TRAPPING OBSTACLES WITH A SEQUENCE OF POLES OF THE SCATTERING MATRIX CONVERGING TO THE REAL AXIS

Mitsuru IKAWA

(Received July 4, 1984)

1. Introduction. We consider the scattering of the acoustic equation by bounded obstacles. Let \mathcal{O} be a bounded open set in \boldsymbol{R}^{3} with sufficiently smooth boundary. We set $\Omega=\boldsymbol{R}^{3}-\overline{\mathcal{O}}$. Suppose that Ω is connected. Consider the following problem

$$
\begin{cases}\square u=\frac{\partial^{2} u}{\partial t^{2}}-\sum_{j=1}^{3} \frac{\partial^{2} u}{\partial x_{j}^{2}}=0 & \text { in }(-\infty, \infty) \times \Omega \\ u(t, x)=0 & \text { on }(-\infty, \infty) \times \Gamma\end{cases}
$$

Denote by $\mathcal{S}(z)$ the scattering matrix for this problem. About the definition and the fundamental properties of the scattering matrix, see Lax and Phillips [8], especially Theorems 5.1 and 5.6 of Chapter V.

On relationships between geometric properties of \mathcal{O} and the location of poles of $\mathcal{S}(z)$ Lax and Phillips gave a conjecture [8, page 158] (see also Ralston $[16,17])$, that is, for a nontrapping obstacle the scattering matrix $\mathcal{S}(z)$ is free for poles in $\{z ; \operatorname{Im} z \leqslant \alpha\}$ for some constant $\alpha>0$, and for a trapping obstacle $\mathcal{S}(z)$ has a sequence of poles $\left\{z_{j}\right\}_{j=1}^{\infty}$ such that $\operatorname{Im} z_{j} \rightarrow 0$ as $j \rightarrow \infty$. Concerning this conjecture Morawetz, Ralston and Strauss [14] and Melrose [11] proved that the part for nontrapping obstacles is correct. On the other hand, Bardos, Guillot and Ralston [1], Petkov [15] and Ikawa [4, 5, 6] made considerations on some simple cases of trapping obstacles. Among them the result of Ikawa [4,5] shows that the part of the conjecture for trapping obstacles is not correct in general, namely for two strictly convex objects $\mathcal{S}(z)$ is free for poles in $\{z$; $\operatorname{Im} z \leqslant \alpha\}(\alpha>0)$. Yet it seems very sure that the conjecture remains to be correct for a great part of trapping obstacles. In spite of the conjecture we have not known even an example of obstacle \mathcal{O} for which is proved the existence of a sequence of poles of the scattering matrix converging to the real axis. ${ }^{1)}$

The purpose of this paper is to show an example of \mathcal{O} whose scattering

[^0]matrix has such a sequence of poles.
Theorem 1. Let $\mathcal{O}_{j}, j=1,2$, be convex open sets in \boldsymbol{R}^{3} with sufficiently smooth boundary Γ_{j}, and let $a_{j} \in \Gamma_{j}, j=1,2$, be the point such that $\left|a_{1}-a_{2}\right|=\operatorname{dis}\left(\mathcal{O}_{1}, \mathcal{O}_{2}\right)$. Suppose that the principal curvatures $\kappa_{j l}(x), l=1,2$ of Γ_{j} at $x \in \Gamma_{j}$ satisfy
\[

$$
\begin{equation*}
C\left|x-a_{j}\right|^{e} \geqslant \kappa_{j l}(x) \geqslant C^{-1}\left|x-a_{j}\right|^{e} \quad \text { for all } x \in \Gamma_{j} \tag{1.1}
\end{equation*}
$$

\]

for some

$$
\begin{equation*}
\infty>e \geq 2 \tag{1.2}
\end{equation*}
$$

and $C>0$. Then the scattering matrix for $\mathcal{O}=\mathcal{O}_{1} \cup \mathcal{O}_{2}$ has a sequence of poles $\left\{z_{j}\right\}_{j=1}^{\infty}$ such that

$$
\operatorname{Im} z_{j} \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

In the proof of this theorem we start from a trace formula proved by Bardos, Guillot and Ralston [1]:

$$
\begin{aligned}
& \operatorname{tr}_{L^{2}\left(R^{3}\right)} \int \rho(t)\left(\cos t \sqrt{-\Delta} \oplus 0-\cos t \sqrt{-\Delta_{0}}\right) d t \\
& \quad=\frac{1}{2} \sum_{\text {poles }} \hat{\rho}\left(\lambda_{j}\right) \quad \text { for } \rho \in C_{0}^{\infty}(2 R, \infty)
\end{aligned}
$$

(explanation of the notation will be given in $\S 2$). The main differences of the treatment of this formula in this article from in [1] are (i) we substitute in the place of $\rho(t)$ a sequence of functions $\rho_{q}(t), q=1,2, \cdots$ such that $\min \{t ; t \in$ $\left.\operatorname{supp} \rho_{q}\right\} \rightarrow \infty$ as $q \rightarrow \infty$, (ii) all the eigenvalues of the Poincare mapping of the periodic ray are 1 , which is a consequence of the assumption (1.1) subject to (1.2).

It should be remarked that the result in [4] can be extended to a case of two convex objects such that the Poincaré mapping of the periodic ray has not 1 as an eigenvalue. Namely, in this case all the poles of $\mathcal{S}(z)$ have the imaginary part $\geq \alpha$ for some $\alpha>0$. Therefore in order to find an example of an obstacle composed of two convex objects with a sequence of poles converging to the real axis we have to consider obstacles whose Poincare mapping has 1 as an eigenvalue. Of course these differences give rise to an essential difficulty in the proof, especially in the estimate of the left hand side of the trace formula for large q. To overcome this difficulty we represent the kernel of $\cos t \sqrt{-\Delta}$ by a superposition of asymptotic solutions constructed following the process in [2, 4], and apply Varčenko's theorem [19, 7] to an estimation of integrals of asymptotic solutions.

2. On the trace formula and a reduction of the problem

We denote by Δ the selfadjoint realization in $L^{2}(\Omega)$ of the Laplacian in Ω
with the Dirichlet boundary condition and by Δ_{0} the selfadjoint realization in $L^{2}\left(\boldsymbol{R}^{3}\right)$ of the Laplacian in \boldsymbol{R}^{3}. Bardos, Guillot and Ralston shows in [1] that the following trace formula

$$
\begin{align*}
& \operatorname{tr}_{L^{2}\left(R^{3}\right)} \int_{R} \rho(t)\left(\cos t \sqrt{-\Delta} \oplus 0-\cos t \sqrt{-\Delta_{0}}\right) d t \tag{2.1}\\
& \quad=\frac{1}{2} \sum_{\text {poles }} \hat{\rho}\left(\lambda_{j}\right)
\end{align*}
$$

holds for all $\rho \in C_{0}^{\infty}(2 R, \infty)^{2)}$, where $R=$ diameter of \mathcal{O},

$$
\hat{\rho}(\lambda)=\int e^{i \lambda t} \rho(t) d t
$$

and $\cos t \sqrt{-\Delta} \oplus 0$ is an operator in $L^{2}\left(\boldsymbol{R}^{3}\right)$ defined for $f=f_{1}+f_{2}, f_{1} \in L^{2}(\Omega)$. $f_{2} \in L^{2}(\mathcal{O})$ by

$$
((\cos t \sqrt{-\Delta} \oplus 0) f)(x)= \begin{cases}\left(\cos t \sqrt{-\Delta} f_{1}\right)(x) & \text { for } x \in \Omega \\ 0 & \text { for } x \in \mathcal{O}\end{cases}
$$

Remark that an estimate of the right hand side of (2.1)

$$
\begin{equation*}
\sum_{\text {poles }}\left|\hat{\rho}\left(\lambda_{j}\right)\right| \leqslant C(T)\|\rho\|_{H^{4}(\boldsymbol{R})}, \quad \forall \rho \in C_{0}^{\infty}(2 R, T) \tag{2.2}
\end{equation*}
$$

is shown in $\S 3$ of [1], where $C(T)$ is a constant depending on T.
Let $\rho_{0}(t) \in C_{0}^{\infty}(-1,1)$ and define $\rho_{q}(t), q=1,2, \cdots$ by

$$
\begin{equation*}
\rho_{q}(t)=\rho_{0}\left((q+1)^{l}(t-2 d q)\right) \tag{2.3}
\end{equation*}
$$

where $d=\operatorname{dis}\left(\mathcal{O}_{1}, \mathcal{O}_{2}\right)$ and l is a positive integer determined later.
Lemma 2.1. Suppose that all the poles $\left\{\lambda_{j}\right\}_{j=1}^{\infty}$ of $\mathcal{S}(z)$ verify

$$
\begin{equation*}
\operatorname{Im} \lambda_{j} \geqslant \alpha \tag{2.4}
\end{equation*}
$$

for some constant $\alpha>0$. Then we have

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|\hat{\rho}_{q}\left(\lambda_{j}\right)\right| \leqslant C(q+1)^{4 l} e^{-2 d a q} \quad \text { for all } q \tag{2.5}
\end{equation*}
$$

where C is a constant independent of q and l.
Proof. Set

$$
\rho_{p, q}(t)=\rho_{0}\left((p+1)^{l}(t-2 d q)\right) .
$$

Fix q_{0} in such a way $2 d q_{0}-1 \geqslant 2 R$. Then we have $\rho_{p, q_{0}}(t) \in C_{0}^{\infty}(2 R, T)(T$ $=2 d q_{0}+1$) for all p. Applying (2.2) for $\rho_{p, q_{0}}$ we have

[^1]\[

$$
\begin{aligned}
\sum_{j=1}^{\infty}\left|\hat{\rho}_{p, q_{0}}\left(\lambda_{j}\right)\right| & \leqslant C(T)\left\|\rho_{p, q_{0}}\right\|_{H^{4}(R)} \\
& \leqslant C(T) C(p+1)^{4 l}
\end{aligned}
$$
\]

Since $\hat{\rho}_{p, q}(\lambda)=e^{i 2 d\left(q-q_{0}\right) \lambda} \hat{\rho}_{p, q_{0}}(\lambda)$ we have, under the assumption (2.4), for all λ_{j}

$$
\begin{aligned}
\left|\hat{\rho}_{p, q}\left(\lambda_{j}\right)\right| & \leqslant e^{-2 d\left(q-q_{0}\right) \operatorname{Im} \lambda_{j}}\left|\hat{\rho}_{p, q_{0}}\left(\lambda_{j}\right)\right| \\
& \leqslant e^{-2 d \omega\left(q-q_{0}\right)}\left|\hat{\rho}_{p, q_{0}}\left(\lambda_{j}\right)\right|
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{j=1}^{\infty}\left|\hat{\rho}_{p, q}\left(\lambda_{j}\right)\right| & \leqslant e^{-2 d a\left(q-q_{0}\right)} \sum_{j=1}^{\infty}\left|\hat{\rho}_{p, q_{0}}\left(\lambda_{j}\right)\right| \\
& \leqslant e^{-2 d\left(q-q_{0}\right) \omega} C(T) C(p+1)^{4 l} \\
& \leqslant C(T) C e^{2 d q_{0} \omega}(p+1)^{4 l} e^{-2 d q a}
\end{aligned}
$$

Note that $\rho_{q}(t)=\rho_{q, q}(t)$. Then we have (2.5) by setting $p=q$ in the above estimate.
Q.E.D.

Concerning the left hand side of (2.1) we have the following
Proposition 2.2. Suppose that \mathcal{O} satisfies the condition in Theorem 1. Choose $\rho_{0}(t) \in C_{0}^{\infty}(-1,1)$ so that

$$
\begin{equation*}
\rho_{0}(t) \geqslant 0, \quad \int_{-\infty}^{\infty} \rho_{0}(t) d t=1 \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\rho}_{0}(-k)=\hat{\rho}_{0}(k) \geqslant 0 \quad \text { for all } k \in \boldsymbol{R} . \tag{2.7}
\end{equation*}
$$

Then we have

$$
\begin{gather*}
\left|\operatorname{tr}_{L^{2}\left(R^{3}\right)} \int_{-\infty}^{\infty} \rho_{q}(t)\left(\cos t \sqrt{-\Delta} \oplus 0-\cos t \sqrt{-\Delta_{0}}\right) d t\right| \tag{2.8}\\
\geqslant c q^{\left(1-2 / e_{0}\right)(l+1)-2}-C_{l} q^{\left(1-5 / 2 e_{0}\right) l}
\end{gather*}
$$

for all $q \geqslant q_{0}$ if $l \geqslant l_{0}$, where $e_{0}=e+2$ and l_{0} is a some fixed positive integer, c is a positive constant independent of l.

The remaining sections of this paper will be devoted to the proof of this proposition. Theorem 1 can be proved immediately by Lemma 2.1 and Proposition 2.2. Indeed, choose ρ_{0} so that (2.6) and (2.7) are verified. Suppose that there is no sequence of poles which converges to the real axis. Then there exists $\alpha>0$ such that

$$
\operatorname{Im} \lambda_{j} \geqslant \alpha \quad \text { for all } j
$$

Then we have (2.5) for all large q. By using (2.5) and (2.8) we have from (2.1)

$$
c q^{\left(1-2 / e_{0}\right)(l+1)-2}-C_{l} q^{\left(1-5 / 2 e_{0}\right) l} \leqslant C(q+1)^{4 l} e^{-2 d a q}
$$

for large q if $l \geqslant l_{0}$. Letting q tend to ∞ the above inequality shows a contradiction. Thus Theorem 1 is proved.

We would like to remark that if we use the result of Melrose [12] Theorem 1 can be made better in the following form.

Theorem 2. Suppose that \mathcal{O} satisfies the condition in Theorem 1. There exists a positive constant γ such that for any $\varepsilon>0$ a region

$$
\left\{z ; \operatorname{Im} z \leqslant \varepsilon(|\operatorname{Re} z|+1)^{-\gamma}\right\}
$$

contains an infinite number of poles of $\mathcal{S}(z)$.
Recall that Melrose [12] shows that

$$
\begin{equation*}
N(K) \leqslant C(1+K)^{p} \tag{2.9}
\end{equation*}
$$

for some $p>0$ where $N(K)=$ the number of λ_{j} such that $\left|\lambda_{j}\right| \leqslant K$. By using (2.9) we have the following lemma, and Theorem 2 is derived immediately from Proposition 2.2 and Lemma 2.3.

