Watanabe, A. Osaka J. Math. 22 (1985), 393-400

ON GENERALIZED DECOMPOSITION NUMBERS AND FONG'S REDUCTIONS

Dedicated to Professor Hirosi Nagao on his 60th birthday

ATUMI WATANABE

(Received August 7, 1984)

Introduction

In this paper we investigate how generalized decomposition numbers behave under Fong's reductions.

Let G be a finite group and p be a fixed prime number. If π is a p-element of G and B is a p-block of G, then for an ordinary irreducible character χ in B and for each p-regular element ρ of the centralizer $C_G(\pi)$ of π , we have

$$\chi(\pi
ho) = \sum_{\phi} d(\chi, \, \pi, \, \phi) \phi(
ho) \, .$$

Here ϕ ranges over the irreducible Brauer characters in the *p*-blocks of $C_G(\pi)$ associated with *B*. We have the following theorem related to the Fong's first reduction.

Theorem 1. Let H be a subgroup of G, and let B and \tilde{B} be p-blocks of G and H, respectively. We assume that $\tilde{X} \rightarrow \tilde{X}^G$ is a 1–1 correspondence between the ordinary irreducible characters in \tilde{B} and those in B, where \tilde{X}^G is the character of G induced from \tilde{X} . Then the following holds.

(i) B and \tilde{B} have a common defect group D.

(ii) Let \tilde{b} be a root of \tilde{B} in $C_{H}(D)D$. Then $\tilde{b}^{C}{}_{G}{}^{(D)D}$ is defined in the sense of Brauer [2]. We put $b = \tilde{b}^{C}{}_{G}{}^{(D)D}$. Then b is a root of B in $C_{G}(D)D$ and $T(b) = T(\tilde{b})C_{G}(D)$ where T(b) is the inertial group of b in $N_{G}(D)$ and $T(\tilde{b})$ is the inertial group of b in $N_{H}(D)$. In particular $T(b)/C_{G}(D)D \cong T(\tilde{b})/C_{H}(D)D$.

(iii) Let $\{(\pi_i, \tilde{b}_i), i=1, 2, ..., n\}$ be a set of representatives for the conjugacy classes of subsections associated with \tilde{B} . Then $\tilde{b}_i^{c} \sigma^{(\pi_i)}$ is defined and $\tilde{\phi} \rightarrow \tilde{\phi}^{c} \sigma^{(\pi_i)}$ is a 1-1 correspondence between the irreducible Brauer characters in \tilde{b}_i and those in $\tilde{b}_i^{c} \sigma^{(\pi_i)}$. Furthermore $\{(\pi_i, \tilde{b}_i^{c} \sigma^{(\pi_i)}), i=1, 2, ..., n\}$ is a set of representatives for the conjugacy classes of subsections associated with B.

(iv) Let \tilde{X} be an ordinary irreducible character in \tilde{B} and $\tilde{\phi}$ be an irreducible Brauer character in \tilde{b}_i . Then

$$d(\widetilde{\chi}^{_{G}}, \pi_{i}, \widetilde{\phi}^{_{C_{G}}(\pi_{i})}) = d(\widetilde{\chi}, \pi_{i}, \widetilde{\phi})$$

Let ζ be an irreducible character of a normal p'-subgroup N of G and suppose that ζ is extendible to a character $\hat{\zeta}$ of G. Let \overline{B} be a p-block of the factor group \overline{G} of G by N and $\overline{\chi}_0$ be an ordinary irreducible character in \overline{B} . $\overline{\chi}_0$ can be viewed as a character of G. We denote by $\hat{\zeta}\overline{B}$ the p-blosk of G which contains $\hat{\zeta}\overline{\chi}_0$. The ordinary irreducible characters in $\hat{\zeta}\overline{B}$ are $\hat{\zeta}\overline{\chi}$'s, where $\overline{\chi}$ runs over the ordinary irreducible characters in \overline{B} and the irreducible Brauer characters in $\hat{\zeta}\overline{B}$ are $\hat{\zeta}\overline{\phi}$'s, where $\overline{\phi}$ runs over the irreducible Brauer characters in \overline{B} . If \overline{B}_1 and \overline{B}_2 are different p-blocks of \overline{G} , then $\hat{\zeta}\overline{B}_1 \pm \hat{\zeta}\overline{B}_2$. For an element x of G, we put $\overline{x} = xN$ ($\in \overline{G}$) and for a subgroup Q of G, we put $\overline{Q} = QN/N$. If Q is a psubgroup, then $C_{\overline{c}}(\overline{Q}) = \overline{C_G(Q)}$ and $N_{\overline{c}}(\overline{Q}) = \overline{N_G(Q)}$. We have the following theorem related to the Fong's second reduction.

