NOTES ON SIGNATURES ON RINGS

Dedicated to Professor Hirosi Nagao on his 60th birthday

Teruo KANZAKI

(Received June 21, 1984)

0. Introduction

The notion of infinite prime introduced by Harrison [3] was investigated in [1], [2], [7] and [9] which were concerned with ordering on a field. In this note, we study about signatures on rings as some generalization of infinite primes and signatures of fields in [2]. In the section 1 , we introduce notions of U-prime and signature of a ring which are generalizations of infinite prime and signature of field. In the section 2 , we show that a U-prime of a commuative ring defines a signature on the ring. In the sections 3 and 4, we consider the category of signatures and a space of signatures on a ring which include notions of extension of signature and space of ordering on fields (cf. [2] and [8]), and investigate them. Throughout this paper, we assume that every ring has identity 1.

1. Preliminaries, definitions and notations

Let S be a multiplicative semigroup, and T a normal subsemigroup of S, (cf. [6], p. 195), denoted by $T \triangleleft S$, that is, T is a subsemigroup of S which satisfies 1) for $x, y \in S, x y \in T$ implies $y x \in T, 2)$ if there is an $x \in T$ with $x y \in T$, then $y \in T$, and 3) for every $x \in S$, there exists an $x^{\prime} \in S$ with $x^{\prime} x \in T$. We can define a binary relation \sim on S; for $x, y \in S, x \sim y$ if and only if there is a $z \in S$ such that both $z x$ and $z y$ are contained in T. Then, the relation \sim is an equivalence relation on S, and is compatible with the multiplication of S, so the quotient set S / \sim, denoted by S / T, makes a group such that the canonical map $\psi: S \rightarrow S /$ $T ; x \mapsto[x]$ is a homomorphism with Ker $\psi=T$.

Let R be any ring with identity 1 , and P a preprime of $R([3])$, that is, P is closed under addition and multiplication of R and $-1 \notin P$. We put $p(P)=P \cap$ $-P, R_{P}=\{x \in R \mid x p(P) \cup p(P) x \subset p(P)\}, R_{P}^{+}=R_{P} \backslash p(P)\left(:=\left\{x \in R_{P} \mid x \notin p(P)\right\}\right)$, $P^{+}=P \backslash p(P)(=P \backslash-P)$. We shall saya preprime P to be complete quasi-prime, if it satisfies the following conditions;

1) $p(P)$ is an ideal of R_{P} such that $R_{P} / p(P)$ is an integral domain,
2) $P^{+} \triangleleft R_{P}^{+}$under the multiplication of R_{P}.
3) P is complete in R_{P}, that is, for $x \in R_{P}, x^{2} \in P$ implies $x \in P \cup-P$.

A multiplicative semigroup F with unit element 1 and zero element 0 will be called a f-semigroup, if $F^{*}=F \backslash\{0\}$ makes a group with a unique element of order 2 , denoted by -1 , under the multplication of F. If P is a complete quasi-prime of R, then the quotient group $\mathrm{G}(P)=R_{P}^{+} / P^{+}$has a unique element [-1] of order 2 , and the formally composed semigroup $F(P)=\mathrm{G}(P) \cup\{0\}$ makes an f-semigroup under the multiplication of $\mathrm{G}(P)$ and $\alpha 0=0 \alpha=00=0$ for $\alpha \in \mathrm{G}(P)$. Furthermore, we can define a map $\sigma: R_{P} \rightarrow \mathrm{~F}(P)$ by $\sigma(a)=0$ or [a] for $a \in p(P)$ or $a \in R_{P}^{+}$, respectively. Then, it can be verified that 1) $\left.\sigma(-1)=[-1], 2\right)$ $\sigma(a b)=\sigma(a) \sigma(b)$ for every $a, b \in R_{P}$, and 3) for $a, b \in R_{P}$, either $\sigma(a)=0$ or $\sigma(a)=\sigma(b)$ implies $\sigma(a+b)=\sigma(b)$.

Let π be a set of prime numbers, and suppose $2 \in \pi$. A complete quasiprime P will be called a π-complete quasi-prime, if for each $q \in \pi$, there is a $\zeta_{q} \in$ $R_{P} \backslash P$ such that $\zeta_{q}^{q} \in P$ and for any $x \in R_{P}$ with $x^{q} \in P, y x \in \underset{1 \leq i \leq i}{\bigcup} \zeta_{q} P^{i}$ for some $y \in P^{+}$.

Remark 1.1. If R is a commutative ring and P is a π-complete quasiprime, then for each $q \in \pi$, the q-torsion subgroup $\mathrm{G}(P)_{q}=\left\{\left.\alpha \in \mathrm{G}(P)\right|^{\mathbb{a}} n>0\right.$; $\left.\alpha^{q^{n}}=[1]\right\}$ of $\mathrm{G}(P)$ is isomorphic to a subgroup of $\boldsymbol{Z}\left(q^{\infty}\right)$. Because, since $\mathrm{G}(P)_{q}$ has a unique minimal non trivial subgroup $\left\langle\left[\zeta_{q}\right]\right\rangle, \mathrm{G}(P)_{q}$ is indecomposable, so by [4], p. 22, Theorem $10, \mathrm{G}(P)_{q}$ is isomorphic to $\boldsymbol{Z}\left(q^{n}\right)$ or $\boldsymbol{Z}\left(q^{\infty}\right)$.

Let R be a ring with identity 1 , and F an abelian f -semigroup. A partial map $\sigma: R \rightharpoondown F$ will be called a signature of R with domain of definition R_{σ}, if σ is a map of a subset R_{σ} of R into F satisfying the following conditions;
(S 1) $-1 \in R_{\sigma}$ and $\sigma(-1)=-1$,
(S 2) $a, b \in R_{\sigma}$ implies $a b \in R_{\sigma}$ and $\sigma(a b)=\sigma(a) \sigma(b)$,
(S 3) for $a, b \in R_{\sigma}$, if $\sigma(a)=0$ or $\sigma(a)=\sigma(b)$ then $a+b \in R_{\sigma}$ and $\sigma(a+b)=$ $\sigma(b)$,
(S 4) for $a \in R$, if $a \notin R_{\sigma}$, then there exists a $b \in R_{\sigma}$ such that $\sigma(b)=0$ and either $\sigma(a b)=1$ or $\sigma(b a)=1$.

Let $\sigma: R \rightharpoondown F$ be a signature. For $\alpha \in F$, we put $p_{a}(\sigma)=\left\{x \in R_{\sigma} \mid \sigma(x)=\alpha\right\}$, $\mathrm{P}(\sigma)=p_{0}(\sigma) \cup p_{1}(\sigma)$ and $\mathrm{G}(\sigma)=\operatorname{Im} \sigma \cap F^{*}$.

Lemma 1.2. Let $\sigma: R \rightharpoondown F$ be a signature of a ring R.

1) R_{σ} is a subring of R with prime ideal $p_{0}(\sigma)$ such that $R_{\sigma} / p_{0}(\sigma)$ is an integral domain.
2) $\mathrm{P}(\sigma)$ is a preprime of R, and $R_{\sigma}=R_{P(\sigma)}$.
3) If $\mathrm{G}(\sigma)$ is a subgroup of F^{*}, then $\mathrm{P}(\sigma)$ is a complete quasi-prime of R, and $\mathrm{G}(\mathrm{P}(\sigma))$ and $\mathrm{G}(\sigma)$ are group isomorphic.