Lemma 2.3. Suppose that $\left\{z ; \operatorname{Im} z \leqslant \varepsilon_{0}(|\operatorname{Re} z|+1)^{-\gamma}\right\}\left(\varepsilon_{0}>0\right)$ has no poles. Then it holds that

$$
\sum_{j=1}^{\infty}\left|\hat{\rho}_{q}\left(\lambda_{j}\right)\right| \leqslant C_{\varepsilon_{0}, l} \quad \text { for all } q
$$

if $0<\gamma<l^{-1}$.
Proof. Let $0<\gamma<l^{-1}$. Choose $\alpha>0$ so that $1-\alpha \gamma>0, \alpha>l$. We classify the poles into three groups:

$$
\begin{aligned}
& \text { Group I }=\left\{\lambda_{j} ; \operatorname{Im} \lambda_{j} \geqslant \varepsilon\right\}, \\
& \text { Group II }=\left\{\lambda_{j} ; \varepsilon>\operatorname{Im} \lambda_{j} \geqslant \varepsilon_{0}\left(\left|\operatorname{Re} \lambda_{j}\right|+1\right)^{-\gamma},\left|\operatorname{Re} \lambda_{j}\right| \leqslant q^{\alpha}\right\}, \\
& \text { Group III }=\left\{\lambda_{j}: \varepsilon>\operatorname{Im} \lambda_{j} \geqslant \varepsilon_{0}\left(\left|\operatorname{Re} \lambda_{j}\right|+1\right)^{-\gamma},\left|\operatorname{Re} \lambda_{j}\right| \geqslant q^{\alpha}\right\}
\end{aligned}
$$

By the same argument as Lemma 2.1 we have

$$
\sum_{\lambda_{j} \in \operatorname{Group~I}}\left|\hat{\hat{q}}_{q}\left(\lambda_{j}\right)\right| \leqslant C_{l}(q+1)^{4 l} e^{-2 d q \mathrm{z}}
$$

From (2.9) the number of the poles of Group II is less than $C\left(1+q^{\alpha}\right)^{p}$. Then

$$
\begin{aligned}
\sum_{\lambda_{j} \in \operatorname{Group} \text { II }}\left|\hat{\rho}_{q}\left(\lambda_{j}\right)\right| & \leqslant C_{l} e^{-2 d q \varepsilon_{0}\left(q^{\alpha}\right)^{-\gamma}}\left(1+q^{\alpha}\right)^{p} \\
& \leqslant C_{l}\left(1+q^{\alpha}\right)^{p} e^{-2 d \varepsilon_{0} q^{1-\alpha \gamma}}
\end{aligned}
$$

Since an estimate $\left|\hat{\rho}_{q}(z)\right| \leqslant C_{N}\left(\frac{|z|}{q^{l}}\right)^{-N}$ holds for any N we have

$$
\sum_{n<\operatorname{Re} \lambda_{j}<(n+1)}\left|\hat{p}_{q}\left(\lambda_{j}\right)\right| \leqslant C_{N}(n+1)^{p}\left(n q^{-l}\right)^{-N},
$$

and

$$
\begin{aligned}
\sum_{\lambda_{j} \in \operatorname{Group~III}}\left|\hat{\rho}_{q}\left(\lambda_{j}\right)\right| & \leqslant \sum_{n=\left[q q^{\alpha}\right.}^{\infty} C_{N} q^{l_{N}}(n+1)^{q} n^{-N} \\
& \leqslant C_{N} q^{l N}\left(q^{\alpha}\right)^{-N+p+2}
\end{aligned}
$$

Then summing up these estimates, if we choose N so large that $(-\alpha+l) N$ $+p+2 \leqslant 0$, it holds that

$$
\sum_{\text {poles }}\left|\hat{\rho}_{q}\left(\lambda_{j}\right)\right| \leqslant C\left(1+q^{\alpha}\right)^{p} e^{-2 d d_{0} q^{(1-\alpha \gamma)}}+C_{N} \leqslant C_{N}^{\prime}
$$

Q.E.D.

3. Program of the proof of Proposition $\mathbf{2 . 2}$

Denote the kernel distribution of $\cos t \sqrt{-\Delta_{0}}$ and $\cos t \sqrt{-\Delta}$ by $E_{0}(t ; x, y)$ and $E(t, x, y)$ respectively. Then the kernel distribution $e(t ; x, y)$ of $\cos t \sqrt{-\Delta}$ $\oplus 0-\cos t \sqrt{-\Delta_{0}}$ is written as

$$
e(t ; x, y)=\widetilde{E}(t: x, y)-E_{0}(t: x, y)
$$

where

$$
\widetilde{E}(t ; x, y)= \begin{cases}E(t ; x, y) & \text { for } x, y \in \Omega \\ 0 & \text { in } \boldsymbol{R}^{3} \times \boldsymbol{R}^{3}-\Omega \times \Omega\end{cases}
$$

Set

$$
c_{q}(x, y)=\int_{-\infty}^{\infty} \rho_{q}(t) e(t ; x, y) d t
$$

In order to show Proposition 2.2 it suffices to prove the following facts:

$$
\begin{align*}
& \operatorname{supp} c_{q} \subset \bar{\Omega} \times \bar{\Omega}, \tag{3.1}\\
& c_{q}(x, y) \in C_{0}^{\infty}(\bar{\Omega} \times \bar{\Omega}) \tag{3.2}
\end{align*}
$$

and

$$
\begin{equation*}
\left|\int_{R^{3}} c_{q}(x, x) d x-c_{0} q^{\left(1-2 / e_{0}\right)(l+1)-2}\right| \leqslant C_{l} q^{\left(1-5 / 2 e_{0}\right) l} \quad \text { for all } q \tag{3.3}
\end{equation*}
$$

where c_{0} is a positive constant determined by \mathcal{O} and ρ_{0}.
Since $E_{0}(t ; x, y)$ is well known the essential part of the proof is the consideration of $E(t ; x, y)$. To take out properties of E, first we construct an approximation of E as a superposition of asymptotic solutions, secondly we pick out the principal behavior of E as $t \rightarrow \infty$. The construction of asymptotic solutions is done by a method essentially same as in [2] and [4]. But the assumption that all the principal curvatures of the boundary vanish at a_{1} and a_{2} gives rise to another behavior of asymptotic solutions than those in [2, 4]. Then in order to pick up this behavior of asymptotic solutions we have to make other
considerations than in the previous papers.
Fix δ_{2}, δ_{3} so that Corollary of Lemma 3.3 of [2] holds. Let $S_{j}\left(\delta_{l}\right), j=1$, $2, l=2,3$ be the ones introduced in $\S 3$ of [2]. Denote by $\omega\left(\delta_{l}\right)$ a domain surrounded by $S_{j}\left(\delta_{l}\right), j=1,2$ and $\left\{y ; \operatorname{dis}(y, L)=\delta_{l}\right\}$. Let

$$
\begin{equation*}
\psi(x) \in C_{0}^{\infty}(\Omega) \quad \text { such that } \quad \text { supp } \psi \subset \omega\left(\delta_{2}\right) . \tag{3.4}
\end{equation*}
$$

Then for $f \in C^{\infty}(\Omega)$ we have by Fourier's inversion formula

$$
\begin{equation*}
\psi(x) f(x)=w(x) \int_{S^{2}} d \omega \int_{0}^{\infty} k^{2} d k \int_{\Omega} d y e^{i k\langle x-y, \omega\rangle} \psi(y) f(y), \tag{3.5}
\end{equation*}
$$

where $w(x)$ is a function in $C_{0}^{\infty}\left(\omega\left(\delta_{3}\right)\right)$ verifying

$$
\begin{equation*}
w(x)=1 \quad \text { on } \quad \operatorname{supp} \psi . \tag{3.6}
\end{equation*}
$$

Let $u(t, x ; k, \omega)$ be the solution of an initial-boundary value problem

$$
\left\{\begin{array}{l}
\square u=0 \quad \text { in }(0, \infty) \times \Omega \tag{3.7}\\
u(t, x)=0 \quad \text { on }(0, \infty) \times \Gamma \\
u(0, x)=w(x) e^{i k\langle x, \omega\rangle} \\
\frac{\partial u}{\partial t}(0, x)=0 .
\end{array}\right.
$$

Then

$$
a(t, x)=\int_{s^{2}} d \omega \int_{0}^{\infty} k^{2} d k \int_{\Omega} d y u(t, x ; k, \omega) e^{-i k\langle y, \omega\rangle} \psi(y) f(y)
$$

satisfies

$$
\begin{cases}\square a=0 & \text { in }(0, \infty) \times \Omega \\ a(t, x)=0 & \text { on }(0, \infty) \times \Gamma \\ a(0, x)=\psi(x) f(x) & \\ \frac{\partial a}{\partial t}(0, x)=0 . & \end{cases}
$$

This means that $a(t, \cdot)=(\cos t \sqrt{-\Delta} \psi) f$. Therefore the kernel distribution $E(t ; x, y) \psi(y)$ of $\cos t \sqrt{-\Delta} \psi$ is given by

$$
\begin{equation*}
E(t ; x, y) \psi(y)=\int_{s^{2}} d \omega \int_{0}^{\infty} k^{2} d k u(t, x ; k, \omega) e^{-i k\langle y, \omega\rangle} \psi(y), \tag{3.8}
\end{equation*}
$$

here we interpret the integral as an oscillatory integral (cf. Kumano-go [8, §6 of Chapter 1]).

As an approximation of $u(t, x ; k, \omega)$ we construct an asymptotic solution of (3.7) in a way that we can make clear the reflexion of geometric properties of \mathcal{O} to the behavior of u. For the Cauchy problem with an oscillatory data

$$
\begin{cases}\square h=0 & \text { in }(0, \infty) \times \boldsymbol{R}^{3} \\ h(0, x)=w(x) e^{i k\langle x, \omega\rangle} & \text { in } \boldsymbol{R}^{3} \\ \frac{\partial h}{\partial t}(0, x)=0 & \text { in } \boldsymbol{R}^{3}\end{cases}
$$

admits an asymptotic solution

$$
\begin{aligned}
h^{(N)}(t, x ; k, \omega) & =e^{i k\langle x, \omega\rangle-t)} \sum_{j=0}^{N} g_{j}(t, x ; \omega)(i k)^{-j} \\
& +e^{i k\langle\langle x, \omega\rangle+t)} \sum_{j=0}^{N} \tilde{g}_{j}(t, x ; \omega)(i k)^{-j} \\
& =h_{+}^{(N)}(t, x ; k, \omega)+h_{-}^{(N)}(t, x ; k, \omega) .
\end{aligned}
$$

Set

$$
\begin{aligned}
m^{(N)}(t, x ; k, \omega) & =\left.h^{(N)}(t, x ; k, \omega)\right|_{(0, \infty) \times \Gamma} \\
& =\left.h_{+}^{(N)}\right|_{(0, \infty) \times \Gamma}+\left.h_{-}^{(N)}\right|_{(0, \infty) \times \Gamma}=m_{+}^{(N)}+m_{-}^{(N)} .
\end{aligned}
$$

Note that from the location of the support of $h_{ \pm}^{(N)}$, the support of $m_{+}^{(N)}$ is contained in one of $(0, \infty) \times \Gamma_{1}$ and $(0, \infty) \times \Gamma_{2}$. For example when $\omega_{3}<0$

$$
\operatorname{supp} m_{+}^{(N)} \subset(0, \infty) \times \Gamma_{1}, \quad \text { supp } m_{-}^{(N)} \subset(0, \infty) \times \Gamma_{2}
$$

Since all the rays starting from supp ψ and hitting $S\left(\delta_{3}\right)$ do not tangent to Γ in $S\left(\delta_{3}\right)$ and the Gaussian curvature does not vanish in the outside of $S\left(\delta_{3}\right)$, the method of construction of asymptotic solution in [2] can be applied without any modification. We see from Corollary of Lemma 3.3 of [2] that it suffices to consider $z^{(N)}$ constructed in $\S 8$ of [2] when we consider the behavior in $\omega\left(\delta_{3}\right)$ of asymptotic solutions with oscillatory boundary data $m_{ \pm}^{(N)}$. Let us denote by $z_{ \pm}^{(N)}=w_{ \pm}^{(N)}+y_{ \pm}^{(N)}$ the asymptotic solution $z^{(N)}$ constructed by the process of Proposition 8.1 of [2] for boundary data $m_{ \pm}^{(N)}$. Now consider $z_{+}^{(N)}$. For the simplicity of description we omit the suffix + . Recall that $w^{(N)}$ is of the form

$$
\left\{\begin{array}{l}
w^{(N)}=\sum_{q=0}^{\infty} u_{q}^{(N)}, \tag{3.9}\\
u_{q}^{(N)}(t, x ; k, \omega)=e^{i k\left(\varphi_{q}(x, \omega)-t\right)} \sum_{j=0}^{\mathcal{N}} v_{q, j}(t, x ; \omega)(i k)^{-j}
\end{array}\right.
$$

and that $y^{(N)}$ satisfies

$$
\begin{equation*}
\operatorname{supp} y^{(N)} \cap\left((0, \infty) \times \omega\left(\delta_{2}\right)\right)=\phi \tag{3.10}
\end{equation*}
$$

The fact that the principal curvatures of Γ_{1} and Γ_{2} vanish at a_{1} and a_{2} brings other behaviors of φ_{q} and $v_{q, j}$ than those of [2, 4]. In this case $\left\{\nabla \varphi_{q}\right\}_{q=0}^{\infty}$ is not bounded in $C^{\infty}\left(\omega\left(\delta_{3}\right)\right)$ and the sequences $v_{q, j}, q=0.1,2 \cdots$ do not decrease exponentially. Concerning their estimate we have

Lemma 3.1. There exist positive integers $l(j, m)$ depending on j and m such that

$$
\begin{align*}
\sum_{|\beta|<j}\left|\partial_{\omega}^{\beta} \nabla \varphi_{q}(\cdot ; \omega)\right|_{m}\left(\omega\left(\delta_{1}\right)\right) \leqslant C_{j, m} q^{l(j, m)}, \tag{3.11}\\
\sum_{|\beta|<h}\left|\partial_{\omega \omega}^{\beta} \nu_{q, j}(\cdot ; \omega)\right|_{m}\left(\boldsymbol{R} \times \omega\left(\delta_{1}\right)\right) \leqslant C_{j+h, m} q^{l(j+h, m)} \tag{3.12}
\end{align*}
$$

hold.
There estimates are proved by induction of j, h, m by using Lemmas 5.2, 5.3 and their remarks of [2].

Taking account of the location of the support of $z^{(N)}$ the estimates (3.11) and (3.12) give

$$
\begin{gather*}
\operatorname{supp} z^{(N)} \subset(0, \infty) \times \Omega \\
\sum_{|\beta|<h} \left\lvert\, \partial_{\omega}^{\beta}\left(\left.z_{ \pm}^{(N)}(\cdot, \cdot ; k, \omega)\right|_{m}(t, \Omega) \leqslant C_{N, j, m} k^{m+h}\left(\frac{t}{2 d}\right)\right)^{l(N+2+h, m)}\right., \tag{3.13}\\
\sum_{|\beta|<h} \left\lvert\, \partial_{\omega}^{\beta}\left(\left.\square z_{ \pm}^{(N)}(\cdot, \cdot ; k, \omega)\right|_{m}(t, \Omega) \leqslant C_{N, j, m} k^{-N+m}\left(\frac{t}{2 d}\right)^{\iota(N+2+h, m)},\right.\right. \tag{3.14}\\
z_{ \pm}^{(N)}=h_{ \pm}^{(N)} \quad \text { on }(0, \infty) \times \Gamma . \tag{3.15}
\end{gather*}
$$

Set $u^{(N)}=-\left(z_{+}^{(N)}+z_{-}^{(N)}\right)+h^{(N)}$. Then

$$
\begin{aligned}
& u^{(N)}(0, x ; k, \omega)=w(x) e^{i k\langle x, \omega\rangle}, \\
& \frac{\partial u^{(N)}}{\partial t}(0, x ; k, \omega)=0
\end{aligned}
$$

and $\square u^{(N)}$ has an estimate of the type (3.14). Concerning the difference between the actual solution u of (3.7) and $u^{(N)}$ we have from the above remarks

$$
\begin{align*}
& \sum_{|B|<h}\left|\partial_{\omega}^{\beta}\left(u-u^{(N)}\right)(\cdot, \cdot ; k, \omega)\right|_{m}(t, \Omega) \tag{3.16}\\
& \leqslant C_{N, h, m} k^{-N+m+2}\left(\frac{t}{2 d}\right)^{\ell(N+2+h, m)+1}
\end{align*}
$$

We see immediately from Lemma 3.1 and (3.16) that

$$
\int \rho(t) E(t ; x, y) \psi(y) d t \in C^{\infty}(\bar{\Omega} \times \bar{\Omega}) \quad \text { for any } \rho \in C_{0}^{\infty}(\boldsymbol{R}) .
$$

Since $\operatorname{supp} E_{0}(t ; \cdot \cdot \cdot) \subset\{(x, y) ;|x-y|=|t|\}$

$$
\begin{equation*}
\int_{R^{3}} c_{q}(x, x) \psi(x) d x=\iint_{\Omega} E(t, x, x) \psi(x) \rho_{q}(t) d t d x \tag{3.17}
\end{equation*}
$$

for large q. From (3.8), (3.17)

$$
\int_{R^{3}} c_{q}(x, x) \psi(x) d x
$$

$$
\begin{aligned}
= & \int_{\Omega} d x \int_{\Omega} d t \int_{s^{2}} d \omega \int_{0}^{\infty} k^{2} d k \rho_{q}(t) u(x, t ; k, \omega) e^{-i k\langle x, \omega\rangle} \psi(x) \\
= & \int \cdots \int_{k>1} \rho_{q}(t) w_{+}^{(N)}(t, x ; k, \omega) e^{-i k\langle x, \omega\rangle} \psi(x) d x d t d \omega k^{2} d k \\
& +\int_{\cdots} \cdots \int_{k>1} \rho_{q}(t) w_{-}^{(N)}(t, x ; k, \omega) e^{-i k\langle x, \omega\rangle} \psi(x) d x d t d \omega k^{2} d k \\
& +\int \cdots \int_{k>1} \rho_{q}(t)\left(y_{+}^{(N)}+y_{-}^{(N)}\right)(t, x ; k, \omega) e^{-i k\langle x, \omega\rangle} \psi(x) d x d t d \omega k^{2} d k \\
& +\int \cdots \int_{k>1} \rho_{q}(t)\left(u(t, x ; k, \omega)-u^{(N)}(t, x ; k, \omega)\right) e^{-i k\langle x, \omega\rangle\rangle} \psi(x) d x d t d \omega k^{2} d k \\
& +\int_{\Omega} d x \int d t \int_{s^{2}} d \omega \int_{0}^{1} k^{2} d k \rho_{q}(t) u(t, x ; k, \omega) e^{-i k\langle x, \omega\rangle} \psi(x) \\
= & I_{+}+I_{-}+I I+I I I+I V .
\end{aligned}
$$

