Suetake, C. Osaka J. Math. 22 (1985), 773-786

A NEW CLASS OF TRANSLATION PLANES OF ORDER q³

CHIHIRO SUETAKE

(Received September 27, 1984)

1. Introduction

Let q be an odd prime power, where 2 is a non-square in GF(q). The aim of this paper is to construct a new class of translation planes of order q^3 and to determine their linear translation complements. Their kernels are isomorphic to GF(q). If $q \pm 3$, then the linear translation complement of any plane of this class has exactly two orbits of length 2 and q^3-1 on the line at infinity and it is of order $3(q-1)(q^3-1)$. If q=3, then the plane is the Hering plane of order 27 and the translation complement is isomorphic to SL(2, 13).

The planes also differ from those which are generalized André planes [1] and semifield planes.

2. Preliminaries

We list some results that will be required in the calculations of the linear translation complements.

Let q be a prime power. For $\alpha \in GF(q^3)$ put $\overline{\alpha} = \alpha^q$ and $\overline{\overline{\alpha}} = \alpha^{q^2}$. Set

$$M(3, q^3) = \left\{ \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} \middle| \alpha_{ij} \in GF(q^3) \right\}$$

and

$$\mathfrak{A} = \left\{ \begin{pmatrix} \alpha & \overline{\alpha} & \overline{\overline{\alpha}} \\ \beta & \overline{\beta} & \overline{\overline{\beta}} \\ \gamma & \overline{\gamma} & \overline{\overline{\gamma}} \end{pmatrix} \in GL(3, q^3) \right\}.$$

Then $\mathcal{E} \in \mathfrak{U}$ if and only if

$$\varepsilon = \begin{pmatrix} \alpha & \overline{\alpha} & \overline{\alpha} \\ \beta & \overline{\beta} & \overline{\overline{\beta}} \\ \gamma & \overline{\gamma} & \overline{\overline{\gamma}} \end{pmatrix}$$

and α , β , γ are linearly independent over GF(q). Set

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{pmatrix} \alpha & \overline{\gamma} & \overline{\beta} \\ \beta & \alpha & \overline{\overline{\gamma}} \\ \gamma & \overline{\beta} & \overline{\alpha} \end{pmatrix}.$$

Lemma 2.1 (T. Oyama [3]). If $\varepsilon \in \mathfrak{A}$ then

$$M(3, q)^{\mathfrak{e}} = \left\{ \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} \in M(3, q^{3}) \right\} \text{ and } GL(3, q)^{\mathfrak{e}} = \left\{ \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} \in GL(3, q^{3}) \right\}.$$

Since ε is any element of \mathfrak{A} , we denote $M(3, q)^{\varepsilon}$ by $M(3, q)^{*}$ and $GL(3, q)^{\varepsilon}$ by $GL(3, q)^{*}$.

Set $GF(q^3)^* = GF(q^3) - \{0\}$. Let t be a generator of the multiplicative group $GF(q^3)^*$. Set $W = \begin{bmatrix} t \\ 0 \\ 0 \end{bmatrix}$ and $T = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

The following statements hold:

Lemma 2.2.

(i) o(W) (the order of W)= q^3-1 and o(T)=3. (ii) $T^{-1}WT=W^q$.

Lemma 2.3. If $o(W^i) \not\upharpoonright q-1$, then $N_{GL(3,q)}(\langle W^i \rangle) = \langle W, T \rangle$ and $C_{GL(3,q)}(\langle W^i \rangle) = \langle W \rangle$.

Proof. Let $A \in N_{GL(3,q)^*}(\langle W^i \rangle)$. There exists an integer j with $W^i A = AW^{ij}$. Write $A = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$. Then $\alpha t^i = \alpha t^{ij}$, $\beta \overline{t^i} = \beta t^{ij}$ and $\gamma \overline{t^i} = \gamma t^{ij}$. Assume

 $\alpha \neq 0$. Then $t^i = t^{ij}$. Since $t^i \neq \overline{t^i}$, $\beta = 0$ and $\gamma = 0$. Thus $A \in \langle W \rangle$. Assume $\alpha = 0$. If $\beta \neq 0$ and $\gamma \neq 0$, then $\overline{t^i} = \overline{t^i}$. This is a contradiction. Thus $\beta = 0$ or $\gamma = 0$ and hence $A \in \langle W, T \rangle$. Therefore $N_{GL(3,q)} * (\langle W^i \rangle) \subseteq \langle W, T \rangle$. On the other hand $N_{GL(3,q)} * (\langle W^i \rangle) \supseteq \langle W, T \rangle$ by Lemma 2.2 (ii) and thus $N_{GL(3,q)} * (\langle W^i \rangle) \langle W, T \rangle$.

Similarly, using $\overline{t}^i \neq t^i$, we obtain $C_{GL(3,q)*}(\langle W^i \rangle) = \langle W \rangle$.

Lemma 2.4. Let $A \in GL(3, q)^*$ and $o(A) = q^3 - 1$. Then $\langle A \rangle$ is conjugate to $\langle W \rangle$ in $GL(3, q)^*$.

Proof. Since $(q-1, q^2+q+1)=1$ or 3, there exists a prime r such that $r \not\upharpoonright q-1$ and that $r \mid q^2+q+1$. From this $r \mid o(W)$ and $r \not\nearrow q^3(q+1)(q-1)^3$ follow.

Since $|GL(3, q)^*| = q^3(q+1)(q-1)^3(q^2+q+1)$, $\langle W \rangle$ includes a Sylow *r*-subgroup $\langle W^i \rangle$ of $GL(3, q)^*$. Thus there exists $B \in GL(3, q)^*$ with $B^{-1} \langle W^i \rangle B = \langle A^i \rangle$. Since $o(W^i) \not\downarrow q-1$, $C_{GL(3,q)^*}(\langle W^i \rangle) = \langle W \rangle$ by Lemma 2.3. Therefore $\langle A \rangle \subseteq C_{GL(3,q)^*}(\langle A^i \rangle) = B^{-1}C_{GL(3,q)^*}(\langle W^i \rangle)B = B^{-1}\langle W \rangle B$. Considering the order of $\langle A \rangle$, we get $\langle A \rangle = B^{-1}\langle W \rangle B$.

Lemma 2.5. Set $I = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Let $A \in GL(3, q)^*$ and assume that det(A - xI)

$$\pm 0$$
 for any $x \in GF(q)$. The following statements hold:

- (i) $o(A) | q^3 1$ and $o(A) \not | q 1$.
- (ii) There exists $B \in GL(3, q)^*$ with $o(B) = q^3 1$ and $A \in \langle B \rangle$.

