ON THE UNIQUENESS OF MARKOVIAN SELF-ADJOINT EXTENSION OF DIFFUSION OPERATORS ON INFINITE DIMENSIONAL SPACES

Masayoshi TAKEDA

(Received November 19, 1984)

1. Introduction

Let $\left(\mathcal{S}\left(R^{d}\right), L^{2}\left(R^{d}\right), \mathcal{S}^{\prime}\left(R^{d}\right)\right)$ be a rigged Hilbert space, where $\mathcal{S}\left(R^{d}\right)$ is the Schwartz space of test functions and $\mathcal{S}^{\prime}\left(R^{d}\right)$ is its dual space. Letting $\left\{e_{i}\right\}_{i=1}^{\infty}$ $\subset \mathcal{S}\left(R^{d}\right)$ be a complete orthonormal basis of $L_{2}\left(R^{d}\right)$, we put $F C_{0}^{\infty}=\{f ; f$ is a function on $\mathcal{S}^{\prime}\left(R^{d}\right)$ of the form $f(\xi)=\tilde{f}\left(\left\langle\xi, e_{i_{1}}\right\rangle, \cdots,\left\langle\xi, e_{i_{n}}\right\rangle\right)$ for some n and a real $C_{0}^{\infty}\left(R^{n}\right)$-function $\left.\tilde{f}\right\}$, where \langle,$\rangle is the dualization between \mathcal{S}^{\prime}\left(R^{d}\right)$ and $\mathcal{S}\left(R^{d}\right)$. Let ν be a quasi-invariant measure on $\mathcal{S}^{\prime}\left(R^{d}\right)$ with respect to $\mathcal{S}\left(R^{d}\right)$. We call the measure ν admissible if the symmetric bilinear form $\varepsilon_{\nu}(u, v)=\frac{1}{2}$ $(D u, D v)_{L^{2}\left(R^{d}\right) \otimes L^{2}(v)}, u, v \in F C_{0}^{\infty}$, is closable. Its closed extension $\left(\mathcal{E}_{v}, \mathscr{F}_{v}\right)$ is said to be the energy form associated with the quasi-invariant admissible measure ν. Here, $D u=\sum_{i=1}^{\infty} e_{i} \otimes D_{i} u \in L^{2}\left(R^{d}\right) \otimes L^{2}(\nu)$ and D_{i} is a derivative in the direction of e_{i}. Furthermore, a self-adjoint operator H_{ν} representing the energy form $\left(\mathcal{E}_{v}, \mathscr{F}_{v}\right)$ is said to be a diffusion operator. For example, the probability measure μ_{0} on $S^{\prime}\left(R^{d}\right)$ defined by the following formula is quasi-invariant and admissible:

$$
\int_{\mathcal{S}^{\prime}\left(R^{d}\right)} e^{i\langle\xi, \phi\rangle} d \mu_{0}(\xi)=e^{-1 / 4\left(\phi,\left(\Delta+m^{2}\right)^{-1 / 2} \phi\right)}, \phi \in \mathcal{S}\left(R^{d}\right),
$$

where $($,$) is the scalar product in L^{2}\left(R^{d}\right)$.
Let μ_{0}^{*} be the Euclidian random field $\left\langle\xi^{*}, \psi\right\rangle$ over R^{d+1}, defined by

$$
\int_{\mathcal{S}^{\prime}\left(R^{d+1}\right)} e^{i\left\langle\mathcal{K}^{*}, \psi\right\rangle} d \mu_{0}^{*}\left(\xi^{*}\right)=e^{-1 / 2\left(\psi,\left(\Delta+m^{2}\right)^{-1} \psi\right)}, \psi \in \mathcal{S}\left(R^{d+1}\right) .
$$

The random field $\left\langle\xi^{*}, \psi\right\rangle$ can be regard as the restriction to $\mathcal{S}\left(R^{d+1}\right)$ of the generalized random field indexed by the Sobolev space H_{-1} the completion of $\mathcal{S}\left(R^{d+1}\right)$ with respect to the norm $\left\|\left(-\Delta+m^{2}\right)^{-1 / 2} \psi\right\|$. We denote by Σ_{0} the σ-field generated by random variable $\left\{\left\langle\xi^{*}, \delta_{0} \otimes \phi\right\rangle ; \phi \in \mathcal{S}\left(R^{d}\right)\right\}$, and regard the restriction of μ_{0}^{*} to Σ_{0} as the measure on $\mathcal{S}^{\prime}\left(R^{d}\right)$ by the natural identifica-
tion of $\langle\xi, \phi\rangle$ with $\left\langle\xi^{*}, \delta_{0} \otimes \phi\right\rangle$. Then, it coincides with μ_{0} and the diffusion operator $H_{\mu_{0}}$ corresponding to μ_{0} is nothing but the energy operator H of free Euclidean field model μ_{0}^{*}. To see this, it is enough to show that $H_{\mu_{0}}$ and H are the same operators on $F C_{0}^{\infty}$ and that the symmetric operator $S=H_{\mu_{0}} \uparrow F C_{0}^{\infty}$ has a unique Markovian self-adjoint extension, where the notation $H_{\mu_{\rho}} \uparrow F C_{0}^{\infty}$ indicates the restriction of $H_{\mu_{0}}$ to $F C_{0}^{\infty}$. In fact, the operator S is known to be an essentially self-adjoint operator.

Albeverio and Hϕ egh-Krohn have raised a question in [3] whether the diffusion operator associated with $\mu^{*} \uparrow \Sigma_{0}$ is identical with energy operator of the Euclidean field model μ^{*} with trigonometric (or exponential) interaction and have shown that these operators are the same on $F C_{0}^{\infty}$ when $d=1$. Thus, we now cope with the question: what kind of quasi-invariant admissible measure ν induces the symmetric operator $S_{\nu}=H_{\nu} \uparrow F C_{0}^{\infty}$ with a unique Markovian self-adjoint extension?

