR) \leq h(fR)$ means that h(eR) is isomorphic to a direct summand of h(fR).

Let M be a right R-module. Then we use $r_R(M)$ to denote the right annihilator ideal of M, and we use $L_r(M)$ to denote the lattice of all submodules of M. M is said to have the extending property of modules for $L_r(M)$, provided that for any A in $L_r(M)$, there exists a direct summand A^* of M such that $A \subseteq A^*$, where $A \subseteq A^*$ means that A is an essential submodule of A^* .

We say a ring R is right quasi-continuous if (1) R has the extanding property of modules for $L_r(R)$, and (2) for A and B in $L_r(R)$, which are direct summand of R with $A \cap B = 0$, $A \oplus B$ is also a direct summand of R.

1. Proof of Theorem 1

In this section, we shall prove Theorem 1. First we show the following lemma.

Lemma 1. Let R be a non-singular right FPF-ring whose maximal right quotient ring is an abelian regular self-injective ring. Then for any positive integer n, $M_n(R)$ satisfies general comparability.

Proof. First we assume that n=1. Since Q, the maximal right quotient ring of R, is an abelian regular ring, B(Q)=B(R), hence id(Q)=id(R). Let eand f are idempotents of R. Then $eR \cap fR = efR$ and ef is idempotent since id(R) = B(R). So $fR \cap eR \leq fR = f(fR)$ and $(1-f)(fR) (=0) \leq (1-f)(eR)$. Therefore R has general comparability. Next let n>1, and assume that the Theorem holds for n-1. Let e and f are idempotent of $M_n(R)$. Then we note

798

that eR and fR are isomorphic to $e_1 \oplus \cdots \oplus e_n R$ and $f_1 R \oplus \cdots \oplus f_n R$ as right Rmodules, where e_i and f_i $(i=1, 2, \dots, n)$ are idempotents of R. We set A = $e_1 R \oplus \cdots \oplus e_n R$ and $B = f_1 R \oplus \cdots \oplus f R_n$, and set $A' = e_2 R \oplus \cdots \oplus e_n R$ and $B' = f_1 R \oplus \cdots \oplus f R_n$. $f_2 R \oplus \cdots \oplus f_n R$. By induction hypothesis, there exist central idempotents h_1, h_2 such that $h_1(e_1R) \leq h_1(f_1R), (1-h_1)(f_1R) \leq (1-h_1)(e_1R), \text{ and } h_2A' \leq h_2B', (1-h_2)B'$ $\leq (1-h_2)A'$. Now we set that $t_1 = h_1h_2$ and $t_2 = (1-h_1)(1-h_2)$. Then t_1 and $t_2 = (1-h_1)(1-h_2)$. are in B(R), and $t_1t_2=0$. Moreover we see that $t_1(e_1R) \leq t_1(f_1R)$ and $t_1A' \leq t_1B'$, Hence $t_1A \leq t_1B$. Similarly, $t_2B \leq t_2A$. Further we set $g_1 = h_1(1-h_2), g_2 = h_2(1-h_1)$ and $g=g_1+g_2$. Then since $h_1(e_1R) \leq h_1(f_1R)$, we have $g_1(e_1R) \leq g_1(f_1R)$ and $g_1(f_1R)$ $\simeq g_1(e_1R) \oplus D_1$ for some D_1 . Similarly, we obtain that $g_2(e_1R) \simeq g_2(f_1R) \oplus C_1$ for some C_1 . Furthermore we have that $g_2B' = g_2A' \oplus D_2$ and $g_1A' = g_1B' \oplus C_2$ for D_2, C_2 . We see that $gA \simeq (g_1(e_1R) \oplus g_2(f_1R) \oplus g_1B' \oplus g_2A') \oplus (C_1 \oplus C_2)$ and $gB \simeq$ some $(g_1(e_1R) \oplus g_2(f_1R) \oplus g_1B' \oplus g_2A') \oplus (D_1 \oplus D_2)$. On the other hand, since $C_1 \leq C_1 \leq C_2$ $g_2(e_1R) \leq g_2R$ and $C_2 \leq g_1A' \leq (n-1)(g_1R), C_1 \oplus C_2 \leq (n-1)(g_1+g_2)R \leq (n-1)gR$. Similarly, $D_1 \oplus D_2 \leq (n-1)gR$. Hence by induction hypothesis, there exists a central idempotent k of R such that $k(C_1 \oplus C_2) \leq k(D_1 \oplus D_2)$ and $(1-k)(D_1 \oplus D_2) \leq k(D_1 \oplus D_2) \leq k(D_1 \oplus D_2)$ $(1-k)(C_1 \oplus C_2)$. Set $t_3 = gk$ and $t_4 = g(1-k)$. Then t_3 , t_4 are in B(R) and $t_3t_4 = 0$ and $t_3+t_4=g$. We see that $t_3A \leq t_3B$ and $t_4B \leq t_4A$. Now we set $e=t_1+t_3$. Then $eA \leq eB$ and $(1-e)B \leq (1-e)A$. Therefore $M_n(R)$ has general comparability.

