A NEW CLASS OF TRANSLATION PLANES OF ORDER \mathbf{q}^{3}

Chiniro SUETAKE

(Received September 27, 1984)

1. Introduction

Let q be an odd prime power, where 2 is a non-square in $G F(q)$. The aim of this paper is to construct a new class of translation planes of order q^{3} and to determine their linear translation complements. Their kernels are isomorphic to $G F(q)$. If $q \neq 3$, then the linear translation complement of any plane of this class has exactly two orbits of length 2 and $q^{3}-1$ on the line at infinity and it is of order $3(q-1)\left(q^{3}-1\right)$. If $q=3$, then the plane is the Hering plane of order 27 and the translation complement is isomorphic to $\operatorname{SL}(2,13)$.

The planes also differ from those which are generalized André planes [1] and semifield planes.

2. Preliminaries

We list some results that will be required in the calculations of the linear translation complements.

Let q be a prime power. For $\alpha \in G F\left(q^{3}\right)$ put $\bar{\alpha}=\alpha^{q}$ and $\overline{\bar{\alpha}}=\alpha^{q^{2}}$. Set

$$
M\left(3, q^{3}\right)=\left\{\left.\left(\begin{array}{lll}
\alpha_{11} & \alpha_{12} & \alpha_{13} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{array}\right) \right\rvert\, \alpha_{i j} \in G F\left(q^{3}\right)\right\}
$$

and

$$
\mathfrak{N}=\left\{\left(\begin{array}{lll}
\alpha & \bar{\alpha} & \overline{\bar{\alpha}} \\
\beta & \bar{\beta} & \overline{\bar{\beta}} \\
\gamma & \bar{\gamma} & \bar{\gamma}
\end{array}\right) \in G L\left(3, q^{3}\right)\right\} .
$$

Then $\varepsilon \in \mathfrak{U}$ if and only if

$$
\varepsilon=\left(\begin{array}{lll}
\alpha & \bar{\alpha} & \overline{\bar{\alpha}} \\
\beta & \bar{\beta} & \bar{\beta} \\
\gamma & \bar{\gamma} & \bar{\gamma}
\end{array}\right)
$$

and α, β, γ are linearly independent over $G F(q)$. Set

$$
\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right]=\left(\begin{array}{lll}
\alpha & \bar{\gamma} & \overline{\bar{\beta}} \\
\beta & \bar{\alpha} & \bar{\gamma} \\
\gamma & \bar{\beta} & \bar{\alpha}
\end{array}\right)
$$

Lemma 2.1 (T. Oyama [3]). If $\varepsilon \in \mathfrak{A}$ then

$$
M(3, q)^{\varepsilon}=\left\{\left[\begin{array}{c}
\alpha \\
\beta \\
\gamma
\end{array}\right] \in M\left(3, q^{3}\right)\right\} \text { and } G L(3, q)^{e}=\left\{\left[\begin{array}{c}
\alpha \\
\beta \\
\gamma
\end{array}\right] \in G L\left(3, q^{3}\right)\right\}
$$

Since ε is any element of \mathfrak{A}, we denote $M(3, q)^{\varepsilon}$ by $M(3, q)^{*}$ and $G L(3, q)^{\varepsilon}$ by $G L(3, q)^{*}$.

Set $G F\left(q^{3}\right)^{*}=G F\left(q^{3}\right)-\{0\}$. Let t be a generator of the multiplicative group $G F\left(q^{3}\right)^{*} . \quad$ Set $W=\left[\begin{array}{l}t \\ 0 \\ 0\end{array}\right]$ and $T=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.

The following statements hold:

Lemma 2.2.

(i) $o(W)($ the order of $W)=q^{3}-1$ and $o(T)=3$.
(ii) $T^{-1} W T=W^{q}$.

Lemma 2.3. If $o\left(W^{i}\right) \nmid q-1$, then $N_{G L(3, q)^{*}}\left(\left\langle W^{i}\right\rangle\right)=\langle W, T\rangle$ and $C_{G L(3, q)} *\left(\left\langle W^{i}\right\rangle\right)=\langle W\rangle$.

Proof. Let $A \in N_{G L(3, q) *}\left(\left\langle W^{i}\right\rangle\right)$. There exists an integer j with $W^{i} A=$ $A W^{i j}$. Write $A=\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]$. Then $\alpha t^{i}=\alpha t^{i j}, \beta \overline{t^{i}}=\beta t^{i j}$ and $\gamma \overline{t^{i}}=\gamma t^{i j}$. Assume $\alpha \neq 0$. Then $t^{i}=t^{i j}$. Since $t^{i} \neq \overline{t^{i}}, \beta=0$ and $\gamma=0$. Thus $A \in\langle W\rangle$. Assume $\alpha=0$. If $\beta \neq 0$ and $\gamma \neq 0$, then $\overline{t^{i}}=\overline{t^{i}}$. This is a contradiction. Thus $\beta=0$ or $\gamma=0$ and hence $A \in\langle W, T\rangle$. Therefore $N_{G L(3, q)^{*}}\left(\left\langle W^{i}\right\rangle\right) \subseteq\langle W, T\rangle$. On the other hand $N_{G L(3, q) *}\left(\left\langle W^{i}\right\rangle\right) \supseteq\langle W, T\rangle$ by Lemma 2.2 (ii) and thus $N_{G L(3, q) *}\left(\left\langle W^{i}\right\rangle\right)$ $\langle W, T\rangle$.

Similarly, using $\overline{t^{i}} \neq t^{i}$, we obtain $\left.C_{G L(3, q)}\right)^{*}\left(\left\langle W^{i}\right\rangle\right)=\langle W\rangle$.
Lemma 2.4. Let $A \in G L(3, q)^{*}$ and $o(A)=q^{3}-1$. Then $\langle A\rangle$ is conjugate to $\langle W\rangle$ in $G L(3, q)^{*}$.

Proof. Since $\left(q-1, q^{2}+q+1\right)=1$ or 3 , there exists a prime r such that $r \nmid q-1$ and that $r \mid q^{2}+q+1$. From this $r \mid o(W)$ and $r \nmid q^{3}(q+1)(q-1)^{3}$ follow.

Since $\left|G L(3, q)^{*}\right|=q^{3}(q+1)(q-1)^{3}\left(q^{2}+q+1\right),\langle W\rangle$ includes a Sylow r-subgroup $\left\langle W^{i}\right\rangle$ of $G L(3, q)^{*}$. Thus there exists $B \in G L(3, q)^{*}$ with $B^{-1}\left\langle W^{i}\right\rangle B=\left\langle A^{i}\right\rangle$. Since $o\left(W^{i}\right) \nmid q-1, C_{G L(3, q)^{*}}\left(\left\langle W^{i}\right\rangle\right)=\langle W\rangle$ by Lemma 2.3. Therefore $\langle A\rangle \subseteq$ $C_{G L(3, q)^{*}}\left(\left\langle A^{i}\right\rangle\right)=B^{-1} C_{G L(3, q)^{*}}\left(\left\langle W^{i}\right\rangle\right) B=B^{-1}\langle W\rangle B$. Considering the order of $\langle A\rangle$, we get $\langle A\rangle=B^{-1}\langle W\rangle B$.