Theorem 2. Let ζ be an irreducible character of a normal p'-subgroup N of G and $\hat{\zeta}$ be an extension of ζ to G such that (o (det $\hat{\zeta}$), p)=1. If B is a p-block of G and $B = \hat{\zeta}\overline{B}$ for some p-block \overline{B} of the factor group \overline{G} , then the following holds.

(i) If D is a defect group of B, then \overline{D} is a defect group of \overline{B} .

(ii) Let \bar{b} be a root of \bar{B} in $C_{\bar{c}}(\bar{D})\bar{D}$ and let b e be a p-block of $C_{\bar{c}}(D)D$ such that $b^{NC_{\bar{G}}(D)D} = \hat{\zeta}\bar{b}$. Then b is a root of B in $C_{\bar{c}}(D)D$ and $T(\bar{b}) = \overline{T(b)}$. In particular $T(\bar{b})/C_{\bar{c}}(\bar{D})\bar{D} \simeq T(b)/C_{\bar{c}}(D)D$.

(iii) Let π be a p-element of G and $\bar{b}_1, \bar{b}_2, \dots, \bar{b}_s$ be the p-blocks of $C_{\bar{G}}(\bar{\pi})$ associated with \bar{B} . If b_i is a p-block of $C_G(\pi)$ such that $b_i^{NC} e^{(\pi)} = \hat{\zeta} \bar{b}_i$, then b_1, b_2, \dots, b_s are the p-blocks of $C_G(\pi)$ associated with B. Furthermore $b_i = \theta_{\pi} \bar{b}_i$ ($i=1, 2, \dots, s$) when \bar{b}_i is viewed as a p-block of $C_G(\pi)/C_N(\pi)$, where θ_{π} is an ordinary irreducible character of $C_G(\pi)$ such that $\theta_{\pi|C_N(\pi)}$ is irreducible.

(iv) For each ordinary irreducible character \bar{X} in \bar{B} , for the above p-element π and for each irreducible Brauer character $\bar{\phi}$ in \bar{b}_i , there exists a sign $\varepsilon_{\pi} = \pm 1$ such that

$$d(\widehat{\zeta}ar{\chi},\,\pi,\, heta_{\pi}ar{\phi})=arepsilon_{\pi}d(ar{\chi},\,ar{\pi},\,ar{\phi})\,.$$

We remark that (ii) and (iii) in the above theorems are stated by Puig [8, Theorems 1 and 2] without proofs.

Let K be the algebraic closure of the p-adic number field Q_p and R be the ring of local integers in K. Let P denote the maximal ideal of R and F denote the residue class field R/P. For a p-block B of G, we denote the block idempotent of FG corresponding to B by E_B and for an ordinary irreducible character χ of G, we denote the centrally primitive idempotent of KG corresponding to χ by e_{χ} . The number of ordinary irreducible characters in B and the number of irreducible Brauer characters in B are denoted by k(B) and l(B), respectively.

394

1. Proof of Theorem 1

Lemma 1. Let H be a subgroup of G and x_1, x_2, \dots, x_h be a set of representatives for the right cosets of H in G. For a p-block \tilde{B} of H, we assume that

 $E_{\tilde{B}}x^{-1}E_{\tilde{B}}x=0$ for all $x\in G-H$.

Then $\sum_{i=1}^{h} x_i^{-1} E_{\tilde{B}} x_i$ is a block idempotent of FG. If we put $\sum_{i=1}^{h} x_i^{-1} E_{\tilde{B}} x_i = E_B$, where B is a p-block of G, then $\tilde{\phi} \to \tilde{\phi}^G$ is a 1-1 correspondence between the irreducible Brauer characters in \tilde{B} and those in B.

REMARK. By Iizuka, Ohmori and Watanabe [6, Theorem 2], the following (i) and (ii) are equivalent.