Proof. Let $\mathcal{E} \in \mathfrak{A}$. Set V = V(3, q) and $C = A^{e^{-1}}$. There exists a 2-dimensional subspace V_1 of V such that $V_1C \neq V_1$. Let $V_1 \cap V_1C = \langle VC \rangle$. Since $\det(A - xI) = \det(C - xI) \neq 0$ for any $x \in GF(q)$, v, vC, vC^2 are linearly independent over GF(q). Hence C is conjugate to

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_0 & a_1 & a_2 \end{pmatrix}$$

in GL(3, q), where $a_0, a_1, a_2 \in GF(q)$ and $vC^3 = a_0v + a_1vC + a_2vC^2$. Let λ be a root of the characteristic polynomial of C. Then $\lambda \in GF(q^3)$ and $\lambda^3 = a_0 + a_1\lambda + a_2\lambda^2$. Set

$$\mu = egin{pmatrix} 1 & 1 & 1 \ \lambda & \overline{\lambda} & \overline{\lambda} \ \lambda^2 & \overline{\lambda}^2 & \overline{\lambda}^2 \end{pmatrix}.$$

Since

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_0 & a_1 & a_2 \end{pmatrix}^{\mu} = \begin{bmatrix} \lambda \\ 0 \\ 0 \end{bmatrix},$$

 $A^{e^{-1\mu}}$ is conjugate to $\begin{bmatrix} \lambda \\ 0 \\ 0 \end{bmatrix}$ in $GL(3, q)^*$. From this (i) and (ii) follow.

3. Description of the class of translation planes

Let q be an odd prime power where 2 is a non-square over GF(q). Any translation plane is defined by a spread. We define the spreads using

the Oyama's Method (T. Oyama [3]). For $\alpha \in GF(q^3)$ put $(|\alpha|) = (\alpha, \overline{\alpha}, \overline{\alpha})$. $X = \{|(\alpha)\rangle | \alpha \in GF(q^3)\}$ becomes a vector space of dimension 3 over GF(q), when+and scaler product are defined by $(|\alpha|) + (|\beta|) = (|\alpha + \beta|)$ and $a(|\alpha|) = (|a\alpha|)$. We may assume that $V = X \oplus X$ is the outer sum of two copies of X. Set $V(\infty) = \{(0, (|\alpha|)) | (|\alpha|) \in X\}$. If there exists a subset Σ of $GL(3, q)^* \cup \{0\}$ such that $0 \in \Sigma$, $|\Sigma| = q^3$ and $\det(M_1 - M_2) \neq 0$ for all $M_1 \neq M_2 \in \Sigma$, then we can costruct a translation plane $\pi(\Sigma)$ of order q^3 such that it's kernel contains GF(q), as follows:

(a) The points of $\pi(\Sigma)$ are the vectors in V.

(b) The lines are all cosets of all the components of $\Pi = \{V(M) | M \in \Sigma \cup \{\infty\}\}$, where $V(M) = \{((|\alpha|), (|\alpha|))M | (|\alpha|) \in X\}$ for $M \in \Sigma$.

(c) Incidence is inclusion.

We call \sum a spread set of degree 3 over GF(q).

Set
$$S = \{\alpha^2 | \alpha \in GF(q^3)^*\}$$
. For $\alpha \in GF(q^3)$ put $n(\alpha) = \alpha \overline{\alpha} \overline{\alpha}$ and $tr(\alpha) = \alpha + \overline{\alpha}$.
 $\overline{\alpha} + \overline{\alpha}$. Clearly $n(\alpha)$, $tr(\alpha) \in GF(q)$ and $\det \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = n(\alpha) + n(\beta) + n(\gamma) - tr(\alpha \overline{\beta} \overline{\gamma})$.
For $\alpha \in S$ put $M(\alpha) = \begin{bmatrix} \overline{\alpha} \\ \alpha \\ 0 \end{bmatrix}$ and $N(\alpha) = \begin{bmatrix} \overline{\alpha} \\ \alpha \\ -\alpha \overline{\alpha} \overline{\alpha}^{-1} \end{bmatrix}$.

Theorem 3.1. $\Sigma = \{M(\alpha), N(\alpha) | \alpha \in S\} \cup \{0\}$ is a spread set of degree 3 over GF(q).

Proof. Let
$$\alpha \in S$$
. Since $M(\alpha) = \begin{bmatrix} \alpha^{-1} \\ 0 \\ 0 \end{bmatrix} M(1) \begin{bmatrix} \alpha \overline{\alpha} \\ 0 \\ 0 \end{bmatrix}$ and $N(\alpha) = \begin{bmatrix} \alpha^{-1} \\ 0 \\ 0 \end{bmatrix} N(1) \begin{bmatrix} \alpha \overline{\alpha} \\ 0 \\ 0 \end{bmatrix}$, $\det(M(\alpha)) = 2 \cdot n(\alpha) \neq 0$ and $\det(N(\alpha)) = 4 \cdot n(\alpha) \neq 0$.

If $\alpha \neq 1$, then det $(M(\alpha) - M(1)) = 2 \cdot n(\alpha - 1) \neq 0$. Hence det $(M(\alpha) - M(\beta)) \neq 0$ for any $\alpha \neq \beta \in S$.

If $\alpha \neq 1$, then $\det(N(\alpha) - N(1)) = 4(n(\alpha) + tr(\alpha) - tr(\alpha\overline{\alpha}) - 1) = 4(\alpha - 1) \cdot (\overline{\alpha} - 1)(\overline{\alpha} - 1) \neq 0$. Hence $\det(N(\alpha) - N(\beta)) \neq 0$ for any $\alpha \neq \beta \in S$.

Suppose det $(M(\alpha) - N(1)) = 0$. Since det $(M(\alpha) - N(1)) = 2 \cdot n(\alpha) - (\operatorname{tr}(\alpha))^2 + 4 \cdot \operatorname{tr}(\alpha) - 4$, $2 = (tr(\alpha) - 2)^2 (n(t^{-i}))^2$, where $\alpha = t^{2i}$, a contradiction. Hence we have det $(M(\alpha) - N(\beta)) \neq 0$ for any $\alpha, \beta \in S$.

Clearly $|\Sigma| = q^3$ and the results follow.

Let π be the translation plane which corresponds to the spread set Σ of Theorem 3.1 and G its linear translation complement. Set $\Sigma^* = \Sigma \cup \{\infty\}$ and $\Pi = \{V(M) | M \in \Sigma^*\}$.