Proof. 1) If R_{σ} is closed under the addition of R, then it is easy to see
that R_{σ} is a subring of R. Suppose $a+b \notin R_{\sigma}$ for some a and b in R_{σ}. There is a $c \in R_{\sigma}$ such that $\sigma(c)=0$, and $\sigma(c(a+b))=1$ or $\sigma((a+b) c)=1$. Since $\sigma(c a)$ $=\sigma(a c)=\sigma(a) \sigma(c)=0$ and $\sigma(c b)=\sigma(b c)=0$, we get $\sigma(c a+c b)=\sigma(a c+b c)=0$ which is a contradiction. Hence, we get $R_{\sigma}+R_{\sigma} \subset R_{\sigma}$. It is easy to see that $p_{0}(\sigma)$ is an ideal of R_{σ}, and $R_{\sigma} / p_{0}(\sigma)$ is an integral domain. 2) From the definition of signature, it follows that $\mathrm{P}(\sigma)$ is a preprime of R and $p_{0}(\sigma)=\mathrm{P}(\sigma) \cap$ $-\mathrm{P}(\sigma)$. We shall show $R_{\sigma}=R_{P(\sigma)}$. Since $R_{\sigma} \subset R_{P(\sigma)}$ is clear, it suffices to show $R_{\sigma} \supset R_{P(\sigma)}$. If $x \in R \backslash R_{\sigma}$, then there is a $y \in p_{0}(\sigma)$ with $x y \in p_{1}(\sigma)$ or $y x \in p_{1}(\sigma)$, so $x p_{0}(\sigma) \cup p_{0}(\sigma) x \nsubseteq p_{0}(\sigma)$, that is, $x \notin R_{P(\sigma)}$. 3) If $G(\sigma)$ is a group, then it is easy to see that $\mathrm{P}(\sigma)^{+}=p_{1}(\sigma), \mathrm{P}(\sigma)^{+} \triangleleft R_{P(\sigma)}^{+}, \sigma\left(R_{P(\sigma)}^{+}\right)=\mathrm{G}(\sigma)$, and $\mathrm{P}(\sigma)$ is complete. Furthermore, a map $\mathrm{G}(\mathrm{P}(\sigma))=R_{P(\sigma)}^{+} / \mathrm{P}(\sigma)^{+} \rightarrow \mathrm{G}(\sigma) ;[x] \mathcal{M} \rightarrow \sigma(x)$ is a group isomorphism.

Remark. 1) If R is a field, then a signature $\sigma: R \rightharpoondown F$ with $p_{0}(\sigma)=\{0\}$ and $F=\mu \cup\{0\}$ coincides with the notion of signature defined by Becker, Harman and Rosenberg [2], where μ is the group of all roots of unity in the complices. 2) Let F be a finite field with characteristic $\neq 2$. The multiplicative semigroup F is an abelian f-semigroup. For a signature $\sigma: R \rightharpoondown F$, let π be the set of all prime factors of order $|G(\sigma)|$. Then, it is easy to see that $\mathrm{P}(\sigma)$ is a π-complete quasiprime of R.

Let R be a ring with identity 1 , and U a non empty multiplicatively closed subset of R satisfying $U \cap-U=\phi$. A preprime P of R will be called a U-preprime of R, if $U \subset P$ and $P \cap-U=\phi$. A maximal U-preprime of R will be called a U-prime of R. Any Harrison's infinite prime is a $\{1\}$-prime.

Lemma 1.3. Let U a non empty multiplicatively closed subset of R with $U \cap-U=\phi$, and P a U-prime of R. If either R is commutative or $P x=x P$ and $U x=x U$ hold for every $x \in R_{P}^{+}$, then P is a complete quasi-prime of R.

The proof of this lemma is obtained by checking the following facts;
(1.3.1) $\quad U+P \subset P^{+}$.
(1.3.2) For $x \in R_{P}(x \in R$, if R is commutative), if there are $u \in U$ and $y \in P$ with $(u+y) x \in P$, then $x \in P$. Hence $1 \in P$.
(1.3.3) For $x \in R_{P}(x \in R$, if R is commtative), if $x \notin p(P)$, then there is an $x^{\prime} \in(\pm P)[x]$ with $x^{\prime} x \in U+P$, where $(\pm P)[x]=\left\{\sum_{i} a_{i} x^{i} \in R \mid a_{i} \in P \cup-P\right\}$.
(1.3.4) $\quad R_{P} / p(P)$ is an integral domain.
(1.3.5) For $x, y \in R_{P}, x y \in P^{+}$implies $y x \in P^{+}$.
(1.3.6) $\quad P$ is complete in R_{P}.
(1.3.7) For any $x \in P^{+}$, there is an $x^{\prime} \in P^{+}$with $x^{\prime} x \in U+P$.
(1.3.8) For $x \in R_{P}\left(x \in R\right.$, if R is commutative), if there is a $y \in P^{+}$with $y x \in P^{+}$, then $x \in P^{+}$.

The proofs of these statements are obtained similarly to the case of Harrison's
infinite prime; (1.3.1): Since $U \cap-P=\phi$, it follows that $U \subset P^{+}$and $U+P \subset P^{+}$. (1.3.2): A subset $P^{\prime}=\left\{\left.x \in R_{P}\right|^{x} u \in U,{ }^{x} y \in P ;(u+y) x \in P\right\}$ of R is closed under addition and multiplication. Because, if $x_{1}, x_{2} \in P^{\prime}$, there are $u_{i} \in U$ and $y_{i} \in P$ with $\left(u_{i}+y_{i}\right) x_{i} \in P, i=1,2$. If either x_{1} or x_{2} belongs to $p(P)$, then it is trivial that $x_{1}+x_{2}$ and $x_{1} x_{2}$ belong to P^{\prime}. Otherwise, by assumption, there are $u_{2}^{\prime} \in U$ and $y_{2}^{\prime} \in P$ such that $x_{1} u_{2}=u_{2}^{\prime} x_{1}$ and $x_{1} y_{2}=y_{2}^{\prime} x_{1}$. Then $\left(u_{1}+y_{1}\right)\left(u_{2}+y_{2}\right)$ and $\left(u_{1}+y_{1}\right)\left(u_{2}^{\prime}+y_{2}^{\prime}\right)$ belong to $U+P$, and $\left(u_{1}+y_{1}\right)\left(u_{2}+y_{2}\right)\left(x_{1}+x_{2}\right)$ and $\left(u_{1}+y_{1}\right)$ $\left(u_{2}^{\prime}+y_{2}^{\prime}\right) x_{1} x_{2}$ are in P. Furthermore, it is immeadiately seen that $P \subset P^{\prime}$ and $P^{\prime} \cap-U=\phi$, so we get $P=P^{\prime}$. (1.3.3): For $x \in R_{P}$, if $x \notin p(P)$, then either $x \notin P$ or $-x \notin P$. By assumption, a subset $P[x]=P+P x+P x^{2}+\cdots$, (resp. $P[-x]$ $\left.=P+P(-x)+P(-x)^{2}+\cdots\right)$ of R is closed under addition and multiplication. Since $P \subsetneq P[x]$ or $P \subsetneq P[-x]$, we get $P[x] \cap-U \neq \phi$ or $P[-x] \cap-U \neq \phi$, so we can find an element $y \in(\pm P)[x]$ such that $y x \in U+P$ holds. (1.3.4): For $x, y \in R_{P}$, suppose that $x y \in p(P)$ and $x \notin p(P)$. By (1.3.3), there is an $x^{\prime} \in(\pm P)$ $[x]\left(\subset R_{P}\right)$ with $x^{\prime} x \in U+P$, and (1.3.2) derives that $x^{\prime} x y \in p(P)$ implies $y \in p(P)$. (1.3.5): For $x, y \in R_{P}$, suppose $x y \in P^{+} .(x y) x$ is in $P x=x P$, and for an element x^{\prime} in $(\pm P)[x]$, also in R_{P}, with $x^{\prime} x \in U+P$, we get $\left(x^{\prime} x\right) y x \in x^{\prime} x P \subset P$, so $y x \in P^{+}$ by (1.3.2) and (1.3.4). (1.3.6) is easy. (1.3.7): If $x \in P^{+}$, then $P[-x]=P-P x$ is closed under addition and multiplication, and $P \subsetneq P[-x]$. Hence, there are $u \in U$ and $x^{\prime}, y \in P$ with $-u=y-x^{\prime} x$, so we get $x^{\prime} x=u+y \in U+P$ and $x^{\prime} \in P^{+}$. (1.3.8) is immeadiately obtained from (1.3.2) and (1.3.7).