(i) $\tilde{\phi} \rightarrow \tilde{\phi}^{G}$ is a 1–1 correspondence between the irreducible Brauer characters in \tilde{B} and those in B.

(ii) $\tilde{\chi} \rightarrow \tilde{\chi}^c$ is a 1-1 correspondence between the ordinary irreducible characters in \tilde{B} and those in B.

Proof. We put $E = \sum_{i=1}^{h} E_{\vec{B}}^{x_i}$, where $E_{\vec{B}}^{x_i} = x_i^{-1} E_{\vec{B}} x_i$. Then *E* is a central idempotent of *FG*. By the assumption we can show $\mathfrak{D} \to \mathfrak{D}^G$ defines a 1-1 correspondence between the isomorphism classes of (right) *FH*-modules \mathfrak{D} with $\mathfrak{D} E_{\vec{B}} = \mathfrak{D}$ and the isomorphism classes of *FG*-modules \mathfrak{M} with $\mathfrak{M} E = \mathfrak{M}$, where \mathfrak{L}^G is the induced *FG*-module. Furthermore if \mathfrak{D} is an irreducible or a principal indecomposable *FH*-module, then \mathfrak{D}^G is an irreducible or a principal indecomposable *FG*-module. Hence by the indecomposability of Cartan matrices, *E* is a block idempotent. This completes the proof.

Proof of Theorem 1. (i) is well known. It is also well known that if $E_{\tilde{B}}'$ is the block idempotent of RH which corresponds to \tilde{B} , then $E_{\tilde{B}}' = \sum_{\tilde{\chi}} e_{\tilde{\chi}}, \tilde{\chi}$ ranges over the ordinary irreducible characters in \tilde{B} . Let x_1, x_2, \dots, x_h be a set of representatives for the cosets of H in G, where $x_1=1$. We can show that $e_{\tilde{\chi}^G} = \sum_{i=1}^{h} e_{\tilde{\chi}}^{x_i}$, so we have $E_B = \sum_{i=1}^{h} E_{\tilde{B}}^{x_i}$. By the assumption, $E_{\tilde{B}}FGE_B = E_{\tilde{B}}FG$ and hence $E_{\tilde{B}}E_B = E_{\tilde{B}}$ and

(1)
$$E_{\widetilde{B}}\sum_{i=2}^{h}E_{\widetilde{B}}x_{i}=0.$$

By the proof of Watanabe [10, Theorem 2] and the fact $\dim_F(E_BFG) = |G:H|^2 \dim_F(E_{\tilde{B}}FH)$, we have

(2)
$$E_{B}FG = \sum_{i,j=1}^{h} \bigoplus x_{i}^{-1}E_{\widetilde{B}}FHx_{j}.$$

From (2), we obtain $E_{\tilde{B}}E_{\tilde{B}}^{x}=0$ for all $x \in G-H$.

Let Q be a p-subgroup of H, \tilde{b} be a p-block of $C_H(Q)Q$ with $\tilde{b}^H = \tilde{B}$ and Br_Q be the Brauer morphism from $(FG)^Q$ onto $FC_G(Q)$, where $(FG)^Q = \{a \in FG \mid ya = ay \text{ for all } y \in Q\}$ (see Alperin and Broué [1]). Then we have

$$\mathrm{Br}_{Q}(E_{\widetilde{B}}) \mathrm{Br}_{Q}(E_{\widetilde{B}})^{x} = 0 \qquad (x \in C_{G}(Q)Q - C_{H}(Q)Q),$$

 $\mathrm{Br}_{Q}(E_{\widetilde{B}})E_{\widetilde{b}} = E_{\widetilde{b}}.$

So $E_{\tilde{b}} E_{\tilde{b}}^{x} = 0$ for all $x \in C_{G}(Q)Q - C_{H}(Q)Q$. By Reynolds [9, Theorem 2] and Lemma 1, $\tilde{b}^{C_{G}(Q)Q}$ is defined and $\tilde{\phi} \rightarrow \tilde{\phi}^{C_{G}(Q)Q}$ is a 1-1 correspondence between the irreducible Brauer characters in \tilde{b} and those in $\tilde{b}^{C_{G}(Q)Q}$.