4. The linear translation complement of π

In this section we show the linear translation complement G of π . We describe the Sherk's Theorem in the case n=3 using the Oyama's Method.

Lemma 4.1 (F.A. Sherk [2]). Let $i \in \{1, 2\}$. Let \sum_i be a spread set of degree 3 over GF(q) with $0 \in \sum_i$ and π_i be the translation plane of order q^3 which corresponds to the spread set \sum_i . Set $\prod_i = \{V(M) | M \in \sum_i \cup \{\infty\}\}$. Then π_1 and π_2 are isomorphic if and only if there exist A, B, C and D in $M(3, q)^*$ and θ in $Aut(GF(q^3))$ with the following properties.

- (a) $det \begin{pmatrix} A & C \\ B & D \end{pmatrix} \neq 0.$
- (b) One of the following holds
- (i) $B=0, det(A) \neq 0 and \sum_{2} = \{A^{-1}(C+M^{\theta}D) | M \in \sum_{1}\}; or$

(ii) $det(B) \neq 0$, $B^{-1}D \in \Sigma_2$, there is $M_0 \in \Sigma_1$ such that $A + M_0^{\theta}B = 0$ and for any $M \in \Sigma_1 - \{M_0\}$, $det(A + M^{\theta}B) \neq 0$ and $(A + M^{\theta}B)^{-1}(C + M^{\theta}D) \in \Sigma_2$.

Each $\tau \in G$ induces a permutation on Π which we denote by $\tilde{\tau}$.

Theorem 4.2. If q=3, then π is the Hering plane of order 27.

Proof. Let $t \in GF(27)$ and $t^3 = -1+t$. Then $GF(27)^* = \langle t \rangle$. Set

$$\varepsilon = \begin{pmatrix} 1 & 1 & 1 \\ t & \overline{t} & \overline{t} \\ t^2 & \overline{t^2} & \overline{t^2} \end{pmatrix} \in GL(3, 27) \, .$$

F.A. Sherk [2] gave a spread set

$$S_{H} = \left\{ \begin{pmatrix} 0 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}^{3i} R \begin{pmatrix} 0 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \middle| R = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \right.$$

or $\begin{pmatrix} -1 & 1 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}$, $1 \le i \le 13$ $\cup \{0\}$

defining the Hering plane of order 27. Since

$$\begin{split} \varepsilon^{-1} & \begin{pmatrix} 0 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \varepsilon = \begin{bmatrix} t^7 \\ t^8 \\ t^{12} \end{bmatrix}, \ \varepsilon^{-1} \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \varepsilon = \begin{bmatrix} t^9 \\ -1 \\ -t^7 \end{bmatrix} \\ \text{and} \ \varepsilon^{-1} \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix} \varepsilon = \begin{bmatrix} t^3 \\ t^2 \\ -t^2 \end{bmatrix}, \ \varepsilon^{-1} S_H \varepsilon = \end{split}$$

$$\begin{cases} \begin{bmatrix} t^{7} \\ t^{8} \\ t^{12} \end{bmatrix}^{3i} R \begin{bmatrix} t^{7} \\ t^{8} \\ t^{12} \end{bmatrix}^{i} R = \begin{bmatrix} t^{9} \\ -1 \\ -t^{7} \end{bmatrix} \text{ or } \begin{bmatrix} t^{3} \\ t^{2} \\ -t^{2} \end{bmatrix}, \ 1 \leq i \leq 13 \end{cases} \cup \{0\}$$

Set $\mathcal{E}^{-1}S_{H}\mathcal{E} = \sum_{H} \text{ and } \prod_{H} = \{V(M) \mid M \in \sum_{H} \cup \{\infty\}\}.$ Set $\varphi = \begin{pmatrix} A^{-1} & 0 \\ 0 & B \end{pmatrix} \in GL(V),$
where $A = \begin{bmatrix} -t \\ t^{6} \\ -t^{5} \end{bmatrix}$ and $B = \begin{bmatrix} t \\ -1 \\ t^{7} \end{bmatrix}.$ By a computation, we get $\prod^{\varphi} = \prod_{H}.$ Thus
Thorem 4.2 is proved.

The following statements hold:

Lemma 4.3.
(i) If
$$e \in GF(q) \cap S$$
, then $\begin{pmatrix} I & 0 \\ 0 & E \end{pmatrix} \in G_{V(\infty), V(I)}$, where $E = \begin{bmatrix} e \\ 0 \\ 0 \end{bmatrix}$.
(ii) Set $\tau_0 = \begin{pmatrix} 0 & 2T \\ I & 0 \end{pmatrix}$, where $T = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. Then $\tau_0 \in G$ and $\tilde{\tau}_0 =$
 $(V(\infty), V(0))(V(M(1)), V(N(1)))\cdots$.
(iii) Set $\Gamma = \{V(M(\alpha)) | \alpha \in S\}$, $\Delta = \{V(N(\alpha)) | \alpha \in S\}$ and $H = \{\varphi_a | \alpha \in S\}$,
where $\varphi_a = \begin{pmatrix} A_a & 0 \\ 0 & B_a \end{pmatrix}$, $A_a = \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix}$ and $B_a = \begin{bmatrix} \alpha \overline{\alpha} \\ 0 \\ 0 \end{bmatrix}$. Then Γ and Δ are H -orbits
on Π and $H \leq G_{V(0), V(\infty)}$.
Lemma 4.4. Set $K = \{ \begin{pmatrix} aI & 0 \\ 0 & aI \end{pmatrix} | a \in GF(q) - \{0\} \}$ and $L = G_{V(\infty), V(0), V(M(1))}$.
Then
(i) $L = \langle \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} > K$, where $T = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.
(ii) If $\alpha \in S - GF(q)$, then $L_{V(M(\alpha))} = K$.
Proof.

Step 1. If $\alpha \in S$, then $\{V(M(\alpha)), V(M(\overline{\alpha})), V(M(\overline{\alpha}))\}$ is an *L*-orbit. Since $\begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} \in L$, there exists an *L*-orbit containing $\{V(M(\alpha)), V(M(\overline{\alpha})), V(M(\overline{\alpha}))\}$.