In this paper, we consider this problem in a simpler case that ν is an absolutely continuous measure with respect to the Wiener measure on the abstract Wiener space (H, B, μ). We conclude the uniqueness of Markovian selfadjoint extension of S_{ν} under the condition that the Radon-Nikodym derivative ρ^{2} is strictly positive and belongs to the space $D_{\infty}\left(=\bigcap_{p \geq 1, r \in R^{1}} D_{p}^{r}\right)$, where D_{p}^{r} is the Sobolev space of order r and degree p on the Wiener space. In the proof, we use the Malliavin's calculus and in particular the hypoellipticity of the Orn-stein-Uhlenbeck generator. We note at the end of this paper that, if ρ happens to be a tame function, then Wielens' method [8] applies and S_{ν} becomes essentially self-adjoint.

2. Notations and the closability of a symmetric form

Let (H, B, μ) be an abstract Wiener space and $\left\{e_{i}\right\}_{i=1}^{\infty} \subset B^{*}$ (dual space of B) be a complete orthonormal basis of H. We set $F C_{0}^{\infty}=\{f ; f$ is a function on B of the form $f(x)=\tilde{f}\left(\left\langle e_{i_{1}}, x\right\rangle, \cdots,\left\langle e_{i_{n}}, x\right\rangle\right)$ for some n and $\left.\tilde{f} \in C_{0}^{\infty}\left(R^{n}\right)\right\}$ and $F C_{0}^{\infty}(H)=\left\{F ; F\right.$ is a H-valued function on B which is of form $F(x)=\sum_{i=1}^{n} e_{i} \otimes f_{i}(x)$ for some $\left.n, f_{i} \in F C_{0}^{\infty}\right\}$. We denote by D_{p}^{r} the completion of $F C_{0}^{\infty}$ with respect to the norm $\|f\|_{p}^{r}=\|f\|_{p}+\left\|D^{r} f\right\|_{p}$, where $D^{r} f, f \in F C_{0}^{\infty}$, is the r-times iteration of the Fréchet derivative which is an element in $L_{p}(B \rightarrow \overbrace{H \otimes \cdots \otimes H})$. Note that

$$
\left\|D^{r} f\right\|_{p}=\left\|\left\{\sum_{\left(n_{1}, \cdots, n_{r}\right) \in N^{r}}\left(D_{n_{1}}\left(D_{n_{2}} \cdots\left(D_{n_{r}} f\right)\right)\right)^{2}\right\}^{1 / 2}\right\|_{p}
$$

where D_{i} is the derivative in the direction of e_{i}. It is convienient to use two different expressions of $D_{p}^{1}(1<p<\infty)$ according to Sugita [7] and Kusuoka [6]:

$$
D_{p}^{1}=\left\{\begin{array}{ll}
u \in L_{p}(\mu) ; & \text { such that }\left(u, D^{*} v\right)=(g, v), \text { for } \tag{2.1}\\
\text { any } v \in F C_{0}^{\infty}(H)
\end{array}\right\}
$$

and

$$
D_{p}^{1}=\left\{\begin{array}{ll}
u \in L_{p}(\mu) ; & \left.\begin{array}{l}
u \text { is stochastic } H \text { Gateaux differentiable } \\
(S G D) \text { with respect to } \mu, \text { ray absolutely } \\
\\
\text { Gateaux derivative } D u \text { of } u \text { satisfies that } \\
\\
\\
\|D u(x)\|_{H} \in L_{p}(\mu)
\end{array}\right\} ; \text { and the stochastic } \tag{2.2}
\end{array}\right\}
$$

Here, a function u is called $S G D$, if there exists a measurable map $D u ; B \rightarrow H$ such that for any $k \in B^{*}$, the convergence $\frac{1}{t}\left[u(x+t k)-u(x)-t(D u(x), k)_{H}\right] \rightarrow 0$, $t \rightarrow 0$, take place in probability with respect to μ, and u is called $R A C$, if for any $k \in B^{*}$, there exists a measurable function u_{k} such that

1) $\tilde{u}_{k}(x)=u(x)$ for μ-a.e.
2) $\tilde{u}_{k}(x+t k)$ is absolutely continuous in t for each $x \in B$ (See [6; Definition 1,1 and Definition 1,2]). Then, we have for $u \in D_{p}^{1},\|D u(x)\|_{H}=\sqrt{\sum_{i=1}^{\infty}\left(D u(x), e_{i}\right)^{2}}$ $=\sqrt{\sum_{i=1}^{\infty}\left(D_{i} u(x)\right)^{2}}$, where $D_{i} u(x)=\lim _{t \not 0} \frac{1}{t}\left(\tilde{u}_{e_{i}}\left(x+t e_{i}\right)-\tilde{u}_{e_{i}}(x)\right)$.

We fix a function ρ on B satisfying
i) $\rho>0$
ii) $\rho \in D_{\infty}$
where $D_{\infty}=\bigcap_{\substack{p \geq 1 \\ r \in R^{1}}} D_{p}^{r}$. We define the symmetric bilinear form $\left(\mathcal{E}_{\rho}, F C_{0}^{\infty}\right)$ by

$$
\begin{equation*}
\mathcal{E}_{\rho}(u, v)=\frac{1}{2} \int_{B}(D u(x), D v(x))_{H} \rho^{2}(x) d \mu, \quad u, v \in F C_{0}^{\infty} \tag{2.4}
\end{equation*}
$$