Proof of Theorem 1.

 $(1) \Rightarrow (2)$; By Lemma 1, R has general comparability, and it is easily seen that R contains a faithful and reduced FPF imdempotent.

 $(2) \Rightarrow (1)$; Let g be a a faithful and reduced FPF idempotent of R. We claim that g is a faithful abelian idempotent of Q. Set $H=r_Q(gQ)$, then since Q is right self-injective regular, H=eQ for some central idempotent e of R. Further by Theorem 1 of [3], B(R) = B(Q), so e must be zero since gR is faithful. Hence gQ is a faithful right Q-module. We note that gQg is a maximal right quotient ring of gRg. Thus g is a faithful abelian idempotent of Q. Since Q is also right FPF by [4, Theorem 2], $Q \leq n(gQ)$ for some positive integer n. For each $t=1, 2, \dots, n$ let e_t be the supremum of all $e \in B(R)$ for which $(eQ)_Q \leq t(egQ)$. By [2, Theorem 10, 15], $e_tQ \leq t(e_tgQ)$. Then $e_1 \leq e_2 \cdots$ $\leq e_n = 1$, and we define that $f_1 = e_1$, and $f_t = e_t - e_{t-1}$ for all $t = 2, \dots, n$. Note that the f_t 's are pairwise orthogonal, and $\forall f_t = \forall e_t = 1$. Therefore $Q = \prod_{i=1}^n f_i Q_i$, and since B(R) = B(Q), we see that $R = \prod_{t=1}^{n} f_t R$. Thus it only remains to show that each of the rings $f_t R$ is isomorphic to a $t \times t$ -matrix ring over a FPF-ring whose maximal right quotient ring is an abelian regular self-injective ring. Since $f_1Q \leq f_1gQ \leq gQ$ and gQg is abelian, we see that the ring f_1Q is abelian. Furthermore, f_1Q is a maximal right quotient ring of f_1R . Now consider any integer $t \in \{2, \dots, n\}$. Note that $f_t Q$ is a regular ring of index t. We have that $f_t \leq e_t$ S. KOBAYASHI