Let z_1, z_2, \dots, z_r be a set of respresentatives for the cosets of $T(\tilde{b})$ in $N_H(D)$, where $z_1=1$. Then

(3)
$$\operatorname{Br}_{D}(E_{\widetilde{B}}) = \sum_{j=1}^{s} E_{\widetilde{b}}^{z_{j}}, \quad E_{\widetilde{b}} E_{\widetilde{b}}^{z_{j}} = 0$$

for $j \ge 2$. We assume that $C_G(D)D = \bigcup_{i=1}^{t} C_H(D)Dx_i$ and $N_G(D) = \bigcup_{i=1}^{t} N_H(D)x_i$. So $N_G(D) = \bigcup_{i=1}^{t} \bigcup_{j=1}^{t} T(\tilde{b})z_j x_i$. For $(i, j) \ne (1, 1)$ we have

(4)
$$E_{\tilde{b}}E_{\tilde{b}}^{z_{j}z_{i}} = E_{\tilde{b}}\operatorname{Br}_{D}(E_{\tilde{B}})\operatorname{Br}_{D}(E_{\tilde{B}})^{z_{i}}E_{\tilde{b}}^{z_{j}z_{i}} = 0$$

from (3). By the above argument $\tilde{b}^{c_{\mathcal{G}}(D)D}$ is defined. We put $b = \tilde{b}^{c_{\mathcal{G}}(D)D}$. Then $b^{c} = \tilde{b}^{c} = B$. Hence b is a root of B in $C_{\mathcal{G}}(D)D$ and $E_{b} = \sum_{i=1}^{t} E_{\tilde{b}}^{x_{i}}$. If $y \in T(b)$, then

$$E_b = E_b E_b^y = \sum_{i,j=1}^t E_{\widetilde{b}}^{x_i} E_{\widetilde{b}}^{x_j y}.$$

From (4), there exist *i* and *j*, $1 \leq i$, $j \leq t$, such that $x_j y x_i^{-1} \in T(\tilde{b})$, hence $y \in T(\tilde{b})C_G(D)$. Conversely if $w \in T(\tilde{b})$, then

$$E_{b}^{w} = \sum_{i=1}^{t} E_{\tilde{b}}^{x_{i}w} = \sum_{i=1}^{t} E_{\tilde{b}}^{w^{-1}x_{i}w} = E_{b}.$$

Therefore $T(b) = T(\tilde{b})C_{c}(D)$. This completes the proof of (ii).

Next we prove (iii) and (iv). $\tilde{b}_i^{C_G(\pi_i)}$ is defined and $\tilde{\phi} \rightarrow \tilde{\phi}^{C_G(\pi_i)}$ is a 1-1 correspondence between the irreducible Brauer characters in \tilde{b}_i and those in $\tilde{b}_i^{C_G(\pi_i)}$. Let π be a *p*-element of *G*. We assume that exactly *m* elements $\pi_1, \pi_2, \dots, \pi_m$ are conjugate to π in *G*. We put $\pi_i^a = \pi$ ($a_i \in G, i = 1, 2, \dots, m$). Since $\tilde{\chi} = \sum_{i=1}^n \tilde{\chi}^{(\pi_i, \tilde{b}_i)}, \ \tilde{\chi}^G = \sum_{i=1}^n (\tilde{\chi}^{(\pi_i, \tilde{b}_i)})^G$. Here $\tilde{\chi}^{(\pi_i, \tilde{b}_i)}(\pi_i \rho) = \sum_{\tilde{\phi}} d(\tilde{\chi}, \pi_i, \tilde{\phi}) \tilde{\phi}(\rho)$ for all *p*-regular elements ρ of $C_H(\pi_i)$ with $\tilde{\phi}$ ranging over the irreducible Brauer characters in \tilde{b}_i (see Brauer [2, §1]). So we can show