Lemma 1. $\left(\mathcal{E}_{\rho}, F C_{0}^{\infty}\right)$ is closable on $L_{2}\left(\rho^{2} \mu\right)$.
Proof. We follows the argument of [1; Theorem 2.3]. Since $D_{i}^{*} \rho^{2}=$ $-2 \rho D_{i} \rho+\left\langle e_{i}, x\right\rangle \rho^{2}(x)$, we have for $g \in F C_{0}^{\infty}$,

$$
\begin{aligned}
\left(D g, e_{i} \otimes 1\right)_{H \otimes L^{2}\left(\rho^{2} \mu\right)} & =\left(D_{i} g, \rho^{2}\right)_{L^{2}(\mu)} \\
& =\left(g,-2 \rho D_{i} \rho+\left\langle e_{i}, x\right\rangle \rho^{2}\right)_{L^{2}(\mu)} \\
& =\left(g,-2 \frac{D_{i} \rho}{\rho}+\left\langle e_{i}, x\right\rangle\right)_{L^{2}\left(\rho^{2} \mu\right)}
\end{aligned}
$$

By noting that $\int\left(\frac{D_{i} \rho}{\rho}\right)^{2} \rho^{2} d \mu \leqq\|\rho\|_{2}^{1}<\infty$, we see that $-2 \frac{D_{i} \rho}{\rho}+\left\langle e_{i}, x\right\rangle \in L_{2}\left(\rho^{2} \mu\right)$
and $e_{i} \otimes 1 \in\left[D_{P}^{*}\right]$, where D_{P}^{*} denote the adjoint operator of D which is an operator from $L_{2}\left(\rho^{2} \mu\right)$ to $H \otimes L_{2}\left(\rho^{2} \mu\right)$. Put $\beta\left(e_{i}\right)=D_{\rho}^{*}\left(e_{i} \otimes 1\right)$. Then, we see that for $g, f \in F C_{0}^{\infty}$

$$
\begin{aligned}
\left(D g, e_{i} \otimes f\right)_{H \otimes L^{2}\left(\rho^{2} \mu\right)} & =\left(D_{i} g \cdot f, 1\right)_{\rho^{2} \mu} \\
& =\left(D_{i}(g \cdot f)-g D_{i} f, 1\right)_{\rho^{2} \mu} \\
& =\left(g, \beta\left(e_{i}\right) f-D_{i} f\right)_{\rho^{2} \mu} .
\end{aligned}
$$

Because the function $\beta\left(\epsilon_{i}\right) f-D_{i} f$ belongs to $L_{2}\left(\rho^{2} \mu\right)$, it holds that $e_{i} \otimes f \in \mathscr{D}\left[D_{\rho}^{*}\right]$ and consequently $F C_{0}^{\infty}(H)$ is contained in $\mathscr{D}\left[D_{\rho}^{*}\right]$. Since $F C_{0}^{\infty}(H)$ is dense in $H \otimes L_{2}\left(\rho^{2} \mu\right)$, the closure $\bar{D}=\left(D_{\rho}^{*}\right)^{*}$ is well defined and hence $\left(\mathcal{E}_{\rho}, F C_{0}^{\infty}\right)$ is closable. q.e.d.

We denote by $\left(\mathcal{E}_{\rho}, \mathscr{F}\right)$ the closed extension of $\left(\mathcal{E}_{\rho}, F C_{0}^{\infty}\right)$.

3. The uniqueness of Markovian self-adjoint extension

Let H_{ρ} be a self-adjoint operator associated with the closed form ($\left.\mathcal{E}_{\rho}, \mathscr{F}\right)$ and S be a symmetric operator defined by $S=H_{\rho} \uparrow F C_{0}^{\infty} . \quad S$ can be represented as

$$
\begin{equation*}
S u=\frac{1}{2} \mathcal{L} u+\frac{1}{\rho}\langle D \rho, D u\rangle_{H}, u \in F C_{0}^{\infty}, \tag{3.1}
\end{equation*}
$$

where \mathcal{L} is a Ornstein-Uhlenbeck generator. We denote by $\mathcal{A}_{M}(S)$ the totality of Markovian self-adjoint extensions: $A \in \mathcal{A}_{M}(S)$ means that A is a self-adjoint extension of S which generates a strongly continuous contraction Markovian semi-group on $L_{2}\left(\rho^{2} \mu\right) . \quad H_{\rho}$ is called the Friedrichs extension of S and is an element of $\mathcal{A}_{M}(S)$. Then, the following theorem holds.

Theorem 1. Under the condition (2.3), $\mathcal{A}_{M}(S)$ has only one element H_{ρ}, namely, S has a unique Markovian self-adjoint extension.

For any $A \in \mathcal{A}_{M}(S)$, the form domain $\mathscr{D}[\sqrt{-A}]$ is orthogonally decomposed with respect to $\mathcal{E}_{A, \infty}\left(=(\sqrt{-A} \cdot, \sqrt{-A} \cdot)_{\rho}{ }^{2} \mu+\alpha(,)_{\rho}{ }^{2} \mu\right)$ as

$$
\begin{equation*}
\mathscr{D}[\sqrt{-A}]=\mathscr{F} \oplus\left(\mathscr{I}_{a} \cap \mathscr{D}[\sqrt{-A}]\right) \tag{3.2}
\end{equation*}
$$

where $\eta_{a}=\left\{u \in L_{2}\left(\rho^{2} \mu\right) ;\left(\alpha I-S^{*}\right) u=0\right\}([4 ;$ Theorem 2.3.2]). Hence, for the proof of Theorem 1 we must show that

$$
\begin{equation*}
\mathscr{N}_{\infty} \cap \mathscr{D}[\sqrt{-A}] \subset \mathscr{F} \tag{3.3}
\end{equation*}
$$

In order to prove (3.3) we introduce the intermediate space \mathscr{H} by (3.4) and prove that $\mathscr{N}_{\infty} \cap \mathscr{D}[\sqrt{-A}] \subset \mathscr{H} \subset \mathscr{F}$ (Lemma 2 and Lemma 4).

