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1. Introduction

Let ¢, v, k and A be positive integers with v=>k>t. A t-(v, k, \) design
is a pair consisting of a v-set Q and a family B of k-subsets of €, such that
each z-subset of Q is contained in just A elements of B. Elements of Q and
B are called points and blocks, respectively. A #-(v, &, 1) design is often called
a Steiner system S(¢, &k, v). A t-(v, k, \) design is called nontrivial provided
B is a proper subfamily of the family of all 2-subsets of Q, then t<k<v. In
this paper we assume that all designs are nontrivial. For a #-(v, &, A) design
D we use \,(0<i<t) to represent the number of blocks which contain a given
set of ¢ points of D. Then we have

v—1i
LV ) Y
(k——g) (k—1) (k—i—1)--+(k—t—1)
t—1
A t-(v, k, \) design Dis called block-schematic if the blocks of D form an associ-
ation scheme with the relations determined by size of intersection (cf. [3]).
Any Steiner system S(2, &, v) (t=2) is block-schematic (cf. [2]). For a block
B of a t-(v, k, \) design D we use x,(B) (0<i<k) to denote the number of blocks
each of which has exactly ¢ points in common with B. If, for each 7 (=0, ---,
k), x,(B) is the same for every block B, we say that D is block-regular and we
write x; instead of x;(B). Any Steiner system S(¢, k, v) is block-regular (cf.
[6]), and any block-schematic ¢-(v, k, \) design is also block-regular.
Atsumi [1] proved
Result 1. If a Steiner system S(¢, k, v) is block-schematic with ¢>3,
k

then v <k! ([ k :’) holds.
2

Yoshizawa [7] extended Result 1 and prove
Result 2. (a) For each #>1 and A>1, there exist at most finitely many
block-schematic ¢-(v, k, \) designs with k—¢=n and t>3.
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(b) For each n>1 and A>2, there exist at most finitely many block-
schematic #-(v, &, A) designs with k—#=n and ¢>2.

In §2 we first prove the following proposition, and we prove the following
theorem related to the above results.

Proposition. x}_,>wx, holds for any block-schematic Steiner system S(t, k, v)
with k>2(t—1).

Theorem 1. Let & be a positive real number. Then for each t>3 there
exist at most finitely many block-schematic Steiner systems S(¢, k, v) with v<<k*~®,

and for each t>%—|—2 there exist at most finitely many block-schematic Steiner

systems S(t, k, v) with v>k**:,

Yoshizawa [7] proved the following result about block-regular designs.

Result 3. Let ¢ be a real number with ¢>2. Then for each n>1 and
1>0, there exist at most finitely many block-regular #-(v, k, A) designs with
k—t=n, v>ct and x; </ for some 7 (0<i<t—1).

In §3 we notice that the block-regularity of Result 3 is essentially un-
necessary, and we prove

Theorem 2. Let ¢ be a real number with ¢c>2, and n, | be integers with
n>1, 1>0. Then there exist at most finitely many t-(v, k, \) designs each of
which satisfies the following conditions: (i) k—t=n, (ii) v>ct, (iii) there exist
a block B and an integer {(0<i<t—1) with x,(B)<I.

2. Proof of Theorem 1

Let D be a t-(v, k, A) design. Let B,, -+, By, be the blocks of D, and
A,(0<h<E) be the h-adjacency matrix of D of degree A, defined by
1if |B;NB;|=nr
A P i i ’
57) {0 otherwise.
If Dis block-schematic, then
A,-A,-=g u(i, j, h) A,(0<i, j<k) where u(z, j, h) is a non-negative integer

defined by the following: When there exist blocks B, and B, with |[B,NB,|=
h,

ﬂ'(i)j’ h) = l {Br: IBpnBrl = i’ IBq nBrl :j’ lerM} | ’
and when there exist no blocks B, and B, with |B,NB,|=h, u(z,j, h)=0. Let

a be the all -1 column vector of degree A,. Then

A4, a=3 ui,j ) Ay a.
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Hence we have

Lemma 1. For a block-schematic t-(v, k, \) design, x,~x,~=hzj‘, u(t, 7, h)x,
holds (0<1, j<k).