396

$$egin{aligned} \widetilde{\chi}^{\mathcal{G}}(\pi
ho) &= \sum\limits_{i=1}^{m}\sum\limits_{\widetilde{\phi}} \, d(\widetilde{\chi},\,\pi_{i},\,\widetilde{\phi})\widetilde{\phi}^{\mathcal{C}_{\mathcal{G}}(\pi_{i})}(
ho^{a_{i}^{-1}}) \ &= \sum\limits_{i=1}^{m}\sum\limits_{\widetilde{\phi}} \, d(\widetilde{\chi},\,\pi_{i},\,\widetilde{\phi})(\widetilde{\phi}^{\mathcal{C}_{\mathcal{G}}(\pi_{i})})^{a_{i}}(
ho) \end{aligned}$$

for all *p*-regular elements ρ of $C_G(\pi)$. Hence a subsection associated with B is conjugate to some subsection $(\pi_i, \tilde{b}_i^{C_G(\pi_i)})$ $(i=1, 2, \dots, n)$. In particular $k(B) \leq \sum_{i=1}^n l(\tilde{b}_i)$. On the other hand, $k(B) = k(\tilde{B}) = \sum_{i=1}^n l(\tilde{b}_i)$. Therefore, if $i \neq j$, then $(\pi_i, \tilde{b}_i^{C_G(\pi_i)})$ and $(\pi_j, \tilde{b}_j^{C_G(\pi_j)})$ are not conjugate and $d(\tilde{X}^C, \pi_i, \tilde{\phi}^{C_G(\pi_i)}) = d(\tilde{X}, \pi_i, \tilde{\phi})$. This completes the proof of Theorem 1.

2. Proof of Theorem 2

We denote the set of *p*-regular elements of G by $G_{p'}$.

If χ is a character of G and T is a matrix representation of G affording χ , then $x \rightarrow \det T(x)$ is a linear character of G. The linear character is denoted by det χ and $o(\det \chi)$ means the order. The following lemma is a special case of Glauberman's theorem [5, Theorem 3].

Lemma 2. Let π be a p-element of G and N be a p'-subgroup of G such that $N^{\pi} = N$. Suppose that ζ is an irreducible character of N and $\hat{\zeta}$ is an extension of ζ to $N \langle \pi \rangle$ with $(o(\det \hat{\zeta}), p) = 1$. Then there exist a unique sign $\mathcal{E} = \pm 1$ and a unique irreducible character β of $C_N(\pi)$ with the property that

$$\hat{\zeta}(\pi
ho)=arepsiloneta(
ho)\,,\qquad
ho\!\in\!C_{\scriptscriptstyle N}(\pi)\,.$$

Lemma 3. Let ζ be an irreducible character of a normal p'-subgroup N of G and $\hat{\zeta}$ be an extension of ζ to G such that $(o(\det \hat{\zeta}), p)=1$. For a p-element π of G, there exist a sign $\varepsilon_{\pi}=\pm 1$ and an irreducible character θ_{π} of $C_{G}(\pi)$ with the property that $\theta_{\pi|C_{\pi}(\pi)}$ is irreducible and

$$\hat{\zeta}(\pi
ho) = \mathcal{E}_{\pi} heta_{\pi}(
ho) \qquad
ho \in (C_{G}(\pi))_{p'} \,.$$

In particular θ_{π} is irreducible as a Brauer character.

Proof. We fix a *p*-element π . By Lemma 2, there exist a unique sign $\mathcal{E}=\pm 1$ and a unique irreducible character β of $C_N(\pi)$ with the property that $\hat{\zeta}(\pi\rho)=\mathcal{E}\beta(\rho)$ for all $\rho\in C_N(\pi)$. First of all we show that β is etxendible to $C_G(\pi)$. Since $\hat{\zeta}(\pi\rho)=\hat{\zeta}(\pi\rho^c)$ for all $c\in C_G(\pi)$ and all $\rho\in C_N(\pi)$, β is $C_G(\pi)$ -invariant. Let L be a subgroup of $C_G(\pi)$ such that $L/C_N(\pi)$ is a *p*-group. Then by Isaacs [7, (8.16)], β is extendible to L. Let M be a subgroup of $C_G(\pi)$ such that $M/C_N(\pi)$ is a *p*'-group. Then $(NM)^{\pi}=NM$. By Lemma 2, there exist a sign $\mathcal{E}_M=\pm 1$ and an irreducible character β_M of $C_{NM}(\pi)$ with the property that

$$\hat{\zeta}(\pi
ho)=arepsilon_Meta_M(
ho)\,,\qquad
ho\!\in\!C_{\scriptscriptstyle NM}(\pi)\,.$$

Since $C_N(\pi) \subset C_{NM}(\pi) = M$, we have $\varepsilon_M = \varepsilon$ and $\beta_{M \cap C_N(\pi)} = \beta$ by the uniqueness of ε and β . Hence by [7, (11.31)], β is extendible to $C_G(\pi)$.