2. The connection between \boldsymbol{U}-prime and signature

Theorem 2.1. Let R be a commutative ring with identity 1 , and U any non empty multiplicatively closed subset of R with $U \cap-U=\phi$. If P is a U-prime of R, then there exists a signature $\sigma: R \rightharpoondown F$ with $\mathrm{P}(\sigma)=P$ and group $\mathrm{G}(\sigma)=\mathrm{G}(P)$.

Proof. By Lemma 1.3, U-prime P is a complete quasi-prime of R, so it defines a map $\sigma: R_{P} \rightarrow \mathrm{~F}(P)$. Then, we put $R_{\sigma}=R_{P}$ and $F=\mathrm{F}(P)$. The conditions (S 1), (S 2) and (S 3) of signature were verified. (S 4) is proved in the following proposition. Then we have a signature $\sigma: R \rightharpoondown F$ with $P=\mathrm{P}(\sigma)$ and $\mathrm{G}(\sigma)=\mathrm{G}(P)=R_{P}^{+} / P^{+}$.

Proposition 2.2. Let P be a U-prime of a commutative ring R, and let $A_{P}=\left\{\left.a \in R\right|^{\Xi} b_{0} \in U+P,{ }^{a} b_{i} \in P \cup-P, i=1,2, \cdots, n ; \sum_{i=0}^{n} b_{i} a^{n-i}=0\right\}$.

1) ($R_{P}, p(P)$) is a valuation pair of R, (cf. [3], Proposition. 2.5).
2) If $x \in R \backslash p(P)$ then there is an $a \in A_{P}$ with $a x \in U+P$.
3) If x and y are elements of R with $x y \in U+P$, then $x \notin p(P)$ implies $y \in A_{P}$.
4) $R_{P}=A_{P}$.

Proof. The proof of 1) is quite similar to [3], Proposition 2.5. 2) If $x \in R \backslash p(P)$, by (1.3.3) there is an $a \in(\pm P)[x]$ with $a x \in U+P$, then a can be
represented as $-\left(b_{1}+b_{2} x+\cdots+b_{n} x^{n-1}\right)$ for some $b_{i} \in P \cup-P$. If we put $a x=b_{0}$, then a satisfies an equation $b_{0} a^{n}+b_{1} b_{0} a^{n-1}+\cdots+b_{n} b_{0}^{n}=0$ with $b_{0} \in U+P$ and $b_{i} b_{0}^{i} \in P \cup-P, i=1,2, \cdots, n$, so $a \in A_{P}$. 3) Suppose that x and y are in R and $x y \in U+P$. If $x \notin p(P)$, by 2), there is a $z \in A_{P}$ with $z x \in U+P$. Since $z \in A_{P}$, there are $a_{0} \in U+P$ and $a_{i} \in P \cup-P, i=1,2, \cdots, m$, with $\sum_{i=0}^{m} a_{i} z^{m-i}=0$. Put $x y=b_{0}$ and $z x=c_{0}$, so we get that $\sum_{i=0}^{m}\left(a_{i} c_{0}^{m-i} b_{0}^{i}\right) y^{m-i}=\left(\sum_{i=0}^{m} a_{i} z^{m-i}\right) b_{0}^{m}=0, a_{0} c_{0}^{m}$ $\in U+P$ and $a_{i} c_{0}^{m-i} b_{0}^{i} \in P \cup-P$, hence $y \in A_{P}$. 4) In the first place, we show $A_{P} \supset R_{P}$: Let x be any element in R_{P}. If $x \in p(P), x \in A_{P}$ is obvious. Otherwise, by (1.3.3) there is a $y \in(\pm P)[x]$ with $x y \in U+P$, so $y \notin p(P)$ and by 3) we get $x \in A_{P}$. Now, we show $A_{P}=R_{P}$: Let $(U+P)^{-1} R$ be the ring of quotients of R with respect to $U+P$, and $\psi: R \rightarrow(U+P)^{-1} R$ the canonical ring homomorphism. Then, $(U+P)^{-1} R_{P}$ may be regarded as a subring of $(U+P)^{-1} R$. By B^{\prime}, we denote the integral closure of $(U+P)^{-1} R_{P}$ in $(U+P)^{-1} R$. There is a prime ideal Q^{\prime} of B^{\prime} which lies over $(U+P)^{-1} R_{P} p(P)$, (cf. [5], (10.8)). It follows that $B=\psi^{-1}\left(B^{\prime}\right)$ is a subring of R with $B \supset A_{P} \supset R_{P}$, and $Q=\psi^{-1}\left(Q^{\prime}\right)$ is a prime ideal of B with $Q \cap R_{P}=p(P)$. By 1), we get $B=A_{P}=R_{P}$.

Lemma 2.3. Let R be a commutative ring, and $\sigma: R \rightharpoondown F$ a signature. If $\mathrm{G}(\sigma)$ is a torsion group, then $R_{\sigma}=\left\{a \in R \mid a^{n} \in \mathrm{P}(\sigma)\right.$ for some integer $\left.n>0\right\}$.

Proof. Since $\mathrm{G}(\sigma)$ is a torsion group, it is clear that any element a in R_{σ} has a positive integer n with $a^{n} \in P(\sigma)$. Conversely, suppose that an element $a \in R$ does not belong to R_{σ}. There is a $b \in p_{0}(\sigma)$ with $a b \in p_{1}(\sigma)$. Then a^{n} is not contained in $P(\sigma)$ for every positive integer n. Because, if $a^{n} \in P(\sigma)$ for some $n>0$, it derives a contradiction $1=\sigma\left((a b)^{n}\right)=\sigma\left(a^{n}\right) \sigma\left(b^{n}\right)=0$.

Let R be a ring with identity 1 . By [1], a preprime P is called a torsion preprime (resp. 2-torsion preprime) of R, if for each $a \in R$ there exists a positive integer n such that $a^{n} \in P$ (resp. $a^{2^{n}} \in P$) holds. From Theorem 2.1 and Lemma 2.3, the following corollaries immeadiately follow;

Corollary 2.4. Let R be a commutative ring with 1 and U a non empty multiplicatively closed subset of R with $1 \in U$ and $U \cap-U=\phi$.

1) If P is a torsion U-prime of R, then $p(P)$ is an ideal of R, i.e. $R_{P}=R$, so there is a signature $\sigma: R \rightharpoondown F$ such that $P=\mathrm{P}(\sigma), R=R_{\sigma}$ and $\mathrm{G}(\sigma)$ is a torsion group.
2) If P is a 2-torsion U-prime of R, then there is a signature $\sigma: R \rightharpoondown F$ such that $P=\mathrm{P}(\sigma), R=R_{\sigma}$ and $F^{*} \cong Z\left(2^{\infty}\right)$.

In particular, on a field, we have
Corollary 2.5. Let K be a field.