Lemma 2.5. Set $I=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. Let $A \in G L(3, q)^{*}$ and assume that $\operatorname{det}(A-x I)$ $\neq 0$ for any $x \in G F(q)$. The following statements hold:
(i) $o(A) \mid q^{3}-1$ and $o(A) \nmid q-1$.
(ii) There exists $B \in G L(3, q)^{*}$ with $o(B)=q^{3}-1$ and $A \in\langle B\rangle$.

Proof. Let $\varepsilon \in \mathfrak{Y}$. Set $V=V(3, q)$ and $C=A^{\mathrm{e}^{-1}}$. There exists a 2-dimensional subspace V_{1} of V such that $V_{1} C \neq V_{1}$. Let $V_{1} \cap V_{1} C=\langle V C\rangle$. Since $\operatorname{det}(A-x I)=\operatorname{det}(C-x I) \neq 0$ for any $x \in G F(q), v, v C, v C^{2}$ are linearly independent over $G F(q)$. Hence C is conjugate to

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
a_{0} & a_{1} & a_{2}
\end{array}\right)
$$

in $G L(3, q)$, where $a_{0}, a_{1}, a_{2} \in G F(q)$ and $v C^{3}=a_{0} v+a_{1} v C+a_{2} v C^{2}$. Let λ be a root of the characteristic polynomial of C. Then $\lambda \in G F\left(q^{3}\right)$ and $\lambda^{3}=a_{0}+a_{1} \lambda+$ $a_{2} \lambda^{2}$. Set

$$
\mu=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\lambda & \bar{\lambda} & \bar{\lambda} \\
\lambda^{2} & \bar{\lambda}^{2} & \bar{\lambda}^{2}
\end{array}\right)
$$

Since

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
a_{0} & a_{1} & a_{2}
\end{array}\right)^{\mu}=\left[\begin{array}{c}
\lambda \\
0 \\
0
\end{array}\right]
$$

$A^{\varepsilon^{-1 \mu}}$ is conjugate to $\left[\begin{array}{l}\lambda \\ 0 \\ 0\end{array}\right]$ in $G L(3, q)^{*} . \quad$ From this (i) and (ii) follow.

3. Description of the class of translation planes

Let q be an odd prime power where 2 is a non-square over $G F(q)$.
Any translation plane is defined by a spread. We define the spreads using
the Oyama's Method (T. Oyama [3]). For $\alpha \in G F\left(q^{3}\right)$ put $((\alpha))=(\alpha, \bar{\alpha}, \overline{\bar{\alpha}})$. $X=\left\{((\alpha)) \mid \alpha \in G F\left(q^{3}\right)\right\}$ becomes a vector space of dimension 3 over $G F(q)$, when + and scaler product are defined by $((\alpha))+((\beta))=((\alpha+\beta))$ and $a((\alpha))=((a \alpha))$. We may assume that $V=X \oplus X$ is the outer sum of two copies of X. Set $V(\infty)=\{(0,((\alpha))) \mid((\alpha)) \in X\}$. If there exists a subset \sum of $G L(3, q)^{*} \cup\{0\}$ such that $0 \in \Sigma,|\Sigma|=q^{3}$ and $\operatorname{det}\left(M_{1}-M_{2}\right) \neq 0$ for all $M_{1} \neq M_{2} \in \Sigma$, then we can costruct a translation plane $\pi(\Sigma)$ of order q^{3} such that it's kernel contains $G F(q)$, as follows:
(a) The points of $\pi(\Sigma)$ are the vectors in V.
(b) The lines are all cosets of all the components of $\Pi=\{V(M) \mid M \in \Sigma \cup$ $\{\infty\}\}$, where $V(M)=\{(((\alpha)),((\alpha))) M \mid((\alpha)) \in X\}$ for $M \in \Sigma$.
(c) Incidence is inclusion.

We call \sum a spread set of degree 3 over $G F(q)$.
Set $S=\left\{\alpha^{2} \mid \alpha \in G F\left(q^{3}\right)^{*}\right\}$. For $\alpha \in G F\left(q^{3}\right)$ put $n(\alpha)=\alpha \overline{\bar{\alpha}}$ and $\operatorname{tr}(\alpha)=\alpha+$ $\bar{\alpha}+\overline{\bar{\alpha}} . \quad$ Clearly $n(\alpha), \operatorname{tr}(\alpha) \in G F(q)$ and $\operatorname{det}\left[\begin{array}{c}\alpha \\ \beta \\ \gamma\end{array}\right]=n(\alpha)+n(\beta)+n(\gamma)-\operatorname{tr}(\alpha \bar{\beta} \overline{\bar{\gamma}})$. For $\alpha \in S$ put $M(\alpha)=\left[\begin{array}{l}\bar{\alpha} \\ \alpha \\ 0\end{array}\right]$ and $N(\alpha)=\left[\begin{array}{c}\bar{\alpha} \\ \alpha \\ -\alpha \overline{\bar{\alpha}} \overline{\bar{\alpha}^{-1}}\end{array}\right]$.

Theorem 3.1. $\Sigma=\{M(\alpha), N(\alpha) \mid \alpha \in S\} \cup\{0\}$ is a spread set of degree 3 over $G F(q)$.
\quad Proof. Let $\alpha \in S . \quad$ Since $M(\alpha)=\left[\begin{array}{l}\alpha^{-1} \\ 0 \\ 0\end{array}\right] M(1)\left[\begin{array}{l}\alpha \bar{\alpha} \\ 0 \\ 0\end{array}\right]$ and $N(\alpha)=\left[\begin{array}{l}\alpha^{-1} \\ 0 \\ 0 \\ 0\end{array}\right]$, $\operatorname{det}(M(\alpha))=2 \cdot n(\alpha) \neq 0$ and $\operatorname{det}(N(\alpha))=4 \cdot n(\alpha) \neq 0$.
If $\alpha \neq 1$, then $\operatorname{det}(M(\alpha)-M(1))=2 \cdot n(\alpha-1) \neq 0$. Hence $\operatorname{det}(M(\alpha)-M(\beta))$ $\neq 0$ for any $\alpha \neq \beta \in S$.

If $\alpha \neq 1$, then $\operatorname{det}(N(\alpha)-N(1))=4(n(\alpha)+\operatorname{tr}(\alpha)-\operatorname{tr}(\alpha \bar{\alpha})-1)=4(\alpha-1)$. $(\bar{\alpha}-1)(\overline{\bar{\alpha}}-1) \neq 0$. Hence $\operatorname{det}(N(\alpha)-N(\beta)) \neq 0$ for any $\alpha \neq \beta \in S$.

Suppose $\operatorname{det}(M(\alpha)-N(1))=0$. Since $\operatorname{det}(M(\alpha)-N(1))=2 \cdot n(\alpha)-(\operatorname{tr}(\alpha))^{2}+$ $4 \cdot \operatorname{tr}(\alpha)-4,2=(\operatorname{tr}(\alpha)-2)^{2}\left(n\left(t^{-i}\right)\right)^{2}$, where $\alpha=t^{2 i}$, a contradiction. Hence we have $\operatorname{det}(M(\alpha)-N(\beta)) \neq 0$ for any $\alpha, \beta \in S$.

Clearly $|\Sigma|=q^{3}$ and the results follow.
Let π be the translation plane which corresponds to the spread set Σ of Theorem 3.1 and G its linear translation complement. Set $\Sigma^{*}=\Sigma U\{\infty\}$ and $\Pi=\left\{V(M) \mid M \in \Sigma^{*}\right\}$.