Let $\left\{a_{l}(t)\right\}_{l=1}^{\infty}$ be a sequence of $C_{0}^{\infty}\left(R^{1}\right)$-functions satisfying that
i) $0 \leqq a_{l}(t) \leqq 1 \quad$ ii) $a_{l}(t)= \begin{cases}1 & \text { on } \frac{1}{2^{l}}<t<2^{l} \\ 0 & \text { on } t \leqq \frac{1}{2^{l+1}}, t \leqq 2^{l+1}\end{cases}$
iii) $\left|a_{l}^{\prime}(t)\right| \leqq\left\{\begin{array}{ll}c 2^{l+1} & \text { on } t \leqq \frac{1}{2^{l}} \\ c^{\prime} & \text { otherwise }\end{array}\right.$ for some constants c and c^{\prime}.

We put $\phi_{l}(x)=a_{l} \circ \rho(x)$. If a function u satisfies $\phi_{l} \cdot u \in \underset{1<p<2}{ } D_{p}^{1}$, for any l, then we have $D\left(\phi_{l+1} \cdot u\right)=D\left(\phi_{l} \cdot u\right) \mu$-a.e. on $\mathscr{M}_{l}=\left\{\frac{1}{2^{l}}<\rho<2^{l}\right\}$, because $D\left(\phi_{l} \cdot u\right)$ $=D\left(\phi_{l} \cdot \phi_{l+1} u\right)=\phi_{l} \cdot D\left(\phi_{l+1} \cdot u\right)+\phi_{l+1} u \cdot D \phi_{l}$. Therefore, we can well define $D u$ by

$$
D u=D\left(\phi_{l} \cdot u\right) \quad \text { on } \mathscr{M}_{l} .
$$

Let we consider the function space

$$
\mathscr{H}=\left\{\begin{array}{ll}
\phi_{l} \cdot u \in \bigcup_{1<p<2} D_{p}^{1} \text { for any } l \text { and } \tag{3.4}\\
u \in L_{2}\left(\rho^{2} \mu\right) ; & \int\langle D u, D u\rangle_{H} \rho^{2} d \mu<\infty
\end{array}\right\}
$$

Then, we have the following lemma.

Lemma 2. It holds that

$$
\begin{equation*}
\mathscr{H} \subset \mathscr{F} . \tag{3.5}
\end{equation*}
$$

Proof. For any $u \in \mathscr{H}$, we see that $u_{(N)}=(-N \vee u) \wedge N \in \mathscr{H}$ since $\phi_{l} \cdot u_{(N)}=$ $\left(\left(-N \phi_{l}\right) \vee \phi_{l} u\right) \wedge N \phi_{l} \in D_{p}^{1}$ by (2.2), $u_{(N)}$ converges to u in $\mathcal{E}_{\rho, 1}$. Furthermore $u_{(N)}$ can be approximated by $\phi_{l} \cdot u_{(N)} \in \mathcal{H}$. In fact, we have

$$
\begin{align*}
& \int\left\|D u_{(N)}-D\left(\phi_{l} \cdot u_{(N)}\right)\right\|_{H}^{2} \rho^{2} d \mu \tag{3.6}\\
& \quad \leqq 2\left[\int\left|1-\phi_{l}\right|^{2}\left\|D u_{(N)}\right\|_{H}^{2} \rho^{2} d \mu+\int u_{(N)}^{2}\left\|D \phi_{l}\right\|_{H}^{2} \rho^{2} d \mu\right]
\end{align*}
$$

The second term of the right hand side is equal to $\int u_{(N)}^{2}\left(a_{l}^{\prime}(\rho)\right)^{2}\|D \rho\|_{H}^{2} \rho^{2} d \mu$ and is not greater than $\int_{\left(\rho \leq 1 / 2^{l}\right)} u_{(N)}^{2} \cdot\left(c 2^{l+1}\right)^{2}\|D \rho\|_{H}^{2} \rho^{2} d \mu+\int_{\left(\rho \geq 2^{l}\right)} u_{(N)}^{2} c^{\prime 2}\|D \rho\|_{H}^{2} \rho^{2} d \mu$ $\leqq 4 c^{2} N^{2} \int_{\left\{\rho \leq 1 / 2^{l}\right\}}\|D \rho\|_{H}^{2} d \mu+c^{\prime 2} N^{2} \int_{\left\{\rho \geq 2^{l}\right\}}\|D \rho\|_{H}^{2} \rho^{2} d \mu$, which tends to zero as $l \rightarrow \infty$ by the assumption (2.3). Hence the left hand side of (3.6) tends to zero as $l \rightarrow \infty$.

Next we show that there exists a sequence $\left\{f_{m}\right\}_{m=1}^{\infty} \subset F C_{0}^{\infty}$ such that

$$
\begin{equation*}
\phi_{l+1} f_{m} \rightarrow \phi_{l} u_{(N)}(m \rightarrow \infty) \text { in } \mathcal{E}_{\rho, 1} \tag{3.7}
\end{equation*}
$$

Since we see $\phi_{l} u_{(N)} \in D_{2, b}^{1}$ by

$$
\begin{aligned}
\int\left\|D\left(\phi_{l} \cdot u_{(N)}\right)\right\|_{H}^{2} d \mu & \leqq 2\left[\int_{l} \phi_{l}^{2}\left\|D u_{(N)}\right\|_{H}^{2} d \mu+\int u_{(N)}^{2}\left\|D \phi_{l}\right\|_{H}^{2} d \mu\right] \\
& \leqq 2\left[\int_{\left(1 / 2^{l+1}<\rho<2^{l+1}\right)} \phi_{l}^{2}\left\|D u_{(N)}\right\|_{H}^{2} d \mu+N^{2} \int\left\|D \phi_{l}\right\|_{H}^{2} d \mu\right] \\
& \leqq 2^{2 l+3} \int\left\|D u_{(N)}\right\|_{H}^{2} \rho^{2} d \mu+2 N^{2} \int\left\|D \phi_{l}\right\|_{H}^{2} d \mu \\
& <\infty
\end{aligned}
$$