1) For any signature $\sigma: K \rightharpoondown F, K_{\sigma}$ is a valuation ring of K with maximal ideal $p_{0}(\sigma)$, and the residue field $k(\sigma)=K_{\sigma} / p_{0}(\sigma)$ has an induced signature $\bar{\sigma}: k(\sigma)$
$\neg F$ with $k(\sigma)_{\bar{\sigma}}=k(\sigma)$ and $\mathfrak{p}_{0}(\bar{\sigma})=\{\overline{0}\}$, and $\mathrm{P}(\bar{\sigma})$ is a preordering on $k(\sigma)$.
2) Let U be a non empty multiplicatively closed subset of K with $U \cap-U=\phi$. If P is a U-prime of K, K_{P} is a valuation ring of K with maximal ideal $p(P)$. If P is a torsion U-prime of K, then $K=K_{P}, p(P)=\{0\}$, and P is a preordering, i.e. $P^{+}=P \backslash\{0\}$ is a subgroup of $K^{*}=K \backslash\{0\}$, (cf. [1], (3.3)).
3) If O is a real valutation ring of K with maximal ideal p, i.e. the residue field O / p is a formally real field, then there is a signature $\sigma: K \rightharpoondown \mathrm{GF}(3)$ with $K_{\sigma}=O$ and $p_{0}(\sigma)=p$, where $\mathrm{GF}(3)=\{0,1,-1\}$ is a multiplicative semigroup of prime field with charcteristic 3.

Theorem 2.6. Let R be a ring with identity 1 , and $\sigma: R \rightharpoondown F$ a signature of R. Assume that $\mathrm{G}(\sigma)$ is a torsion group and $x p_{\alpha}(\sigma)=p_{\alpha}(\sigma) x$ holds for all $x \in$ $R_{\sigma} \backslash p_{0}(\sigma)$ and $\alpha \in \mathrm{G}(\sigma) \cup\{0\}$. Then, there exists a signature $\tau: R \rightharpoondown F^{\prime}$ of R satisfying the following conditions;

1) $\mathrm{P}(\tau)$ is a $p_{1}(\sigma)$-prime of R and $\mathrm{P}(\tau) \supset \mathrm{P}(\sigma)$,
2) $R_{\tau}=R_{\sigma}$ and $p_{0}(\tau)=p_{0}(\sigma)$,
3) there is a subgroup H of $\mathrm{G}(\sigma)$ such that $p_{1}(\tau)=\sigma^{-1}(H),-1 \notin H$ and $\mathrm{G}(\sigma) / H \cong \mathrm{G}(\tau)$ hold.

Proof. Since $\mathrm{P}(\sigma)$ is a $p_{1}(\sigma)$-preprime of R, by Zorn's Lemma there exists a $p_{1}(\sigma)$-prime P of R containing $\mathrm{P}(\sigma)$. From the facts that $P \cap-p_{1}(\sigma)=\phi$ and $p_{0}(\sigma) \subset p(P)$, we can derive that $p_{0}(\sigma)=p(P)$ and $R_{P}=R_{\sigma}$; If there is an element $x \in R_{P} \backslash R_{\sigma}$, then there exists a $y \in p_{0}(\sigma)$ such that either $x y$ or $y x$ belongs to $p_{1}(\sigma)$. However, $x y$ and $y x$ are also contained in $p(P)$, so these are contrary to $p_{1}(\sigma) \cap p(P)=\phi$. Hence, we get $R_{P} \subset R_{\sigma}$. Furthermore, if there is an element $x \in p(P) \backslash p_{0}(\sigma)$, we have $x^{n} \in p_{1}(\sigma) \cap p(P)$ for some integer $n>0$, which is a contradiction. Therefore, we get $p_{0}(\sigma)=p(P)$ and $R_{P}=R_{\sigma}$. Now, we put $H=\sigma\left(P^{+}\right)$, so H is a subgroup of $\mathrm{G}(\sigma)$. We shall show $P^{+}=\sigma^{-1}(H)$; If $x \in \sigma^{-1}(H)$ then there is a $y \in P^{+}$with $\sigma(x)=\sigma(y)$. Since $y^{n} \in p_{1}(\sigma)$ for some integer $n>0$, we have $x y^{n}=\left(x y^{n-1}\right) y \in x p_{1}(\sigma) \cap P^{+}$. Hence, for any $x \in R$, it follows that $x \in \sigma^{-1}(H)$ if and only if $x p_{1}(\sigma) \cap P^{+} \neq \phi$. On the other hand, we can show that $P=\left\{x \in R_{\sigma} \mid x p_{1}(\sigma) \cap P \neq \phi\right\}$; The set $P^{\prime}=\left\{x \in R_{\sigma} \mid x p_{1}(\sigma) \cap P \neq \phi\right\}$ is closed under addition and multiplication: Because, for $x, y \in P^{\prime}$, there are $x_{1}, y_{1} \in p_{1}(\sigma)$ such that both $x x_{1}$ and $y y_{1}$ are in P. Since we may suppose that y is not in $p_{0}(\sigma)$, there is an $x_{1}^{\prime} \in p_{1}(\sigma)$ with $x_{1} y=y x_{1}^{\prime}$, and it follows that both $(x+y)\left(x_{1} y_{1}\right)$ and $(x y)\left(x_{1}^{\prime} y_{1}\right)$ are contained in P. Hence, both $x+y$ and $x y$ belong to P^{\prime}. Furthermore, it is derived that $P \subset P^{\prime}$ and $P^{\prime} \cap-p_{1}(\sigma)=\phi$, because of $P \cap-p_{1}(\sigma)=\phi$. Hence, we get $P=P^{\prime}$. Accordingly, we conclude that $\sigma^{-1}(H)=P^{+}=\underset{\alpha \in H}{\cup} p_{\alpha}(\sigma)$. From the assumption $x p_{\alpha}(\sigma)=p_{\alpha}(\sigma) x$ for $x \in R_{\sigma} \backslash p_{0}(\sigma)$ and $\alpha \in \mathrm{G}(\sigma) \cup\{0\}, P$ is a complete quasi-prime of R. Therefore, we can define a signature $\tau: R \rightharpoondown$ $\mathrm{F}(P)$ such that $R_{\tau}=R_{P}=R_{\sigma}, p_{0}(\tau)=p(P)=p_{0}(\sigma)$ and $\mathrm{G}(\tau)=\mathrm{G}(P) \cong \mathrm{G}(\sigma) / H$.

It is easy to check the conditions of signature for τ.
Corollary 2.7. Let R be a commutative ring with identity 1 . If $\sigma: R \rightharpoondown F$ is a signature of R such that $\mathrm{G}(\sigma)$ is a 2-torsion group, then $\mathrm{P}(\sigma)$ is a $p_{1}(\sigma)$ prime of R.

Proof. Since $\mathrm{G}(\sigma)$ is a 2-torsion group, by Remark 1.1 every non-trivial subgroup H of $\mathrm{G}(\sigma)$ contains -1 . By Theorem $1.7, \mathrm{P}(\sigma)$ is a $p_{1}(\sigma)$-prime of R.

Corollary 2.8. Let S be a commutative ring with identity 1 , and R a subring of S containing 1. If $\sigma: R \rightharpoondown F$ a signature of R such that $\mathrm{G}(\sigma)$ is 2-torsion group, then σ can be extended to a signature $\tau: S \rightharpoondown F^{\prime}$ of S, i.e. $S_{\tau} \cap R=R_{\sigma}$ and $\mathrm{P}(\tau) \cap R=\mathrm{P}(\sigma)$ hold.

Proof. A signature $\tau: S \rightharpoondown F^{\prime}$ is defined by a $p_{1}(\sigma)$-prime P of S containing $\mathrm{P}(\sigma)$. Then, τ is an extension of σ.