4. The linear translation complement of π

In this section we show the linear translation complement G of π. We describe the Sherk's Theorem in the case $n=3$ using the Oyama's Method.

Lemma 4.1 (F.A. Sherk [2]). Let $i \in\{1,2\}$. Let \sum_{i} be a spread set of degree 3 over $G F(q)$ with $0 \in \sum_{i}$ and π_{i} be the translation plane of order q^{3} which corresponds to the spread set \sum_{i}. Set $\Pi_{i}=\left\{V(M) \mid M \in \sum_{i} \cup\{\infty\}\right\}$. Then π_{1} and π_{2} are isomorphic if and only if there exist A, B, C and D in $M(3, q)^{*}$ and θ in Aut $\left(G F\left(q^{3}\right)\right)$ with the following properties.
(a) $\operatorname{det}\left(\begin{array}{ll}A & C \\ B & D\end{array}\right) \neq 0$.
(b) One of the following holds
(i) $B=0, \operatorname{det}(A) \neq 0$ and $\Sigma_{2}=\left\{A^{-1}\left(C+M^{9} D\right) \mid M \in \Sigma_{1}\right\}$; or
(ii) $\operatorname{det}(B) \neq 0, B^{-1} D \in \Sigma_{2}$, there is $M_{0} \in \Sigma_{1}$ such that $A+M_{0}^{\theta} B=0$ and for any $M \in \Sigma_{1}-\left\{M_{0}\right\}, \operatorname{det}\left(A+M^{\theta} B\right) \neq 0$ and $\left(A+M^{\theta} B\right)^{-1}\left(C+M^{\theta} D\right) \in \Sigma_{2}$.

Each $\tau \in G$ induces a permutation on Π which we denote by $\tilde{\tau}$.
Theorem 4.2. If $q=3$, then π is the Hering plane of order 27.
Proof. Let $t \in G F(27)$ and $t^{3}=-1+t$. Then $G F(27)^{*}=\langle t\rangle$. Set

$$
\varepsilon=\left(\begin{array}{ccc}
1 & 1 & 1 \\
t & \bar{t} & \bar{t} \\
t^{2} & \overline{t^{2}} & \overline{t^{2}}
\end{array}\right) \in G L(3,27)
$$

F.A. Sherk [2] gave a spread set

$$
\begin{aligned}
& S_{H}=\left\{\left.\left(\begin{array}{rrr}
0 & -1 & 1 \\
-1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right)^{3 i} R\left(\begin{array}{rrr}
0 & -1 & 1 \\
-1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right) \right\rvert\, R=\left(\begin{array}{rrr}
1 & -1 & -1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\right. \\
& \text { or } \left.\left(\begin{array}{rrr}
-1 & 1 & 1 \\
0 & -1 & -1 \\
0 & 0 & -1
\end{array}\right), 1 \leqq i \leqq 13\right\} \cup\{0\}
\end{aligned}
$$

defining the Hering plane of order 27. Since

$$
\begin{aligned}
& \varepsilon^{-1}\left(\begin{array}{rrr}
0 & -1 & 1 \\
-1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right) \varepsilon=\left[\begin{array}{c}
t^{7} \\
t^{8} \\
t^{12}
\end{array}\right], \varepsilon^{-1}\left(\begin{array}{rrr}
1 & -1 & -1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \varepsilon=\left[\begin{array}{c}
t^{9} \\
-1 \\
-t^{7}
\end{array}\right] \\
& \text { and } \varepsilon^{-1}\left(\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & -1 \\
0 & 0 & -1
\end{array}\right) \varepsilon=\left[\begin{array}{c}
t^{3} \\
t^{2} \\
-t^{2}
\end{array}\right], \varepsilon^{-1} S_{H} \varepsilon=
\end{aligned}
$$

$$
\left\{\left[\begin{array}{c}
t^{7} \\
t^{8} \\
t^{12}
\end{array}\right]^{3 i} R\left[\left.\left.\begin{array}{c}
t^{7} \\
t^{8} \\
t^{12}
\end{array}\right|^{i} \right\rvert\, R=\left[\begin{array}{r}
t^{9} \\
-1 \\
-t^{7}
\end{array}\right] \text { or }\left[\begin{array}{r}
t^{3} \\
t^{2} \\
-t^{2}
\end{array}\right], 1 \leqq i \leqq 13\right\} \cup\{0\}\right.
$$

Set $\varepsilon^{-1} S_{H} \varepsilon=\sum_{H}$ and $\Pi_{H}=\left\{V(M) \mid M \in \sum_{H} \cup\{\infty\}\right\}$. Set $\varphi=\left(\begin{array}{cc}A^{-1} & 0 \\ 0 & B\end{array}\right) \in G L(V)$, where $A=\left[\begin{array}{r}-t \\ t^{6} \\ -t^{5}\end{array}\right]$ and $B=\left[\begin{array}{r}t \\ -1 \\ t^{7}\end{array}\right]$. By a computation, we get $\Pi^{\varphi}=\Pi_{H}$. Thus Thorem 4.2 is proved.

The following statements hold:

Lemma 4.3.
 Lemma 4.3.

(i) If $e \in G F(q) \cap S$, then $\left(\begin{array}{ll}I & 0 \\ 0 & E\end{array}\right) \in G_{V(\infty), V(I)}$, where $E=\left[\begin{array}{l}e \\ 0 \\ 0\end{array}\right]$.
(ii) Set $\tau_{0}=\left(\begin{array}{lr}0 & 2 T \\ I & 0\end{array}\right)$, where $T=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Then $\tau_{0} \in G$ and $\widetilde{\tau}_{0}=$ $(V(\infty), V(0))(V(M(1)), V(N(1))) \cdots$.
(iii) Set $\Gamma=\{V(M(\alpha)) \mid \alpha \in S\}, \Delta=\{V(N(\alpha)) \mid \alpha \in S\}$ and $H=\left\{\varphi_{\infty} \mid \alpha \in S\right\}$, where $\varphi_{a}=\left(\begin{array}{cc}A_{a} & 0 \\ 0 & B_{\alpha}\end{array}\right), A_{\alpha}=\left[\begin{array}{l}\alpha \\ 0 \\ 0\end{array}\right]$ and $B_{a}=\left[\begin{array}{l}\alpha \bar{\alpha} \\ 0 \\ 0\end{array}\right]$. Then Γ and Δ are H-orbits on Π and $H \leq G_{V(0), V(\infty)}$.

Lemma 4.4. Set $K=\left\{\left.\left(\begin{array}{cc}a I & 0 \\ 0 & a I\end{array}\right) \right\rvert\, a \in G F(q)-\{0\}\right\}$ and $L=G_{V(\infty), V(0), V(M(1))}$. Then

$$
L=\left\langle\left(\begin{array}{cc}
T & 0 \tag{i}\\
0 & T
\end{array}\right)\right\rangle \cdot K, \text { where } T=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

(ii) If $\alpha \in S-G F(q)$, then $L_{V(M(\alpha))}=K$.