there exists a sequence $\left\{f_{m}\right\}_{m=1}^{\infty} \subset F C_{0}^{\infty}$ such that 1) $\left|f_{m}\right| \leqq N$, 2) $f_{m} \rightarrow \phi_{l} u_{(N)}$, μ-a.e., 3) $f_{m} \rightarrow \phi_{l} u_{(N)}$ in D_{2}^{1}. Then, (3.7) follows because

$$
\begin{aligned}
& \int\left\|D\left(\phi_{l+1} f_{m}\right)-D\left(\phi_{l} u_{(N)}\right)\right\|_{H}^{2} \rho^{2} d \mu=\int\left\|D\left(\phi_{l+1}\left(f_{m}-\phi_{l} u_{(N)}\right)\right)\right\|_{H}^{2} \rho^{2} d \mu \\
& \leqq 2\left[\int \phi_{l+1}^{2}\left\|D f_{m}-D\left(\phi_{l} u_{(N)}\right)\right\|_{H}^{2} \rho^{2} d \mu+\int\left(f_{m}-\phi_{l} u_{(N)}\right)^{2}\left\|D \phi_{l+1}\right\|_{H}^{2} \rho^{2} d \mu\right] \\
& \leqq 2^{2 l+5} \int\left\|D f_{m}-D\left(\phi_{l} u_{(N)}\right)\right\|_{H}^{2} d \mu+2 \int\left(f_{m}-\phi_{l} u_{(N)}\right)^{2}\left\|D \phi_{l+1}\right\|_{H}^{2} \rho^{2} d \mu \\
& \rightarrow 0 \quad(m \rightarrow \infty) .
\end{aligned}
$$

Finally we take a sequence $\left\{g_{n}\right\}_{n=1}^{\infty} \subset F C_{0}^{\infty}$ satisfying that $g_{n} \rightarrow \phi_{l+1} f_{m}$ in D_{4}^{1}. Then, we see that

$$
\begin{equation*}
g_{n} \rightarrow \phi_{l+1} f_{m} \text { in } \mathcal{E}_{\rho, 1}, \tag{3.8}
\end{equation*}
$$

since $\int\left\|D\left(\phi_{l+1} f_{m}\right)-D g_{n}\right\|_{H}^{2} \rho^{2} d \mu \leqq\left(\int\left\|D\left(\phi_{l+1} f_{m}\right)-D g_{n}\right\|_{H}^{4} d \mu\right)^{1 / 2} \cdot\left(\int \rho^{4} d \mu\right)^{1 / 2}$. q.e.d.
Denote by $\bar{S}^{(p)}, 1<p$, the closure of S in $L_{p}\left(\rho^{2} \mu\right)$. We need the following lemma in the proof of Lemma 4.

Lemma 3. If $w \in D_{p}^{2}, p>1$, then for any $l, \phi_{l} w \in \underset{\substack{1<p^{\prime}<p \\ p^{\prime} \leq s^{2}}}{ } \mathcal{D}\left[\bar{S}^{\left(p^{\prime}\right)}\right]$ and

$$
\begin{equation*}
\bar{S}^{\left(\phi^{\prime}\right)}\left(\phi_{l} w\right)=\frac{1}{2} \mathcal{L}\left(\phi_{l} w\right)+\frac{1}{\rho}\left\langle D \rho, D\left(\phi_{l} w\right)\right\rangle_{H} . \tag{3.9}
\end{equation*}
$$

Proof. First of all we show that $\phi_{l} \psi \in \mathscr{D}\left[\bar{S}^{(2)}\right]$, for $\psi \in F C_{0}^{\infty}$. Take a sequence $\left\{g_{k}\right\}_{k=1}^{\infty} \subset F C_{0}^{\infty}$ such that g_{k} converges to ϕ_{l} with respect to $\left\|\|_{4}^{2}\right.$. Then, we obtain

$$
\begin{align*}
S\left(g_{k} \psi\right)= & \frac{1}{2} \mathcal{L} g_{k} \psi+\frac{1}{2} g_{k} \mathcal{L} \psi+\frac{1}{2}\left\langle D g_{k}, D \psi\right\rangle_{H}+\frac{g_{k}}{\rho}\langle D \rho, D \psi\rangle_{H} \tag{3.10}\\
& +\frac{\psi}{\rho}\left\langle D \rho, D g_{k}\right\rangle_{H} \\
\overrightarrow{k \rightarrow \infty} & \frac{1}{2} \mathcal{L} \phi_{l} \psi+\frac{1}{2} \phi_{l} \mathcal{L} \psi+\frac{1}{2}\left\langle D \phi_{l}, D \psi\right\rangle_{H}+\frac{\phi_{l}}{\rho}\langle D \rho, D \psi\rangle_{H} \\
& +\frac{\psi}{\rho}\left\langle D \rho, D \phi_{l}\right\rangle_{H}
\end{align*}
$$

$$
=\frac{1}{2} \mathcal{L}\left(\phi_{l} \psi\right)+\frac{1}{\rho}\left\langle D \rho, D\left(\phi_{l} \psi\right)\right\rangle_{H}
$$

the convergence being in $L_{2}\left(\rho^{2} \mu\right)$. In fact, by Schwartz inequality we have

$$
\int\left|\mathcal{L} g_{k} \psi-\mathcal{L} \phi_{l} \psi\right|^{2} \rho^{2} d \mu \leqq\left(\int\left|\mathcal{L} g_{k}-\mathcal{L} \phi_{l}\right|^{4} d \mu\right)^{1 / 2}\left(\int(\psi \rho)^{4} d \mu\right)^{1 / 2} \rightarrow 0(k \rightarrow \infty),
$$

and in the same way we can show the convergence of other terms of (3.10). Next, if $\left\{h_{m}\right\}_{m=1}^{\infty} \subset F C_{0}^{\infty}$ converges to w with respect to $\left\|\|_{p}^{2}\right.$, we have