Let θ_0 be an extension of β . For a p'-subgroup M of $C_c(\pi)$ with $M \supset C_N(\pi)$, there exists a unique linear character λ_M of $M/C_N(\pi)$ which satisfies

$$\theta_{0|M}\lambda_M=\beta_M\,.$$

Furthermore for p'-subgroups M, M' of $C_G(\pi)$ with M, $M' \supset C_N(\pi)$, if $M \supset M'$ then $\lambda_{M'} = (\lambda_M)_{|M'}$ and if $M' = M^x$ for some $x \in C_G(\pi)$ then $\lambda_{M'} = \lambda_M^x$. Here we define a class function λ of $C_G(\pi)/C_N(\pi)$ as follows. For an element c of $C_G(\pi)/C_N(\pi)$

$$\lambda(c) = \lambda_M(c_{p'}),$$

where $c_{p'}$ is the p'-part of c and M satisfies that $M/C_N(\pi) = \langle c_{p'} \rangle$. Then λ is a generalized character of $C_G(\pi)/C_N(\pi)$ by Brauer's theorem on generalized characters. Since the inner product (λ, λ) and $\lambda(1)$ are equal to 1, λ is a linear character. If we put $\theta = \theta_0 \lambda$, then $\hat{\zeta}(\pi \rho) = \varepsilon \theta(\rho)$ for all $\rho \in (C_G(\pi))_{p'}$. This completes the proof.

Proof of Theorem 2. (i) is well known. Let Q be a *p*-subgroup of G and \overline{b} be a *p*-block of $C_{\overline{G}}(\overline{Q})\overline{Q}$ associated with \overline{B} . We show $(\widehat{\zeta}\overline{b})^c = B$. Let C be an arbitrary conjugacy class of G and $\overline{\chi}$ and $\overline{\psi}$ be ordinary irreducible characters in \overline{B} and \overline{b} , respectively. Since $\overline{b}^{\overline{G}} = \overline{B}$,

$$\overline{\mathcal{X}}(\sum_{x\in\mathcal{O}}\overline{x})/\overline{\mathcal{X}}(1) \equiv \overline{\psi}(\sum_{x\in\mathcal{O}\cap \overline{\mathcal{N}}\mathcal{O}_{\mathcal{G}}(\mathcal{Q})\mathcal{Q}}\overline{x})/\overline{\psi}(1) \pmod{P}.$$

If x_0 is an element of C, then

$$\begin{split} &(\hat{\zeta}\bar{\chi})(\sum_{x\in\sigma}\bar{x})/\hat{\zeta}(1)\bar{\chi}(1)=\hat{\zeta}(x_0)\bar{\chi}(\sum_{x\in\sigma}\bar{x})/\hat{\zeta}(1)\bar{\chi}(1),\\ &(\hat{\zeta}\bar{\psi})(\sum_{x\in\sigma\cap N^{\mathcal{O}}_{\mathcal{G}}(Q)Q}\bar{x})/\hat{\zeta}(1)\bar{\psi}(1)=\hat{\zeta}(x_0)\bar{\psi}(\sum_{x\in\sigma\cap N^{\mathcal{O}}_{\mathcal{G}}(Q)Q}\bar{x})/\hat{\zeta}(1)\bar{\psi}(1)\,. \end{split}$$

Hence $(\hat{\zeta}\bar{b})^c = \hat{\zeta}\bar{B} = B$. Since a defect group of \bar{b} is \bar{D} , D is a defect group of $\hat{\zeta}\bar{b}$. Let b be a root of $\hat{\zeta}\bar{b}$ in $C_c(D)D$. b is a root of B in $C_c(D)D$ and is determined uniquely, because $N_c(D) \cap NC_c(D)D = C_c(D)D$. If $x \in T(b)$, then

$$\hat{\zeta}ar{b}
ightarrow (b^x)^{\scriptscriptstyle NC_G(D)D} = (b^{\scriptscriptstyle NC_G(D)D})^x = (\hat{\zeta}ar{b})^x = \hat{\zeta}ar{b}^{ar{x}}$$
 ,

Hence $\bar{b} = \bar{b}^{\bar{x}}$, so $\bar{x} \in T(\bar{b})$. If $y \in N_G(D)$ and $\bar{y} \in T(\bar{b})$, then

$$\hat{\zeta}ar{b}=(\hat{\zeta}ar{b})^{ extsf{y}}=(b^{ extsf{y}})^{ extsf{NC}_G(D)D}$$
 .