ReMARK. Lemma 1 is essentially well-known (cf. [1], [7]).

Lemma 2. Let D be a Steiner system S(t, k, v) with t>2 and k>2(t—1).
If (¢, k, v)E4, 7, 23), (2, n+1, ®+n+1) (n>2), then there exist three blocks
B,, B, and B, of D such that |B,N\B,|=|B,N\B;|=t—1 and | B,N B;|=0.

Proof. By [6] we have

Ft-1 = (M) (tfl) = ﬂ? <t51)>0'

Hence we may assume that there exist two blocks B, and B, with |B,NB,|=
t—1. Since 2>2(t—1), B,—B, has (distinct) z—1 points a,, -+, @,-;. Let M,
(=B, M,, -, M,‘t_l be the blocks which contain ay, -, ;. If M;NB,=¢
for some i (2<i<\,.,), then |B,NM;|=t—1 and |B,N M;|=0 hold. Let
us suppose M; N B,#% ¢ for i=2, --+, A,-;. Then we have

v—it+1
k—t+1

—1<k—t41. (1)

On the other hand by Theorems 3A. 3 and 4 in [4], we have v—t+1>
(k—t+2) (k—t+1), with equality only when (¢, k, v)=(2, n+1, n*+n+1) (n>
2), (3, 4, 8), (3, 6, 22), (3, 12, 112), (4, 7, 23) or (5, 8, 24). Hence by (1) and
the assumption of Lemma 2, we have (¢, k, v)=(3, 4, 8), (3, 6, 22), (3, 12, 112)
or (5, 8, 24). But we can easily check that S(3, 4, 8), S(3, 6, 22), S(3, 12, 112)
and S(5, 8, 24) satisfy the conclusion of Lemma 2 if S(3, 12, 112) exists (cf.
[5, Corollary 1]).

Proof of Proposition. Let us suppose that D is a block-schematic Steiner
system S(¢, k, v) with k2>2(¢—1). Then by Lemma 1, we have
s = 3 plt—1, 11, B) %,
=0
Now by Lemma 2, u(z—1, t—1, 0)>0 or x,=0 holds when k>2(¢—1) and
t>2 hold. Hence we have x}_; >x,.

Proof of Theorem 1. First let us suppose that D is a block-schematic
Steiner system S(t, k, v) with >3 and v<<k*"®. By Theorems 3A. 3 and 4
in [4], we have v>(k—t+2) (k—t+1)+¢—1, where the right hand of this
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inequality is a polynomial in % of degree two. Hence there exists a positive
number N(&, t) with k<N(g, t), where N(&, t) depends only on & and ¢. Hence
by Result 1, v is bounded above by a function of &€ and ¢.

Next suppose that D is a block-schematic Steiner system S(¢, &k, v) with

t>%—|—2 and v>k3",
By [6] we have

o= a0 (B = 5 (L) @

By [5, Lemma 6] (or [7, Lemma 5]) we have

o= (e (T CRENGED.

) e (G52 (R5Y)

Yo v—t v—t 3
(i=%) (1)
Hence by (2) and (3) we have
2 (v—Fk)--(v—2k+1) b b oni-1 (0—RP( kN
Xo xt—lz(‘v—t)(‘U—k—|—1)k(k—t+1) (k—1)(k—2) (k_t)z(t—1> ’
.2 (‘U—-Zk)k_ . 2h2t-2
Xg—Xj—1 = oFt Rt k (k——t)2 :

Since we may assume k>2¢ by Result 1, we have

wo—ioy> C2R g g pras (O—2R)' goppanes
0 —l= vk_t k‘ = vk-—l kl

On the other hand by Proposition, x?_,>x, holds because of k>2¢. Thus
we get

(v—2k)t—50b=1+2 R¥-4<0) . (4)