3. Category of signatures

Let $\sigma_{1}: R_{1} \rightharpoondown F_{1}$ and $\sigma_{2}: R_{2} \rightharpoondown F_{2}$ be signatures of rings R_{1} and R_{2}. Suppose that $f: R_{1} \rightarrow R_{2}$ is a ring homomorphism such that $f(1)=1$ and $f\left(R_{1 \sigma_{1}}\right) \subset R_{2 \sigma_{2}}$, and that ξ : $F_{1} \rightharpoondown F_{2}$ is a partial homomorphism which is defined on $\mathrm{G}\left(\sigma_{1}\right)$ and satisfies $\xi(0)=0, \xi(-1)=-1$ and $\xi(\alpha \beta)=\xi(\alpha) \xi(\beta)$ if ξ is defined on α, β and $\alpha \beta$ for $\alpha, \beta \in F_{1}$. Then, the pair (f, ξ) will be called a morphism of signatures of σ_{1} to σ_{2}, denoted by $(f, \xi): \sigma_{1} \rightarrow \sigma_{2}$, if it satisfies $\xi\left(\sigma_{1}(x)\right)=\sigma_{2}(f(x))$ for all $x \in R_{1 \sigma_{1}}$. Let $\sigma_{i}: R_{i} \rightharpoondown F_{i}$ and $\sigma_{i}^{\prime}: R_{i}^{\prime} \rightarrow F_{i}^{\prime}$ be signatures of rings for $i=1,2$, and (f, ξ) : $\sigma_{1} \rightarrow \sigma_{2}$ and $\left(f^{\prime}, \xi^{\prime}\right): \sigma_{1}^{\prime} \rightarrow \sigma_{2}^{\prime}$ morphisms of signatures. We define the equalitiy of morphisms that $(f, \xi)=\left(f^{\prime}, \xi^{\prime}\right)$ if and only if $\sigma_{i}=\sigma_{i}^{\prime}$ (i.e. $R_{i}=R_{i}^{\prime}, R_{i \sigma_{i}}=R_{i \sigma_{i}^{\prime}}^{\prime}$, $F_{i}=F_{i}^{\prime}$ and $\sigma_{i}(x)=\sigma_{i}^{\prime}(x)$ for all $\left.x \in R_{i \sigma_{i}}\right)$ for $i=1,2, f=f^{\prime}$ and for every $\alpha \in \mathrm{G}\left(\sigma_{1}\right)$ $=\mathrm{G}\left(\sigma_{1}^{\prime}\right), \xi(\alpha)=\xi^{\prime}(\alpha)$ hold. By $\boldsymbol{C}_{\text {sig }}$, we denote the category of signatures in which objects are signatures of rings and morphisms are morphisms of signatures.

Proposition 3.1. Let R and S be rings with identity 1 , and $f: R \rightarrow S$ a ring homomorphism with $f(1)=1$.

1) If $\tau: S \rightharpoondown F$ is a signature of ring S with $\operatorname{Im} f \supset p_{0}(\tau)$, then there exists a signature $\sigma: R \rightharpoondown F$ of ring R with a morphism $\left(f, \mathrm{I}_{F}\right): \sigma \rightarrow \tau$ in $\boldsymbol{C}_{\text {sig }}$.
2) If $f: R \rightarrow S$ is surjective, and if $\sigma: R \rightharpoondown F$ is a signature of ring R with Ker $f \subset p_{0}(\sigma)$, then there exists a signature $\tau: S \rightharpoondown F$ of ring S with a morphism $\left(f, \mathrm{I}_{F}\right): \sigma \rightarrow \boldsymbol{\tau}$ in $\boldsymbol{C}_{\text {sig }}$.

Proof. 1) Suppose that $\tau: S \rightarrow F$ is a signature of ring S and $f: R \rightarrow S$ is a ring homomorphism with $f(1)=1$ and $\operatorname{Im} f \supset p_{0}(\tau)$. On a subring $R_{\sigma}=\{x \in R \mid$ $\left.f(x) \in S_{\tau}\right\}$ of R, a map $\sigma: R_{\sigma} \rightarrow F ; x M \rightarrow \tau(f(x))$ is defined. The condition
$\operatorname{Im} f \supset p_{0}(\tau)$ derives that a signature $\sigma: R \rightharpoondown F$ of ring R and a morphism $\left(f, \mathrm{I}_{F}\right)$: $\sigma \rightarrow \tau$ in $\boldsymbol{C}_{\text {sig }}$ are defined. 2) Suppose that $f: R \rightarrow S$ is a surjective ring homomorphism, and $\sigma: R \rightharpoondown F$ is a signature of ring R with $\operatorname{Ker} f \subset p_{0}(\sigma)$. For a subring $S_{\tau}=f\left(R_{\sigma}\right)$, we can define a map $\tau: S_{\tau} \rightarrow F$ as follows: For any $a \in S_{\tau}$, there is a $b \in R_{\sigma}$ with $f(b)=a$, then we put $\tau(a)=\sigma(b)$. From the condition $\operatorname{Ker} f \subset p_{0}(\sigma)$, it is known that the map $\tau: S_{\tau} \rightarrow F$ is well defined. Then, it is easy to see that a signature $\tau: S \rightharpoondown F$ of ring S and a morphism $\left(f, \mathrm{I}_{F}\right): \sigma \rightarrow \tau$ in $C_{\text {sig }}$ are defined.

Concerning commutative rings, the situation of Proposition 3.1, 2) is reformed as follows;

Theorem 3.2. Let $f: R \rightarrow S$ be a ring homomorphism of a commutative ring R into a commutative ring S with $f(1)=1$. If $\sigma: R \rightharpoondown F$ is a signature of R such that $\mathrm{G}(\sigma)$ is a torsion group and $\operatorname{Ker} f \subset p_{0}(\sigma)$, then there exists a signature $\tau: S \rightharpoondown F^{\prime}$ of ring S with a morphism $(f, \xi): \sigma \rightarrow \tau$ in $\boldsymbol{C}_{\text {sig }}$.