and $e_t Q \leq t(e_t g Q)$, whence $f_t Q \leq t(f_t g Q)$. Since R has general comparability, there exists a central idempotent e of R such that $(t-1)(egR) \leq eR$ and $(1-e)R \leq eR$ (t-1)(1-e)gR. Then $(1-e)Q \leq (t-1)(1-e)gQ$, so $1-e \leq e_{t-1}$. Thus $f_t \leq e_{t-1}$. $1-e_{t-1} \leq e$. Therefore $(t-1)(f_t g R) \leq f_t R$. We have that $f_t R = (t-1)(f_t g R) \oplus A$ for some A. Next by general comparability of R, there exists acentral idempotent h of R such that $h(f_t g R) \leq hA$, and $(1-h)A \leq (1-h)(f_t g R)$. Then $hA = h(f_tgR) \oplus B$ and $(1-h)(f_tgR) \cong (1-h)A \oplus C$ for some B and C. Now $f_t R \simeq t(hf_t g R) \oplus B \oplus t((1-h)A) \oplus (t-1)C$. Hence there exist idempotents k_i (i= 1, 2, 3, 4) of $f_t R$ such that $k_1 R \simeq (t(hf_t g R), k_2 R \simeq B, k_3 \simeq t((1-h)A))$, and $k_4 R \simeq t(1-h)A$ (t-1)C. We claim that each k_i is central. If k_1 is not central, then Hom_Q (k_1Q) , $(f_t - k_1)Q \simeq (f_t - k_1)Qk_1 \neq 0$, whence $\operatorname{Hom}_{\varphi}(hf_t gQ, (f_t - k_1)Q) \neq 0$. Let φ be a nonzero element of $\operatorname{Hom}_{Q}(hf_{t}gQ, (f_{t}-k_{1})Q)$. Then $\varphi(hf_{t}g)$ is nonzero and $\varphi(hf_tg)Q$ is a direct summand of $(f_t - k_1)Q$. In particular, $\varphi(hf_tg)Q$ is a projective and hence we have that $hf_t gQ = E \oplus \text{Ker } \varphi$ for some E. Since $E \simeq \varphi(hf_t g)Q$, we have that $E \leq hf_tQ$. But then hf_tQ contains a direct sums of t+1 nonzero pairwise isomorphic right ideals, which contradicts the index of f_iQ . Therefore k_1 is central. Likewise for k_2 , k_3 , k_4 . Next we show that k_2 and k_4 are zero. It is easily seen that k_2 is zero since $f_t g R$ is a faithful right $f_t R$ -module. Since $C \leq (1-h)(f_t g R), R \simeq (t-1)C \leq (t-1)(1-h)f_t g R.$ Hence $(1-h)f_t k_4 R \leq (t-1)$. $(1-h)f_tk_4gR$, so $(1-h)f_tk_4 \leq e_{t-1}$. But since $e_{t-1} = e_t - f_t$, e_{t-1} is orthogonal to f_{t-1} . Thus $k_4 = (1-h)f_t k_4 = 0$. Consequently, $f_t R = k_1 R \oplus k_2 R \simeq t(hf_t g R) \oplus t(hf_t g R)$ $t((1-h)A) \simeq t(hf_tgR) \oplus t((1-h)f_tgR) \simeq t(f_tgR). \quad \text{Thus } f_tR = M_t(f_tgRf_tg) \text{ as}$ rings, since $f_t g Q f_t g$ is a maximal right quotient ring of $f_t g R f_t g$ and is an abelian regular right self-injective ring. Thus the proof is complete.

EXAMPLE. There exists a non-singular two-sided FPF-ring R, which is not isomorphic to a full matrix ring of non-singular FPF-ring whose maximal right quotient ring is an abelian regular self-injective ring.

Proof. Let D be a Prüfer domain which is not a principal ideal domain and let I be a non-principal finitely generated ideal of D. We set $R = \begin{pmatrix} D & I \\ I^{-1} & D \end{pmatrix}$.

It is easy to see that R is non-singular FPF-ring, and R does not satisfy general comparability. Hence by Theorem 1, R is not isomorphic to a full matrix ring over a non-singular FPF-ring whose maximal right quotient ring is an abelian regular self-injective ring.

2. Non-singular quasi-continuous FPF-rings

In this section, as an application of Theorem 1, we shall determine the structure of non-singular quasi-continuous FPF-rings. First we recall that a ring R is right quasi-continuous if (1) R has the extending property of modules for $L_r(R)$, and (2) For any A, B in $L_r(R)$, which are direct summand of R with

 $A \cap B = 0$, $A \oplus B$ is also a direct summand of R.

In [3], K. Oshiro has studied qusai-continuous modules, and proved the following.

Proposition 1 ([3, Propositions 1.5 and 3.1]). Let M be a right R-module. Then the following conditions are equivalent.

(1) M is right quasi-continuous.

(2) (i) M has the extending property of modules for $L_r(M)$.

(ii) For any A and B in $L_r(M)$ such that $B \leq \bigoplus M$ i.e. B is a direct summand of M, and $A \cap B = 0$, every homomorphism of A to B is extended to a homomorphism of M to B.

(3) Every decomposition $E(M) = E_1 \oplus E_2 \oplus \cdots \oplus E_n$ implies that $M = (E_1 \cap M) \oplus (E_2 \cap M) \oplus \cdots \oplus (E_n \cap M)$, where E(M) denotes the injective hull of M.

In order to determine the structure of non-singular quasi-continuous FPFrings, we shall need the following lemma.

Lemma 3. Let R be a non-singular right quasi-continuous right FPF-ring. Then R satisfies general comparability.