Proof.
Step 1. If $\alpha \in S$, then $\{V(M(\alpha)), V(M(\bar{\alpha})), V(M(\overline{\bar{\alpha}}))\}$ is an L-orbit.
Since $\left(\begin{array}{cc}T & 0 \\ 0 & T\end{array}\right) \in L$, there exists an L-orbit containing $\{V(M(\alpha)), V(M(\bar{\alpha}))$, $V(M(\overline{\bar{\alpha}}))\}$.

Let $\tau \in L$. Since $V(\infty)^{\tau}=V(\infty), V(0)^{\tau}=V(0)$ and $V(M(1))^{\tau}=V(M(1))$, $\boldsymbol{\tau}=\left(\begin{array}{cc}A & 0 \\ 0 & M(1)^{-1} A M(1)\end{array}\right)$ for some $A \in G L(3, q)^{*}$. Set $B=M(1)^{-1} A M(1)$. Let $\alpha \in S$. Suppose that $A^{-1} M(\alpha) B=N(\beta)$ for some $\beta \in S$. Then $A^{-1} M(\alpha) M(1)^{-1} A$ $=N(\beta) M(1)^{-1} . \quad$ Hence $\operatorname{det}(M(\alpha))=\operatorname{det}(N(\beta))$. From this $n\left(\alpha \beta^{-1}\right)=2$ follows.

This is a contradiction since 2 is a nonsquare. Thus $A^{-1} M(\alpha) B=M(\beta)$ for some $\beta \in S$. Therefore $A^{-1} M(\alpha) M(1)^{-1} A=M(\beta) M(1)^{-1}$. Let $x \in G F(q)$. Since $\operatorname{det}\left(A^{-1} M(\alpha) M(1)^{-1} A-x I\right)=\operatorname{det}\left(M(\beta) M(1)^{-1}-x I\right), \operatorname{det}\left[\begin{array}{c}\overline{\alpha-x} \\ \alpha-x \\ 0\end{array}\right]=\operatorname{det}\left[\begin{array}{c}\overline{\beta-x} \\ \beta-x \\ 0\end{array}\right]$.
Hence $n(\alpha)-x \cdot \operatorname{tr}(\alpha \bar{\alpha})+x^{2} \cdot \operatorname{tr}(\alpha)-x^{3}=n(\beta)-x \cdot \operatorname{tr}(\beta \bar{\beta})+x^{2} \cdot \operatorname{tr}(\beta)-x^{3}$. From this $n(\alpha)=n(\beta), \operatorname{tr}(\alpha \bar{\alpha})=\operatorname{tr}(\beta \bar{\beta})$ and $\operatorname{tr}(\alpha)=\operatorname{tr}(\beta)$ follow. This implies that $(\beta-\alpha)$. $(\beta-\bar{\alpha})(\beta-\overline{\bar{\alpha}})=0$. Thus $\beta \in\{\alpha, \bar{\alpha}, \overline{\bar{\alpha}}\}$.

Step 2. $L=L_{V(N(1))}$.
Let $\tau \in L$. Then $\tau=\left(\begin{array}{ll}A & 0 \\ 0 & M(1)^{-1} A M(1)\end{array}\right)$ for some $A \in G L(3, q)^{*}$. Set $B=M(1)^{-1} A M(1) . \quad$ By Step $1, A^{-1} N(1) B=N(\alpha)$ for some $\alpha \in S$. Since

$$
\begin{aligned}
& A^{-1} N(1) M(1)^{-1} A=N(\alpha) M(1)^{-1} \quad \text { and } \quad A^{-1} M(1) N(1)^{-1} A=M(1) N(\alpha)^{-1} \\
& A^{-1}\left(N(1) M(1)^{-1}+M(1) N(1)^{-1}\right) A=N(\alpha) M(1)^{-1}+M(1) N(\alpha)^{-1}
\end{aligned}
$$

From this, since

$$
\begin{align*}
N(1) M(1)^{-1}+M(1) N(1)^{-1} & =(5 / 2) I \text { and } N(\alpha) M(1)^{-1}+M(1) N(\alpha)^{-1} \\
& =1 / 2\left[\begin{array}{l}
\bar{\alpha}+\overline{\bar{\alpha}}+\bar{\alpha} \overline{\bar{\alpha}} \alpha^{-1}+\overline{\alpha^{-1}}+\overline{\overline{\alpha^{-1}}} \\
\alpha-\overline{\bar{\alpha}}-\alpha \overline{\bar{\alpha}} \overline{\alpha^{-1}}+\overline{\alpha^{-1}} \\
\alpha-\bar{\alpha}-\alpha \overline{\bar{\alpha}} \overline{\alpha^{-1}}+\overline{\alpha^{-1}}
\end{array}\right] \\
0 & =\alpha-\overline{\bar{\alpha}}-\alpha \overline{\bar{\alpha}} \overline{\alpha^{-1}}+\overline{\alpha^{-1}} \tag{4.1}\\
0 & =\alpha-\bar{\alpha}-\alpha \overline{\bar{\alpha} \alpha^{-1}}+\overline{\overline{\alpha^{-1}}} \tag{4.2}
\end{align*}
$$

follow. From (4.1),

$$
\begin{equation*}
0=\bar{\alpha}-\alpha-\alpha \overline{\bar{\alpha}} \overline{\overline{\alpha^{-1}}}+\overline{\overline{\alpha^{-1}}} \tag{4.3}
\end{equation*}
$$

follows. Subtracting (4.3) from (4.2) we have $0=2 \alpha-2 \bar{\alpha}$. Therefore $\bar{\alpha}=\alpha$ and so $\alpha \in G F(q)$. From this and (4.3), $\alpha=1$ follows. Thus $V(N(1))^{\tau}=$ $V(N(1))$.

Step 3. Proof of (ii).
Let $\alpha \in S-G F(q)$ and $\tau \in L_{V(M(\alpha))}$. Then $\tau=\left(\begin{array}{ll}A & 0 \\ 0 & M(1)^{-1} A M(1)\end{array}\right)$ for some $A \in G L(3, q)^{*}$. Since $V(M(\alpha))^{\tau}=V(M(\alpha)), A^{-1} M(\alpha) M(1)^{-1} A=M(\alpha) M(1)^{-1}$. Suppose that $\tau \notin K$. Since $\operatorname{det}\left(M(\alpha) M(1)^{-1}-x I\right) \neq 0$ for any $x \in G F(q)$, there exists $W \in G L(3, q)^{*}$ such that $o(W)=q^{3}-1$ and $\langle W\rangle \ni M(\alpha) M(1)^{-1}$ by Lemma 2.5. By Lemma 2.3 and Lemma 2.5, $C_{G L(3, q) *}\left(M(\alpha) M(1)^{-1}\right)=\langle W\rangle$. Thus we get $A \in\langle W\rangle$ and $C_{G L(3, q) *}(A)=\langle W\rangle$. By Step 2, $A^{-1} N(1) M(1)^{-1} A=N(1) M(1)^{-1}$, hence $N(1) M(1)^{-1} \in\langle W\rangle$. Clearly $2 I \in\langle W\rangle$ and $N(1) M(1)^{-1} \neq 2 I$. Therefore $N(1) M(1)^{-1}-2 I \in\langle W\rangle$ by Lemma 2.4 and so $\operatorname{det}\left(N(1) M(1)^{-1}-2 I\right) \neq 0$, a contradiction. Thus we get (ii).