Proof. Suppose that $f: R \rightarrow S$ is a ring homomorphism with $f(1)=1$, and $\sigma: R \rightharpoondown F$ is a signature of R with torsion group $\mathrm{G}(\sigma)$ and satisfying $\operatorname{Ker} f \subset p_{0}(\sigma)$. By Proposition 3.1,2), for the surjective ring homomorphism $f: R \rightarrow \operatorname{Im} f$, there exists a signature $\sigma^{\prime}: \operatorname{Im} f \rightharpoondown F$ of the subring $\operatorname{Im} f$ of S with a morphism $\left(f, \mathrm{I}_{P}\right)$: $\sigma \rightarrow \sigma^{\prime}$ in $\boldsymbol{C}_{\text {sig }}$. Hence, we may assume that R is a subring of S with common identity, and it is sufficient to show that there exists a signature $\tau: S \rightharpoondown F^{\prime}$ of S with a morphism $(\iota, \xi): \sigma \rightarrow \boldsymbol{\tau}$ in $\boldsymbol{C}_{\text {sig }}$, where ι denotes the inclusion map $R \rightarrow S$. By Theorem 2.6, there exists a signature $\bar{\sigma}: R \rightharpoondown F^{\prime \prime}$ of R such that $R_{\bar{\sigma}}=R_{\sigma}$, $p_{0}(\bar{\sigma})=p_{0}(\sigma)$ and $\mathrm{G}(\bar{\sigma}) \cong \mathrm{G}(\sigma) / H$ for some subgroup H of $\mathrm{G}(\sigma)$ hold, and $\mathrm{P}(\bar{\sigma})$ is a $p_{1}(\sigma)$-prime of R containing $\mathrm{P}(\sigma)$. Then, we can define a partial homomorphism $\xi_{1}: F \rightharpoondown F^{\prime \prime}$ such that ξ_{1} induces a group homomorphism $\mathrm{G}(\sigma) \rightarrow \mathrm{G}(\bar{\sigma})$ and the pair $\left(\mathrm{I}_{R}, \xi_{1}\right)$ defines a morphism $\left(\mathrm{I}_{R}, \xi_{1}\right): \sigma \rightarrow \bar{\sigma}$ in $\boldsymbol{C}_{\text {sig }}$. On the other hand, by Zorn's Lemma, there exists a $p_{1}(\sigma)$-prime P of S containing $\mathrm{P}(\bar{\sigma})$, and by Theorem 2.1 the $p_{1}(\sigma)$-prime P defines a signature $\tau: S \rightharpoondown \mathrm{~F}(P)$ of S such that $\mathrm{P}(\tau)=P, S_{\tau}=S_{P}, \mathrm{~F}(P)=\mathrm{G}(P) \cup\{0\}$ and $\mathrm{G}(P)=S_{P}^{+} / P^{+}$hold, and τ is induced from the canonical map $S_{P}^{+} \rightarrow \mathrm{G}(P)$. From the fact that $\mathrm{P}(\bar{\sigma})$ is a $p_{1}(\sigma)$-prime of R, and $P \supset \mathrm{P}(\bar{\sigma})$, it follows that $P \cap R=\mathrm{P}(\bar{\sigma}), p(P) \cap R=p_{0}(\bar{\sigma})$ and $P^{+} \cap R=$ $\mathrm{P}(\bar{\sigma})^{+}\left(=p_{1}(\bar{\sigma})\right)$ hold. Since $\mathrm{G}(\sigma)$ is a torsion group, so is also $\mathrm{G}(\bar{\sigma})$, and by Lemma 2.3 and Proposition 2.2, it is derived that $R_{P(\bar{\sigma})}\left(=R_{\bar{\sigma}}\right)=\left\{a \in R \mid a^{n} \in \mathrm{P}(\bar{\sigma})\right.$ for some integer $n>0\}$ is included in $S_{P}=\left\{\left.a \in S\right|^{\sharp} b_{0} \in p_{1}(\sigma)+P,{ }^{a} b_{i} \in P \cup-P\right.$, $i=1,2, \cdots, n ; \sum_{i} b_{i} a^{n-i}=0$ for some $\left.n>0\right\}$. Hence we have that $R_{P(\bar{\sigma})}^{+} \subset S_{P}^{+}$, and the natural homomorphism $\mathrm{G}(\mathrm{P}(\bar{\sigma}))=R_{P(\bar{\sigma})}^{+} / \mathrm{P}(\sigma)^{+} \rightarrow \mathrm{G}(P)=S_{P}^{+} / P^{+} ;[a]$ $\mathcal{M} \rightarrow[a]$ defines a partial homomorphism $\xi_{2}: F^{\prime \prime} \rightharpoondown \mathrm{F}(P)$ such that $\left(\iota, \xi_{2}\right): \bar{\sigma} \rightarrow \tau$ is a morphism in $\boldsymbol{C}_{\text {sig }}$. Thus, we obtain a signature $\tau: S \rightharpoondown F^{\prime}=\mathrm{F}(P)$ of ring S and a morphism $\left(\iota, \xi_{2} \circ \xi_{1}\right)=\left(\iota, \xi_{2}\right) \circ\left(\mathrm{I}_{R}, \xi_{1}\right): \sigma \rightarrow \tau$ in $\boldsymbol{C}_{\text {sig }}$.
ideal $p_{0}(\sigma)$, that is, every element in $R_{\sigma} \backslash p_{0}(\sigma)$ is invertible in R_{σ}. Then, $a \in p_{0}(\sigma)$ if and only if $a^{-1} \notin R_{\sigma}$.

Proof. 1) For elements $x, y \in R$, we suppose that $x R_{\sigma} y \subset p_{0}(\sigma)$ and $x \notin p_{0}(\sigma)$. If $x \notin R_{\sigma}$, then there is an $x^{\prime} \in p_{0}(\sigma)$ with $x^{\prime} x \in p_{1}(\sigma)$ or $x x^{\prime} \in p_{1}(\sigma)$. Since both $x^{\prime} x R_{\sigma} y$ and $x x^{\prime} R_{\sigma} y$ are included in $p_{0}(\sigma)$, we may assume that $x \in R_{\sigma}$, and similary $y \in R_{\sigma}$. Then, $y \in p_{0}(\sigma)$ follows. 2) Suppose that $a \in R_{\sigma} \backslash p_{0}(\sigma)$. If $a^{-1} \oplus R_{\sigma}$, then there is a $b \in p_{0}(\sigma)$ with $a^{-1} b \in p_{1}(\sigma)$ or $b a^{-1} \in p_{1}(\sigma)$, so it means either $a\left(a^{-1} b\right)$ or $\left(b a^{-1}\right) a$ belongs to $p_{0}(\sigma)$, that is, $a \in p_{0}(\sigma)$, which is contrary to $a \notin p_{0}(\sigma)$. Hence, we get $a^{-1} \in R_{\sigma} \backslash p_{0}(\sigma)$. 3) First, we suppose that R is commutative. It is easy to see the "only if" part. If $a^{-1} \notin R_{\sigma}$, there is a $b \in p_{0}(\sigma)$ with $a^{-1} b \in p_{1}(\sigma)$, so by 1) $a\left(a^{-1} b\right) \in p_{0}(\sigma)$ implies $a \in p_{0}(\sigma)$. Next, we suppose that R_{σ} is a local ring with maximal ideal $p_{0}(\sigma)$. If $a^{-1} \oplus R_{\sigma}$ then there is a $t \in p_{0}(\sigma)$ with $a^{-1} b \in p_{1}(\sigma)$ or $b a^{-1} \in p_{1}(\sigma)$, so either $a^{-1} b$ or $b a^{-1}$ is invertible in R_{σ}. Hence, we get $a \in p_{0}(\sigma)$.

Lemma 4.2. For $a \sigma \in \mathrm{X}(R, F)$, put $q(\sigma)=\left\{a \in R \mid R a R \subset p_{0}(\sigma)\right\}$. Then, the following properties hold;

1) $q(\sigma)$ is a prime ideal of R, and $q(\sigma) \subset p_{0}(\sigma)$.
2) If R is a local ring with maximal ideal $q(\sigma)$ then so is R_{σ} with maximal ideal $p_{0}(\sigma)$. If R is commutative, then the converse also holds.
3) If $p_{0}(\sigma)=\{0\}$, then $R=R_{\sigma}$, and $\mathrm{P}(\sigma)$ gives a partial ordering on the ring R.

Proof. 1) It is easy to see that $q(\sigma)$ is an ideal of R, and $q(\sigma) \subset p_{0}(\sigma)$. For $x, y \in R$, we suppose that $x R y \subset q(\sigma)$ and $x \notin q(\sigma)$. We can find elements a and b in R with $a x b \notin p_{0}(\sigma)$, so it follows that $a x b R_{\sigma}(R y R) \subset p_{0}(\sigma)$ and $R y R \subset p_{0}(\sigma)$ by Lemma 4.1, 1), i.e. $y \in q(\sigma)$. 2) If R is a local ring with maximal ideal $q(\sigma)$, then every element in $R_{\sigma} \backslash p_{0}(\sigma)(\subset R \backslash q(\sigma))$ is invertible in R, and by Lemma 4.1,2), so is also in R_{σ}. Hence, R_{σ} is a local ring with maximal ideal $p_{0}(\sigma)$. If R is commutative and R_{σ} a local ring with maximal ideal $p_{0}(\sigma)$, then for any element $x \in R \backslash q(\sigma)$, we can find an element $a \in R$ such that $a x \in R_{\sigma} \backslash p_{0}(\sigma)$, that is, $a x$ is invertible in R_{σ}, so x is invertible in R. 3) is easy.