Since we have for $0 \leqslant k \leqslant 1$

$$
|u(t, x ; k, \omega)| \leqslant C \quad \text { in }[0, \infty) \times \Omega
$$

it holds that

$$
|I V| \leqslant C \int \psi(x) d x \int \rho_{q}(t) d t \leqslant C \int \psi(x) d x q^{-l}
$$

From (3.4) and (3.10) the integrand of $I I$ vanishes identially. Thus $I I=0$. Next consider III. Set

$$
\begin{gathered}
\int \cdots \int d x d t d \omega \int_{1}^{\infty} k^{2} d k\{\quad\}=\int \cdots \int d x d t d \omega \int_{1}^{q} k^{2} d k\{\quad\}+\int \cdots \int d x d t d \omega \int_{q}^{\infty} k^{2} d k\{\quad\} \\
=I I I_{1}+I I I_{2} \\
\left|I I I_{1}\right| \leqslant C \int \rho_{q}(t) d t \int_{\Omega} \psi(x) d x \int_{1}^{q} k^{2} d k \leqslant C q^{-l} q^{3} \leqslant C q^{-l+3}
\end{gathered}
$$

Since supp $\rho_{q} \subset\left[2 d q-q^{-l}, 2 d q+q^{-l}\right]$, by using (3.16)

$$
\left|I I I_{2}\right| \leqslant C \int \psi(x) d x \int \rho_{q}(t) d t q^{l(N+2,0)} \int_{q}^{\infty} k^{-N+2} d k \leqslant C q^{-l+l(N+2,0)-N+3}
$$

Thus we have
Lemma 3.2. If we choose $l>l(N+2,0)-N+3$ it holds that

$$
\begin{equation*}
\left|\int_{R^{3}} c_{q}(x, x) \psi(x) d x-\left(I_{+}+I_{-}\right)\right| \leqslant C_{N, l} \tag{3.18}
\end{equation*}
$$

for all q.
Now we set about the estimation of I_{+}. Set

$$
\begin{equation*}
I_{r, j}(t, k)=\int_{s^{2}} d \omega \int_{\Omega} d x e^{i k \phi_{r}(x, \omega)} v_{r, j}(t, x ; \omega) \psi(x) \tag{3.19}
\end{equation*}
$$

$$
\begin{equation*}
\Phi_{r}(x, \omega)=\varphi_{r}(x, \omega)-\langle x, \omega\rangle . \tag{3.20}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
I_{+}=\int_{1}^{\infty} k^{2} d k \sum_{j=0}^{N}(i k)^{-l} \int e^{-i k t} \rho_{q}(t) I_{r, j}(t, k) d t \tag{3.21}
\end{equation*}
$$

Note that except $r=2 q-1,2 q, 2 q+1 \operatorname{supp} \rho_{q} \cap \operatorname{supp} v_{r, j}(t, x ; \omega)=\phi . \quad$ Since for $r=2 q \pm 1$

$$
\left|\partial_{x_{3}} \Phi_{r}(x, \omega)\right| \geqslant 1 \quad \text { for all }(x, \omega) \in \omega\left(\delta_{3}\right) \times S^{2},
$$

if $v_{r, j}(t, x ; \omega) \neq 0$, we have

$$
\left|I_{r, j}(t, k)\right| \leqslant C_{M} k^{-M} q^{l(M)} \quad \text { for } r=2 q \pm 1
$$

where $l(M)$ is an integer depending on M. Therefore we have

$$
\begin{equation*}
\left|I_{+}-\int_{1}^{\infty} k^{2} d k \sum_{j=0}^{N}(i k)^{-j} \int e^{-i k t} I_{2 q, j}(t, k) \rho_{q}(t) d t\right| \leqslant C \quad \text { for all } q \tag{3.22}
\end{equation*}
$$

if l is large. Set

$$
\begin{equation*}
J_{q, j}\left(x_{3}, t ; k\right)=\int_{s^{2}} d \omega \int_{R^{2}} d x^{\prime} e^{i k \Phi_{2 q}(x, \omega)} v_{2 q, j}(t, x ; \omega) \psi(x) \tag{3.23}
\end{equation*}
$$

Proposition 3.3.

$$
\begin{align*}
\mid J_{q, j}\left(x_{3}, t ; k\right) & -k^{-1-2 / e_{0} i 2 d q}\left\{c_{q, j}^{0}\left(x_{3}, t\right)\right. \tag{3.24}\\
& +\sum_{h=1}^{\left[3 e_{0} / 2\right]} \sum_{m=1}^{m h} c_{q, j}^{k, m}\left(x_{3}, t\right) k^{\left.-h / e_{0}(\log k)^{m-1}\right\} \mid \leqslant C q^{l_{1}} k^{-4}}
\end{align*}
$$

where l_{1} is a constant, $c_{q, j}^{h, m}\left(x_{3}, t\right)$ are determined by $\Phi_{2 q}$ and $v_{q, j}$ and they satisfy

$$
\sum_{i=0}^{2}\left|\partial_{t}^{l} c_{q, j}^{h, m}\left(x_{3}, t\right)\right| \leqslant C q^{l_{1}} \quad \text { for all } x_{3} \in(0, d) \text { and } t>0
$$

especially

$$
c_{q, j}^{0}\left(x_{3}, t\right)=c v_{q, j}\left(t, 0, x_{3} ; \omega_{0}\right) q^{-1-2 / \ell_{0}}
$$

for some fixed non zero constant c determined by the shape of Γ_{j} near a_{j} and ω_{0} $=(0,0,1)$.

The above proposition will be proved in sections 4 and 5. Now admit this result. To evaluate $v_{2 q, 0}$ we use (5.9) of [4]. For ω_{0} we see from Lemma 4.1 of [2] that the principal curvatures at a_{1} and a_{2} of the wave front of φ_{r} are zero for all r. Then we have $\Lambda_{2 q-j}\left(X_{-j}\left(x, \nabla \varphi_{2 q}\right)\right)=1$ for all j when $x^{\prime}=0$. Therefore we have for ω_{0}

$$
v_{2 q, 0}\left(t, 0,0, x_{3} ; \omega_{0}\right)=w\left(0,0,\left(2 q d+x_{3}\right)-t\right)
$$

Note that from (3.6) $\left.w\left(0,0,\left(2 d q+x_{3}\right)-t\right)\right)=1$ holds for $\left(0,0, x_{3}\right) \in \operatorname{supp} \psi$ and
$t \in \operatorname{supp} \rho_{q} \subset\left[2 d q-q^{-l}, 2 d q+q^{-l}\right]$. Therefore

$$
\begin{align*}
& \int d x_{3} \int_{0}^{\infty} k^{2} d k \int d t c_{q, 0}^{0}\left(x_{3}, t\right) e^{-i k t} k^{-1-2 / e_{0} e^{i k 2 d q}} \rho_{q}(t) \psi\left(0, x_{3}\right) \tag{3.25}\\
= & c \int \psi\left(0, x_{3}\right) d x_{3} \int_{1}^{\infty} k^{1-2 / e_{0} \hat{\rho}_{0}\left(k / q^{l}\right) q^{-l} d k q^{-1-2 / e_{0}}} \\
= & c_{0} \int_{0}^{d} \psi\left(0, x_{3}\right) d x_{3} q^{\left(1-2 / e_{0}\right)(l+1)-2}+O\left(q^{-l}\right),
\end{align*}
$$

where $c_{0}=c \int_{0}^{\infty} k^{1-2 / e_{0}} \hat{\rho}_{0}(k) d k \neq 0$ from (2.7). Next we shall show the following estimate for $h \geqslant 1$ and for all j, m

$$
\begin{align*}
& \left|\int_{0}^{d} d x_{3} \int_{1}^{\infty} k^{2} d k \int e^{-i k t} k^{-1-j-(2+h) / e_{0}}(\log k)^{m-1} c_{q, j}^{h, m}\left(x_{3}, t\right) \rho_{q}(t) d t\right| \tag{3.26}\\
& \quad \leqslant C_{l} q^{l_{1}} q^{\left(1-11 / 4 e_{0}\right) l} .
\end{align*}
$$

Set

$$
\begin{aligned}
I & =\int_{1}^{\infty} k^{2} d k \int e^{-i k t} k^{-1-j-(2+h) / e_{0}}(\log k)^{m-1} c_{q, j}^{h, m}\left(x_{3}, t\right) \rho_{q}(t) d t \\
& =\int_{1}^{(q+1) l} k^{2} d k \int \cdots d t+\int_{(q+1))^{t}}^{\infty} k^{2} d k \int \cdots d t \\
& =I_{1}+I_{2} .
\end{aligned}
$$

Substituting an estimate $\left|c_{q ; j}^{h, m}\right| \leqslant C q^{l_{1}}$ we have

$$
\begin{aligned}
\left|I_{1}\right| & \leqslant C q^{l_{1}} \int_{1}^{(q+1) l} k^{1-j-(h+2) / e_{0}}\left(\log (q+1)^{l}\right)^{m-1} d k \cdot \int \rho_{q}(t) d t \\
& \leqslant C q^{l_{1}(l \log (1+q))^{m} q^{l\left(1-j-(2+h) / e_{0}\right)}}
\end{aligned}
$$

About I_{2}, we make integration by parts in t variable two times, and we have

$$
\begin{aligned}
I_{2}=\int_{(q+1)}^{\infty} k^{2} d k & \int(i k)^{-2} e^{-i k t} k^{-1-j-(2+h) / e_{0}} \\
& \cdot(\log k)^{m-1}\left(\frac{\partial}{\partial t}\right)^{2}\left(c_{q, j}^{h, m}\left(x_{3}, t\right) \rho_{q}(t)\right) d t
\end{aligned}
$$

By using estimates of $c_{q, j}^{h, m}$ and the definition of $\rho_{q}(t)$ we have

$$
\int\left|\left(\frac{\partial}{\partial t}\right)^{2}\left(c_{q, j}^{h, m}\left(x_{3}, t\right) \rho_{q}(t)\right)\right| d t \leqslant C q^{l_{1}}(q+1)^{l}
$$

Thus it follows that

$$
\begin{aligned}
\left|I_{2}\right| & \leqslant C q^{l_{1}}(q+1)^{l} \int_{(q+1)}^{\infty} k^{-1-j-(2+h) / e_{0}}(\log k)^{m-1} d k \\
& \leqslant C_{\varepsilon} q^{l_{1}}(q+1)^{l\left(1-j-(2+h) / e_{0}+\varepsilon\right)}(\varepsilon>0)
\end{aligned}
$$

Taking account of $h \geqslant 1$ we have

$$
|I| \leqslant C_{l} q^{l_{1}} q^{\left(1-11 / 4 e_{0}\right) l}
$$

Since C_{l} is independent of x_{3} the above estimate implies (3.26). Combining the above estimates we have

$$
\begin{equation*}
\left|I_{+}-c_{0} \int_{0}^{d} \psi\left(0, x_{3}\right) d x_{3} q^{\left(1-2 / e_{0}\right)(l+1)-2}\right| \leqslant C_{l} q^{\left(1-5 / 2 e_{0}\right) l} \tag{3.27}
\end{equation*}
$$

if l is sufficiently large. For I_{-}we have the same estimate as I_{+}. Then form (3.27) and Lemma 3.2 it follows that

$$
\begin{equation*}
\left|\int_{R^{3}} c_{q}(x, x) \psi(x) d x-2 c_{0} \int_{0}^{d} \psi\left(0, x_{3}\right) d x_{3} q^{\left(1-2 / e_{0}\right)(l+1)-2}\right| \leqslant C_{l} q^{\left(1-5 / 2 e_{0}\right) l} \tag{3.28}
\end{equation*}
$$

for any $\psi \in C_{0}^{\infty}\left(\omega\left(\delta_{3}\right)\right)$ when l is large.
When $\psi \in C_{0}^{\infty}\left(\omega\left(\delta_{3}\right) \cup S\left(\delta_{3}\right)\right)$ we have to modify the procedure of the construction of the kernel of $\cos t \sqrt{-\Delta} \psi$. Namely, when supp $\psi \cap S\left(\delta_{3}\right) \neq \phi$ we cannot choose $w(x)$ in (3.6) as a function in $C_{0}^{\infty}(\Omega)$. Therefore the solution of (3.7) is not smooth function, and $z_{ \pm}^{(N)}$ has discontinuities, which make the argument more complicated. But as we shall show in $\S 6$ the same estimate also holds in this case. Thus

Lemma 3.4. For any $\psi \in C_{0}^{\infty}\left(\omega\left(\delta_{3}\right) \cup S\left(\delta_{3}\right)\right)$ the estimate (3.28) holds if we choose l sufficiently large.

Next consider the case $\psi \in C_{0}^{\infty}(\bar{\Omega})$ and

$$
\begin{equation*}
\operatorname{supp} \psi \cap \omega\left(\delta_{3}\right)=\phi \tag{3.29}
\end{equation*}
$$

Suppose that in addition to (3.29) any ray starting from supp ψ does not tangent to Γ at $S\left(\delta_{3}\right)$. Then the procedure of construction of an approximation of $c_{q}(x, y) \psi(y)$ is same as before. In the representation of $I_{r, j}(t, k)$ the amplitude function $\Phi_{r}(x, \omega)$ has no critical point, that is,

$$
\left|\partial_{x} \Phi_{r}(x, \omega)\right|+\left|\partial_{\omega} \Phi_{r}(x, \omega)\right| \neq 0 \quad \text { for all }(x, \omega) \in \operatorname{supp} \psi \times S^{2}
$$

Thus we have for any M

$$
\left|I_{+}(t, k)\right| \leqslant C_{M} q^{l(M)} k^{-M}
$$

where $l(M)$ is a constant depending on M. Therefore we have

$$
\left|\int_{R^{3}} c_{q}(x, x) \psi(x) d x\right| \leqslant C \quad \text { for all } q
$$

By employing the argument in §6 of [2] the additional condition may be removed easily. Then

Lemma 3.5. Let $\psi \in C_{0}^{\infty}(\bar{\Omega})$ such that

$$
\operatorname{supp} \psi \cap \omega\left(\delta_{3}\right)=\phi
$$

Then an estimate

$$
\begin{equation*}
\left|\int_{R^{3}} c_{q}(x, x) \psi(x) d x\right| \leqslant C \tag{3.30}
\end{equation*}
$$

holds where the constant C depends of \mathcal{O} and ψ but independent of q.
Note that for ψ of the form $\psi(x)=\psi_{0}(x-\zeta)$ for a fixed $\psi_{0} \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$ and some $\zeta \in \boldsymbol{R}^{3}$ the constant C in (3.30) is independent of ψ, namely C is depends on \mathcal{O} and ψ_{0} only. Since

$$
\operatorname{supp}\left(E(t ; \cdot, \cdot)-E_{0}(t ; \cdot, \cdot)\right) \subset\{(x, y) ;|x|,|y| \leqslant R+|t|\}
$$

the estimate (2.8) is derived from Lemmas 3.3 and 3.4.