Step 4. Proof of (i).
Let $\alpha \in S-G F(q)$. By Step 3, $L_{V(M(\alpha))}=K$. Furthermore $\{V(M(\alpha))$, $V(M(\bar{\alpha})), V(M(\overline{\bar{\alpha}}))\}$ is an orbit of both L and $\left\langle\left(\begin{array}{cc}T & 0 \\ 0 & T\end{array}\right)\right\rangle$ by Step 1. Hence $L=\left\langle\left(\begin{array}{cc}T & 0 \\ 0 & T\end{array}\right)\right\rangle \cdot K$.

Lemma 4.5.
(i) $\quad G_{V(\alpha), V(0), V(1))}=\left\langle\left(\begin{array}{ll}T & 0 \\ 0 & T\end{array}\right)\right\rangle \cdot K$, where $T=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
(ii) If $\alpha \in S-G F(q)$, then $G_{V(\infty), V(0), V(N(1)), V(N(\alpha))}=K$.

Proof.
(i) Since $\tau_{0}^{-1}\left(\begin{array}{ll}T & 0 \\ 0 & T\end{array}\right) \tau_{0}=\left(\begin{array}{ll}T & 0 \\ 0 & T\end{array}\right), G_{V(()), V(0), V(N(1))}=\left(G_{V(0), V(\infty), V(M(1))}\right)^{\tau_{0}}=$ $\left\langle\left(\begin{array}{ll}T & 0 \\ 0 & T\end{array}\right)\right\rangle \cdot K$ by Lemma 4.4 (i).
(ii) Let $\alpha \in S-G F(q)$. Since $V\left(M\left(\overline{\alpha^{-1}}\right)\right)^{\tau}=V(N(\alpha))$,

Lemma 4.6. $\quad G_{V(\omega)}=G_{V(\omega), V(0)}$.
Proof.
Case (a). $\quad q \neq 3$.
Suppose false. By Lemma 4.3 (iii), there exists $\tau \in G_{V(\infty)}$ with $V(0)^{\tau}=$ $V(M(1))$ or $V(N(1))$. As $V(\infty)^{\tau}=V(\infty)$, there exist $A, B, C \in M(3, q)^{*}$ such that $\tau=\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right)$. Since $|G F(q) \cap S|=(q-1) / 2 \geq 2$, there exists $e \in S \cap G F(q)$ with $e \neq 1$. Since $\left(\begin{array}{ll}I & 0 \\ 0 & E\end{array}\right) \in G$ where $E=\left[\begin{array}{l}e \\ 0 \\ 0\end{array}\right], \Sigma=\left\{A^{-1} M B+A^{-1} C \mid M \in \Sigma\right\}=$ $\left\{E A^{-1} M B+A^{-1} C \mid M \in \Sigma\right\}$. Assume that $V(0)^{\tau}=V(M(1))$. Then $A^{-1} C=$ $M(1)$. There exists $M_{0} \in \sum$ with $A^{-1} M_{0} B+M(1)=N(1)$, Therefore $A^{-1} M_{0} B=$ $\left[\begin{array}{r}0 \\ 0 \\ -1\end{array}\right]$ and $E A^{-1} M_{0} B+M(1)=\left[\begin{array}{r}1 \\ 1 \\ -e\end{array}\right] \in \Sigma$. From this $e=1$ follows, a contradiction.

Next assume that $V(0)^{\tau}=V(N(1))$. Then by the similar argument above, we have a contradiction again.

Case (b). $\quad q=3$.
Assume that $G_{V(\infty)}$ is transitive on $\Pi-\{V(\infty\})$. Then G is 2-transitive on Π. Since π has not a Baer subplane, π is a desarguesian plane by Theorem 39.3 of [4]. This is a contradiction.

Assume that $G_{V(\infty)} \neq G_{V(\infty), V(0)}$. Then $\{V(0)\} \cup \Gamma$ or $\{V(0)\} \cup \Delta$ is $G_{V(\infty)}{ }^{-}$ orbit on Π. Write this orbit by $\Omega . G_{V(\infty)}$ induces the permutation group $G_{V(\infty)} / K$ on Ω by Lemma 4.4 (ii) and Lemma 4.5 (ii). Since $|\Omega|=14$ and $G_{V(\infty)} / K$ is a 2-transitive permutation group on $\Omega, G_{V(\infty)} / K \geq P S L(2,13)$. Since $|\Omega|=14$, the permutation group $\operatorname{PSL}(2,13)$ on Ω contains an involution g which fixes exactly two points of Ω. There exists $\tau \in G_{V(\infty)}$ with $g=\tau K$. Since $|K|=2, o(\tau)=2$ or 4 . Suppose that $0(\tau)=2$. As π has not a Baer subplane, τ is a $\left((0,0), l_{\infty}\right)$-perspectivity. Therefore τ fixes any component of Ω, a contradiction. Suppose that $o(\tau)=4$. As τ^{2} is a $\left.(0,0), l_{\infty}\right)$-perspectivity, any cycle of τ on $V(\infty)-\left\{(0,0), V(\infty) \cap l_{\infty}\right\}$ is 4-cycle. Therefore $4 \mid 26$, a contradiction.

Lemma 4.7. $\quad G_{V(0)}=G_{V(0), V(\infty)}$.
Proof. $\quad G_{V(0)}=\left(G_{V(\infty)}\right)^{\tau_{0}}=\left(G_{V(\infty), V(0)}\right)^{\tau_{0}}=G_{V(0), V(\infty)}$.
Lemma 4.8. Set $\Psi=\{V(\infty), V(0)\}$. Then Ψ is a G-block on Π.
Proof. Suppose $\varphi \in G$ and $\Psi^{\varphi} \cap \Psi \neq \phi$. We may assume that $V(\infty)^{\varphi}=$ $V(\infty)$ or $V(0)^{\varphi}=V(\infty)$. Assume $V(\infty)^{\varphi}=V(\infty)$. Then $\varphi \in G_{V(\infty)}=G_{V(\infty), V(0)}$ and so $V(0)^{\varphi}=V(0)$. Assume $V(0)^{\varphi}=V(\infty)$. Then $G_{V(0), V(\infty)}=G_{V(\infty)}=G_{V(0)^{\varphi}}=$ $\left.G_{V(\infty)^{\varphi}}, V^{(0)}\right)^{\varphi}=G_{V(\infty){ }^{\varphi} V^{(\infty)}}$. From this and Lemma 4.3 (iii), $V(\infty)^{\varphi}=V(0)$ follows. Therefore $\Psi^{\varphi}=\Psi$.

Lemma 4.9. Γ and Δ are $G_{V(\infty)}$-orbits on Π.
Proof. Suppose false. By Lemma 4.3 (iii) there exists $\tau \in G_{V(\infty)}$ with $V(M(1))^{\tau}=V(N(1)) . \quad$ Since $V(0)^{\tau}=V(0), \tau=\left(\begin{array}{ll}A & 0 \\ 0 & M(1)^{-1} A N(1)\end{array}\right)$ for some $A \in$ $G L(3, q)^{*}$. Set $B=M(1)^{-1} A N(1)$. Assume $A^{-1} N(1) B=N(\alpha)$ for some $\alpha \in S$. From $\operatorname{det}\left(A^{-1} N(1) B\right)=\operatorname{det}(N(\alpha)), n(\alpha)=2$ follows, a contradiction. Thus $A^{-1} N(1) B=M(\alpha)$ for some $\alpha \in S$. Let $q=p^{n}$ with p a prime.