Let $\tau \in L$. Since $V(\infty)^{\tau} = V(\infty)$, $V(0)^{\tau} = V(0)$ and $V(M(1))^{\tau} = V(M(1))$, $\tau = \begin{pmatrix} A & 0 \\ 0 & M(1)^{-1}AM(1) \end{pmatrix}$ for some $A \in GL(3, q)^*$. Set $B = M(1)^{-1}AM(1)$. Let $\alpha \in S$. Suppose that $A^{-1}M(\alpha)B = N(\beta)$ for some $\beta \in S$. Then $A^{-1}M(\alpha)M(1)^{-1}A = N(\beta)M(1)^{-1}$. Hence det $(M(\alpha)) = \det(N(\beta))$. From this $n(\alpha\beta^{-1}) = 2$ follows.

This is a contradiction since 2 is a nonsquare. Thus
$$A^{-1}M(\alpha)B=M(\beta)$$
 for
some $\beta \in S$. Therefore $A^{-1}M(\alpha)M(1)^{-1}A=M(\beta)M(1)^{-1}$. Let $x \in GF(q)$. Since
 $\det(A^{-1}M(\alpha)M(1)^{-1}A-xI) = \det(M(\beta)M(1)^{-1}-xI)$, $\det\begin{bmatrix}\alpha-x\\\alpha-x\\0\end{bmatrix} = \det\begin{bmatrix}\beta-x\\\beta-x\\0\end{bmatrix}$.
Hence $n(\alpha)-x \cdot tr(\alpha \overline{\alpha})+x^2 \cdot tr(\alpha)-x^3=n(\beta)-x \cdot tr(\beta \overline{\beta})+x^2 \cdot tr(\beta)-x^3$. From this
 $n(\alpha)=n(\beta)$, $tr(\alpha \overline{\alpha})=tr(\beta \overline{\beta})$ and $tr(\alpha)=tr(\beta)$ follow. This implies that $(\beta-\alpha) \cdot (\beta-\overline{\alpha})(\beta-\overline{\alpha})=0$. Thus $\beta \in \{\alpha, \overline{\alpha}, \overline{\alpha}\}$.
Step 2. $L=L_{V(N(1))}$.
Let $\tau \in L$. Then $\tau = \begin{pmatrix}A & 0\\0 & M(1)^{-1}AM(1)\end{pmatrix}$ for some $A \in GL(3, q)^*$. Set
 $B=M(1)^{-1}AM(1)$. By Step 1, $A^{-1}N(1)B=N(\alpha)$ for some $\alpha \in S$. Since
 $A^{-1}N(1)M(1)^{-1}A = N(\alpha)M(1)^{-1}$ and $A^{-1}M(1)N(1)^{-1}A = M(1)N(\alpha)^{-1}$,
 $A^{-1}(N(1)M(1)^{-1}+M(1)N(1)^{-1})A = N(\alpha)M(1)^{-1}+M(1)N(\alpha)^{-1}$.

From this, since

follow. From (4.1),

...

$$N(1)M(1)^{-1} + M(1)N(1)^{-1} = (5/2)I \text{ and } N(\alpha)M(1)^{-1} + M(1)N(\alpha)^{-1}$$

$$= 1/2 \begin{bmatrix} \overline{\alpha} + \overline{\alpha} + \overline{\alpha}\overline{\alpha}\overline{\alpha}^{-1} + \overline{\alpha}^{-1} \\ \alpha - \overline{\alpha} - \alpha\overline{\alpha}\overline{\alpha}\overline{\alpha}^{-1} + \overline{\alpha}^{-1} \\ \alpha - \overline{\alpha} - \alpha\overline{\alpha}\overline{\alpha}\overline{\alpha}^{-1} + \overline{\alpha}^{-1} \end{bmatrix},$$

$$0 = \alpha - \overline{\alpha} - \alpha\overline{\alpha}\overline{\alpha}\overline{\alpha}^{-1} + \overline{\alpha}^{-1} \qquad (4.1)$$

$$0 = \alpha - \overline{\alpha} - \alpha\overline{\alpha}\overline{\alpha}\overline{\alpha}^{-1} + \overline{\alpha}^{-1} \qquad (4.2)$$

and

$$= \alpha - \overline{\alpha} - \alpha \overline{\alpha} \alpha^{-1} + \alpha^{-1}$$
 (4.2)

$$0 = \overline{\alpha} - \alpha - \alpha \overline{\alpha} \overline{\alpha^{-1}} + \overline{\alpha^{-1}}$$
(4.3)

follows. Subtracting (4.3) from (4.2) we have $0=2\alpha-2\overline{\alpha}$. Therefore $\overline{\alpha}=\alpha$ and so $\alpha \in GF(q)$. From this and (4.3), $\alpha = 1$ follows. Thus $V(N(1))^{\tau} =$ V(N(1)).

Step 3. Proof of (ii). Step 3. Proof of (ii). Let $\alpha \in S - GF(q)$ and $\tau \in L_{V(M(\alpha))}$. Then $\tau = \begin{pmatrix} A & 0 \\ 0 & M(1)^{-1}AM(1) \end{pmatrix}$ for some $A \in GL(3, q)^*$. Since $V(M(\alpha))^r = V(M(\alpha)), A^{-1}M(\alpha)M(1)^{-1}A = M(\alpha)M(1)^{-1}$. Suppose that $\tau \in K$. Since det $(M(\alpha)M(1)^{-1}-xI) \neq 0$ for any $x \in GF(q)$, there exists $W \in GL(3, q)^*$ such that $o(W) = q^3 - 1$ and $\langle W \rangle \supseteq M(\alpha) M(1)^{-1}$ by Lemma 2.5. By Lemma 2.3 and Lemma 2.5, $C_{GL(3,q)}(M(\alpha)M(1)^{-1}) = \langle W \rangle$. Thus we get $A \in \langle W \rangle$ and $C_{GL(3,q)^*}(A) = \langle W \rangle$. By Step 2, $A^{-1}N(1)M(1)^{-1}A = N(1)M(1)^{-1}$, hence $N(1)M(1)^{-1} \in \langle W \rangle$. Clearly $2I \in \langle W \rangle$ and $N(1)M(1)^{-1} \neq 2I$. Therefore $N(1)M(1)^{-1}-2I \in \langle W \rangle$ by Lemma 2.4 and so det $(N(1)M(1)^{-1}-2I) \neq 0$, a contradiction. Thus we get (ii).

Step 4. Proof of (i).

Let $\alpha \in S - GF(q)$. By Step 3, $L_{V(M(\alpha))} = K$. Furthermore $\{V(M(\alpha)), V(M(\overline{\alpha})), V(M(\overline{\alpha}))\}$ is an orbit of both L and $\langle \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} \rangle$ by Step 1. Hence $L = \langle \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} \rangle \cdot K$.