4. On the critical points of $\Phi_{2 q}(x, \omega)$

Let $\varphi_{0}(x, \omega)=\langle x, \omega\rangle$ and let $\varphi_{1}, \varphi_{2} \cdots, \varphi_{2 q} \cdots$ be the sequence of phase functions in (3.9). For $x \in \omega\left(\delta_{3}\right)$ set $X_{0}(x, \omega)=x$ and, if $\{x+l \omega ; l \geqslant 0\} \cap \Gamma \neq \phi$

$$
\begin{aligned}
& l_{0}(x, \omega)=\inf \{l ; l \geqslant 0, x+l \omega \in \Gamma\} \\
& X_{1}(x, \omega)=x+l_{0} \omega \\
& \Xi_{1}(x, \omega)=\omega-2\left\langle n\left(X_{1}(x, \omega), \omega\right\rangle n\left(X_{1}(x, \omega)\right) .\right.
\end{aligned}
$$

Following the process of $\S 3$ of [2] define successively $l_{j}(x, \omega), X_{j}(x, \omega), \Xi_{j}(x, \omega)$, $L_{j}(x, \omega), \mathcal{L}_{j}(x, \omega)$ for $j=1,2, \cdots$. For $x \in \omega\left(\delta_{3}\right)$ set

$$
\begin{aligned}
& l_{-1}\left(x, \nabla \varphi_{2 q}(x, \omega)\right)=\inf \left\{l ; l \geqslant 0, x-l \nabla \varphi_{2 q}(x, \omega) \in \Gamma\right\} \\
& X_{-1}\left(x, \nabla \varphi_{2 q}(x, \omega)\right)=x-l_{-1}\left(x, \nabla \varphi_{2 q}(x, \omega)\right) \nabla \varphi_{2 q}(x, \omega)
\end{aligned}
$$

Define successively $X_{-j}\left(x, \nabla \varphi_{2 q}(x, \omega)\right)$ following $\S 4$ of [4]. For $x \in \boldsymbol{R}^{3}$ and $\omega \in S^{2}$ set

$$
\mathscr{P}(x, \omega)=\{y ;\langle y-x, \omega\rangle=0\} .
$$

Let us denote by $Y_{2 q}(x, \omega)$ the point

$$
\mathscr{P}(x, \omega) \cap\left\{X_{-2 q}\left(x, \nabla \varphi_{2 q}(x, \omega)\right)-l \omega ; l \geqslant 0\right\}
$$

Remark that, if we set $y=Y_{2 q}(x, \omega)$, we have

$$
X_{2 q-j}(y, \omega)=X_{-1-j}\left(x, \nabla \varphi_{2 q}(x, \omega)\right), \quad j=1,2, \cdots, 2 q-1
$$

$Y_{2 q}(x, \omega) \in \rho(x, \omega)$ means that

$$
\begin{equation*}
\left\langle Y_{2 q}(x, \omega), \omega\right\rangle=\langle x, \omega\rangle \tag{4.1}
\end{equation*}
$$

Now we have by using (4.1)

$$
\begin{equation*}
\Phi_{2 q}(x, \omega)=\left|X_{1}(y, \omega)-y\right|+\left|X_{2}(y, \omega)-X_{1}(y, \omega)\right| \tag{4.2}
\end{equation*}
$$

$$
+\cdots+\left|X_{2 q}(y, \omega)-X_{2 q-1}(y, \omega)\right|+\left|x-X_{2 q}(y, \omega)\right|
$$

where we put $y=Y_{2 q}(x, \omega)$. Recall that the broken ray $\mathscr{X}\left(Y_{2 q}(x, \omega), \omega\right)$ is a path starting from a point on a plane $\mathscr{P}(x, \omega)$ and reach at x after $2 q$ times reflexion on Γ according to the geometric optics. The path of the geometric optics can be characterized as a path that has a minimal length among the ones which start from on $\mathcal{P}(x, \omega)$ and arrive at x after passing $2 q$ times points on「. Namely,

$$
\begin{align*}
& \Phi_{2 q}(x, \omega)=\inf \left\{\left|x^{(1)}-x^{(0)}\right|+\left|x^{(2)}-x^{(1)}\right|\right. \tag{4.3}\\
& \left.\quad+\cdots+\left|x^{(2 q)}-x^{(2 q-1)}\right|+\left|x-x^{(2 q)}\right|\right\}
\end{align*}
$$

where the infimum is taken on $x^{(0)}, x^{(1)}, \cdots, x^{(2 q)}$ running over

$$
\begin{aligned}
& x^{(0)} \in \mathscr{P}(x, \omega), \\
& x^{(1)}, x^{(3)}, \cdots, x^{(2 q-1)} \in \Gamma_{2}\left(\Gamma_{1}\right), \\
& x^{(2)}, x^{(4)}, \cdots, x^{(2 p)} \in \Gamma_{1}\left(\Gamma_{2}\right),
\end{aligned}
$$

if $\omega_{3}>0$ (if $\omega_{3}<0$). Let us set

$$
S_{ \pm}^{2}=\left\{\left(\omega_{1}, \omega_{2}, \pm \sqrt{1-\omega_{1}^{2}-\omega_{2}^{2}} ; \omega_{1}^{2}+\omega_{2}^{2}<1\right\} .\right.
$$

Lemma 4.1. Let $\omega \in S_{+}^{2}$ and $x \in \omega\left(\delta_{3}\right)$. Suppose that

$$
\begin{equation*}
Y_{2 q}(x, \omega) \text { exists. } \tag{4.4}
\end{equation*}
$$

Then for $\omega=\omega\left(\omega_{1}, \omega_{2}\right)=\left(\omega_{1}, \omega_{2}, \sqrt{1-\omega_{1}^{2}-\omega_{2}^{2}}\right)$

$$
\begin{align*}
& \frac{\partial \Phi_{2 q}(x, \omega)}{\partial \omega_{j}}=\left\langle y-x, \frac{\partial \omega}{\partial \omega_{j}}\right\rangle \tag{4.5}\\
= & \left(y_{j}-x_{j}\right)-\omega_{j}\left(1-\omega_{1}^{2}-\omega_{2}^{2}\right)^{-1 / 2}\left(y_{3}-x_{3}\right)
\end{align*}
$$

for $j=1,2$, where $y=\left(y_{1}, y_{2}, y_{3}\right)=Y_{2 q}(x, \omega)$.
Proof. Let $\tilde{\omega}=\omega\left(\omega_{1}+\Delta \omega_{1}, \omega_{2}\right)$ and $\tilde{y}=Y_{2 q}(x, \tilde{\omega})$. Since $X_{-j}\left(x, \nabla \varphi_{2 q}(x, \omega)\right)$ is continuous in x and ω we have

$$
\begin{equation*}
\tilde{y} \rightarrow y \quad \text { as } \Delta \omega_{1} \rightarrow 0 \tag{4.6}
\end{equation*}
$$

Set

$$
\begin{aligned}
& z=\mathscr{P}(x, \tilde{\omega}) \cap\{y+l \omega ; l \in \boldsymbol{R}\} \\
& z=\mathscr{P}(x, \omega) \cap\{\tilde{y}+l \tilde{\omega} ; l \in \boldsymbol{R}\}
\end{aligned}
$$

Then from (4.3)

$$
\begin{aligned}
\Phi_{2 q}(x, \tilde{\omega})= & \inf \left\{\left|x^{(1)}-x^{(0)}\right|+\cdots+\left|x-x^{(2 q)}\right|\right\} \\
& \leqslant\left|X_{1}(y, \omega)-z\right|+\left|X_{2}(y, \omega)-X_{1}(y, \omega)\right|
\end{aligned}
$$

$$
+\cdots+\left|X_{2 q}(y, \omega)-X_{2 q-1}(x, \omega)\right|+\left|x-X_{2 q}(y, \omega)\right|
$$

Since we have $\left|X_{1}(y, \omega)-z\right|=\left|X_{1}(y, \omega)-y\right|+|y-z|$ if z is on the prolongation of a segment $X_{1}(y, \omega) y$ it holds that

$$
\begin{equation*}
\Phi_{2 q}(x, \tilde{\omega}) \leqslant \Phi_{2 q}(x, \omega)+|y-z| . \tag{4.7}
\end{equation*}
$$

If z is on the prolongation of $X_{1}(y, \omega) y \tilde{z}$ must be on a segment $X_{1}(\tilde{y}, \tilde{\omega}) \tilde{y}$, and we have

$$
\left|X_{1}(\tilde{y}, \tilde{\omega})-\tilde{z}\right|=\left|X_{1}(\tilde{y}, \tilde{\omega})-\tilde{y}\right|-|\tilde{y}-\tilde{z}| .
$$

Then similarly we have

$$
\begin{equation*}
\Phi_{2 q}(x, \omega) \leqslant \Phi_{2 q}(x, \tilde{\omega})-|\tilde{y}-\tilde{z}| . \tag{4.8}
\end{equation*}
$$

Taking account of $\overline{X_{1}(y, \omega) y} \perp \mathscr{P}(x, \omega)$ and $\overline{X_{1}(\tilde{y}, \tilde{\omega}) \tilde{y}} \perp \mathscr{P}(x, \tilde{\omega})$ we have

$$
\begin{aligned}
& |y-z|=\langle y-x, \tilde{\omega}-\omega\rangle+o(|\tilde{\omega}-\omega|) \\
& |\tilde{y}-\tilde{z}|=\langle\tilde{y}-x, \tilde{\omega}-\omega\rangle+o(|\tilde{\omega}-\omega|) .
\end{aligned}
$$

Thus from (4.7), (4.8) and (4.6) it follows that

$$
\lim _{\Delta \omega_{1} \rightarrow 0} \frac{\Phi_{2 q}(x, \tilde{\omega})-\Phi_{2 q}(x, \omega)}{\Delta \omega_{1}}=\left\langle y-x, \frac{\partial \omega}{\partial \omega_{1}}\right\rangle
$$

In the rest of this section we shall use the notation as in $\S 3$ of [2].
Lemma 4.2. Let $y=Y_{2 q}(x, \omega)$. Suppose that $\left|x^{\prime}-y^{\prime}\right| \leqslant\left|x^{\prime}\right| / 2$ and

$$
\begin{equation*}
y^{\prime} \cdot \omega^{\prime} \geqslant 0 \tag{4.9}
\end{equation*}
$$

Then it holds that

$$
\left|x^{\prime}-y^{\prime}\right| \geqslant c q\left|x^{\prime}\right|^{e} .
$$

Proof. First note that from the assumption on the principal curvatures we have

$$
\left|n(x)^{\prime}\right| \geqslant c\left|x^{\prime}\right|^{e+1} \quad \text { for } x \in S\left(\delta_{3}\right) .
$$

Since $d\left|x^{\prime}(s)\right|^{2} / d s \geqslant d\left|x^{\prime}(s)\right|^{2} /\left.d s\right|_{s=0}=y^{\prime} \cdot \omega^{\prime} \geqslant 0$ for all $s>0$ we have

$$
\frac{d}{d s}\left|x^{\prime}(s)\right|^{2} \geqslant c\left|y^{\prime}\right|^{e+1} \quad \text { for } s \geqslant s_{1}
$$

Therefore

$$
\left|x^{\prime}\right|^{2}-\left|y^{\prime}\right|^{2} \geqslant 2 d q c\left|y^{\prime}\right|^{e+1}
$$

from which it follows that

$$
\left|x^{\prime}\right|-\left|y^{\prime}\right| \geqslant 2 d q c\left|y^{\prime}\right|^{e} .
$$

By using $\left|y^{\prime}\right| \geqslant\left|x^{\prime}\right| / 2$, which is a consequence of the assumption, the assertion of Lemma follows.
Q.E.D.

Lemma 4.3. Suppose that

$$
\begin{equation*}
\left|x^{\prime}-y^{\prime}\right| \leqslant\left|x^{\prime}\right| / 2 \text { and } x^{\prime} \cdot \Xi_{2 q}(y, \omega) \leqslant 0 . \tag{4.10}
\end{equation*}
$$

Then it holds that $y^{\prime} \cdot \omega \leqslant-q c\left|x^{\prime}\right|^{e+1}$ and

$$
\left|x^{\prime}-y^{\prime}\right| \geqslant c q\left|x^{\prime}\right|^{e} .
$$

Proof. Since $d\left|x^{\prime}(s)\right|^{2} / / d s$ is an increasing function and

$$
0 \geqslant d\left|x^{\prime}(s)\right|^{2} /\left.d s\right|_{s=s_{2 q}+0} \geqslant d\left|x^{\prime}(s)\right|^{2} /\left.d s\right|_{s=s_{2 q}-0}+2 c(1-\delta)\left|x^{\prime}\right|^{\varepsilon-1}
$$

we have

$$
\frac{d}{d s}\left|x^{\prime}(s)\right|^{2} \leqslant-2(1-\delta) c\left|x^{\prime}\right|^{e+1} . \quad \text { for all } s<s_{2 q}
$$

which implies

$$
\left|y^{\prime}\right|^{2}-\left|x^{\prime}\right|^{2}=\left|x^{\prime}(0)\right|^{2}-\left|x^{\prime}\left(s_{2 q}\right)\right|^{2} \geqslant 2 d q c(1-\delta)\left|x^{\prime}\right|^{e+1}
$$

Thus we have

$$
\left|y^{\prime}\right|-\left|x^{\prime}\right| \geqslant 2 d q c(1-\delta)\left|x^{\prime}\right|^{e} .
$$

Lemma 4.4. When

$$
\left|\omega^{\prime}\right| \geqslant C q\left(\left|x^{\prime}\right|^{e+1}+\left|y^{\prime}\right|^{o+1}\right)
$$

holds for some constant C independent of q, we have

$$
\left|x^{\prime}-y^{\prime}\right| \geqslant d q\left|\omega^{\prime}\right| \text { and } x^{\prime} \cdot \Xi_{2 q} \geqslant 2 d q\left|y^{\prime}\right|^{e+1}
$$

Proof. Since $\left|x^{\prime}(s)\right|^{2}$ is a convex function we have $\left|x^{\prime}(s)\right| \leqslant \max \left(\left|x^{\prime}\right|\right.$, $\left.\left|y^{\prime}\right|\right)$ for all s. Denote the right hand side by M. From the law of reflexion

$$
\Xi_{j}(y, \omega)-\Xi_{j-1}(y, \omega)=2\left(X_{j}(y, \omega), n\left(X_{j}(y, \omega)\right) n\left(X_{j}(y, \omega)\right),\right.
$$

we have for $j=1$

$$
\left|\Xi_{1}(y, \omega)^{\prime}-\omega^{\prime}\right| \leqslant 2\left|n\left(X_{1}(y, \omega)\right)^{\prime}\right| \leqslant 2 c M^{e+1} .
$$

Similarly we have for all $j \leqslant 2 q$

$$
\left|\left(\Xi_{j}(y, \omega)-\Xi_{j-1}(y, \omega)\right)^{\prime}\right| \leqslant 2 C M^{e+1} .
$$

Then by using the assumption we have

$$
\begin{aligned}
\left|\left(\Xi_{j}-\omega\right)^{\prime}\right| & \leqslant 2 q C M^{e+1} \leqslant\left|\omega^{\prime}\right| / 2 \quad \text { for all } \quad j \leqslant 2 q . \\
\left|(x-y)^{\prime}\right| & =\left|\left(\sum_{j=1}^{2 q} l_{j} \Xi_{j-1}\right)^{\prime}\right| \\
& \geqslant\left|\left(\sum_{j=1}^{2 q} l_{j} \omega\right)^{\prime}\right|-\left|\sum_{j=1}^{2 q} l_{j}\left(\Xi_{j}-\omega\right)^{\prime}\right| \\
& \geqslant 2 d q\left|\omega^{\prime}\right|-d q\left|\omega^{\prime}\right| \geqslant d q\left|\omega^{\prime}\right| .
\end{aligned}
$$

Q.E.D.