Step 1. $p=3$ or $p=5$. If $p=3$, then $A^{-1} N(1) B=M(1)$. If $p=5$, then $A^{-1} N(1) B=M(-1)$.

Set $\rho=\tau_{0}^{2}=\left(\begin{array}{cc}M(1) N(1) & 0 \\ 0 & M(1) N(1)\end{array}\right) . \quad$ Since $\quad \rho^{\tau} \in G_{V(\infty), V(0), V(N(1))}=\langle\rho\rangle \cdot K$, $\rho^{\tau}=b \rho$ or $b \rho^{2}$ for some $b \in G F(q)$. Therefore τ fixes $\left\{V(M) \mid V(M)^{\rho}=V(M)\right\}-$ $\{V(\infty), V(0)\}=\{V(M(x)), V(N(x)) \mid x \in S \cap G F(q)\}$ as a set. Thus $\alpha \in S \cap$ $G F(q) . \quad$ Set $\alpha=a . \quad$ Clearly $V(N(1))^{\tau}=V(M(a))$.

Let $\quad x \in G F(q)$. Clearly $A^{-1} N(1) M(1)^{-1} A=M(a) N(1)^{-1}$. Since $\operatorname{det}\left(A^{-1} N(1) M(1)^{-1} A-x I\right)=\operatorname{det}\left(M(a) N(1)^{-1}-x I\right), \operatorname{det}((N(1)-M(x)) N(1))=$ $\operatorname{det}((M(a)-N(x)) M(1)) . \quad$ From this $(12 a-18) x^{2}+\left(24-9 a^{2}\right) x+2 a^{3}-8=0$. Therefore $3 a=9 / 2$ and $a^{3}=4$. If $p=3$, then $a=1$. If $p \neq 3$, then $p=5$ and
$a=-1$.
Step 2. $3 X q-1$.
If $p=3$, then $3 X q-1$.
Assume $p=5$. Suppose that n is even. Then 2 is a square in $G F\left(5^{n}\right)$, a contradiction. Therefore n is odd. Then $5^{n}-1 \equiv(-1)^{n}-1 \equiv-2(\bmod 3)$. Thus $3 X q-1$.

Step 3. Set $T=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Then $\left(\begin{array}{ll}T & 0 \\ 0 & T\end{array}\right)^{\tau}=\left(\begin{array}{cc}T & 0 \\ 0 & T\end{array}\right) . \quad$ If $p=3$ then $\tau^{2} \in, ~$ $\left\langle\left(\begin{array}{ll}T & 0 \\ 0 & T\end{array}\right)\right\rangle \cdot K . \quad$ If $p=5$, then $\tau^{2} \in\left\langle\left(\begin{array}{rr}T & 0 \\ 0 & -T\end{array}\right)\right\rangle \cdot K$.

If $p=3$, then $\tau^{2} \in G_{V(\infty), V(M(1))}=\left\langle\left(\begin{array}{ll}T & 0 \\ 0 & T\end{array}\right)\right\rangle \cdot K$. If $p=5$, then $\tau^{2} \in$ $\left\langle\left(\begin{array}{rr}T & 0 \\ 0 & -T\end{array}\right)\right\rangle \cdot K$ as $V(\infty)^{\tau_{2}}=V(\infty)$ and $V(M(1))^{\tau 2}=V(M(-1))$. \quad Since $\left(G_{V(\infty), V(M(1))}\right)^{\tau}=G_{V(\infty), V(N(1))}=\left\langle\left(\begin{array}{cc}T & 0 \\ 0 & T\end{array}\right)\right\rangle \cdot K,\left(\begin{array}{ll}T & 0 \\ 0 & T\end{array}\right)^{\tau}=a\left(\begin{array}{cc}T & 0 \\ 0 & T\end{array}\right)$ or $a\left(\begin{array}{ll}T^{2} & 0 \\ 0 & T^{2}\end{array}\right)$ for some $a \in G F(q)$. From this $a^{3}=1$ follows as $o\left(\left(\begin{array}{cc}T & 0 \\ 0 & T\end{array}\right)^{\tau}\right)=3$. Thus since $3 \times q-1$, we have $a=1$.

Suppose $\left(\begin{array}{cc}T & 0 \\ 0 & T\end{array}\right)^{\tau}=\left(\begin{array}{cc}T^{2} & 0 \\ 0 & T^{2}\end{array}\right) . \quad$ Then $\left(\begin{array}{cc}A^{-1} T A & 0 \\ 0 & B^{-1} T B\end{array}\right)=\left(\begin{array}{cc}T^{2} & 0 \\ 0 & T^{2}\end{array}\right) . \quad$ Since $A^{-1} T A=T^{2}, A=\left[\begin{array}{l}\alpha \\ \overline{\bar{\alpha}} \\ \bar{\alpha}\end{array}\right]$ for some $\alpha \in G F\left(q^{3}\right)-G F(q)$. If $\alpha \notin S$, then we take $e \tau$ instead of τ with $e \in G F(q)-G F(q)^{2}$. Thus we may assume that $\alpha \in S$. Since $A^{2}=\left[\begin{array}{l}\operatorname{tr}\left(\alpha^{2}\right) \\ \operatorname{tr}(\alpha \bar{\alpha}) \\ \operatorname{tr}(\alpha \bar{\alpha})\end{array}\right]$ and $\left(\begin{array}{cc}A^{2} & 0 \\ 0 & B^{2}\end{array}\right) \in\left\langle\left(\begin{array}{cc}T & 0 \\ 0 & \pm T\end{array}\right)\right\rangle \cdot K, \operatorname{tr}(\alpha \bar{\alpha})=0$ and $\operatorname{tr}\left(\alpha^{2}\right) \neq 0 . \quad$ Set
$\operatorname{tr}(\alpha)=b . \quad$ Since $b^{2}=\operatorname{tr}\left(\alpha^{2}\right)+2 \cdot \operatorname{tr}(\alpha \bar{\alpha})=\operatorname{tr}\left(\alpha^{2}\right), b \neq 0 . \quad$ Set $V(M(\alpha))^{\tau}=V\left(\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right]\right)$. By an easy computation, $B=M(1)^{-1} A N(1)=-1 / 2 \quad b-4 \bar{\alpha}$ follows. Since $A^{-1} M(\alpha) B=-1 / 2 b^{-2}\left[\begin{array}{c}\alpha \\ \bar{\alpha} \\ \bar{\alpha}\end{array}\right]\left[\begin{array}{c}\bar{\alpha} \\ \alpha \\ 0\end{array}\right]\left[\begin{array}{c}b-4 \overline{\bar{\alpha}} \\ b-4 \bar{\alpha} \\ b-4 \alpha\end{array}\right], \quad-2 b^{2} \alpha_{1}=b\left(\bar{\alpha}^{2}+4 \alpha \overline{\bar{\alpha}}^{2}+2 \alpha \bar{\alpha}+2 \alpha \overline{\bar{\alpha}}\right)-$ $4\left(n(\alpha)+\bar{\alpha}^{3}+\alpha \bar{\alpha}^{2}+\bar{\alpha} \overline{\bar{\alpha}}^{2}+\bar{\alpha} \alpha^{2}+\overline{\bar{\alpha}} \alpha^{2}\right)$ and $-2 b^{2} \alpha_{2}=b\left(\alpha^{2}+\overline{\bar{\alpha}}^{2}+2 \alpha \bar{\alpha}+2 \bar{\alpha} \overline{\bar{\alpha}}\right)-4(n(\alpha)$ $\left.+\alpha^{3}+\alpha \bar{\alpha}^{2}+\overline{\bar{\alpha}} \bar{\alpha}^{2}+\alpha \bar{\alpha}^{2}+\alpha \bar{\alpha}^{2}\right)$. Since $-2 b^{2} \alpha_{1}=-\overline{2 b^{2} \alpha_{2}}$, we get $b\left(\overline{\bar{\alpha}}^{2}+2 \alpha \bar{\alpha}\right)=$ $b\left(\alpha^{2}+2 \bar{\alpha} \overline{\bar{\alpha}}\right)$. Since $b \neq 0, \overline{\bar{\alpha}}^{2}+2 \alpha \bar{\alpha}=\alpha^{2}+2 \bar{\alpha} \overline{\bar{\alpha}}$. Therefore $(\overline{\bar{\alpha}}-\alpha)(\overline{\bar{\alpha}}+\alpha-2 \bar{\alpha})$ $=0$ and so $\overline{\bar{\alpha}}+\alpha=2 \bar{\alpha}$. From this $b=3 \bar{\alpha}$ follows. Thus $\alpha \in G F(q)$, a contradiction.