$$
\begin{align*}
\bar{S}^{(2)}\left(\phi_{l} h_{m}\right)= & \frac{1}{2} \mathcal{L} \phi_{l} h_{m}+\frac{1}{2} \phi_{l} \mathcal{L} h_{m}+\frac{1}{2}\left\langle D \phi_{l}, D h_{m}\right\rangle_{H}+\frac{1}{2} \phi_{l} \mathcal{L} h_{m} \tag{3.11}\\
& +\frac{1}{2}\left\langle D \phi_{l}, D h_{m}\right\rangle_{H} \\
\overrightarrow{m \rightarrow \infty} & \frac{1}{2} \mathcal{L} \phi_{l} w+\frac{1}{2} \phi_{l} \mathcal{L} w+\frac{1}{2}\left\langle D \phi_{l}, D w\right\rangle_{H}+\frac{w}{\rho}\left\langle D \rho, D \phi_{l}\right\rangle_{H} \\
& +\frac{\phi_{l}}{\rho}\langle D \rho, D w\rangle_{H} \\
= & \frac{1}{2} \mathcal{L}\left(\phi_{l} w\right)+\frac{1}{\rho}\left\langle D \rho, D\left(\phi_{l} w\right)\right\rangle_{H}
\end{align*}
$$

the convergence being in $L_{p^{\prime}}\left(\rho^{2} \mu\right)$. In fact, by Hölder inequality, we get

$$
\begin{aligned}
\int\left|\mathcal{L} \phi_{l} w-\mathcal{L} \phi_{l} h_{m}\right|^{p^{\prime}} \rho^{2} d \mu \leqq\left(\int\left|w-h_{m}\right|^{p} d \mu\right)^{p^{\prime} / p}\left(\int\left(\left|\mathcal{L} \phi_{l}\right|^{p^{\prime}} \rho^{2}\right)^{p / p-p^{\prime}} d \mu\right)^{p-p^{\prime} / p} \\
\rightarrow 0 \quad(m \rightarrow \infty),
\end{aligned}
$$

and the second and the third terms of (3.11) also converge to the corresponding terms in $L_{p^{\prime}}\left(\rho^{2} \mu\right)$. Furthermore,

$$
\begin{aligned}
& \int \left\lvert\, \frac{w}{\rho}\left\langle D \rho, D \phi_{l}\right\rangle_{H}\right.-\left.\frac{h_{m}}{\rho}\left\langle D \rho, D \phi_{l}\right\rangle_{H}\right|^{p^{\prime}} \rho^{2} d \mu=\int\left|w-h_{m}\right|^{p^{\prime}}\left|\left\langle D \rho, D \phi_{l}\right\rangle_{H}\right|^{p^{\prime}} \rho^{2-p^{\prime}} d \mu \\
& \leqq\left(\int\left|w-h_{m}\right|^{p} d \mu\right)^{p / p^{\prime}}\left(\int\left|\left\langle D \rho, D \phi_{l}\right\rangle_{H}^{p_{H}^{\prime}} \rho^{2-p^{\prime}}\right|^{p / p-p^{\prime}} d \mu\right)^{p-p^{\prime} / p} \\
& \rightarrow 0 \quad(m \rightarrow \infty),
\end{aligned}
$$

and the last term in (3.11) also tends to $\frac{\phi_{l}}{\rho}\langle D \rho, D w\rangle_{H}$.
q.e.d.

Take any element $A \in \mathcal{A}_{M}(S)$ and let $\left\{T_{t}\right\}_{t \geq 0}$ be a semi-group on $L_{2}\left(\rho^{2} \mu\right)$ corresponding to A. Then, by the contractivity and symmetry, we can extend $\left\{T_{t}\right\}_{t \geq 0}$ to a strongly continuous semi-group $\left\{T_{t}^{(p)}\right\}_{t \geq 0}$ on $L_{p}\left(\rho^{2} \mu\right)$. We denote by $\left\{G_{\infty}^{(f)}\right\}_{\alpha>0}$ the corresponding resolvent.

Lemma 4. It hold that

$$
\begin{equation*}
\mathscr{N}_{\infty} \cap \mathscr{D}[\sqrt{-A}] \subset \mathcal{H} \quad \text { for } \quad A \in \mathcal{A}_{M}(S) . \tag{3.12}
\end{equation*}
$$

Proof. Take any element $v \in গ_{\infty} \cap \mathscr{D}[\sqrt{-A}]$. We first show that $\phi_{l} v \in$
$\bigcap_{1<p<2} D_{p}^{1}$ for any l. Let $w=\frac{\phi_{l}}{\rho^{2}} \in D_{\infty}$. Then, by Lemma 3, we see $w \psi$ $\left(=\phi_{l+1} \frac{\phi_{l} \psi}{\rho^{2}}\right) \in \mathscr{D}\left[\bar{S}^{(2)}\right]$, for any $\psi \in F C_{0}^{\infty}$. Then, by the definition

$$
\left(v \rho^{2}, \alpha \phi-\bar{S}^{(2)} \phi\right)_{\mu}=0, \quad \text { for } \quad \phi \in \mathscr{D}\left[\bar{S}^{(2)}\right]
$$

Hence, we obtain for $\psi \in F C_{0}^{\infty}$

$$
\begin{equation*}
\left(v \rho^{2}, \mathcal{L}(w \psi)\right)_{\mu}=2 \alpha\left(v \rho^{2}, w \psi\right)_{\mu}-2\left(v \rho,\langle D \rho, D(w \psi)\rangle_{H}\right)_{\mu} \tag{3.13}
\end{equation*}
$$