Lemma 4.5. Let $x=\left(0,0, x_{3}\right), 0<x_{3}<d$. If $q^{2}\left|\omega^{\prime}\right|<1$ it holds that

$$
\begin{equation*}
\left|\left(x-Y_{2 q}(x, \omega)\right)^{\prime}-2 d q \omega^{\prime}\right| \leqslant C q^{2}\left|\omega^{\prime}\right|^{2} \tag{4.11}
\end{equation*}
$$

where C is a constant independent of q.
Proof. Let us set $y=Y_{2 q}(x, \omega),-\Xi_{2 q}(y, \omega)=\tilde{\omega}$. Then we have

$$
X_{j}(x, \tilde{\omega})=X_{2 q-j}(y, \omega), \Xi_{j}(x, \tilde{\omega})=-\Xi_{2 q-j}(y, \omega) .
$$

First we show that

$$
\begin{equation*}
\left|X_{j}(x, \tilde{\omega})^{\prime}\right| \leqslant C_{j}\left|\omega^{\prime}\right|, \quad\left|\Xi_{j}(x, \tilde{\omega})^{\prime}-\tilde{\omega}^{\prime}\right| \leqslant C_{j}\left|\tilde{\omega}^{\prime}\right|^{2} \tag{4.12}
\end{equation*}
$$

holds for all $j \leqslant 2 q$. Suppose that $q^{2}\left|\tilde{\omega}^{\prime}\right|<1$ and (4.12) holds for $j \leqslant h$. Then

$$
\begin{aligned}
&\left|X_{h+1}(x, \tilde{\omega})^{\prime}\right| \leqslant\left|X_{h}(x, \tilde{\omega})^{\prime}\right|+l_{h}\left|\Xi_{h}(x, \tilde{\omega})^{\prime}\right| \\
& \leqslant C h\left|\omega^{\prime}\right|+C\left(2 d+\delta_{3}\right)\left|\omega^{\prime}\right| \leqslant C(h+1)\left|\tilde{\omega}^{\prime}\right|, \\
&\left|\Xi_{h+1}(x, \tilde{\omega})^{\prime}-\tilde{\omega}^{\prime}\right| \leqslant C\left|X_{h+1}(x, \tilde{\omega})^{\prime}\right|^{++1} \\
& \leqslant C(h+1)^{3}\left|\tilde{\omega}^{\prime}\right|^{3} \leqslant C(h+1)\left|\tilde{\omega}^{\prime}\right|^{2} .
\end{aligned}
$$

Thus (4.12) holds for $j=h+1$. By induction (4.12) holds for all $j \leqslant 2 q$. Since

$$
\begin{aligned}
& X_{j+1}(x, \tilde{\omega})-X_{j}(x, \tilde{\omega})=l_{j}(x, \tilde{\omega}) \Xi_{j}(x, \tilde{\omega}) \\
& \begin{aligned}
\left(X_{2 q}(x, \tilde{\omega})-x\right)^{\prime} & =\sum_{j=1}^{2 q} l_{j}(x, \tilde{\omega}) \Xi_{j}(x, \tilde{\omega})^{\prime} \\
& =\sum_{j=1}^{2 q} l_{j}(x, \tilde{\omega}) \tilde{\omega}^{\prime}+\sum_{j=1}^{2 q} l_{j}(x, \tilde{\omega})\left(\Xi_{j}(x, \tilde{\omega})-\tilde{\omega}\right)^{\prime}
\end{aligned}
\end{aligned}
$$

Note that $\left|l_{j}(x, \tilde{\omega})-d\right| \leqslant C\left|X_{j}(x, \tilde{\omega})^{\prime}\right|^{2} \leqslant C q^{2}\left|\tilde{\omega}^{\prime}\right|^{2}$.
Then
(4.13) $\quad\left|\left(X_{2 q}(x, \tilde{\omega})-x\right)^{\prime}-2 d q \tilde{\omega}^{\prime}\right| \leqslant 2 d q\left|\tilde{\omega}^{\prime}\right|^{2}+C q^{2}\left|\tilde{\omega}^{\prime}\right|^{2} \leqslant C^{\prime} q^{2}\left|\tilde{\omega}^{\prime}\right|^{2}$.

Now from (4.12) and $\Xi_{2 q}(x, \tilde{\omega})=\omega$

$$
\left|(\omega-\tilde{\omega})^{\prime}\right| \leqslant C 2 q\left|\tilde{\omega}^{\prime}\right|^{2} \leqslant C q^{-1}\left|\tilde{\omega}^{\prime}\right|,
$$

which implies $\left|(\omega-\tilde{\omega})^{\prime}\right| \leqslant C q^{-1}\left|\omega^{\prime}\right|$ for large q. From (4.13) and the above
estimate (4.11) follows immediately.
Corollary. On the assumption of Lemma 4.5 we have

$$
\left|\frac{\partial \Phi_{2 q}}{\partial \omega_{j}}\left(0, x_{3}, \omega\right)-2 d q \omega_{j}\right| \leqslant C q^{2}\left|\omega^{\prime}\right|^{2}
$$

Proof. Since x and y are on $\mathscr{P}(x, \omega)\left|x_{3}-y_{3}\right| \leqslant\left|(x-y)^{\prime}\right|\left|\omega^{\prime}\right|$. From (4.11) $x_{j}-y_{j}=2 d q \omega_{j}+0\left(q^{2}\left|\omega^{\prime}\right|^{2}\right)$, and from (4.5)

$$
\frac{\partial \Phi_{2 q}}{\partial \omega_{j}}\left(0, x_{3}, \omega\right)-\left(y_{j}-x_{j}\right)=O\left(q^{2}\left|\omega^{\prime}\right|^{2}\right)
$$

Combining these relations we have the assertion.
Lemma 4.6. Suppose that $q^{2}\left|x^{\prime}\right|<1,\left|\omega^{\prime}\right|<\left|x^{\prime}\right|^{3}$. Then

$$
\begin{aligned}
& \left|\left(X_{j}(x, \omega)-x\right)^{\prime}\right| \leqslant C\left|x^{\prime}\right|^{2}, \\
& \left|\Xi_{j}(x, \omega)^{\prime}\right| \leqslant C j\left|x^{\prime}\right|^{3}
\end{aligned}
$$

hold for all $j \leqslant 2 q$, where C is a constant independent of q.
Proof. From (4.11) we have

$$
\begin{aligned}
& \left|\Xi_{1}(x, \omega)^{\prime}\right| \leqslant\left|\omega^{\prime}\right|+C\left|x^{\prime}\right|^{3} \leqslant\left(C+C_{1}\right)\left|x^{\prime}\right|^{3}, \\
& \left|X_{1}(x, \omega)^{\prime}\right| \leqslant\left|x^{\prime}\right|+2\left(d+\delta_{3}\right)\left|\omega^{\prime}\right| \leqslant\left|x^{\prime}\right|\left(1+C q^{-4}\right) \leqslant\left|x^{\prime}\right|\left(1+q^{-2}\right) .
\end{aligned}
$$

Suppose that

$$
\begin{equation*}
\left|X_{j}(x, \omega)^{\prime}\right| \leqslant\left|x^{\prime}\right|\left(1+j q^{-2}\right),\left|\Xi_{j}(x, \omega)^{\prime}\right| \leqslant C_{2} j\left|x^{\prime}\right|^{3} \tag{4.14}
\end{equation*}
$$

holds for $j \leqslant h$. Then by the same reasoning as the above

$$
\begin{aligned}
\left|X_{h+1}(x, \omega)^{\prime}\right| & \leqslant\left|X_{h}(x, \omega)^{\prime}\right|+2\left(d+\delta_{3}\right) C_{2} h\left|x^{\prime}\right|^{3} \\
& \leqslant\left|x^{\prime}\right|\left(1+h q^{-2}+2\left(d+\delta_{3}\right) C_{2} q^{-4}\right) \\
& \leqslant\left|x^{\prime}\right|\left(1+(h+1) q^{-2}\right)
\end{aligned}
$$

if $2\left(d+\delta_{3}\right) C_{2} q^{-2}<1$, and

$$
\begin{aligned}
\left|\Xi_{h+1}(x, \omega)^{\prime}\right| & \leqslant\left|\Xi_{h}(x, \omega)^{\prime}\right|+C\left|X_{h+1}(x, \omega)^{\prime}\right|^{3} \\
& \leqslant C_{2} h\left|x^{\prime}\right|^{3}+C\left|x^{\prime}\right|^{3}\left(1+(h+1) q^{-2}\right)^{3} \\
& \leqslant C_{2}(h+1)\left|x^{\prime}\right|^{3}
\end{aligned}
$$

if $C 2^{3}<C_{2}$. Thus (4.14) holds for all $j \leqslant 2 q$. Therefore

$$
\begin{aligned}
\left|\left(X_{2 q}(x, \omega)-x\right)^{\prime}\right| & \leqslant \sum_{j=1}^{2 q} l_{j}\left|\Xi_{j}(x, \omega)^{\prime}\right| \\
& \leqslant 2 d\left|x^{\prime}\right|^{3} C_{2} \sum_{j=1}^{2 q} j \leqslant C\left|x^{\prime}\right|^{2}
\end{aligned}
$$

Q.E.D.

Lemma 4.7. Let x and $y=Y_{2 q}(x, \omega) \in \omega\left(\delta_{3}\right)$. Then we have

$$
\begin{equation*}
\left|\operatorname{grad}_{x^{\prime}, \omega} \Phi_{2 q}\left(x^{\prime}, x_{3} ; ; \omega\right)\right| \geqslant c \min \left(\left|x^{\prime}\right|^{e+1}, q^{-1}\left|\omega^{\prime}\right|\right) \tag{4.15}
\end{equation*}
$$

Proof. When $\left|\omega^{\prime}\right| \geqslant C q\left(\left|x^{\prime}\right|^{e+1}+\left|y^{\prime}\right|^{e+1}\right)$ Lemma 4.4 shows

$$
\left|\partial_{\omega} \Phi_{2 q}(x, \omega)\right| \geqslant\left(1-C\left|\omega^{\prime}\right|\right)\left|(x-y)^{\prime}\right| \geqslant\left(1-C\left|\omega^{\prime}\right|\right) 2 d q\left|\omega^{\prime}\right| .
$$

Thus (4.15) holds. Now let

$$
\begin{equation*}
\left|\omega^{\prime}\right| \leqslant C q\left(\left|x^{\prime}\right|^{e+1}+\left|y^{\prime}\right|^{e+1}\right) \leqslant 1 \tag{4.16}
\end{equation*}
$$

If $\left|(x-y)^{\prime}\right| \geqslant \frac{1}{2}\left|x^{\prime}\right|$, (4.15) follows immediately from (4.5). Then hereafter we suppose $\left|x^{\prime}-y^{\prime}\right| \leqslant 1 / 2\left|x^{\prime}\right|$. Note that from the above inequality $\left|y^{\prime}\right| \leqslant$ $3 / 2\left|x^{\prime}\right|$. When $\left|x(s)^{\prime}\right|^{2}$ is monotonically increasing or decreasing Lemma 4.2 or 4.3 can be applied and we have $\left|\partial_{\omega} \Phi_{2 q}(x, \omega)\right| \geqslant\left(1-C\left|\omega^{\prime}\right|\right)\left|x^{\prime}\right|^{e}$, which implies (4.15). If $\left|x(s)^{\prime}\right|^{2}$ is not monotone, set

$$
\left|X_{j}(y, \omega)^{\prime}\right|^{2}=\min \left|x(s)^{\prime}\right|^{2} .
$$

Suppose that $\left|X_{j}^{\prime}\right| \geqslant 1 / 2\left|x^{\prime}\right|$. Under the condition (4.16) applying Lemma 4.3 to a broken ray $y \rightarrow X_{j}$, we have

$$
y \cdot \omega^{\prime} \leqslant-C j\left|X_{j}\right|^{e+1} \leqslant-C j\left|x^{\prime}\right|^{e+1}
$$

Similarly applying Lemma 4.4 to a broken ray $X_{j} \rightarrow x$ we have

$$
\Xi_{2 q}(y, \omega) \cdot x^{\prime} \geqslant c(2 q-j)\left|x^{\prime}\right|^{e+1}
$$

Therefore

$$
\begin{aligned}
& \left(x^{\prime},\left(\omega-\nabla \varphi_{2 q}(x, \omega)\right)^{\prime}\right)=\left(x, \omega^{\prime}-\Xi_{2 q}(y, \omega)^{\prime}\right) \\
& \quad=\left(x-y, \omega^{\prime}\right)+\left(y, \omega^{\prime}\right)-\left(x^{\prime}, \nabla \varphi_{2 q}(y, \omega)\right),
\end{aligned}
$$

from which it follows that

$$
\begin{aligned}
\left|x^{\prime}\right|\left|\omega^{\prime}-\nabla \varphi_{2 q}(x, \omega)^{\prime}\right| & \geqslant-\frac{\left|x^{\prime}\right|}{2} c q\left(\left|x^{\prime}\right|^{e+1}+\left|y^{\prime}\right|^{e+1}\right)+2 q\left|x^{\prime}\right|^{e+1} \\
& \geqslant c q\left|x^{\prime}\right|^{e+1}
\end{aligned}
$$

Then $\left|\partial_{x^{\prime}} \Phi_{2 q}(x, \omega)\right|=\left|\omega^{\prime}-\left(\nabla \varphi_{2 q}(x, \omega)\right)^{\prime}\right| \geqslant c q\left|x^{\prime}\right|^{e}$, which implies (4.15).
Consider the case $\left|X_{j}^{\prime}\right| \leqslant \frac{1}{2}\left|x^{\prime}\right|$. Since

$$
d\left|x(s)^{\prime}\right|^{2} /\left.d s\right|_{s=s_{j}+0} \geqslant 0, d\left|x(s)^{\prime}\right|^{2} /\left.d s\right|_{s=s_{j}-0} \leqslant 0
$$

we have $y \cdot \omega^{\prime}<0$. Suppose that $j \leqslant q$.

$$
2 \Xi_{2 q-1}(y, \omega)^{\prime} \cdot x^{\prime}=d\left|x(s)^{\prime}\right|^{2} /\left.d s\right|_{s=s_{2 q}}
$$

$$
\begin{aligned}
& \geqslant \frac{1}{q}\left(\left|x^{\prime}\right|^{2}-\left|X_{j}^{\prime}\right|^{2}\right) \geqslant \frac{1}{2 q}\left|x^{\prime}\right|^{2} \\
\frac{1}{2 q}\left|x^{\prime}\right|^{2} & \leqslant \Xi_{2 q-1}(y, \omega)^{\prime} \cdot X_{2 q}(y, \omega)^{\prime}-y^{\prime} \cdot \omega^{\prime} \\
& =\left(\Xi_{2 q}(y, \omega)^{\prime}-\omega^{\prime}\right) \cdot x^{\prime}+(x-y)^{\prime} \cdot \omega^{\prime} \\
& \leqslant\left|\Xi_{2 q}(y, \omega)^{\prime}-\omega^{\prime}\right|\left|x^{\prime}\right|-\frac{\left|x^{\prime}\right|}{2} C q\left|x^{\prime}\right|^{e+1}
\end{aligned}
$$

Then we have

$$
\left|\Xi_{2 q}(y, \omega)^{\prime}-\omega^{\prime}\right| \geqslant \frac{C q}{2}\left|x^{\prime}\right|^{e+1}, \text { or }\left|\Xi_{2 q}(y, \omega)^{\prime}-\omega^{\prime}\right| \geqslant \frac{\left|x^{\prime}\right|}{q} .
$$

This shows (4.15).
Q.E.D.

Corollary. For any fixed $0<x_{3}<d, \Phi_{2 q}\left(x^{\prime}, x_{3} ; \omega\right)$ as a function of x^{\prime} and ω, the critical points of $\Phi_{2 q}$ are $\left(x^{\prime}, \omega\right)$ such that $x^{\prime}=0, \omega=(0,0, \pm 1)$.

Lemma 4.8. For $\omega=(0,0, \pm 1)$ it holds that for $q^{2}\left|x^{\prime}\right|<1$

$$
\begin{gather*}
C q\left|x^{\prime}\right|^{e+2} \geqslant \Phi_{2 q}(x, \omega)-2 d q \geqslant c q\left|x^{\prime}\right|^{e+2} \tag{4.17}\\
\left|\frac{\partial \Phi_{2 q}}{\partial \omega}(x, \omega)\right| \leqslant C q\left|x^{\prime}\right|^{2} \tag{4.18}
\end{gather*}
$$

Proof. Let $\omega^{\prime}=0$ and $q^{2}\left|x^{\prime}\right|<1$. For a broken ray $\mathscr{X}(y, \omega), y=Y_{2 q}(x, \omega)$, since $y^{\prime} \cdot \omega^{\prime}=0\left|x(s)^{\prime}\right|^{2}$ is increasing. Therefore $\left|x^{\prime}\right| \geqslant\left|y^{\prime}\right|$, which implies $q^{2}\left|y^{\prime}\right|<1$. Apply Lemma 4.6 to ω and y and we have

$$
\left|\left(X_{j}(y, \omega)-y\right)^{\prime}\right| \leqslant C\left|y^{\prime}\right|^{2} \leqslant C\left|x^{\prime}\right|^{2}
$$

Setting $j=2 q$ we have $\left|x^{\prime}-y^{\prime}\right| \leqslant C\left|x^{\prime}\right|^{2}$ which shows (4.18). By using the above estimate we have

$$
\left|X_{j}(y, \omega)^{\prime}-x^{\prime}\right| \leqslant C\left|x^{\prime}\right|^{2}
$$

Therefore we have

$$
C\left|x^{\prime}\right|^{e+2} \geqslant\left|X_{j+1}(y, \omega)-X_{j}(y, \omega)\right|-d \geqslant c\left|x^{\prime}\right|^{e+2}
$$

Summing up this inequality from $j=0$ to $2 q-1$ and we have (4.17).