Step 4. Contradiction.
Since $A^{-1} T A=T, A=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ for some $a, b, c \in G F(q)$. Assume $p=3$. Since $A^{-1} N(1) B=M(1),\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right] A=A\left[\begin{array}{r}1 \\ -1 \\ -1\end{array}\right] . \quad$ From this $c=-(a+b)$ follows. But $\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{c}a \\ b \\ -(a+b)\end{array}\right]=a^{3}+b^{3}-(a+b)^{3}=0$, a contradiction. Assume $p=5$. Since $A^{2}=\left[\begin{array}{l}a^{2}+2 b c \\ c^{2}+2 a b \\ b^{2}+2 a c\end{array}\right]$ and $\left(\begin{array}{cc}A^{2} & 0 \\ 0 & B^{2}\end{array}\right) \in\left\langle\left(\begin{array}{cc}T & 0 \\ 0 & -T\end{array}\right)\right\rangle \cdot K, A^{2}=\left[\begin{array}{c}a^{2}+2 b c \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ c^{2}+2 a b \\ 0\end{array}\right]$ or $\left[\begin{array}{c}0 \\ 0 \\ b^{2}+2 a c\end{array}\right]$. Let $\lambda \in S-G F(q)$. We consider the case $A^{2}=\left[\begin{array}{c}a^{2}+2 b c \\ 0 \\ 0\end{array}\right]$. Then $c^{2}+2 a b=b^{2}+2 a c=0$. Suppose $b=0$. Then $c=0, A=a I$ and $B=M(1)^{-1} A N(1)$ $=a\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right]$. Therefore $V(M(\lambda))^{\tau}=V\left(\left[\begin{array}{l}\bar{\lambda} \\ \lambda \\ 0\end{array}\right]\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right]\right)=V\left(\left[\begin{array}{r}-\bar{\lambda}+2 \overline{\bar{\lambda}} \\ -\lambda+2 \bar{\lambda} \\ \lambda+2 \bar{\lambda}\end{array}\right]\right)$. Thus $-\bar{\lambda}+2 \overline{\bar{\lambda}}=\overline{(-\lambda+2 \bar{\lambda})}$. This implies $\lambda \in G F(q)$, a contradicion. Suppose $b \neq 0$. Substituting $a=-c^{2} / 2 b$ in $b^{2}+2 a c=0$, we get $b=c$ and $a=2 b$. From this $A=b\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$ and $B=M(1)^{-1} A N(1)=b I$ follow. Therefore $V(M(\lambda))^{\tau}=$ $V\left(\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right] M(\lambda)\right)=V\left(\left[\begin{array}{c}2 \lambda-\lambda \\ -\lambda+2 \lambda \\ 2 \lambda+2 \lambda\end{array}\right]\right.$. Thus $2 \lambda-\bar{\lambda}=\overline{(-\lambda+2 \bar{\lambda})}$. This implies $\lambda \in$
$G F(q)$, a contradiction. Also when $A^{2}=\left[\begin{array}{c}0 \\ c^{2}+2 a b \\ 0\end{array}\right]$ or $\left[\begin{array}{c}0 \\ 0 \\ b^{2}+2 a c\end{array}\right]$, similarly we

Theorem 4.10. If $q \neq 3$, then G has two orbits of length 2 and length $q^{3}-1$ on Π.

Proof. Let $q \neq 3$. Suppose false. Then G is transitive on Π. Since $\{V(\infty), V(0)\}$ is a G-block by Lemma 4.8, there exists $V(M) \in \Pi-\{V(\infty)$, $V(0), V(M(1))\}$ such that $\Lambda=\{V(M(1)), V(M)\}$ is a G-block. Since $V(M(1))^{\tau_{0}^{2}}=V(M(1)), \Lambda^{\tau_{0}^{2}}=\Lambda$ and so $V(M)^{\tau_{0}^{2}}=V(M)$. Therefore $M=M(a)$ or $N(a)$ for some $a \in S \cap G F(q)$.

Assume that $\Lambda=\{V(M(1)), V(M(a))\}$ is a G-block. Set $\rho=\left(\begin{array}{rr}I & 0 \\ 0 & a I\end{array}\right) \in G$. Then $\Lambda^{\rho}=\left\{V(M(a)), V\left(M\left(a^{2}\right)\right)\right\}=\Lambda$. Therefore $M\left(a^{2}\right)=M(1)$ and so $a=-1$ as $a \neq 1$. Since $\left\langle\left\{\varphi_{a} \mid \alpha \in S\right\}, \tau_{0}\right\rangle \leq G$ by Lemma 4.3, $\{V(M), V(-M)\}$ is a G-block for any $V(M) \in \Pi-\{V(\infty), V(0)\}$. Set $\sigma_{1}=\left(\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right) \in G$. Now σ_{1} fixes exactly two components $V(\infty)$ and $V(0)$ in Π. Furthermore σ_{1} fixes any G-block on Π. Since G is transitive on Π, there exists σ_{2} such that σ_{2} is conjugate to σ_{1} and fixes exactly two components $V(M(1)), V(M(-1))$ in Π and all G-blocks on Π. Therefore $\sigma_{1} \sigma_{2} \tau_{0} \in G_{V(\infty), V(0)}$. But $V(M(1))^{\sigma_{1} \sigma_{2} \tau_{0}=}$ $V(N(-1))$. This is contrary to Lemma 4.9.