Lemma 4.5. (i) $G_{V(\infty),V(0),V(1)} = \langle \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} \rangle \cdot K$, where $T = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

(ii) If
$$\alpha \in S - GF(q)$$
, then $G_{V(\infty),V(0),V(N(1)),V(N(\alpha))} = K$.

Proof.

(i) Since
$$\tau_0^{-1} \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} \tau_0 = \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix}$$
, $G_{V(\infty), V(0), V(N(1))} = (G_{V(0), V(\infty), V(M(1))})^{\tau_0} = \langle \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} \rangle \cdot K$ by Lemma 4.4 (i).

(ii) Let $\alpha \in S - GF(q)$. Since $V(M(\overline{\alpha^{-1}}))^{r_0} = V(N(\alpha))$, $G_{V(\infty),V(0),V(N(1)),V(N(\alpha))} = (G_{V(0),V(\infty),V(M(1)),V(M(\alpha^{-1}))})^{r_0} = K$ by Lemma 4.4 (ii).

Lemma 4.6. $G_{V(\infty)} = G_{V(\infty),V(0)}$.

Proof.

Case (a). $q \pm 3$.

Suppose false. By Lemma 4.3 (iii), there exists $\tau \in G_{V(\infty)}$ with $V(0)^{\tau} = V(M(1))$ or V(N(1)). As $V(\infty)^{\tau} = V(\infty)$, there exists $A, B, C \in M(3, q)^*$ such that $\tau = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$. Since $|GF(q) \cap S| = (q-1)/2 \ge 2$, there exists $e \in S \cap GF(q)$ with $e \neq 1$. Since $\begin{pmatrix} I & 0 \\ 0 & E \end{pmatrix} \in G$ where $E = \begin{bmatrix} e \\ 0 \\ 0 \end{bmatrix}$, $\Sigma = \{A^{-1}MB + A^{-1}C \mid M \in \Sigma\} = \{EA^{-1}MB + A^{-1}C \mid M \in \Sigma\}$. Assume that $V(0)^{\tau} = V(M(1))$. Then $A^{-1}C = M(1)$. There exists $M_0 \in \Sigma$ with $A^{-1}M_0B + M(1) = N(1)$, Therefore $A^{-1}M_0B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

 $\begin{bmatrix} 0\\0\\-1 \end{bmatrix} \text{ and } EA^{-1}M_0B + M(1) = \begin{bmatrix} 1\\1\\-e \end{bmatrix} \in \Sigma. \text{ From this } e=1 \text{ follows, a contradic-}$

tion.

Next assume that $V(0)^{\tau} = V(N(1))$. Then by the similar argument above, we have a contradiction again.

Case (b). q=3.

Assume that $G_{V(\infty)}$ is transitive on $\prod - \{V(\infty)\}$. Then G is 2-transitive on \prod . Since π has not a Baer subplane, π is a desarguesian plane by Theorem 39.3 of [4]. This is a contradiction.

Assume that $G_{V(\infty)} \neq G_{V(\infty),V(0)}$. Then $\{V(0)\} \cup \Gamma$ or $\{V(0)\} \cup \Delta$ is $G_{V(\infty)}$ orbit on Π . Write this orbit by Ω . $G_{V(\infty)}$ induces the permutation group $G_{V(\infty)}/K$ on Ω by Lemma 4.4 (ii) and Lemma 4.5 (ii). Since $|\Omega| = 14$ and $G_{V(\infty)}/K$ is a 2-transitive permutation group on Ω , $G_{V(\infty)}/K \geq PSL(2, 13)$. Since $|\Omega| = 14$, the permutation group PSL(2,13) on Ω contains an involution g which fixes exactly two points of Ω . There exists $\tau \in G_{V(\infty)}$ with $g = \tau K$. Since |K| = 2, $o(\tau) = 2$ or 4. Suppose that $0(\tau) = 2$. As π has not a Baer subplane, τ is a $((0, 0), l_{\infty})$ -perspectivity. Therefore τ fixes any component of Ω , a contradiction. Suppose that $o(\tau) = 4$. As τ^2 is a $((0, 0), l_{\infty})$ -perspectivity, any cycle of τ on $V(\infty) - \{(0, 0), V(\infty) \cap l_{\infty}\}$ is 4-cycle. Therefore 4|26, a contradiction.

Lemma 4.7. $G_{V(0)} = G_{V(0),V(\infty)}$.

Proof. $G_{V(0)} = (G_{V(\infty)})^{\tau_0} = (G_{V(\infty),V(0)})^{\tau_0} = G_{V(0),V(\infty)}$.

Lemma 4.8. Set $\Psi = \{V(\infty), V(0)\}$. Then Ψ is a G-block on \prod .

Proof. Suppose $\varphi \in G$ and $\Psi^{\varphi} \cap \Psi \neq \phi$. We may assume that $V(\infty)^{\varphi} = V(\infty)$ or $V(0)^{\varphi} = V(\infty)$. Assume $V(\infty)^{\varphi} = V(\infty)$. Then $\varphi \in G_{V(\infty)} = G_{V(\infty),V(0)}$ and so $V(0)^{\varphi} = V(0)$. Assume $V(0)^{\varphi} = V(\infty)$. Then $G_{V(0),V(\infty)} = G_{V(\infty)} = G_{V(0)} = G_$

Lemma 4.9. Γ and Δ are $G_{V(\infty)}$ -orbits on \prod .

Proof. Suppose false. By Lemma 4.3 (iii) there exists $\tau \in G_{V(\infty)}$ with $V(M(1))^{\tau} = V(N(1))$. Since $V(0)^{\tau} = V(0)$, $\tau = \begin{pmatrix} A & 0 \\ 0 & M(1)^{-1}AN(1) \end{pmatrix}$ for some $A \in GL(3, q)^*$. Set $B = M(1)^{-1}AN(1)$. Assume $A^{-1}N(1)B = N(\alpha)$ for some $\alpha \in S$. From $\det(A^{-1}N(1)B) = \det(N(\alpha))$, $n(\alpha) = 2$ follows, a contradiction. Thus $A^{-1}N(1)B = M(\alpha)$ for some $\alpha \in S$. Let $q = p^n$ with p a prime.

Step 1. p=3 or p=5. If p=3, then $A^{-1}N(1)B = M(1)$. If p=5, then $A^{-1}N(1)B = M(-1)$.