5. Proof of Proposition $\mathbf{3 . 3}$

From Corollary of Lemma 4.7 it suffices to consider the integration (3.23) near $x^{\prime}=0, \omega=(0,0, \pm 1)$. Since x_{3} and t are fixed we shall omit in the rest of this section to write them in the expression of calculus. First we apply the stationary phase method to the integration in ω variables. Let us set

$$
\omega\left(\omega^{\prime}\right)=\left(\omega_{1}, \omega_{2}, \sqrt{1-\omega_{1}^{2}-\omega_{2}^{2}}\right), \omega^{\prime}=\left(\omega_{1}, \omega_{2}\right),
$$

$$
\frac{\partial \Phi_{2 q}}{\partial \omega_{j}}\left(x^{\prime}, x_{3}, \omega\left(\omega^{\prime}\right)\right)=f_{q, j}\left(x^{\prime}, \omega^{\prime}\right), j=1,2 .
$$

From Corollary of Lemma 4.5 we have

$$
\begin{gather*}
f_{q, j}(0,0)=0, j=1,2 \tag{5.1}\\
\frac{\partial f_{q, j}}{\partial \omega_{h}}(0,0)=2 q d \delta_{j h}, j, h=1,2 \tag{5.2}
\end{gather*}
$$

Concerning Lemma 3.1 we can easily verify from Lemmas 5.2 and 5.3 of [2] that $l(2,0)=2$, i.e.

$$
\begin{equation*}
\left|\frac{\partial f_{q, j}}{\partial \omega_{h}}\left(x^{\prime}, \omega^{\prime}\right)\right|_{1} \leqslant C q^{2} \tag{5.3}
\end{equation*}
$$

Then the implicit function theorem assures the existence of solution of the equations

$$
\begin{equation*}
f_{q, j}\left(x^{\prime}, \omega^{\prime}\right)=0, \quad j=1,2 \quad \text { for } \quad\left|x^{\prime}\right| \leqslant q^{-2} \tag{5.4}
\end{equation*}
$$

Let us denote this solution by $\omega_{q}^{\prime}\left(x^{\prime}\right)$. Then from (3.11) we have

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \omega_{q}^{\prime}\left(x^{\prime}\right)\right| \leqslant C_{w} q^{l(\alpha)} \quad \text { for }\left|x^{\prime}\right| \leqslant q^{-2} \tag{5.5}
\end{equation*}
$$

where $l(\alpha)$ denotes an integer depending on α. In the rest of this section we shall use notation $l(\alpha)$ for various integer depending on α. For the phase function we have

$$
\Phi_{2 q}(x, \omega)=\Phi_{2 q}\left(x, \omega\left(\omega_{q}^{\prime}\left(x^{\prime}\right)\right)\right)+\frac{1}{2} \sum_{|\alpha|=2} \frac{1}{\alpha!}\left(\omega^{\prime}-\omega_{q}^{\prime}\left(x^{\prime}\right)\right)^{\alpha} F_{q, \alpha}\left(x^{\prime}, \omega^{\prime}\right),
$$

where

$$
F_{q,(j, h)}\left(x^{\prime}, \omega^{\prime}\right)=\int_{0}^{1} \frac{\partial f_{q, j}}{\partial \omega_{h}}\left(x^{\prime}, \theta \omega_{q}^{\prime}\left(x^{\prime}\right)+(1-\theta) \omega^{\prime}\right) d \theta
$$

Then from (5.2) and (5.3) it holds that

$$
\mathscr{F}_{q}\left(x^{\prime}, \omega^{\prime}\right)=\left[F_{q,(j, h)}\left(x^{\prime}, \omega^{\prime}\right)\right]_{j, h=1,2} \geqslant d q I .
$$

By making a change of variables

$$
\zeta=\mathscr{F}_{q}\left(x^{\prime}, \omega^{\prime}\right)^{1 / 2}\left(\omega^{\prime}-\omega_{q}^{\prime}\left(x^{\prime}\right)\right)
$$

we have

$$
\begin{equation*}
\Phi_{2 q}\left(x, \omega\left(\omega^{\prime}\right)\right)=\Phi_{2 q}\left(x, \omega\left(\omega_{q}^{\prime}\left(x^{\prime}\right)\right)\right)+\frac{1}{2} \zeta^{*} \zeta \tag{5.6}
\end{equation*}
$$

and an estimate

$$
\begin{equation*}
\left|\partial_{x^{\prime}}^{\alpha} \zeta\right| \leqslant C_{a} q^{l(\alpha)} \tag{5.7}
\end{equation*}
$$

Let $\boldsymbol{\chi}$ be a C^{∞} function verifying

$$
\chi\left(\omega^{\prime}\right)= \begin{cases}1 & \left|\omega^{\prime}\right| \leqslant 1 \\ 0 & \left|\omega^{\prime}\right| \geqslant 2\end{cases}
$$

Lemma 5.1. Let $\left|x^{\prime}\right| \leqslant q^{-2}$ and $g\left(x^{\prime}, \omega^{\prime}\right) \in C^{\infty}\left(\boldsymbol{R}^{2} \times \boldsymbol{R}^{2}\right)$. An oscillatory integral

$$
H_{q}\left(k, x^{\prime}\right)=\int_{R^{2}} e^{i k \Phi_{2 q}\left(x, \omega\left(\omega^{\prime}\right)\right)} g\left(x^{\prime}, \omega^{\prime}\right) \chi\left(\omega^{\prime} / \delta\right) d \omega^{\prime} \quad(\delta>0)
$$

has an expansion

$$
H_{q}\left(k, x^{\prime}\right)=e^{i k \Psi_{q}\left(x^{\prime}\right)}\left\{\sum_{j=0}^{6} k^{-1-j / 2} h_{q, j}\left(x^{\prime}\right)+k^{-4} h_{q}\left(x^{\prime}, k\right)\right\}
$$

where

$$
\begin{align*}
& \Psi_{q}\left(x^{\prime}\right)=\Phi_{2 q}\left(x, \omega\left(\omega_{q}^{\prime}\left(x^{\prime}\right)\right)\right), \tag{5.8}\\
&\left|\partial_{x^{\prime}}^{\alpha} h_{q, j}\left(x^{\prime}\right)\right| \leqslant C_{a} q^{l(\alpha)}|g|_{|a|+2 j}, \tag{5.9}\\
&\left|\partial_{x^{\prime}}^{\alpha} h_{q}\left(x^{\prime} ; k\right)\right| \leqslant C_{a} q^{l(\alpha)}|g|_{|a|+12} \quad \text { for all } k . \tag{5.10}
\end{align*}
$$

Especially for $j=0$

$$
h_{q, 0}\left(x^{\prime}\right)=\frac{1}{2 \pi}\left(\operatorname{det} \mathscr{F}_{q}\left(x^{\prime}, \omega_{q}^{\prime}\left(x^{\prime}\right)\right)\right)^{-1 / 2} g\left(x^{\prime}, \omega_{q}^{\prime}\left(x^{\prime}\right)\right) .
$$

Proof. By (5.6) we can write

$$
H_{q}\left(k, x^{\prime}\right)=e^{i k \Psi_{q}\left(x^{\prime}\right)} \int_{R^{2}} e^{i k \xi^{*} \zeta} g\left(x^{\prime}, \omega^{\prime}\right) \frac{D \omega^{\prime}}{D \zeta} d \zeta
$$

By using (5.7) we have the assertion by a standard argument.
Then the proof of (3.24) is reduced to obtain an expansion of an oscillatory integral

$$
\begin{equation*}
H_{q, j}(k)=\int e^{i k \Psi_{q}\left(x^{\prime}\right)} h_{q, j}\left(x^{\prime}\right) d x^{\prime} . \tag{5.11}
\end{equation*}
$$

To this end we apply Varčenko's theorem [18, 7]. First consider properties of $\Psi_{q}\left(x^{\prime}\right)$.

Let $x_{3}=-\gamma\left(x^{\prime}\right)$ be a representation of Γ_{1} near a_{1} and $x_{3}=d+\tilde{\gamma}\left(x^{\prime}\right)$ be a representation of Γ_{2} near a_{2}.

Lemma 5.2. It holds that

$$
\begin{equation*}
\left|\Psi_{q}\left(x^{\prime}\right)-2 q\left(d+\gamma\left(x^{\prime}\right)+\tilde{\gamma}\left(x^{\prime}\right)\right)\right| \leqslant C_{q}\left(\gamma\left(x^{\prime}\right)+\tilde{\gamma}\left(x^{\prime}\right)\right)\left|x^{\prime}\right|^{2} \tag{5.12}
\end{equation*}
$$ where C_{q} has an estimate $C_{q} \leqslant C q^{a}$ for some $a>0$.

Proof. Let $x(s)$ be a representation of $\mathscr{X}\left(x, \omega\left(\omega_{q}^{\prime}\left(x^{\prime}\right)\right)\right)$. Setting $\left|X_{j}^{\prime}\right|$ $=\min \left|x(s)^{\prime}\right|$ we have $\Xi_{j} X_{j}^{\prime} \geqslant 0, \Xi_{j-1} \cdot X_{j}^{\prime} \leqslant 0$. Note that we have $x=X_{2 q}(x$, $\omega\left(\omega_{q}^{\prime}\left(x^{\prime}\right)\right)$) from the definition of $\omega_{q}^{\prime}\left(x^{\prime}\right)$. Since $\Xi_{j}-2\left(\Xi_{j}, n\left(X_{j}\right)\right) n\left(X_{j}\right)=0$ it holds that

$$
\left|\Xi_{j}\right| \leqslant C\left|y^{\prime}\right|^{e+1}=C\left|x^{\prime}\right|^{e+1} \leqslant C\left|x^{\prime}\right|^{3}
$$

Applying Lemma 4.6 to broken rays X_{j} to $X_{2 q}$ and $y=x$ to X_{j} we have, if $q^{2}\left|x^{\prime}\right| \leqslant 1$,

$$
\begin{align*}
& \left|X_{h}(x, \omega)^{\prime}-x^{\prime}\right| \leqslant C\left|x^{\prime}\right|^{2}, \tag{5.13}\\
& \left|\Xi_{h}(x, \omega)^{\prime}\right| \geqslant C q\left|x^{\prime}\right|^{3}
\end{align*}
$$

for all h. Evidently we have

$$
\left(X_{h}\right)_{3}= \begin{cases}-\gamma\left(X_{h}^{\prime}\right) & \text { if } X_{h} \in \Gamma_{1} \\ d+\tilde{\gamma}\left(X_{h}^{\prime}\right) & \text { if } X_{h} \in \Gamma_{2}\end{cases}
$$

Thus we have

$$
\begin{gathered}
\left(\left(X_{h+1}\right)_{3}-\left(X_{h}\right)_{3}\right)^{2}=\left\{\left(d+\gamma\left(x^{\prime}\right)+\gamma\left(x^{\prime}\right)\right)+\left(\left(X_{h+1}\right)_{3}-\left(-\gamma\left(x^{\prime}\right)\right)\right.\right. \\
-\left(\left(X_{h}\right)_{3}-\left(d+\tilde{\gamma}\left(x^{\prime}\right)\right)\right\}^{2} \\
=\left(d+\gamma\left(x^{\prime}\right)+\gamma\left(x^{\prime}\right)\right)^{2}\left(1+\left(O\left(\operatorname{grad}(\gamma+\tilde{\tau})\left(x^{\prime}\right)\left|x^{\prime}\right|^{2}\right)^{2}\right)\right.
\end{gathered}
$$

On the other hand

$$
\left|X_{h+1}^{\prime}-X_{h}^{\prime}\right| \leqslant C q\left|x^{\prime}\right|^{e+1}
$$

Then taking account of (1.1) we have

$$
\left|\sum_{h=0}^{2 q-1}\right| X_{h+1}-X_{h}\left|-2 q\left(d+\gamma\left(x^{\prime}\right)+\gamma\left(x^{\prime}\right)\right)\right| \leqslant C_{q}\left|x^{\prime}\right|^{2(e+1+2)}
$$

For x^{\prime} such that $q^{2}\left|x^{\prime}\right|>1$ (5.12) holds for $C_{q}=q^{a}$ if we choose a sufficiently large.
Q.E.D.

Let χ_{1} and χ_{2} be functions in $C^{\infty}\left(\boldsymbol{R}^{2}\right)$ such that

$$
\begin{gathered}
\chi_{1}+\chi_{2}=1 \quad \text { on } \boldsymbol{R}^{2} \\
\operatorname{supp} \chi_{1} \subset\left\{x^{\prime} ;\left|x^{\prime}\right| \leqslant 2\right\}, \chi_{1}=1 \quad \text { for }\left|x^{\prime}\right| \leqslant 1
\end{gathered}
$$

Set

$$
H_{q, j}^{(p)}(k)=\int e^{i k \Psi_{q}\left(x^{\prime}\right)} \chi_{p}\left(q^{3} x^{\prime}\right) h_{q, j}\left(x^{\prime}\right) d x^{\prime}, p=1,2 .
$$

From (5.12) it follows

$$
\left|\nabla_{x^{\prime}} \Psi_{q}\left(x^{\prime}\right)\right| \geqslant \frac{q}{2}\left|\operatorname{grad}\left(\gamma\left(x^{\prime}\right)+\gamma\left(x^{\prime}\right)\right)\right| \geqslant \frac{c q}{2}\left|x^{\prime}\right|^{e+1}
$$

Therefore on the support of χ_{2} we have $\left|\nabla_{x^{\prime}} \Psi_{q}\left(x^{\prime}\right)\right| \geqslant c q^{-a}$ for some $a>0$. Then using (5.9) we have

$$
\begin{equation*}
\left|H_{q, j}^{(2)}(k)\right| \leqslant C_{N} q^{l(N)} k^{-N} \tag{5.13}
\end{equation*}
$$

When we apply Varčenko's theorem to $H_{q, j}^{(1)}$ we have to pay attention to parameter q, in other words, we have to obtain an expansion in k of $H_{q, j}^{(1)}$ which is uniform in $q \rightarrow \infty$. To this end first we consider the Newtonian polyhedra of Ψ_{q}. Here we use freely the notation in [7]. (5.12) implies

$$
\Psi_{q \Gamma}=q(\gamma+\tilde{\gamma})_{\Gamma} \quad \text { for large } q
$$

Let Y and π be an analytic manifold and a projection constructed following Chapter II of [7] for $(\gamma+\tilde{\gamma})$, that is,

$$
\begin{aligned}
& \pi: Y \rightarrow U \\
& (\gamma+\tilde{\gamma}) \circ \pi(y)=+y_{1}^{l_{1} y_{2}^{l^{2}}} \\
& J(y)=y_{1}^{m_{1}} y_{2}^{m_{2}} J_{\pi}(y), J_{\pi}(0) \neq 0
\end{aligned}
$$

Then it follows that

$$
\Psi_{q} \circ \pi(y)=+q y_{1}^{l} y_{2}^{l}{ }_{2}^{2}\left(1+\psi_{q}(y)\right)
$$

where $\psi_{q}(0)=0$ and $\left|\partial_{y} \psi_{q}(y)\right| \leqslant C_{a} q^{l(\alpha)}$. Then we can find a change of variables $\pi_{q}: y=y_{q}(z)$ for $|z| \leqslant C q^{a}$ such that

$$
\begin{aligned}
& \Psi_{q} \circ \pi \circ \pi_{q}(z)=+q z_{1}^{l} z_{2}^{l}{ }^{2} \\
& y_{q}(0)=0, \frac{\partial y_{q}}{\partial z}(0)=I, \\
& \left|\partial_{z} y_{q}\right| \leqslant C_{a} q^{l(\alpha)}
\end{aligned}
$$

Then $H_{q, j}^{(1)}$ may be represented in finite sum of integrals of the form

$$
\int e^{i k q_{2} l_{1}^{l_{2} z_{2}^{2}}}\left(h_{q, j} \circ \pi \circ \pi_{q}\right)(z) J_{q}(z) d z
$$

Then Proposition 3.3 follows from Theorem 3.23 of [7] beside the representation of $c_{q, j}^{0}$. Note that Ψ_{q} verifies the condition 3) of Theorem 3.23 of [7] because $\partial_{x^{\prime}}^{\alpha} \Psi_{q}(0)=0$ for $|\alpha| \leqslant 4$, and $\Psi_{q}\left(x^{\prime}\right)>\Psi_{q}(0)$ for $x^{\prime} \neq 0$. In Lemma 5.1 when we set $g=v_{q, j}$ we have

$$
h_{q, 0}=\frac{1}{2 \pi} q^{-1} v_{q, j}\left(x, \omega\left(\omega_{q}^{\prime}\left(x^{\prime}\right)\right)\right) .
$$

Then we have from Theorem 3.23 of [7] the desired relation.