By the uniqueness of a root b of $\hat{\zeta}\bar{b}$, $b=b^{y}$ and hence $y \in T(b)$. So we have $T(\bar{b})=\overline{T(b)}$.

Next we prove (iii) and (iv). By Lemma 3, there exist a sign $\mathcal{E}_{\pi} = \pm 1$ and an ordinary irreducible character θ_{π} of $C_{\mathcal{G}}(\pi)$ such that θ_{π} is irreducible as a

398

Bauer character and $\hat{\zeta}(\pi\rho) = \mathcal{E}_{\pi}\theta_{\pi}(\rho)$ for all $\rho \in (C_G(\pi))_{p'}$. \bar{b}_i can be viewed as a *p*-block of $C_G(\pi)/C_N(\pi)$. We put $b_i = \theta_{\pi}\bar{b}_i$. Since

$$\bar{\chi}(\bar{\pi}\bar{\rho}) = \sum_{i=1}^{s} \sum_{\bar{\phi}} d(\bar{\chi}, \bar{\pi}, \bar{\phi}) \bar{\phi}(\bar{\rho}) \qquad \rho \in (C_{\mathcal{G}}(\pi))_{p'}.$$

we have

(5)
$$(\widehat{\zeta}\overline{X})(\pi\rho) = \sum_{i=1}^{s} \sum_{\overline{\phi}} \mathcal{E}_{\pi} d(\overline{X}, \overline{\pi}, \overline{\phi})(\theta_{\pi}\overline{\phi})(\rho) \qquad \rho \in (C_{G}(\pi))_{p'}.$$

Here $\bar{\phi}$ ranges over the irreducible Brauer characters in \bar{b}_i . By the second main theorem on *p*-blocks, b_1, b_2, \dots, b_s are the *p*-blocks of $C_G(\pi)$ associated with *B*. In particular we see that b_i is a unique *p*-block of $C_G(\pi)$ such that $b_i^{NC_G(\pi)} = \hat{\zeta}\bar{b}_i$. From (5), $d(\hat{\zeta}\bar{\chi}, \pi, \theta_{\pi}\bar{\phi}) = \varepsilon_{\pi} d(\bar{\chi}, \pi, \bar{\phi})$. This completes the proof of Theorem 2.

We have the following as a corollary of Theorem 1 and 2.

Corollary. Suppose that G is a p-solvable group. Let B be a p-block of G with an abelian defect group D and b be a root of B in $C_G(D)$. We assume that $T(b)/C_G(D)$ is cyclic and any element of $T(b)/C_G(D) - \{\overline{1}\}$ does not fix any element of $D - \{1\}$. Let $\pi_1, \pi_2, \dots, \pi_t$ be a set of representatives for the T(b)-conjugacy classes of $D - \{1\}$ and Λ be a set of representatives for the T(b)-conjugacy classes of non-trivial linear characters of D, where $t = (p^d - 1)/e$, $e = |T(b): C_G(D)|$ and $p^d = |D|$. Then the following holds.

(i) B contains exactly e irreducible Brauer characters $\phi_1, \phi_2, \dots, \phi_e$ and exactly $e+(p^d-1)/e$ ordinary irreducible characters $\chi_1, \chi_2, \dots, \chi_e, \chi_{\lambda}$ ($\lambda \in \Lambda$).

(ii) For $i, 1 \leq i \leq e$, and $\lambda, \lambda \in \Lambda$,

$$\chi_i = \phi_i \quad on \; G_{p'},$$

 $\chi_{\lambda} = \phi_1 + \dots + \phi_e \quad on \; G_{p'}.$

(iii) $(1, B), (\pi_j, b^{C_G(\pi_j)})$ $(j=1, 2, \dots, t)$ form a set of representatives for the conjugacy classes of subsections associated with B. $b^{C_G(\pi_j)}$ contains a unique irreducible Brauer character $\phi^{(j)}$.