Set $\rho = \tau_0^2 = \begin{pmatrix} M(1)N(1) & 0 \\ 0 & M(1)N(1) \end{pmatrix}$. Since $\rho^{\tau} \in G_{V(\infty),V(0),V(N(1))} = \langle \rho \rangle \cdot K$, $\rho^{\tau} = b\rho$ or $b\rho^2$ for some $b \in GF(q)$. Therefore τ fixes $\{V(M) \mid V(M)^{\rho} = V(M)\} - \{V(\infty), V(0)\} = \{V(M(x)), V(N(x)) \mid x \in S \cap GF(q)\}$ as a set. Thus $\alpha \in S \cap GF(q)$. Set $\alpha = a$. Clearly $V(N(1))^{\tau} = V(M(a))$.

Let $x \in GF(q)$. Clearly $A^{-1}N(1)M(1)^{-1}A = M(a)N(1)^{-1}$. Since $\det(A^{-1}N(1)M(1)^{-1}A - xI) = \det(M(a)N(1)^{-1} - xI)$, $\det((N(1) - M(x))N(1)) = \det((M(a) - N(x))M(1))$. From this $(12a - 18)x^2 + (24 - 9a^2)x + 2a^3 - 8 = 0$. Therefore 3a = 9/2 and $a^3 = 4$. If p = 3, then a = 1. If $p \neq 3$, then p = 5 and

a = -1.

Step 2. $3 \not\mid q-1$. If p=3, then $3 \not\mid q-1$.

Assume p=5. Suppose that *n* is even. Then 2 is a square in $GF(5^n)$, a contradiction. Therefore *n* is odd. Then $5^n - 1 \equiv (-1)^n - 1 \equiv -2 \pmod{3}$. Thus $3 \neq q-1$.

Step 3. Set
$$T = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
. Then $\begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix}^{\tau} = \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix}$. If $p = 3$ then $\tau^2 \in \langle \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} \rangle \cdot K$.
If $p = 3$, then $\tau^2 \in G_{V(\infty), V(M(1))} = \langle \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} \rangle \cdot K$. If $p = 5$, then $\tau^2 \in G_{V(\infty), V(M(1))} = \langle \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} \rangle \cdot K$. If $p = 5$, then $\tau^2 \in \langle \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} \rangle \cdot K$ as $V(\infty)^{\tau^2} = V(\infty)$ and $V(M(1))^{\tau^2} = V(M(-1))$. Since $(G_{V(\infty), V(M(1))})^{\tau} = G_{V(\infty), V(N(1))} = \langle \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} \rangle \cdot K$, $\begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} \circ \tau = a \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix}$ or $a \begin{pmatrix} T^2 & 0 \\ 0 & T^2 \end{pmatrix}$ for some $a \in GF(a)$. From this $a^2 = 1$ follows as $a = a \begin{pmatrix} \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix}^{\tau} = 3$.

some $a \in GF(q)$. From this $a^3 = 1$ follows as $o(\begin{pmatrix} 2 & 0 \\ 0 & T \end{pmatrix}) = 3$. Thus since $3 \not\downarrow q = 1$, we have a = 1.

Suppose
$$\begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix}^{\mathsf{r}} = \begin{pmatrix} T^2 & 0 \\ 0 & T^2 \end{pmatrix}$$
. Then $\begin{pmatrix} A^{-1}TA & 0 \\ 0 & B^{-1}TB \end{pmatrix} = \begin{pmatrix} T^2 & 0 \\ 0 & T^2 \end{pmatrix}$. Since $\lceil \alpha \rceil$

 $A^{-1}TA = T^2$, $A = \begin{bmatrix} \overline{\alpha} \\ \overline{\alpha} \end{bmatrix}$ for some $\alpha \in GF(q^3) - GF(q)$. If $\alpha \in S$, then we take $e\tau$

instead of τ with $e \in GF(q) - GF(q)^2$. Thus we may assume that $\alpha \in S$. Since $\lceil tr(\alpha^2) \rceil$

$$A^{2} = \begin{bmatrix} tr(\alpha \overline{\alpha}) \\ tr(\alpha \overline{\alpha}) \end{bmatrix} \text{ and } \begin{pmatrix} A^{2} & 0 \\ 0 & B^{2} \end{pmatrix} \in \left\langle \begin{pmatrix} T & 0 \\ 0 & \pm T \end{pmatrix} \right\rangle \cdot K, \ tr(\alpha \overline{\alpha}) = 0 \text{ and } tr(\alpha^{2}) \neq 0.$$
 Set
$$tr(\alpha) = h. \text{ Since } h^{2} = tr(\alpha^{2}) + 2 \cdot tr(\alpha \overline{\alpha}) = tr(\alpha^{2}), \ h \neq 0.$$
 Set
$$V(M(\alpha))^{T} = V\left[\begin{pmatrix} \alpha_{1} \\ \alpha_{2} \end{pmatrix} \right].$$

$$tr(\alpha) = b. \text{ Since } b^2 = tr(\alpha^2) + 2 \cdot tr(\alpha \overline{\alpha}) = tr(\alpha^2), \ b \neq 0. \text{ Set } V(M(\alpha))^{\dagger} = V(\begin{bmatrix} \alpha_2 \\ \alpha_3 \end{bmatrix}).$$
$$\begin{bmatrix} b - 4\overline{\alpha} \\ \alpha_3 \end{bmatrix}$$

By an easy computation,
$$B = M(1)^{-1}AN(1) = -1/2 \begin{bmatrix} b - 4\overline{\alpha} \\ b - 4\alpha \end{bmatrix}$$
 follows. Since $A^{-1}M(\alpha)B = -1/2b^{-2}\begin{bmatrix} \alpha \\ \overline{\alpha} \\ \alpha \\ \overline{\alpha} \end{bmatrix} \begin{bmatrix} \alpha \\ \alpha \\ 0 \end{bmatrix} \begin{bmatrix} b - 4\overline{\alpha} \\ b - 4\alpha \\ \overline{b} \end{bmatrix}$, $-2b^2\alpha_1 = b(\overline{\alpha}^2 + \overline{\alpha}^2 + 2\alpha\overline{\alpha} + 2\alpha\overline{\alpha}) - b(\overline{\alpha}^2 + \overline{\alpha}^2 + 2\alpha\overline{\alpha} + 2\alpha\overline{\alpha})$