Proof. Let e and f are idempotents of R, and consider an exact sequence $0 \rightarrow eR \cap fR \rightarrow fR \rightarrow (1-e)fR \rightarrow 0$. Since R is right quasi-continuous, R has the extending property of modules for $L_r(R)$, (1-e)fR is projective. Thus $eR \cap fR$ is a dierct summand of fR. Similarly, $eR \cap fR \triangleleft eR$. Hence $eR = (eR \cap fR) \oplus$ e_1R and $fR = (eR \cap fR) \oplus f_1R$. It follows that if there exists a central idempotent h of R such that $h(e_1R) \leq h(f_1R)$ and $(1-h)(f_1R) \leq (1-h)(e_1R)$, then $h(e_1R) \leq h(f_1R)$ and $(1-h)(fR) \leq (1-h)(eR)$. Hence R satisfies general comparability. Therefore, we may assume that $eR \cap fR = 0$. Let X denote the collection of all triples (A, B, φ) such that $A \subseteq eR$, $B \subseteq fR$, and $\varphi: A \rightarrow B$ is an isomorphism. Define a partial order on X by setting $(A'', B'', \varphi'') \leq (A', B', \varphi')$ whenever $A'' \leq A'$, $B'' \leq B'$, and φ' is an extention of φ'' . By Zorn's lemma, there exists a maximal element (A', B', φ') in X. Since R has the extending property of modules for $L_{\mathfrak{c}}(R)$, there exist direct summands A^* , B^* of R such that $A' \subseteq A^*$, $B' \subseteq A^*$. Then since R is right quasi-continuous, by the condition (2) of Proposition 1, we have homomorphisms $\varphi: A^* \rightarrow B^*$, and $\psi: B^* \rightarrow A^*$, which which are extensions of the isomorphisms φ' and $(\varphi')^{-1}$ respectively. We show that φ is an isomorphism. Let *m* be an element of A^* such that $\varphi(m)=0$. Then since $A'\subseteq A^*$, $J = \{r \in R \mid mr \in A'\}$ is an essential right ideal of R and $\varphi'(mr) = 0$ for any $r \in J$. Thus mJ=0 since φ' is an isomorphism, and m=0. Hence φ is a monomorphism. Next let m be any element of B^* . Then for any element r of H= ${r \in R \mid mr \in B'}, \varphi \cdot \psi(mr) = \varphi'(\varphi')^{-1}(mr) = mr$, where φ is an epimorphism. Therefore φ is an isomorphism. On the other hand, by the maximality of $(A', B', \varphi'), (A', B', \varphi') = (A^*, B^*, \varphi)$, hence A' and B' are direct summand of S. Kobayashi

Thus $eR = A' \oplus e_1R$ and $fR = B' \oplus f_1R$. Set $I = r_R(e_1R)$. Since R is right **R**. FPF, there exists a central idempotent h of R such that I = hR by [3, Theorem 1]. In this case, we have that $h(eR) = h(A') \simeq h(B') \le h(fR)$. Next we show that $f_1R(1-h)=0$. If $f_1R(1-h)=0$, then there is a nonzero element $x \in f_1R(1-h)$. Since xR is non-singular, xR is projective, so that there exists an idempotent t of R such that $xR \simeq tR$ by the extending property to R. We note that $tRh \simeq$ xRh=0.Since $t \neq 0$, it follows that $t \in hR$. Then $yt \neq 0$ for some $y \in e_1R$. We have an exact sequence $xR \rightarrow tR \rightarrow ytR \rightarrow 0$, and that ytR is projective. Thus there exists a monomorphism $g: ytR \rightarrow xR$. Since $yt \in e_1R$ and $x \in f_1R$, we obtain that $(A' \oplus y_i R, B' \oplus g(y_i R), \varphi' \oplus g) \in X$. But this contradicts the maximality of (A', B', φ') . Therefore $f_1R(1-h)=0$. Now (1-h)(fR)=(1-h)(B') $\simeq (1-h)(A') \leq (1-h)(eR)$. Therefore R satisfies general comparability.

Theorem 2. Let R be a non-singular right FPF-ring and Q be the maximal right quotient ring of R. Then the following conditions are equivalent.

- (1) R is right quasi-continuous.
- (2) id(R) = id(Q).

(3) $R \simeq R_1 \times \prod_{i=1}^t M_{n(i)}(S_i)$, where R_1 is a non-singular right FPF-ring whose maximal right quotient ring is an abelian regular self-injective ring, and each S_i is an abelian regular self-injective ring and $n(i) \ge 2$.