Now, we have for $\psi \in F C_{0}^{\infty}$

$$
\left(\phi_{l} v, \mathcal{L} \psi\right)_{\mu}=(g, \psi)_{\mu}
$$

where $g=2 \alpha v \rho^{2} w-2 D^{*}(v w \rho D \rho)-2 \rho\langle D \rho, \quad D w\rangle_{H}-v \rho^{2} \mathcal{L} w-D^{*}\left(v \rho^{2} D w\right)$. Now, we use the hypoellipticity of \mathcal{L} ([5]) as follows: since $v w \rho D \rho$ and $v \rho^{2} D w$ belong to $\bigcap_{1<p<2} L_{p}(B \rightarrow H)$, we have $g \in \bigcap_{1<p<2} D_{p}^{-1}$. By [5], $\phi_{l} v$ belongs to the domain of extended $\mathcal{L}, \mathcal{L}\left(\phi_{l} v\right) \in \bigcap_{1<p<2} D_{p}^{-1}$ and $\phi_{l} v=R\left(\mathcal{L}\left(\phi_{l} v\right)\right) \in \bigcap_{1<p<2} D_{p}^{1}$, where R is the resolvent of \mathcal{L}. Using this property of $\phi_{l} v$ and repeating the same procedure as above, we get $g \in \bigcap_{1<p<2} D_{p}^{0}$ and consequently $\phi_{l} v \in \bigcap_{1<p<2} D_{p}^{2}$ as was to be proved.

We next prove that $\int\langle D v, D v\rangle_{H} \rho^{2} d \mu$ is finite. To this end, let $\left\{b_{(n)}(t)\right\}_{n=1}^{\infty} \subset$ $C_{b}^{\infty}\left(R^{1}\right)$ be a sequence satisfying that
i) $\quad b_{(n)}(t)=t$ on $-n \leqq t \leqq n$ ii) $\quad b_{(n)}(t)-b_{(n)}(s) \leqq t-s, t>s$
iii) $\quad\left|b_{(n)}(t)\right| \leqq n+1$. Then, $v_{(n)}=b_{(n)}(v) \in \mathscr{D}[\sqrt{-A}]$ by virtue of the Markovian property of Dirichlet space $\mathscr{D}[\sqrt{-A}]$. According to [4; (2.3.24)], we get

$$
\begin{aligned}
\mathcal{E}_{A}\left(v_{(n)}, v_{(n)}\right) & =\left(\sqrt{-A} v_{(n)}, \sqrt{-A} v_{(n)}\right) \rho^{2} \mu \\
& =\lim _{\beta \rightarrow \infty} \mathcal{E}_{A}^{(\beta)}\left(v_{(n)}, v_{(n)}\right) \\
& =\lim _{\beta \rightarrow \infty} \frac{1}{2}\left(f_{\beta}, 1\right) \rho^{2} \mu,
\end{aligned}
$$

where $f_{\beta}=-\beta\left(v_{(n)}^{2}-\beta G_{\beta}^{(2)} v_{(n)}^{2}\right)+2 \beta v_{(n)}\left(v_{(n)}-\beta G_{\beta}^{(2)} v_{(n)}\right)+v_{(u)}^{2}\left(1-\beta G_{\beta}^{(2)} 1\right)$. First, we see that

$$
\begin{align*}
\lim _{\beta \rightarrow \infty}-\beta\left(v_{(n)}^{2}-\beta G_{\beta}^{(2)} v_{(n)}^{2}, \phi_{l}\right) \rho^{2} \mu & =\lim _{\beta \rightarrow \infty}-\beta\left(v_{(n)}^{2}, \phi_{l}-\beta G_{\beta}^{(2)} \phi_{l}\right) \rho^{2} \mu \tag{3.14}\\
& =\lim _{\beta \rightarrow \infty}-\beta\left(v_{(n)}^{2}, \beta G_{\beta}^{(2)} \bar{S}^{(2)} \phi_{l}\right) \rho^{2} \mu \\
& =\left(v_{(n)}^{2}, \bar{S}^{(2)} \phi_{l}\right) \rho^{2} \mu
\end{align*}
$$

But, since $\phi_{l} v_{(n)}$ belongs to D_{p}^{2} for any l, we see that the right hand side of (3.14) is equal to $\left(v_{(n)}\left(\mathcal{L} v_{(n)}+\frac{2}{\rho}\left\langle D \rho, D v_{(n)}\right\rangle_{H}\right)+\left\langle D v_{(n)}, D v_{(n)}\right\rangle_{H}, \phi_{l}\right) \rho^{2} \mu$. On the other hand, $\phi_{l} v_{(n)} \in \mathscr{D}\left[\bar{S}^{(p)}\right], 1<p<2$, by Lemma 3. Hence

$$
\begin{aligned}
\lim _{\beta \rightarrow \infty} \beta\left(v_{(n)}-\beta G_{\beta}^{(2)} v_{(n)}, \phi_{l} v_{(n)}\right) \rho^{2} \mu & =\lim _{\beta \rightarrow \infty} \beta\left(v_{(n)}, \phi_{l} v_{(n)}-\beta G_{\beta}^{(\phi)}\left(\phi_{l} v_{(n)}\right)\right) \rho^{2} \mu \\
& =\lim _{\beta \rightarrow \infty} \beta\left(v_{(n)}, \phi_{l} v_{(n)}-\beta G_{\beta}^{(\phi)}\left(\phi_{l} v_{(n)}\right)\right) \rho^{2} \mu \\
& =\left(v_{(n)}-\bar{S}^{(p)}\left(\phi_{l} v_{(n)}\right)\right) \rho^{2} \mu \\
& =\left(-\frac{\mathcal{L}}{2} v_{(n)}-\frac{1}{\rho}\left\langle D \rho, D v_{(n)}\right\rangle_{H}, \phi_{l} v_{(n)}\right) \rho^{2} \mu .
\end{aligned}
$$

By noting $1 \in \mathscr{D}[\sqrt{-A}]$, we see that $\beta G_{\beta}^{(2)} 1=1$. Hence,

$$
\begin{aligned}
\mathcal{E}_{A}(v, v) & \geqq \mathcal{E}_{A}\left(v_{(n)}, v_{(n)}\right) \\
& \geqq \lim _{\beta \rightarrow \infty} \frac{1}{2}\left(f_{\beta}, \phi_{l}\right) \rho^{2} \mu \\
& =\frac{1}{2} \int\left\langle D v_{(n)}, D v_{(n)}\right\rangle_{H} \phi_{l} \rho^{2} d \mu \\
& =\frac{1}{2} \int\left(b_{(n)}^{\prime}(v)\right)^{2}\langle D v, D v\rangle_{H} \phi_{l} \rho^{2} d \mu
\end{aligned}
$$

therefore, we can conclude that the function v belongs to \mathscr{H} by letting $l, n \rightarrow \infty$.
q.e.d.