Next assume that $\{V(M(1)), V(N(a))\}$ is a G-block. Since $\{V(M(1))$, $V(N(a))\}^{\varphi_{\alpha}}=\{V(M(\alpha)), V(N(a \alpha))\}$ is a G-block for any $\alpha \in S, G$ is 2-transitive on the set of G-blocks. Therefore there exists $\varphi \in G$ such that φ interchanges $\{V(\infty), V(0)\}$ and $\{V(M(1)), V(N(a))\}$. Let $\varphi=\left(\begin{array}{ll}A & C \\ B & D\end{array}\right)$. Suppose that $\tilde{\rho}=$ $(V(\infty), V(M(1)))(V(0), V(N(a))) \cdots$ on Π. Then

$$
\varphi=\left(\begin{array}{cc}
A & A N(a) \\
-M(1)^{-1} A & -M(1)^{-1} A M(1)
\end{array}\right)
$$

Let $b \in S \cap G F(q)$ with $b \neq 1$. Then

$$
\begin{aligned}
& V(M(b))^{\varphi} \\
= & V\left(\left(A-M(b) M(1)^{-1} A\right)^{-1}\left(A N(a)-M(b) M(1)^{-1} A M(1)\right)\right) \\
= & V\left((A-b A)^{-1}(A N(a)-b A M(1))\right) \\
= & V\left((1-b)^{-1}(N(a)-M(b))\right) .
\end{aligned}
$$

Hence $(1-b)^{-1}(N(a)-M(b))=(1-b)^{-1}\left[\begin{array}{c}a-b \\ a-b \\ -a\end{array}\right] \in \Sigma . \quad$ Since $a \neq 0, a-b=a$ and so $b=0$, a contradiction. Suppose that $\widetilde{\rho}=(V(\infty), V(N(a)))(V(0), V(M(1))) \cdots$ on Π. Set $\boldsymbol{\tau}=\tau_{0}\left(\begin{array}{rr}I & 0 \\ 0 & a I\end{array}\right) . \quad$ Since $\tilde{\tau}=(V(\infty), V(0))(V(M(1)), V(N(a))) \cdots, \widetilde{\varphi \tau}=$ $(V(\infty), V(M(1)))(V(0), V(N(a))) \cdots$. This is the above case, a contradiction. Suppose that $\widetilde{\rho}=(V(\infty), V(M(1)), V(0), V(N(a))) \cdots$ on Π. Then $\varphi=$ $\left(\begin{array}{cc}A & A N(a) \\ -N(a)^{-1} A & -N(a)^{-1} A M(1)\end{array}\right)$. Let $b \in S \cap G F(q)$ with $b \neq a$. Then $V(N(b))^{\varphi}=$ $V\left(\left(1-b a^{-1}\right)^{-1}\left(N(a)-M\left(b a^{-1}\right)\right)\right)$. Thus $b=0$ by the similar argument above, a contradiction. Suppose that $\widetilde{\rho}=(V(\infty), V(N(a)), V(0), V(M(1))) \cdots$ on Π. Then $\widetilde{\rho^{3}}=(V(\infty), V(M(1)), V(0), V(N(a))) \cdots$. This is a contradiction.

Theorem 4.11. If $q \neq 3$, then $|G|=3(q-1)\left(q^{3}-1\right)$.
Proof. By Lemma 4.4, Lemma 4.6, Lemma 4.9 and Theorem 4.10, $|G|=$ $\left|V(\infty)^{G}\right|\left|G_{V(\infty)}\right|=2\left|G_{V(\infty)}\right|=2\left|G_{V(\infty), V(M(1))}\right|\left|V(M(1))^{G_{V(\infty)}}\right|=3(q-1)\left(q^{3}-1\right)$.

Theorem 4.12. If $q=3$, then $G \cong S L(2,13)$.
Proof. Since G is transitive on Π [5], $|G|=28\left|G_{V(\infty)}\right|$. By Lemma 4.4, Lemma 4.6 and Lemma 4.9, $\left|G_{V(\infty)}\right|=\left|G_{V(\infty) V(M(1))}\right|\left|V(M(1))^{G_{V(\infty)}}\right|=6 \cdot 13$. Therefore $|G|=2^{3} \cdot 3 \cdot 7 \cdot 13$. On the other hand since $|S L(2,13)|=|G|$ and $G \geq S L(2,13)$ by [5], $G \cong S L(2,13)$.

Theorem 4.13. π is not a generalized André plane.
Proof. Assume that π is a generalized André plane. Then there exist $\Sigma_{1} \subseteq\left\{\left.\left[\begin{array}{l}\alpha \\ 0 \\ 0\end{array}\right] \right\rvert\, \alpha \in G F\left(q^{3}\right)^{*}\right\}, \quad \Sigma_{2} \subseteq\left\{\left.\left[\begin{array}{l}0 \\ \alpha \\ 0\end{array}\right] \right\rvert\, \alpha \in G F\left(q^{3}\right)^{*}\right\} \quad$ and $\quad \Sigma_{3} \subseteq\left\{\left.\left[\begin{array}{c}0 \\ 0 \\ \alpha\end{array}\right] \right\rvert\, \alpha \in\right.$ $\left.G F\left(q^{3}\right)^{*}\right\}$ such that $\Sigma_{1} \ni I$ and $\sum_{A}=\Sigma_{1} \cup \Sigma_{2} \cup \Sigma_{3} \cup\{0\}$ is the spread set defining π. If $\alpha \neq \beta \in G F\left(q^{3}\right)^{*}$ and $n(\alpha)=n(\beta)$, then $\left[\begin{array}{l}\alpha \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}\beta \\ 0 \\ 0\end{array}\right] \in \Sigma_{1},\left[\begin{array}{c}0 \\ \alpha \\ 0\end{array}\right]$, $\left[\begin{array}{l}0 \\ \beta \\ 0\end{array}\right] \in \Sigma_{2}$ or $\left[\begin{array}{l}0 \\ 0 \\ \alpha\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ \beta\end{array}\right] \in \Sigma_{3} . \quad$ Let $\pi\left(\Sigma_{A}\right)$ is the translation plane π which is constructed by Σ_{A}. Now since the order of π is q^{3}, π is an André plane by Corollary 12.5 of [4]. Let $G\left(\sum_{A}\right)$ is the linear translation complement of $\pi\left(\sum_{A}\right)$. Set $\tau=\left(\begin{array}{cc}W & 0 \\ 0 & W\end{array}\right)$ where $W=\left[\begin{array}{c}t \\ 0 \\ 0\end{array}\right]$. Then $\langle\tau\rangle \leq G\left(\Sigma_{A}\right)_{V(0), V(\infty), V(I)}$ and $\langle\tau\rangle$ is transitive on $V(0)-\left\{(0,0), V(0) \cap l_{\infty}\right\}$. This is contrary to Theorem 12.1 of [4].

Let $q \neq 3$. Since the translation complement of any proper semifield plane have an orbit of length 1 on l_{∞}, π differs from any semifield plane.

References

[1] J. André: Über nicht-Desarguesche Ebenen mit transitiver Translationgruppe, Math. Z. 60 (1954), 156-186.
[2] F.A. Sherk: Indicator set in affine space of any dimension, Canad. J. Math. 31 (1979), 211-224.
[3] T. Oyama: On quasifields, Osaka J. Math. 22 (1985), 35-54.
[4] H. Lüneburg: Translation planes, Springer, 1980.
[5] C. Hering: Eine nicht-desarguesshe Zweifach transitive affine Ebene der Ordnung 27, Abh. Math. Sem. Univ. Hamburg 34 (1969), 203-208.

Amagasaki-minami High School
Amagasaki, Hyogo 660
Japan