 $\begin{array}{l} 4(n(\alpha) + \overline{\alpha}^3 + \alpha \overline{\alpha}^2 + \overline{\alpha} \overline{\alpha}^2 + \overline{\alpha} \alpha^2 + \overline{\alpha} \alpha^2) \text{ and } -2b^2 \alpha_2 = b(\alpha^2 + \overline{\alpha}^2 + 2\alpha \overline{\alpha} + 2\overline{\alpha} \overline{\alpha}) - 4(n(\alpha) \\ + \alpha^3 + \overline{\alpha} \overline{\alpha}^2 + \overline{\alpha} \overline{\alpha}^2 + \alpha \overline{\alpha}^2 + \alpha \overline{\alpha}^2). \quad \text{Since } -2b^2 \alpha_1 = -\overline{2b^2 \alpha_2}, \text{ we get } b(\overline{\alpha}^2 + 2\alpha \overline{\alpha}) = \\ b(\alpha^2 + 2\overline{\alpha} \overline{\alpha}). \quad \text{Since } b \neq 0, \ \overline{\alpha}^2 + 2\alpha \overline{\alpha} = \alpha^2 + 2\overline{\alpha} \overline{\alpha}. \quad \text{Therefore } (\overline{\alpha} - \alpha)(\overline{\alpha} + \alpha - 2\overline{\alpha}) \\ = 0 \text{ and so } \overline{\alpha} + \alpha = 2\overline{\alpha}. \quad \text{From this } b = 3\overline{\alpha} \text{ follows. Thus } \alpha \in GF(q), \text{ a contradiction.} \end{array}$

Step 4. Contradiction. Since $A^{-1}TA = T$, $A = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ for some $a, b, c \in GF(q)$. Assume p = 3. Since $A^{-1}N(1)B = M(1), \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} A = A \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$. From this c = -(a+b) follows. But $\det(A) = \det \begin{bmatrix} a \\ b \\ -(a+b) \end{bmatrix} = a^3 + b^3 - (a+b)^3 = 0, \text{ a contradiction. Assume } p = 5.$ Since $A^2 = \begin{bmatrix} a^2 + 2bc \\ c^2 + 2ab \\ b^2 + 2ac \end{bmatrix}$ and $\begin{pmatrix} A^2 & 0 \\ 0 & B^2 \end{pmatrix} \in \langle \begin{pmatrix} T & 0 \\ 0 & -T \end{pmatrix} \rangle \cdot K, A^2 = \begin{bmatrix} a^2 + 2bc \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ c^2 + 2ab \\ 0 \end{bmatrix}$ or $\begin{bmatrix} 0 \\ 0 \\ b^2 + 2ac \end{bmatrix}$. Let $\lambda \in S - GF(q)$. We consider the case $A^2 = \begin{bmatrix} a^2 + 2bc \\ 0 \\ 0 \end{bmatrix}$. Then $c^{2}+2ab=b^{2}+2ac=0$. Suppose b=0. Then c=0, A=aI and $B=M(1)^{-1}AN(1)$ $=a\begin{bmatrix}-1\\2\\2\end{bmatrix}. \quad \text{Therefore } V(M(\lambda))^{\tau}=V(\begin{bmatrix}\overline{\lambda}\\\lambda\\0\end{bmatrix}\begin{bmatrix}-1\\2\\2\end{bmatrix})=V(\begin{bmatrix}-\overline{\lambda}+2\overline{\lambda}\\-\lambda+2\overline{\lambda}\\\lambda+2\overline{\lambda}\end{bmatrix}). \quad \text{Thus}$ $-\overline{\lambda}+2\overline{\lambda}=(-\lambda+2\overline{\lambda})$. This implies $\lambda \in GF(q)$, a contradicion. Suppose $b \neq 0$. Substituting $a = -c^2/2b$ in $b^2 + 2ac = 0$, we get b = c and a = 2b. From this $A=b \begin{vmatrix} 1\\1 \end{vmatrix}$ and $B=M(1)^{-1}AN(1)=bI$ follow. Therefore $V(M(\lambda))^r=$ $V(\begin{bmatrix} -1\\2\\2\end{bmatrix}M(\lambda))=V(\begin{bmatrix} 2\lambda-\overline{\lambda}\\-\lambda+2\overline{\lambda}\\2\lambda+2\overline{\lambda}\end{bmatrix}. \text{ Thus } 2\lambda-\overline{\lambda}=\overline{(-\lambda+2\overline{\lambda})}. \text{ This implies } \lambda \in GF(q), \text{ a contradiction. Also when } A^2=\begin{bmatrix} 0\\c^2+2ab\\0\end{bmatrix} \text{ or } \begin{bmatrix} 0\\0\\b^2+2ac\\b^2\end{bmatrix}, \text{ similarly we have a contradiction.}$ have a contradiction.

Theorem 4.10. If $q \neq 3$, then G has two orbits of length 2 and length q^3-1 on \prod .

Proof. Let $q \neq 3$. Suppose false. Then G is transitive on \prod . Since $\{V(\infty), V(0)\}$ is a G-block by Lemma 4.8, there exists $V(M) \in \prod - \{V(\infty), V(0), V(M(1))\}$ such that $\Lambda = \{V(M(1)), V(M)\}$ is a G-block. Since $V(M(1))^{\tau_0^2} = V(M(1)), \Lambda^{\tau_0^2} = \Lambda$ and so $V(M)^{\tau_0^2} = V(M)$. Therefore M = M(a) or N(a) for some $a \in S \cap GF(q)$.

Assume that $\Lambda = \{V(M(1)), V(M(a))\}$ is a *G*-block. Set $\rho = \begin{pmatrix} I & 0 \\ 0 & aI \end{pmatrix} \in G$. Then $\Lambda^{\rho} = \{V(M(a)), V(M(a^{2}))\} = \Lambda$. Therefore $M(a^{2}) = M(1)$ and so a = -1 as $a \neq 1$. Since $\langle \{\varphi_{\alpha} | \alpha \in S\}, \tau_{0} \rangle \leq G$ by Lemma 4.3, $\{V(M), V(-M)\}$ is a *G*-block for any $V(M) \in \prod - \{V(\infty), V(0)\}$. Set $\sigma_{1} = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \in G$. Now σ_{1} fixes exactly two components $V(\infty)$ and V(0) in \prod . Furthermore σ_{1} fixes any *G*-block on \prod . Since *G* is transitive on \prod , there exists σ_{2} such that σ_{2} is conjugate to σ_{1} and fixes exactly two components V(M(1)), V(M(-1)) in \prod and all *G*-blocks on \prod . Therefore $\sigma_{1}\sigma_{2}\tau_{0} \in G_{V(\infty),V(0)}$. But $V(M(1))^{\sigma_{1}\sigma_{2}\tau_{0}} = V(N(-1))$. This is contrary to Lemma 4.9.