6. Representation of the kernel of $\cos t \sqrt{-\Delta}$ near a_{1} and a_{2}

Let $\psi(x)$ be a C^{∞} function with support contained in a small neighbor-
hood of a_{1}. We consider the behavior of

$$
\int_{\Omega}\left(\int \rho_{q}(t) E(t, x, x) \Psi(x) d t\right) d x \quad \text { as } \quad q \rightarrow \infty
$$

In this section we denote by s a point of Γ_{1} and by $n(s)$ the unit outer normal of Γ_{1} at s. Correspond (r, s) to x near a_{1} by $x=s+r n(s)$. First we state a result on the propagation of the solutions for oscillatory boundary data.

Lemma 6.1. Let m be an oscillatory boundary data on $\boldsymbol{R} \times \Gamma_{1}$ of the form

$$
m\left(t, s ; p, p^{\prime}\right)=e^{i\left(p \zeta(s)-p^{\prime} t\right)} h(t, s ; p)
$$

satisfying supp $h \subset(0,1) \times S_{1}\left(\delta_{3}\right)$ and

$$
\begin{equation*}
\left|\partial_{t, s}^{a} h\right| \leqslant C_{a} p^{\left(1 / 2-\varepsilon_{0}\right)|\alpha|} \quad\left(\varepsilon_{0}>0\right) . \tag{6.1}
\end{equation*}
$$

If $\left|p \nabla_{s} \zeta\right| /\left|p^{\prime}\right| \geqslant 4 \delta_{3} / d$, the solution of

$$
\begin{cases}\square u=0 & \text { in } \boldsymbol{R} \times \Omega \tag{6.2}\\ u=m & \text { on } \boldsymbol{R} \times \Gamma_{1} \\ \boldsymbol{u}=0 & \text { on } \boldsymbol{R} \times \Gamma_{2} \\ \operatorname{supp} u \subset\{t \geqslant 0\}\end{cases}
$$

verifies an estimate for any N

$$
\begin{equation*}
\left|\partial_{t, x}^{\infty} u(t, x ; p)\right| \leqslant C_{a, N} q^{l(a)} p^{-N} \quad \text { on }[2 d, 2 d q] \times \omega\left(\delta_{3}\right) . \tag{6.3}
\end{equation*}
$$

Except the case that $\left|p \nabla_{s} \zeta\right| /\left|p^{\prime}\right|$ is near 1 an asymptotic solution of (6.2) can be constructed by a usual manner and checked the propagation of solutions. For exceptional case we make use of the result of Melrose-Sjöstrand [13] on the propagation of singularities. We omit the proof.

As in $\S 3$ denoting by $u(t, x ; k, \omega)$ the solution of

$$
\begin{cases}\square u=0 & \text { in }(0, \infty) \times \Omega \tag{6.4}\\ u=0 & \text { on }(0, \infty) \times \Gamma \\ u(0, x)=e^{i k\langle x, \omega\rangle} w(x) & \text { in } \Omega \\ \frac{\partial u}{\partial t}(0, x)=0 & \text { in } \Omega\end{cases}
$$

where $w(x)=1$ on $\operatorname{supp} \psi$, we have

$$
E(t ; x, y) \psi(y)=\int_{0}^{\infty} k^{2} d k \int_{|\omega|=1} d \omega u(t, x ; k, \omega) e^{-i k\langle y, \omega\rangle} \psi(y) .
$$

In consideration of the behavior of $u(t, x ; k, \omega)$ the difference of the case (6.4) from u of $\S 3$ is that the initial data $w(x) e^{i k\langle x, \omega\rangle}$ does not verify the compatibility condition of an initial-boundary value problem at $\{t=0\} \times \Gamma$. There-
fore the solution of (6.4) is not regular, and this fact gives rise to difficulties.
Let $\chi_{1}, \chi_{2} \in C^{\infty}(\boldsymbol{R})$ such that

$$
\chi_{1}= \begin{cases}1 & |r| \leqslant 1 \\ 0 & |r| \geqslant 2\end{cases}
$$

and $\chi_{1}(r)^{2}+\chi_{2}(r)^{2}=1$ on \boldsymbol{R}. For $\varepsilon>0$ we have in Ω

$$
\begin{aligned}
& w(x) e^{i k\langle x, \omega\rangle} \\
= & Y(r) e^{i k\langle x, \omega\rangle} \chi_{1}\left(k^{1 / 2-\varepsilon} r\right)^{2} w(x)+Y(r) e^{i k\langle x, \omega\rangle} \chi_{2}\left(k^{1 / 2-\varepsilon} r\right)^{2} w(x) \\
= & f_{1}+f_{2}
\end{aligned}
$$

where $Y(r)=1$ for $r \geq 0$ and $=0$ for $r<0$. For $u_{2}(t, x ; k, \omega)=\cos t \sqrt{-\Delta} f_{2}$ we can use the method in $\S 3 \sim 5$ without large modification and we have

Lemma 6.2. It holds that

$$
\begin{array}{r}
\mid \int_{\Omega} d x \int_{0}^{\infty} k^{2} d k \int_{|\omega|=1} d \omega \chi_{2}\left(k^{1 / 2-\varepsilon)} r\right) e^{-i k\langle x, \omega\rangle}\left(\int \rho_{q}(t) u_{2}(t, x ; k, \omega) d t\right) \\
-c_{0} q^{\left(1-2 / e_{0}\right)(l+1)-2} \int_{0}^{d} \psi\left(0, x_{3}\right) d x_{3} \mid \leqslant C_{l} q^{\left(1-5 / e_{0}\right) l} .
\end{array}
$$

Hereafter we consider the behavior of $u_{1}(x, t ; k, \omega)=\cos t \sqrt{-\Delta} f_{1}$. The asymptotic solution u_{0} for Cauchy problem

$$
\left\{\begin{array}{l}
\square u=0 \\
u(0, x)=e^{i k\langle x, \omega\rangle} \chi_{1}\left(k^{1 / 2-\varepsilon} r\right) \Psi(x) \\
\frac{\partial u}{\partial t}(0, x)=0 \\
\text { in } \boldsymbol{R}^{3}
\end{array} \quad \text { in } \boldsymbol{R}^{3}\right.
$$

is obtained in a form

$$
\begin{aligned}
u_{0}(t, x ; k, \omega) & =e^{i k(\langle x, \omega\rangle-t)} \sum_{j=1}^{N} v_{j}^{\dagger}(t, x ; k)(i k)^{-j} \\
& +e^{i k(\langle x, \omega\rangle+t)} \sum_{j=1}^{N} v_{j}^{-}(t, x, k)(i k)^{-j} \\
& =u_{0}^{+}+u_{0}^{-}
\end{aligned}
$$

Then $m^{ \pm}=\left.u_{0}^{ \pm}\right|_{(0, \infty) \times \Gamma}$ is of the form

$$
\begin{align*}
& m^{ \pm}(t, s ; k)=e^{i k(\langle s, \omega\rangle \pm t)} h^{ \pm}(t, s ; k) \tag{6.5}\\
& \left|\partial_{t, s}^{a} h^{ \pm}(t, s ; k)\right| \leqslant C_{a} k^{(1 / 2-\varepsilon)|\propto|} . \tag{6.6}
\end{align*}
$$

Extend $m^{ \pm}$to a function on $\boldsymbol{R} \times \Gamma$ by setting $m^{ \pm}=0$ for $t<0$. Denote by $u^{ \pm}$ the solution of

$$
\begin{cases}\square u=0 & \text { in } \boldsymbol{R} \times \Omega \tag{6.7}\\ u=\boldsymbol{m}^{ \pm} & \text {on } \boldsymbol{R} \times \Gamma \\ \operatorname{supp} u \subset\{t \geq 0\} \times \Omega\end{cases}
$$

Then we have $u_{1}=-u^{+}-u^{-}$on $\omega\left(\delta_{3}\right)$ for $t \geqslant 2 R$. Then it suffices to consider $u^{ \pm}$.

Since $\left.m^{ \pm}\right|_{(0, \infty) \times \Gamma_{2}} \in C_{0}^{\infty}$ we can apply the method in $\S 3 \sim 5$ for $m^{ \pm}$on Γ_{2}. Therefore we consider only the solution for $m^{ \pm}$on Γ_{1}. First consider the case $\left|\omega^{\prime}\right| \geqslant 1 / 2$. Since there is no difference for m^{+}and m^{-}we consider the solution for m^{+}and omit + for brevity. By Fourier's inversion formula

$$
\begin{align*}
m(t, s ; k, \omega) & =w(t) \iint e^{i k^{\prime}\left(t-t^{\prime}\right)} m^{+}\left(t^{\prime}, s ; k, \omega\right) d t^{\prime} d k^{\prime} \tag{6.8}\\
& =\int w(t) e^{i k^{\prime} t} e^{i k\langle s, \omega\rangle} \hat{h}\left(k^{\prime}-k, s ; k, \omega\right) d k^{\prime}
\end{align*}
$$

for $w(t) \in C_{0}^{\infty}(\boldsymbol{R})$ such that $w(t)=1$ on supp m^{+}. Let us denote by $b(t, x ; k, \omega$, k^{\prime}) the solution of (6.7) whose m^{+}is replaced by $w(t) e^{i k^{\prime} t} e^{i k\langle s, \omega\rangle} \hat{h}\left(k^{\prime}-k, s ; k, \omega\right)$. For $\left|k^{\prime}\right| \leqslant 2|k|$ we have

$$
\left|k \nabla_{s}\langle s, \omega\rangle\right| /\left|k^{\prime}\right| \geqslant 4 \delta_{3} / d,
$$

from which

$$
\begin{equation*}
\left|b\left(t, x ; k, \omega, k^{\prime}\right)\right| \leqslant C_{N} q^{l(\alpha)} k^{-N} \quad \text { in }[2 d, 2 d q] \times \omega\left(\delta_{3}\right) \tag{6.9}
\end{equation*}
$$

follows by an application of Lemma 6.1. For $\left|k^{\prime}\right| \geqslant 2|k|$

$$
\left|\hat{h}\left(k^{\prime}-k, s ; k, \omega\right)\right| \leqslant C\left|k^{\prime}-k\right|^{-1} \leqslant C^{\prime}\left|k^{\prime}\right|^{-1} .
$$

As an approximation of b we have an asymptotic solution of the form

$$
b^{\prime}=\sum_{q=0}^{\infty} \sum_{j=0}^{N} e^{i k^{\prime}\left(\varphi_{q}\left(x ; \omega, k / k^{\prime}\right)-t\right)} v_{q, j}\left(t, x ; k, \omega, k^{\prime}\right)\left(i k^{\prime}\right)^{-j}
$$

where

$$
\begin{equation*}
\left|v_{q, j}\right| \leqslant C\left(k^{1 / 2-\varepsilon}\right)^{2 j}\left|k^{\prime}-k\right|^{-1} . \tag{6.10}
\end{equation*}
$$

Since $\left|\partial \varphi_{q}\right| \partial x_{3} \mid \geqslant 1-C \delta_{3}$ on $\omega\left(\delta_{3}\right)$ and $\left|\omega_{3}\right| \leqslant \sqrt{3} / 2$, we have

$$
\begin{aligned}
& \left|\int_{\Omega}\left(\int \rho_{q}(t) b\left(t, v ; k, \omega, k^{\prime}\right) d t\right) \chi_{1}\left(k^{1 / 2-\varepsilon} r\right) e^{i k\langle x, \omega\rangle} d x\right| \\
& \quad \leqslant C\left(\hat{\rho}\left(k^{\prime} \mid q^{-l}\right)+q^{-l} C\left|\zeta\left(k^{\prime} \mid q^{-l}\right)\right|\right)\left|k^{\prime}-k\right|^{-3} k^{1 / 2-\varepsilon}
\end{aligned}
$$

by using (6.10) and the fact $b^{\prime}=0$ on Γ_{1}, where ζ is a rapidly decreasing function. Thus we have

$$
\begin{aligned}
& \left|\int_{\Omega} d x \int_{\left|\omega^{\prime}\right|>1 / 2} d \omega \int_{0}^{\infty} k^{2} d k \int_{\left|k^{\prime}\right|>2 k} d k^{\prime}\left(\int \rho_{q}(t) b d t\right) \chi_{1}\left(k^{1 / 2-\varepsilon} r\right) e^{i k\langle x, \omega\rangle}\right| \\
& \quad \leqslant C \iint_{\left|k^{\prime}\right|>2 k} k^{\prime-3} k^{2+1 / 2+\varepsilon}\left(\hat{\rho}\left(k^{\prime} \mid q^{-l}\right)+q^{-l} \zeta\left(k^{\prime} \mid q^{-l}\right)\right) d k^{\prime} d k \\
& \quad \leqslant C q^{l(1 / 2-\varepsilon)} .
\end{aligned}
$$

Combining this estimate and (6.9) we have

Lemma 6.3. It holds that

$$
\begin{aligned}
& \left|\int_{\Omega} d x \int k^{2} d k \int_{\left|\omega^{\prime}\right|>1 / 2} d \omega \int^{\vdots} d k^{\prime}\left(\int_{q}(t) b d t\right) x_{1}\left(k^{1 / 2-\varepsilon} r\right) e^{i k\langle x, \omega\rangle}\right| \\
& \quad \leqslant C_{l}\left(q^{\prime}\right)^{1 / 2-\varepsilon} .
\end{aligned}
$$

Next we consider the case of $\left|\omega^{\prime}\right| \leqslant 1 / 2$. In this case in addition to (6.6) another estimate

$$
\begin{equation*}
\left|\partial_{s, t}^{\infty} h^{+}(t, s ; k)\right| \leqslant C_{a} \quad \text { for }(t, s) \in\left[0, t_{0} k^{-(1 / 2-\varepsilon)}\right] \times S_{1}\left(\delta_{3}\right) \tag{6.11}
\end{equation*}
$$

holds if we choose $t_{0}>0$ small. Let us set

$$
\begin{aligned}
m^{ \pm} & =Y(t) \chi_{1}\left(T k^{1 / 2-\varepsilon} t\right)^{2} m^{ \pm}+Y(t) \chi_{2}\left(T k^{1 / 2-\varepsilon} t\right)^{2} m^{ \pm} \\
& =m_{1}^{ \pm}+m_{2}^{ \pm} .
\end{aligned}
$$

Denote by $b_{p}^{ \pm}, p=1,2$, the solution of (6.7) replaced $m^{ \pm}$by $m_{p}^{ \pm}$. Concerning $b_{2}^{ \pm}$we can apply the method in $\S 3 \sim 5$ for construction of asymptotic solution and acheive the parallel argument.