Remark. If ρ is a tame function represented as $\rho(x)=\tilde{\rho}\left(\left\langle e_{1}, x\right\rangle, \cdots,\left\langle e_{n}, x\right\rangle\right)$, $\tilde{\rho}>0 C^{2}\left(R^{n}\right)$, and $\int \rho^{2} d \mu<\infty$, we can show that S is an essentially self-adjoint operator by using Wielens' idea. In fact, let $\psi_{l}(t)$ be a C_{b}^{∞}-function satisfying that \quad i) $\quad 0 \leqq \psi_{l}(t) \leqq 1 \quad$ ii) $\quad \psi_{l}=\left\{\begin{array}{ll}1 \text { on } t \leqq l \\ 0 \text { on } t \leqq l+1\end{array} \quad\right.$ iii) $\quad\left|\psi_{l}^{\prime}(t)\right|,\left|\psi_{l}^{\prime \prime}(t)\right|<M$, and $\tilde{\psi}_{l}(r)=\psi_{l}(|r|), r \in R^{n}$. Put $\phi_{l}(x)=\tilde{\psi}_{l}\left(\left\langle e_{1}, x\right\rangle, \cdots,\left\langle e_{n}, x\right\rangle\right)$ and $\mathscr{M}_{l}=\{x \in B ;$ $\left.\left(\left\langle e_{1}, x\right\rangle, \cdots,\left\langle e_{n}, x\right\rangle\right) \in B_{l}\left(=\left\{r \in R^{n} ;|r|<l\right\}\right)\right\}$. Then, it holds that $\phi_{l}^{2} v \in \mathscr{D}[\bar{S}]$, $v \in \eta_{\alpha}$, and that

$$
\begin{aligned}
& \left(v,(\alpha-\bar{S})\left(\phi_{l}^{2} v\right)\right) \rho^{2} \mu=\alpha\left(\phi_{l} v, \phi_{l} v\right) \rho^{2} \mu+\int \phi_{l} v\left\langle D \phi_{l}, D v\right\rangle_{H} \rho^{2} d \mu \\
& \quad+\frac{1}{2} \int \phi_{l}^{2}\langle D v, D v\rangle_{H} \rho^{2} d \mu=0 .
\end{aligned}
$$

On the other hand, since

$$
\begin{aligned}
\left(\phi_{l} v,(\alpha-\bar{S}) \phi_{l} v\right) \rho^{2} \mu & =\alpha\left(\phi_{l} v, \phi_{l} v\right) \rho^{2} \mu+\int \phi_{l} v\left\langle D \phi_{l}, D v\right\rangle_{H} \rho^{2} d \mu \\
& +\frac{1}{2} \int v^{2}\left\langle D \phi_{l}, D \phi_{l}\right\rangle_{H} \cdot \rho^{2} d \mu+\frac{1}{2} \int \phi_{l}^{2}\langle D v, D v\rangle_{H} \rho^{2} d \mu \\
& =\frac{1}{2} \int v^{2}\left\langle D \phi_{l}, D \phi_{l}\right\rangle_{H} \rho^{2} d \mu
\end{aligned}
$$

we have

$$
\frac{1}{2} \int v^{2}\left\langle D \phi_{l}, D \phi_{l}\right\rangle_{H} \rho^{2} d \mu \geqq \alpha \int \phi_{l}^{2} v^{2} \rho^{2} d \mu
$$

therefore, $\frac{1}{2} M^{2} \cdot n \int_{\mathscr{M}_{\uparrow}} \rho^{2} d \mu \geqq \alpha \int_{\mathscr{M}_{l+1}} v^{2} \rho^{2} d \mu$ and by letting $l \rightarrow \infty$, we obtain
$v=0$.

References

[1] S. Albeverio and R. H申egh-Krohn: Hunt processes and analytic potential theory on rigged Hilbert spaces, Ann. Inst. H. Poincaré B 13 (1977), 269-291.
[2] S. Albeverio and R. Hфegh-Krohn: Dirichlet forms and diffusion processes on rigged Hilbert space, Z. Wahrsch. Verw. Gebiete 40 (1977), 1-55.
[3] S. Albeverio and R. Hфegh-Krohn: Diffusion, quantum fields and groups of mappings, Springer, Lect. Note 923, pp. 133-145, 1981.
[4] M. Fukushima: Dirichlet forms and Markov processes, North-Holland, Kodansha, 1980.
[5] N. Ikeda and S. Watanabe: An introduction to Malliavin's calculus, Proc. Taniguchi Symposium on Stochastic Analysis, Katata, 1982.
[6] S. Kusuoka: Dirichlet forms and diffusion processes on Banach space, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 79-95.
[7] H. Sugita: Sobolev space of Wiener functionals and Malliavin's calculus, J. Math. Kyoto Univ. 25 (1985), 31-48.
[8] N. Wielens: On the essential self-adjointness of generalized Schrödinger operators, ZIF preprint, 1984.

Department of Mathematics Osaka University, Toyonaka, Osaka 560, Japan