Corollary 4.3. Assume that R is a division ring, then the following hold.

1) For any $\sigma \in \mathrm{X}(R, F), R_{\sigma}$ is a local ring with maximal ideal $p_{0}(\sigma)$.
2) $\mathrm{X}(R, F)$ is a Hausdorff and totally disconnected space.
3) If F is a finite set, then $\mathrm{X}(R, F)$ is compact, that is, a Boolean space.

Proof. 1) is obtained by Lemma 4.2, 2). 2) By Lemma 4.1, 3), it follows that $\mathrm{H}_{0}(a)=\mathrm{H}_{\infty}\left(a^{-1}\right)$ is a clopen set of $\mathrm{X}(R, F)$ for any $a \neq 0$ in R, and so is also $\mathrm{H}_{\gamma}(a)$ for any $\gamma \in F \cup\{\infty\}$ and $a \in R$. Hence, $\mathrm{X}(R, F)$ is Hausdorff and totally disconnected. 3) Suppose that F is finite, then $(F \cup\{\infty\})^{R}$ is compact. Whenever $F \cup\{\infty\}$ is a discrete space, the subset $\mathrm{X}(R, F)$ becomes a closed subset of $(F \cup\{\infty\})^{R}$. Hence, under our topology on $F \cup\{\infty\}, \mathrm{X}(R, F)$ is also

Remark 3.3. Let $\sigma: R \rightharpoondown F$ and $\tau: S \rightharpoondown F^{\prime}$ be signatures of rings R and S. If $(f, \xi): \sigma \rightarrow \boldsymbol{\tau}$ is a morphism in $\boldsymbol{C}_{\text {sig }}$, then the following identities hold; 1) $R_{\sigma}=f^{-1}\left(S_{\tau}\right)$, 2) if $\mathrm{G}(\sigma)$ is a group, then $p_{0}(\sigma)=f^{-1}\left(p_{0}(\tau)\right)$ and $\underset{\alpha \in \xi^{-1}(\beta)}{\cup} p_{\sigma}(\sigma)=$ $f^{-1}\left(p_{\beta}(\tau)\right)$ for each $\beta \in \mathrm{G}(\tau)$.

Proof. 1) It is easy that $R_{\sigma} \subset f^{-1}\left(S_{\tau}\right)$. To prove the opposite, we suppose that there is an $x \in R \backslash R_{\sigma}$ with $f(x) \in S_{\tau}$. Then, there is a $y \in p_{0}(\sigma)$ such that $x y \in p_{1}(\sigma)$ or $y x \in p_{1}(\sigma)$ hold. However, $x y \in p_{1}(\sigma)$ (resp. $\left.y x \in p_{1}(\sigma)\right)$ implies $\tau(f(x y))=\xi(\sigma(x y))=1($ resp. $\tau(f(y x))=1)$ which is contrary to that $\tau(f(x y))=$ $\tau(f(x)) \tau(f(y))=\tau(f(x)) \xi(\sigma(y))=\tau(f(x)) \xi(0)=\tau(f(x)) 0=0$ (resp. $\tau(f(y x))=0)$. Hence, we get $R_{\sigma}=f^{-1}\left(S_{\tau}\right)$. 2) It is also easy that $p_{0}(\sigma) \subset f^{-1}\left(p_{0}(\tau)\right)$. If $x \in$ $f^{-1}\left(p_{0}(\tau)\right)$, then we have $\xi(\sigma(x))=\tau(f(x))=0$ and $\sigma(x)=0$, i.e. $x \in p_{0}(\sigma)$, since $\mathrm{G}(\sigma)$ is a group and $\xi(1)=1$. Hence, we get $p_{0}(\sigma)=f^{-1}\left(p_{0}(\tau)\right)$. Since $R_{\sigma}=f^{-1}\left(S_{\tau}\right)$ and $p_{0}(\sigma)=f^{-1}\left(p_{0}(\tau)\right)$, it follows that $R_{\sigma} \backslash p_{0}(\sigma)=\bigcup_{\alpha \in \sigma_{(}(\sigma)} p_{\alpha}(\sigma)=$ $f^{-1}\left(S_{\tau} \backslash p_{0}(\tau)\right)=\underset{\beta \in G_{(\tau)}}{\bigcup} f^{-1}\left(p_{\beta}(\tau)\right)$. Since $\underset{\alpha \in \xi-\xi^{-1}(\beta)}{\cup} p_{\alpha}(\sigma) \subset f^{-1}\left(p_{\beta}(\tau)\right)$ holds for every $\beta \in G(\tau)$, we get $\underset{\alpha \in \xi^{-1}(\beta)}{\cup} p_{\alpha}(\sigma)=f^{-1}\left(p_{\beta}(\tau)\right)$ for evry $\beta \in G(\tau)$.

4. Space of signatures

In this secition, we assume that F is a f -semigroup with abelian torsion group F^{*}. Let R be any ring with identity 1 , and $\mathrm{X}(R, F)$ denote the set of signatures $\sigma: R \rightharpoondown F$ of the ring R over the f-semigroup F. We consider a set $F \cup\{\infty\}$ which is added a formal symbol ∞ to F. We make the set $F \cup\{\infty\}$ a topological space such that $\{\alpha\}$ and $\{\infty\}$ are open subsets for every $\alpha \in F^{*}$. Then, for any subset $H \subset F \cup\{\infty\}, H$ is a closed subset if and only if $0 \in H$. Considering R as a descrete space, we make the power space $(F \cup\{\infty\})^{R}$ have a weak topology. We can introduce a topology on $\mathrm{X}(R, F)$ as a subspace of $(F \cup\{\infty\})^{R}$. For any $\alpha \in F$ and $a \in R$, we put $H_{a}(a)=\{\sigma \in \mathrm{X}(R, F) \mid \sigma(a)=\alpha\}$ and $\mathrm{H}_{\infty}(a)=\{\sigma \in \mathrm{X}(R, F)$ $\left.\mid a \notin R_{\sigma}\right\}$. Then, for every finite subsets $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\} \subset R$ and $\left\{\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right\}$ $\subset F^{*} \cup\{\infty\}$, the intersections $\mathrm{H}_{\gamma_{1}}\left(a_{1}\right) \cap \mathrm{H}_{\gamma_{2}}\left(a_{2}\right) \cap \cdots \cap \mathrm{H}_{\gamma_{n}}\left(a_{n}\right)$ construct an open basis of the space $\mathrm{X}(R, F)$. Furthermore, for a subset $H \subset F \cup\{\infty\}$ and $a \in R$, we have that $\cup_{\alpha \in H} \mathrm{H}_{\infty}(a)$ is a closed subset of $\mathrm{X}(R, F)$ if and only if $0 \in H$.

In the following lemmata and corollary, we need not assume that F^{*} is a torsion group.

Lemma 4.1. For $a \sigma \in \mathrm{X}(R, F)$ and an invertible element a in R, the following statements hold;

1) For any $x, y \in R, x R_{\sigma} y \subset p_{0}(\sigma)$ implies either $x \in p_{0}(\sigma)$ or $y \in p_{0}(\sigma)$.
2) $a \in R_{\sigma} \backslash p_{0}(\sigma)$ if and only if $a^{-1} \in R_{\sigma} \backslash p_{0}(\sigma)$
3) Assume that either R is commutative or R_{σ} is a local ring with maximal
compact.
Proposition 4.4. Assume that R is a commutative ring and $\sigma, \tau \in \mathrm{X}(R, F)$. If $\mathrm{P}(\sigma) \subset \mathrm{P}(\tau)$ holds, then there are a subgroup H of $\mathrm{G}(\sigma)$ and a homomorphism $\psi: H \rightarrow G(\tau)$ such that $p_{\beta}(\tau) \cap R_{\sigma} \subset \bigcup_{\alpha \in \psi^{-1}(\beta)} p_{\infty}(\sigma) \subset p_{0}(\tau) \cup p_{\beta}(\tau)$ holds for every $\beta \in \mathrm{G}(\tau)$, and $R_{\sigma} \subset R_{\tau}$ holds.