Next assume that $\{V(M(1)), V(N(a))\}$ is a *G*-block. Since $\{V(M(1)), V(N(a))\}^{\varphi_a} = \{V(M(\alpha)), V(N(a\alpha))\}$ is a *G*-block for any $\alpha \in S$, *G* is 2-transitive on the set of *G*-blocks. Therefore there exists $\varphi \in G$ such that φ interchanges $\{V(\infty), V(0)\}$ and $\{V(M(1)), V(N(a))\}$. Let $\varphi = \begin{pmatrix} A & C \\ B & D \end{pmatrix}$. Suppose that $\tilde{\varphi} = (V(\infty), V(M(1)))(V(0), V(N(a))) \cdots$ on Π . Then

$$\varphi = \begin{pmatrix} A & AN(a) \\ -M(1)^{-1}A & -M(1)^{-1}AM(1) \end{pmatrix}.$$

Let $b \in S \cap GF(q)$ with $b \neq 1$. Then

$$V(M(b))^{*}$$

$$= V((A - M(b)M(1)^{-1}A)^{-1}(AN(a) - M(b)M(1)^{-1}AM(1)))$$

$$= V((A - bA)^{-1}(AN(a) - bAM(1)))$$

$$= V((1 - b)^{-1}(N(a) - M(b))).$$

Hence $(1-b)^{-1}(N(a)-M(b))=(1-b)^{-1}\begin{bmatrix} a-b\\a-b\\-a\end{bmatrix}\in \Sigma$. Since $a \neq 0$, a-b=a and so b=0, a contradiction. Suppose that $\tilde{\varphi}=(V(\infty), V(N(a)))(V(0), V(M(1)))\cdots$ on \prod . Set $\tau=\tau_0\begin{pmatrix} I & 0\\0 & aI \end{pmatrix}$. Since $\tilde{\tau}=(V(\infty), V(0))(V(M(1)), V(N(a)))\cdots$, $\tilde{\varphi\tau}=(V(\infty), V(M(1)))(V(0), V(N(a)))\cdots$. This is the above case, a contradiction. Suppose that $\tilde{\varphi}=(V(\infty), V(M(1)), V(0), V(N(a)))\cdots$ on \prod . Then $\varphi=\begin{pmatrix} A & AN(a)\\ -N(a)^{-1}A & -N(a)^{-1}AM(1) \end{pmatrix}$. Let $b\in S \cap GF(q)$ with $b\neq a$. Then $V(N(b))^{\varphi}=V((1-ba^{-1})^{-1}(N(a)-M(ba^{-1})))$. Thus b=0 by the similar argument above, a contradiction. Suppose that $\tilde{\varphi}=(V(\infty), V(N(a)), V(0), V(M(1)))\cdots$ on \prod .

Then $\widehat{\varphi}_{3} = (V(\infty), V(M(1)), V(0), V(N(a))) \cdots$. This is a contradiction.

Theorem 4.11. If $q \neq 3$, then $|G| = 3(q-1)(q^3-1)$.

Proof. By Lemma 4.4, Lemma 4.6, Lemma 4.9 and Theorem 4.10, |G| = $|V(\infty)^{G}||G_{V(\infty)}|=2|G_{V(\infty)}|=2|G_{V(\infty),V(M(1))}||V(M(1))^{G_{V(\infty)}}|=3(q-1)(q^{3}-1).$

Theorem 4.12. If q=3, then $G \cong SL(2, 13)$.

Proof. Since G is transitive on $\prod [5], |G| = 28|G_{V(\infty)}|$. By Lemma 4.4, Lemma 4.6 and Lemma 4.9, $|G_{V(\infty)}| = |G_{V(\infty) V(M(1))}| |V(M(1))^{G_{V(\infty)}}| = 6 \cdot 13.$ Therefore $|G| = 2^3 \cdot 3 \cdot 7 \cdot 13$. On the other hand since |SL(2, 13)| = |G| and $G \ge SL(2, 13)$ by [5], $G \cong SL(2, 13)$.

Theorem 4.13. π is not a generalized André plane.

From Assume that π is a generalized André plane. Then there exist $\sum_{1} \subseteq \left\{ \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix} | \alpha \in GF(q^{3})^{*} \right\}, \sum_{2} \subseteq \left\{ \begin{bmatrix} 0 \\ \alpha \\ 0 \end{bmatrix} | \alpha \in GF(q^{3})^{*} \right\} \text{ and } \sum_{3} \subseteq \left\{ \begin{bmatrix} 0 \\ 0 \\ \alpha \end{bmatrix} | \alpha \in GF(q^{3})^{*} \right\}$ such that $\sum_{1} \ni I$ and $\sum_{A} = \sum_{1} \cup \sum_{2} \cup \sum_{3} \cup \{0\}$ is the spread set defining π . If $\alpha \neq \beta \in GF(q^{3})^{*}$ and $n(\alpha) = n(\beta)$, then $\begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \beta \\ 0 \\ 0 \end{bmatrix} \in \sum_{1}, \begin{bmatrix} 0 \\ \alpha \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \alpha \\ 0 \end{bmatrix},$ Proof. Assume that π is a generalized André plane. Then there exist

constructed by \sum_{A} . Now since the order of π is q^3 , π is an André plane by Corollary 12.5 of [4]. Let $G(\sum_A)$ is the linear translation complement of $\pi(\sum_A)$. $\lceil t \rceil$

Set
$$\tau = \begin{pmatrix} W & 0 \\ 0 & W \end{pmatrix}$$
 where $W = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Then $\langle \tau \rangle \leq G(\sum_A)_{V(0), V(\infty), V(I)}$ and $\langle \tau \rangle$ is

transitive on $V(0) - \{(0, 0), V(0) \cap l_{\infty}\}$. This is contrary to Theorem 12.1 of [4].

Let $q \neq 3$. Since the translation complement of any proper semifield plane have an orbit of length 1 on l_{∞} , π differs from any semifield plane.

References

- [1] J. André: Über nicht-Desarguesche Ebenen mit transitiver Translationgruppe, Math. Z. 60 (1954), 156-186.
- [2] F.A. Sherk: Indicator set in affine space of any dimension, Canad. J. Math. 31 (1979), 211–224.
- [3] T. Oyama: On quasifields, Osaka J. Math. 22 (1985), 35-54.
- [4] H. Lüneburg: Translation planes, Springer, 1980.

[5] C. Hering: Eine nicht-desarguesshe Zweifach transitive affine Ebene der Ordnung 27, Abh. Math. Sem. Univ. Hamburg 34 (1969), 203-208.

Amagasaki-minami High School Amagasaki, Hyogo 660 Japan