Proof. (1) \Rightarrow (3); Since Q is a regular self-injective ring of bounded index, Q has an faithful and abelian idempotent e, i.e. the right Q-module eQ is faithful and the ring eQe is abelian regular. Then $Q = eQ \oplus (1-e)Q$. Thus by the condition (3) of Proposition 1, $R = e'R \oplus e''R$ for some idempotents e', e'' of R. We show that e' is a faithful and reduced FPF-idempotent. Let $I=r_R(e'R)$. Then since R is right FPF, by Theorem 1 of [3], there exists a central idempotent f of R such that I = fR. Set $J = \{r \in R | er \in R\}$. Then we obtain that $eJ \subseteq eQ \cap R = e'R$ and eJf = 0, so ef = 0 since J is an essential right ideal of R. While since eQ is faithful, f must be zero. Hence e'R is faithful. Furthermore, eQe is clearly, a maximal right quotient ring of e'Re'. Therefore e' is a faithful and reduced FPF idempotent. Moreover, by Lemma 2, R satisfies general com-Therefore it follows from Theorem 1 that $R \simeq \prod_{i=1}^{i} M_{\pi(i)}(S_i)$, where parability. each S_i is a non-singular right FPF-ring whose the maximal right quotient ring is an abelian regular self-injective ring. We claim that if $n(i) \ge 2$, then each S_i is a self-injective regular ring. To prove this, we set $R = M_n(S)$ $(n \ge 2)$, where S is a non-singular right FPF-ring whose the maximal right quotient ring Q(S)is abelian regular. Assume that $Q(S) \neq S$ and let w be any element of Q(S) - S. Set $\bar{e} = \begin{pmatrix} 1, 0, \dots, 0, w \\ 0 \end{pmatrix}$. Then clearly, $\bar{e}Q = \begin{pmatrix} Q(S), Q(S), \dots, Q(S) \\ 0 \end{pmatrix}$ and

802

$$(1-e)Q = \{ (wx_1, wx_2, \dots, wx_n) | x, x, \dots, x_n \in Q(S) \}.$$
 In this case

$$\begin{pmatrix} Q(S), Q(S), \dots, Q(S) \\ \dots, x_1, x_2, \dots, x_n \end{pmatrix} | x, x, \dots, x_n \in Q(S) \}.$$
 In this case

$$eQ \cap R = \begin{pmatrix} S, S, \dots, S \\ 0 \end{pmatrix} \text{ and } (1-e)Q \cap R = \{ (wy_1, wy_2, \dots, wy_n) | y_1, y_2, \dots, y_n \in J \\ \dots, y_2, y_1, \dots, y_n \end{pmatrix} | y_1, y_2, \dots, y_n \in J \}.$$
 Hence $(eQ \cap R) \oplus ((1-e)Q \cap R) = \begin{pmatrix} S, \dots, S \\ S, \dots, S \\ J, \dots, J \end{pmatrix} \neq R.$ But this

contradicts that R is right quasi-continuous. Therefore Q(S)=S, so S is regular self-injective.

(3) \Rightarrow (2); Since idempotent of R_1 are central, $id(R_1)=id(Q_{\max}(R_1))$. Therefore id(R)=id(Q).

(2) \Rightarrow (1); By the condition (3) of Proposition 1, it suffices to show that if $Q = e_1Q \oplus e_2Q \oplus \cdots \oplus e_nQ$ for some idempotents e_i of Q, then $R = (e_1Q \cap R) \oplus (e_2Q \cap R) \oplus \cdots (e_nQR)$. But since id(R) = id(Q), this is clear.

References

- [1] K.R. Goodearl: Von Neumann regular rings, Pitmann Press, London, 1979.
- [2] S. Kobayashi: On non-singular FPF-rings I, Osaka J. Math. 22 (1985), 787-795.
- [3] K. Oshiro: Continuous modules and quasi-continuous modules. Osaka J. Math. 20 (1983), 681-694.
- [4] S. Page: Semprime and non-singular FPF-rings, Comm. Algebra 10 (1982), 2253-2259.
- [5] Y. Utumi: On continuous rings and self-injective rings, Trans. Amer. Math. Soc. 118 (1965), 158–173.

Department of Mathematics Osaka City University Osaka 558, Japan