Proof. Suppose that $\mathrm{P}(\sigma) \subset \mathrm{P}(\tau)$. Since $\mathrm{G}(\sigma)$ and $\mathrm{G}(\tau)$ are torsion groups, by Lemma 2.3, we get $R_{\sigma} \subset R_{\tau}$. We put $H=\left\{\alpha \in \mathrm{G}(\sigma) \mid p_{\alpha}(\sigma) \nsubseteq p_{0}(\tau)\right\}$, then H is a subgroup of $\mathrm{G}(\sigma)$. We can define a homomorphism $\psi: H \rightarrow \mathrm{G}(\tau)$ as follows; For any $\alpha \in H$, we can find an element a in $p_{a}(\sigma) \backslash p_{0}(\tau)$, and $\tau(a)=\tau(x)$ holds for every $x \in p_{\alpha}(\sigma) \backslash p_{0}(\tau)$. Because, α^{-1} belongs to H, so we can find a b in $p_{a^{-1}}(\sigma) \backslash p_{0}(\tau)$, which satisfies $\sigma(a b)=\sigma(x b)=1$ for every $x \in p_{\alpha}(\sigma) \backslash p_{0}(\tau)$. The condition $\mathrm{P}(\sigma) \subset \mathrm{P}(\tau)$ means that for every $x \in p_{\alpha}(\sigma) \backslash p_{0}(\tau), \tau(a b)=\tau(x b)=1$ holds, so $\tau(a)=\tau(x)$. Therefore, we can define the image $\psi(\alpha)$ of α as $\tau(a)$ for $a \in p_{\alpha}(\sigma) \backslash p_{0}(\tau)$. Then, it is easy to see that the map $\psi: H \rightarrow \mathrm{G}(\tau)$ is a group homomorphism. Further, for any $\alpha \in H$ and $\beta \in \mathrm{G}(\tau)$ with $\psi(\alpha)=\beta$, from the definition of $\psi, p_{\infty}(\sigma) \subset p_{0}(\tau) \cup p_{\beta}(\tau)$ follows. Hence, we get $\underset{\alpha \in \psi^{-1}(\beta)}{\bigcup} p_{\infty}(\sigma) \subset p_{0}(\tau)$ $\cup p_{\beta}(\tau)$. On the other hand, if β is an element in $\mathrm{G}(\tau)$ with $p_{\beta}(\tau) \cap R_{\sigma} \neq \phi$, then for each $x \in p_{\beta}(\tau) \cap R_{\sigma}$, there is an $\alpha \in \mathrm{G}(\sigma)$ with $x \in p_{\alpha}(\sigma) \backslash p_{0}(\tau)$, that is, $\psi(\alpha)=\beta$ and $x \in p_{a}(\sigma)$. Hence, we get $p_{\beta}(\tau) \cap R_{\sigma} \subset \bigcup_{\alpha \in \psi^{-1}(\beta)} p_{\alpha}(\sigma)$ for every $\beta \in$ $G(\tau)$.

Remark 4.5. Let R be a commutative ring, and $\sigma: R \rightharpoondown F$ a signature of R. By σ, a topology on affine n-space R^{n} is introduced as follows; For any $\gamma_{i} \in$ $\mathrm{G}(\sigma) \cup\{\infty\}$ and $f_{i}\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ in polynomial ring $R\left[X_{1}, X_{2}, \cdots, X_{n}\right], i=1$, $2, \cdots, m$, we put $\mathrm{U}\left(f_{1}, f_{2}, \cdots, f_{m}, \gamma_{1}, \gamma_{2}, \cdots, \gamma_{m}\right)=\left\{\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in R^{n} \mid \sigma\left(f_{i}\left(a_{1}\right.\right.\right.$, $\left.\left.\left.a_{2}, \cdots, a_{n}\right)\right)=\gamma_{i}, i=1,2, \cdots, n\right\}$, where $\sigma\left(f_{i}\left(a_{1}, a_{2}, \cdots, a_{n}\right)\right)=\infty$ whenever $f_{i}\left(a_{1}, a_{2}\right.$, $\left.\cdots, a_{n}\right) \notin R_{\sigma}$. Then, the sets $\mathrm{U}\left(f_{1}, f_{2}, \cdots, f_{m}, \gamma_{1}, \gamma_{2}, \cdots, \gamma_{m}\right)$ form an open basis on R^{n}. We can define a continuous map ψ_{σ} of the topologicl space R^{n} into $\mathrm{X}\left(R\left[X_{1}\right.\right.$, $\left.\left.X_{2}, \cdots, X_{n}\right], F\right)$; Let $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ be any element in R^{n}, and let $\psi\left(a_{1}, a_{2}, \cdots, a_{n}\right)$: $R\left[X_{1}, X_{2}, \cdots, X_{n}\right] \rightarrow R ; f\left(X_{1}, X_{2}, \cdots, X_{n}\right) \rightsquigarrow \rightarrow f\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ a natural ring homomorphism. By Proposition 3.1, 1), there exists a signature $\sigma_{\left(a_{1}, a_{2}, \cdots, a_{n}\right)}: R\left[X_{1}\right.$, $\left.X_{2}, \cdots, X_{n}\right] \rightharpoondown F$ with a morphism $\left(\psi_{\left(a_{1}, a_{2}, \cdots, a_{n}\right)}, \mathrm{I}_{F}\right): \sigma_{\left(a_{1}, a_{2}, \cdots a_{n}\right)} \rightarrow \sigma$ in $C_{\text {sig }}$. Thus, we get a map $\psi_{\sigma}: R^{n} \rightarrow \mathrm{X}\left(R\left[X_{1}, X_{2}, \cdots, X_{n}\right], F\right) ;\left(a_{1}, a_{2}, \cdots, a_{n}\right) \mathcal{M} \rightarrow \sigma_{\left(a_{1}, a_{2}, \cdots, a_{n}\right)}$, which is continuous, because of $\psi_{\sigma}^{-1}\left(\mathrm{H}_{\gamma}(f)\right)=\mathrm{U}(f, \gamma)$ for $f \in R\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ and $\gamma \in \mathrm{G}(\sigma) \cup\{\infty\}$.

References

[1] E. Becker: Partial orders on a field and valuation rings, Comm. Algebra 7 (1979),

1933-1976.
[2] E. Becker, J. Harman and A. Rosenberg: Signatures of fields and extension theory, J. Reine Angew. Math. 330 (1982), 53-75.
[3] D.K. Harrison: Finite and infinite primes for rings and fields, Mem. Amer. Math. Soc. 68 (1966).
[4] I. Kaplansky: Infinite abelian groups, University of Michigan Press 1954.
[5] M. Nagata: Local rings, Huntington, New York 1975.
[6] T. Tamura: Semigroup theory, (Japanese), Kyoritsu Koza, Gendaino Sugaku 8, Tokyo 1972.
[7] D.K. Harrison and H.D. Warner: Infinite primes of fields and completions, Pasific J. Math. 45 (1973), 201-216.
[8] M. Marshall: Abstract Witt rings, Queen's Papers in Pure and Applied Math. No. 57 (1980).
[9] E. Becker: Hereditarily-Pithagorean fields and orderings of higher level, Monografias de Mat. no. 29, Rio de Janeiro (1978).

Osaka Women's University
Daisen-cho, 2-1
Sakai, Osaka 590
Japan