Since v>k?%, we have

B (1—%)""+2 (v—2k)i-2 (1~_11;>k (0—2k)"-2

(v—2k)*
[ - §R3t—4 = 1\t-2 o . (5)
5 1—_) 2
k
Since lim (1 ——1—) =—1—, where e is the Napier number, there is a positive num-
#yoo n e
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X 1\* 1\¢-2
ber M,(t) which depends only on # such that (1—-> / {5 (1—-——) }>
n n

M,(t) holds for all integer n>2. On the other hand, (v—2k)'"?k¥* 4>0'"?/
{2!2k%~%} holds. Hence by (5), we have

(v—2k)* > My(1)

Sok-t+2 pat-¢ = R3t-4 ’

,Ut—2

where M,() is a positive number which depends only on £. Since v>k3"*

and t>i§-+2, there exists a positive number My(&, t) which depends only on
& and ¢, such that

(v—2k)*

S,Uk-t+2 k3t—4

>1 holds for any k> Mj(E, t) .

Hence by (4), we must have k<<M,y(&, t). Hence by Result 1, v is bounded
above by a function of € and ¢.

3. Proof of Theorem 2

The proof of Theorem 2 1s essentially similar to that of Theorem 2 in
[7]. So we give its outline.

Let D be a t-(v, k, \) design, and B be a block of D. Counting in two
ways the number of the following set

{(B’, {a, ** a;}): B a block (#B), B NB3a,, - a;, a;F+a; if j*j'}
gives

B+ s+ (8) 2@+ (7 we® = 001 (F)
(6)

for 1=0, .-, t—1, and
B+ @+ (57 me® == (§) )

for i=t, -+, k—1. Let w,(B) (t<i<k—1) be the left hand of the above in-
equality, where w,(B)=(\—1) (f)

By (6) and (7) we have
5@ =32 (D) o= (§) comtE (D wm (-10v, @

for =0, .-+, t—1 (cf. [7, Proof of Lemma 1]). By (8) we have that there exists
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a positive number C(%, /, ¢, ©) which depends only on %, J, ¢, 7, such that x,(B)
—1>0 holds if v>C(k, I, ¢, i) (cf. [7, Proof of Lemma 6]). Namely, v<C
(&, 4, ¢, 2) holds if x(B)<Il. Hence we get

Lemma 3. For each k>2 and 1>0, there exist at most finitely many t-
(v, k, \) designs each of which satisfies that there exists a block B and an integer i
(0<i<t—1) with x,(B)<I.
2n+((2n+2) I)?
c—2

+2n. Let D be a t-(v, k, \) design satisfying v>ct and tzg'ﬂ‘ﬂ_’%izﬂz
c_...

Proof of Theorem 2. By Lemma 3 we may assume that >

+2n. Set v=mt (m>c), where m is not always integral.
By (8) we have

xy(B) = > (ft)
(%)

+(—1) ;2: <{> (?) (—1)‘+"+:§_: (J;) w;(B) (—1)"*,

(G2 s () ()

where x,(B)<w,(B)<(»—1) (f}):(x—l) (’j“) (t<j<k—1)
(cf. [7, Proof of Lemma 5]). Hence we get

(*)

+o=1) F (1) () o8 (4) md (v,

8= (20 2 m) aypen 5 (1) (n— it

for i=0, ..+, #—1. By the above equality and the condition on ¢, we have

(c=1) t—n) fc—=2\"
x,(B)> (D) 1 (c—l) 5. (cf. [7, pp. 797, 798]) .

We remark that the right hand of the above inequality does not depend on i.
Hence there exists a positive number N(c, #, ) (2 Zn—{—((Zn;—Z) ok +2n) which
c—

depends only on ¢, n, /, such that x,(B)—I/>0 holds for =0, .-, t—1 if t>N
(¢, m, I). Namely, t<N(c, n, I) holds if x;(B)<! holds for some 7 (0<i<t—1).
Hence by Lemma 3, we complete the proof.
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