Lemma 6.4. We have an estimate

$$
\begin{aligned}
& \left|\int_{\Omega} d x \int_{\left|\omega^{\prime}\right|<1 / 2} d \omega \int k^{2} d k\left(\int_{q}(t) b_{2}^{ \pm} d t\right) \chi_{1}\left(k^{1 / 2-\varepsilon} r\right) e^{i k\langle x, \omega\rangle}\right| \\
& \quad \leqslant C_{l} q^{(1 / 2-\varepsilon) l} .
\end{aligned}
$$

Note that $m_{\mathrm{I}}^{ \pm}$is of the form

$$
\begin{gather*}
m_{1}^{ \pm}=e^{i k(\langle s, \omega\rangle \mp t)} h_{1}^{ \pm}(t, s ; k, \omega), \\
\left|\partial_{t}^{a} \partial_{s}^{\beta} h_{1}(t, s ; k, \omega)\right| \leqslant C_{\alpha, \beta} k^{(1 / 2-\varepsilon) \omega} \quad \text { for } t>0 . \tag{6.12}
\end{gather*}
$$

We consider only for m_{1}^{+}, and hereafter we omit the suffix + and 1 for brevity. In a same way as (6.8) we have

$$
m(t, s ; k, \omega)=\int w(t) e^{-i k^{\prime} t} e^{i k\langle s, \omega\rangle} \hat{h}\left(k^{\prime}-k, s ; k, \omega\right) d k^{\prime}
$$

where

$$
\begin{equation*}
\hat{h}\left(k^{\prime}-k, s ; k, \omega\right)=\int e^{-i\left(k^{\prime} t^{\prime}-k t^{\prime}\right)} h\left(t^{\prime}, s ; k, \omega\right) d t^{\prime} \tag{6.13}
\end{equation*}
$$

Denote by $b\left(t, x ; k, \omega, k^{\prime}\right)$ the solution of (6.7) replaced $m^{ \pm}$by $w(t) e^{i k^{\prime} t} e^{i k\langle s, \omega\rangle}$ $\hat{h}\left(k^{\prime}-k, s ; k, \omega\right)$. Then

$$
\begin{equation*}
b_{1}^{+}(t, x ; k, \omega)=\int b\left(t, x ; k, \omega, k^{\prime}\right) d k^{\prime} . \tag{6.14}
\end{equation*}
$$

Taking account of (6.12) we have for all k^{\prime}

$$
\begin{equation*}
\left|\partial_{s}^{\omega} \hat{h}\left(k^{\prime}-k, s ; k, \omega\right)\right| \leqslant C_{a} k^{-(1 / 2-\varepsilon)}, \tag{6.15}
\end{equation*}
$$

and for $k^{\prime} \neq k$ we have by integration by parts in (6.13)

$$
\begin{equation*}
\left|\partial_{s}^{\alpha} \hat{h}\left(k^{\prime}-k, s ; k, \omega\right)\right| \leqslant C_{a}\left|k^{\prime}-k\right|^{-1} . \tag{6.16}
\end{equation*}
$$

For small γ let $\varphi_{1}(x ; \omega, \gamma)$ be a function verifying

$$
\begin{cases}\varphi_{1}=(1+\gamma)\langle s, \omega\rangle & \text { on } \Gamma_{1} \\ \frac{\partial \varphi_{1}}{\partial n}>0 & \text { on } \Gamma_{1} \\ \left|\nabla \varphi_{1}\right|=1 & \end{cases}
$$

Then for φ_{1} we can define a sequence of phase functions $\varphi_{j}(x ; \omega, \gamma), j=2,3, \cdots$ following the process in §3. Set

$$
\Phi_{2 q}(x ; \omega, \gamma)=\varphi_{2 q}(x ; \omega, \gamma)-\langle x, \omega\rangle .
$$

As a modification of considerations in $\S 4$ we have
Lemma 6.5. Let γ_{0} and r_{0} be small positive constants. Then there exists $\omega(x, \gamma)$ satisfying

$$
\nabla_{\omega^{\prime}} \Phi_{2 q}(x ; \omega(x, \gamma), \gamma)=0 \quad \text { for }\left|x-a_{1}\right| \leqslant r_{0}
$$

and this critical point is non-degenerate. If we set

$$
\psi_{q}(x, \gamma)=\Phi_{2 q}(x ; \omega(x, \gamma), \gamma)
$$

the critical point with respect to x^{\prime} is only $x^{\prime}=0$ and concerning the Newtonian polyhedra of ψ_{q} we have the same assertions as in $\S 4$ for all $|\gamma| \leqslant \gamma_{0}$.

For $k^{\prime} \in\left[\left(1-\gamma_{0}\right) k,\left(1+\gamma_{0}\right) k\right]$, with the aid of the above lemma we estimate an oscillatory integral following the process of §5. Applying Varčenko's theorem we have

$$
\begin{align*}
& J\left(t, r ; k, k^{\prime}\right)=\int d s \int_{\left|\omega^{\prime}\right|<1 / 2} d \omega b\left(t, x ; k, \omega, k^{\prime}\right) e^{i k\langle x, \omega\rangle} \chi_{1}\left(k^{1 / 2-\varepsilon} r\right) \tag{6.17}\\
= & \chi_{1}\left(k^{1 / 2-\varepsilon} r\right) e^{i k^{\prime}(t-(2 d q+\gamma r))}\left\{c_{0}\left(r ; k, k^{\prime}\right) k^{\prime-1-2 / e_{0}}+O\left(k^{\prime-1-5 / 3 e_{0}}\right)\right\}
\end{align*}
$$

where

$$
\left|c_{0}\left(r ; k, k^{\prime}\right)\right| \leqslant C k^{-1 / 2+\varepsilon}
$$

holds because of (6.15). Then

$$
\begin{align*}
& \left|\int d r \int k^{2} d k \int_{\rho}(t) d t \int_{\left|k^{\prime}-k\right|<k^{1 / 2+\varepsilon}} J\left(t, r ; k, k^{\prime}\right) d k^{\prime}\right| \tag{6.18}\\
\leqslant & C \iint_{\left|k^{\prime}-k\right|<k^{1 / 2+\varepsilon}}\left(k^{\prime} \mid q^{-l}\right) k^{\prime-1-2 / e} k^{2} k^{-(1 / 2-\varepsilon)} k^{-(1 / 2-\varepsilon)} d k d k^{\prime} \\
\leqslant & C_{l} q^{\left(1 / 2-2 / e_{0}+\varepsilon\right) l} .
\end{align*}
$$

For $k^{\prime} \in\left[k+k^{1 / 2+\varepsilon},\left(1+\gamma_{0}\right) k\right]$ use (6.16) and make an integration by parts with respect to r in the left hand side of (6.18). Then since $c_{0}\left(0 ; k, k^{\prime}\right)=0$ we have

$$
\begin{align*}
& \left|\int k^{2} d k \int_{q}(t) d t \int_{0}^{r_{0}} d r \int_{k+k^{1 / 2+\varepsilon}}^{\left(1+\gamma_{0}\right) k} J\left(t, r ; k, k^{\prime}\right) d k^{\prime}\right| \tag{6.19}\\
\leqslant & C \int d k \int_{k+k^{1 / 2+\varepsilon}}^{\left(1+\gamma_{0}\right) k} \rho\left(\frac{k^{\prime}}{q^{l}}\right) \frac{1}{\left|k^{\prime}-k\right|^{3}} k^{\prime-1-2 / /_{0} k^{1 / 2-\varepsilon} k^{2} d k^{\prime}} \\
\leqslant & C_{l} q^{\left(1 / 2+\varepsilon-2 / e_{0}\right) l} .
\end{align*}
$$

We have the same estimate for $k^{\prime} \in\left[\left(1-\gamma_{0}\right) k, k-k^{1 / 2+\varepsilon}\right]$. Thus it remains us to consider for $\left|\omega^{\prime}\right|<1 / 2$ and $\left|k^{\prime}-k\right| \geqslant \gamma_{0} k$. For $k^{\prime} \geqslant\left(1+\gamma_{0}\right) k$ set

$$
\tilde{J}\left(k, k^{\prime}\right)=\int d t \int d r \rho_{q}(t) J\left(t, r ; k, k^{\prime}\right)
$$

and we have from (6.16)

$$
\widetilde{J}\left(k, k^{\prime}\right) \leqslant \zeta\left(k^{\prime} \mid q^{\prime}\right)\left|k^{\prime}-k\right|^{-3} k^{1 / 2-\varepsilon}
$$

where $\zeta \in \mathcal{S}(\boldsymbol{R})$. Thus

$$
\begin{equation*}
\left|\int k^{2} d k \int_{\left(1+\gamma_{0}\right) k}^{\infty} \tilde{J}\left(k, k^{\prime}\right) d k^{\prime}\right| \leqslant C_{l} q^{(1 / 2-\mathrm{e}) l} . \tag{6.20}
\end{equation*}
$$

Suppose $\left|k^{\prime}\right| \leqslant\left(1-\gamma_{0}\right) k$. When $\left|k \omega^{\prime}\right| \leqslant k^{\imath},\left|k^{\prime}\right| \leqslant k^{\varepsilon}$ we have immediately

$$
\left|\partial_{t, x}^{\alpha} b\left(x, t ; k, \omega, k^{\prime}\right)\right| \leqslant C_{\alpha} k^{(|\alpha|+2) \varepsilon}
$$

from the energy estimate of solution of (6.7). Thus we have

$$
\left|\int J\left(t, r ; k, k^{\prime}\right) d r\right| \leqslant C k^{-3+3 z}
$$

from which it follows that

$$
\left|\int k^{2} d k \int_{\left|\omega^{\prime}\right|<k^{-1+\varepsilon}} d \omega \int_{\left|k^{\prime}\right|<k^{\mathrm{e}}} d k^{\prime} \int d t \rho_{q}(t) J\left(t, r ; k, k^{\prime}\right)\right| \leqslant C
$$

for all q. Let us suppose $\left|k \omega^{\prime}\right| \geqslant k^{2},\left|k^{\prime}\right| \geqslant k^{2}$. If $\left|k \omega^{\prime}\right| /\left|k^{\prime}\right| \geqslant 4 \delta_{3} / d$ an application of Lemma 6.1 gives

$$
\left|J\left(t, r ; k, k^{\prime}\right)\right| \leqslant C_{N} k^{-\varepsilon_{N}}
$$

Thus

$$
\begin{equation*}
\left|\int k^{2} d k \int_{\left(1-\gamma_{0}\right) k>\left|k^{\prime}\right|>k^{8}} d k^{\prime} \int_{\left|k \omega^{\prime}\right|| | k^{\prime} \mid>d_{0}} d \omega \int d r \int \rho_{q}(t) J\left(t, r ; k, k^{\prime}\right) d t\right| \leqslant C . \tag{6.21}
\end{equation*}
$$

Let $\left|k \omega^{\prime}\right| /\left|k^{\prime}\right| \leqslant d_{0}=4 \delta_{3} / d,\left(1-\gamma_{0}\right) k \geqslant\left|k^{\prime}\right| \geqslant k^{2}$. Then we have

$$
\left|J\left(t, r ; k, k^{\prime}\right)\right| \leqslant C k^{-3} k^{1 / 2-\varepsilon}
$$

Therefore

$$
\begin{align*}
& \left|\int k^{2} d k \int_{k^{\varepsilon}}^{\left(1-\gamma_{0}\right) k} d k^{\prime} \int_{\left|k^{\prime}\right| \mid\left(k^{\prime} \mid<d_{0}\right.} d \omega \int d t d r \rho_{q}(t) J\left(t, r ; k, k^{\prime}\right)\right| \tag{6.22}\\
\leqslant & C \int k^{2} d k \int_{k^{\varepsilon}}^{\left(1-\gamma_{0}\right) k} d k^{\prime} \zeta\left(\frac{k^{\prime}}{q^{l}}\right) k^{-3} k^{1 / 2-\varepsilon}\left(\frac{k^{\prime}}{k}\right)^{2} \\
\leqslant & C \int_{-\infty}^{\infty} \zeta\left(k^{\prime} q^{-l}\right) k^{\prime 2}\left(\int_{\left(1-\gamma_{0}\right) k^{\prime}}^{\infty} k^{-5 / 2-\varepsilon} d k\right) d k^{\prime} \\
\leqslant & C \int_{-\infty}^{\infty} \zeta\left(k^{\prime} q^{-l}\right) k^{2-3 / 2-\varepsilon} d k^{\prime} \leqslant C q^{(1 / 2-\varepsilon) l} .
\end{align*}
$$

Then the estimates (6.18) $\sim(6.22)$ imply the following

Lemma 6.6. We have

$$
\left|\int_{\Omega} d x \int_{|\omega|<1 / 2} d \omega \int k^{2} d k\left(\int \rho_{q}(t) b_{1}^{+} d t\right) \chi_{1}\left(k^{1 / 2-\varepsilon} r\right) e^{i k\langle x, \omega\rangle}\right| \leqslant C_{l} q^{(1 / 2-\varepsilon) l}
$$

From Lemmas 6.2~6.6 we have
Proposition 6.7. Let $\psi(x)$ be a C^{∞} function with support in a small neighborhood of a_{1}. Then an estimate

$$
\left|\int_{\Omega}\left(\int \rho_{q}(t) E(t, x, x) d t\right) \psi(x) d x-c_{0} q^{\left(1-2 / \rho_{0}\right)(l-1)} \int_{0}^{d} \psi\left(0, x_{3}\right) d x_{3}\right| \leqslant C_{l} q^{\left(1-5 / 2 e_{0}\right) l}
$$

holds.

References

[1] C. Bardos, J.C. Guillot and J. Ralston: La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm. Partial Differential Equations 7 (1982), 905-958.
[2] M. Ikawa: Decay of solutions of the wave equation in the exterior of two convex obstacles, Osaka J. Math. 19 (1982), 459-509.
[3] —: Mixed problems for the wave equation, Proc. NATO Advanced Study Institute, Singularities in boundary value problems, Reidel Publ., (1981), 97119.
[4] -: On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ. 23 (1983), 127-194.
[5] -: On the poles of the scattering matrix for two strictly convex obstacles, Addendum, J. Math. Kyoto Univ. 23 (1983), 795-802.
[6] -: On the distribution of the poles of the scattering matrix for two strictly convex obstacles, Hokkaido Math. J. 12 (1983), 343-359.
[7] A. Kaneko: Newton polyhedora, singularities, oscillatory integrals, (in Japanese), Lecture note of Sofia Univ., No. 11, 1981.
[8] H. Kumano-go: Pseudo differential operators, MIT Press, 1983.
[9] P.D. Lax and R.S. Phillips: Scattering theory, Academis Press, New York, 1967.
[10] P.D. Lax and R.S. Phillips: A logarithmic bound on the location of the poles of the scattering matrix, Arch. Rational Mech. Anal. 40 (1971), 268-280.
[11] R.B. Melrose: Singularities and energy decay in acoustical scattering, Duke Math. J. 46 (1979), 43-59.
[12] -: Polynomial bound on the number of scattering poles, J. Func. Anal. 53 (1983), 287-303.
[13] R.B. Melrose and J. Sjöstrand: Singularities of boundary value problems. I, Comm. Pure Appl. Math. 31 (1978), 593-617.
[14] C.S. Morewetz, J. Ralston and W.A. Strauss; Decay of solutions of the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math. 30 (1977), 447508.
[15] V.M. Petkov: La distribution des poles de la matrice de diffusion, Séminaire Goulaouic-Meyer-Schwartz, 1982-1983, Exposé N° VII.
[16] J. Ralston: Trapped rays in spherical symmetric media and poles of the scattering matrix, Comm. Pure Appl. Math. 24 (1971), 571-582.
[17] -: The first variation of the scattering matrix; An addendum, J. Differential Equations 28 (1978), 155-162.
[18] -: Propagation of singularities and the scattering matrix, Proc. NATO Advanced Study Institute, Singularities in boundary value problems, Reidel Publ., (1981), 161-181.
[19] A.N. Varcenko: Newton polyhedra and estimation of oscillating integrals, Funct. Anal. Appl. 10 (1976), 175-196.

Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka 560, Japan

[^0]: ${ }^{1)}$ Ralston [16] gives examples of the scattering by the inhomogeneity of medium such that the scattering matrix has a sequence of poles converging to the real axis.

[^1]: 1) Melrose [12] shows that (2.1) holds for all $\rho \in C_{0}^{\infty}\left(\boldsymbol{R}^{+}\right)$.