(iv) There exist t signs $\mathcal{E}_i = \pm 1$ such that

$$d(\mathfrak{X}_i, \, \pi_j, \, \phi^{(j)}) = \mathcal{E}_j \;, \ d(\mathfrak{X}_\lambda, \, \pi_j, \, \phi^{(j)}) = (\mathcal{E}_j / |C_{\mathcal{G}}(D)|)_{\substack{x \in \mathcal{T}(b)}} \lambda^x(\pi_j) \;.$$

for $i, 1 \leq i \leq e, \lambda, \lambda \in \Lambda$ and $j, 1 \leq j \leq t$.

Proof. If $\pi \in D - \{1\}$, then $C_G(\pi) \cap T(b) = C_G(D)$. Hence $b^{C_G(\pi)}$ contains a unique irreducible Brauer character by [2, (7A)] and Brauer [3, (6C)]. Hence (iii) follows from [3, (6C)]. By Fong's reductions (see Feit [4, Chapter X, Lemma 1.1]) and Theorems 1 and 2, we may assume that D is a normal sub-

group of G and T(b)=G. Then B is a unique p-block of G which covers b. Let Λ_0 be the set of all linear characters of D. By [9, Theorem 3], b contains a unique irreducible Brauer character ϕ and exactly p^d ordinary irreducible characters $\tilde{\chi}_{\mu}$, $\mu \in \Lambda_0$, where if $\pi \in D$ and $\rho \in (C_G(D))_{p'}$ then $\tilde{\chi}_{\mu}(\pi\rho) = \mu(\pi)\phi(\rho)$. Since ϕ is G-invariant and $G/C_G(D)$ is cyclic, B contains exactly e irreducible Brauer characters $\phi_1, \phi_2, \dots, \phi_e$. Since $\tilde{\chi}_1$ is also G-invariant, B contains exactly e ordinary irreducible characters $\chi_1, \chi_2, \dots, \chi_e$ such that $\chi_{i|C_G(D)} = \tilde{\chi}_1$. We may assume $\chi_i = \phi_i$ on $G_{p'}$. For an element $\pi \in D - \{1\}, \chi_i(\pi\rho) = \phi(\rho) \ (\rho \in (C_G(D))_{p'})$. Here we note $C_G(D) = C_G(\pi)$. By the assumption, if $\mu \neq 1$, then the stabilizer of $\tilde{\chi}_{\mu}$ in G is equal to $C_G(D)$. Hence $\tilde{\chi}_{\mu}^c$ is irreducible and

$$\begin{split} \widetilde{\chi}^G_{\mu} &= \phi_1 + \dots + \phi_{\epsilon} \quad \text{ on } G_{p'}, \\ \widetilde{\chi}^G_{\mu}(\pi\rho) &= (1/|C_G(D)|) \sum_{x \in \mathcal{G}} \mu^x(\pi) \phi(\rho) \quad \rho \in (C_G(D))_{p'}. \end{split}$$

This completes the proof.

References

- J. Alperin and M. Broué: Local methods in block theory, Ann. of Math. 110 (1979), 143-157.
- [2] R. Brauer: On blocks and sections in finite groups II, Amer. J. Math. 90 (1968), 895-925.
- [4] W. Feit: The representation theory of finite groups, North-Holland, Amsterdam, 1982.
- [5] G. Glauberman: Correspondences of characters for relatively prime operator groups, Canad. J. Math. 20 (1968), 1465-1488.
- [6] K. Iizuka, F. Ohmori and A. Watanabe: A remark on the representations of finite groups VI, Mem. Fac. Gen. Ed. Kumamoto Univ. 18 (1983), 1-8 (in Japanese).
- [7] I.M. Isaacs: Character theory of finite groups, Academic Press, New York, 1976.
- [8] L. Puig: Local block theory in p-solvable groups, Proc. Sympos Pure Math. 37 (1980), 385-388.
- [9] W.F. Reynolds: Blocks and normal subgroups of finite groups, Nagoya Math. J. 22 (1963), 15-32.
- [10] A. Watanabe: Relations between blocks of a finite group and its subgroup, J. Algebra 78 (1982), 282-291.

Department of Mathematics Faculty of General Education Kumamoto University Kurokami 2–40–1 Kumamoto 860, Japan