A GENERALIZATION OF HALL QUASIFIELDS

Yutaka HIRAMINE

(Received March 26, 1984)

1. Introduction

Let $Q=Q(+, \circ)$ be a right quasifield which satisfies the following conditions:
(1.1) Q is a two dimensional left vector space over its kernel K with a basis $\{1, \lambda\}$.
(1.2) There exist two mappings r and s from $K^{*}=K-\{0\}$ into K such that every element $\xi=a+b \lambda$ of Q not in K satisfies the equation $\xi^{2}-r(b) \xi-$ $s(b)=0$.
(1.3) Each element of K commutes with all the elements of Q.

Several examples of such Q are known. For example, the Hall quasifields satisfy the conditions above, where r and s are constant functions and the quadratic polynomial $x^{2}-r x-s$ is irreducible over K. Moreover, the quasifields which correspond to the spread sets constructed by Narayana Rao and Satyanarayana [3] also satisfy the conditions above, where $r(x)=3 x^{-1}, s(x)=$ $2 x^{-2}$ and $K=G F\left(5^{2 n-1}\right)$.

The purpose of this paper is to study the quasifields satisfying the conditions (1.1)-(1.3). In $\S 2$ we prove the following theorem which gives a condition for $Q(+, \circ)$ to be a quasifield.

Theorem 1. Let K be a field and let r and s be mappings from K^{*} into K such that (i) $x^{2}-r(u) x-s(u)$ is irreducible over K for each $u \in K^{*}$ and (ii) v^{2} $-r(x) v-s(x)=w x$ has a unique solution in K^{\ddagger} for each $v \in K, w \in K^{*}$. Let $Q=\{x+y \lambda \mid x, y \in K\}$ be a left vector space over K. If a multiplication \circ on Q is defined by

$$
(z+t \lambda) \circ(x+y \lambda)=\left\{\begin{array}{l}
z x-t y^{-1} F(x, y)+(z y-t x+t r(y)) \lambda \text { if } y \neq 0, \\
z x+t x \lambda \quad \text { if } y=0
\end{array}\right.
$$

where $F(x, y)=x^{2}-r(y) x-s(y)$, then $Q(+, \circ)$ is a quasifield which satisfies (1.1)(1.3).

Let $K=G F(q)$ and let Φ_{K} be the set of the ordered pairs (r, s) such that r and s satisfy (i) and (ii) of Theorem 1. The spread set $\Sigma_{r, s}$ which corre-
sponds to $(r, s) \in \Phi_{K}$ is defined as follows: $\Sigma_{r, s}=\{M(x, y) \mid x, y \in K\}$, where $M(x, 0)=\left(\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right)$ for $x \in K$ and $M(x, y)=\left(\begin{array}{ll}x & y \\ f(x, y) & g(x, y)\end{array}\right)$ for $x \in K$ and $y \in K^{\ddagger}$. Here $f(x, y)=-y^{-1}\left(x^{2}-r(y) x-s(y)\right)$ and $g(x, y)=-x+r(y)$.

Let $\pi_{r, s}$ be the translation plane constructed by $\Sigma_{r, s}$ and set $L(x, y)=\{(v$, $v M(x, y)) \mid v \in K \times K\}$ for $x, y \in K, L(\infty)=\{(0,0, v) \mid v \in K \times K\}$. Let G be the linear translation complement of $\pi_{r, s}$ and set $\Delta=\{L(x, 0) \mid x \in K\} \cup\{L(\infty)\}$ and $\Omega=\left\{L(x, y) \mid x \in K, y \in K^{\star}\right\}$. In $\S 3$ we prove the following theorem.

Theorem 2. If $G_{L(\infty), L(0,0)}$ is transitive on Ω, then $r(x)=a x^{n}$ and $s(x)=$ $b x^{2 n}$ for some $a, b \in K$ and n with $0 \leq n \leq q-2$.

The Hall planes and the planes of Narayana Rao and Satyanarayana satisfy the condition of this theorem. But an element of Φ_{K} is not always represented in this form (Remark 3.6.).

Throughout the paper notations are standard and taken from [1] and [2]. All sets and groups are finite except in $\S 2$.

2. Proof of Theorem 1

Let Q be a set with two binary operations + , \circ satisfying the assumption of Theorem 1. Since Q is a left vector space, the following holds.

Lemma 2.1. $(Q,+)$ is an abelian group.
Lemma 2.2. Let $a, b, c, d \in K$ and assume $a+b \lambda \neq 0$ and $c+d \lambda \neq 0$. Then the equation $(a+b \lambda)(x+y \lambda)=c+d \lambda$ has a unique solution for $x+y \lambda$ in $Q^{\ddagger}=Q-\{0\}$.

Proof. (2.1) is equivalent to
or

$$
\begin{align*}
& a x-b y^{-1}\left(x^{2}-r(y) x-s(y)\right)=\mathrm{c}, \tag{2.2}\\
& b r(y)+a y-b x=d \text { if } y \neq 0 \\
& a x=c, b x=d \quad \text { if } y=0 . \tag{2.3}
\end{align*}
$$

By the second equation of (2.2),

$$
\begin{equation*}
b r(y)=b x-a y+d \tag{2.4}
\end{equation*}
$$

Substituting this into the first equation of (2.2), we have

$$
\begin{equation*}
y^{-1}(d x+b s(y))=c \tag{2.5}
\end{equation*}
$$

Hence $b s(y)+d x=c y . \quad$ By this and the second equation of (2.2),

$$
\begin{equation*}
d^{2}-b d r(y)-b^{2} s(y)=(a d-b c) y \tag{2.6}
\end{equation*}
$$

Therefore (2.2) is equivalent to (2.4) and (2.6) when $b \neq 0$.
Assume $b=0$ and $d=0$. Then $a \neq 0$ and $c \neq 0$. Hence (2.1) has no solution in $Q-K$ and has a unique solution $a^{-1} c+0 \lambda$ in $K^{\text {z }}$

Assume $b=0$ and $d \neq 0$. Then $a \neq 0$. By (2.3), (2.1) has no solution in K and by (2.2) it has a unique solution $a^{-1} c+a^{-1} d \lambda$ in $Q-K$.

Assume $b \neq 0$ and $a d-b c=0$. Then (2.6) is equivalent to $\left(b^{-1} d\right)^{2}-r(y)$ $\left(b^{-1} d\right)-s(y)=0$. By the assumption (i) of Theorem 1, (2.1) has no solution in $Q-K$. Therefore it has a unique solution $b^{-1} d+0 \lambda$ in K^{z}.

Assume $b \neq 0$ and $a d-b c \neq 0$. Then (2.1) has no solution in K by (2.3). Since $b \neq 0$, (2.6) is equivalent to $\left(b^{-1} d\right)^{2}-r(y)\left(b^{-1} d\right)-s(y)=b^{-2}(a d-b c) y$ and hence (2.6) has a unique solution y^{\prime} in K^{*} by the assumption (ii) of Theorem 1. Let x^{\prime} be the unique solution of $b r\left(y^{\prime}\right)=b x-a y^{\prime}+d$. Then $x^{\prime}+y^{\prime} \lambda$ is a unique solution of (2.1).

Lemma 2.3. Let $a, b, c, d \in K$ and assume $a+b \lambda \neq 0, c+d \lambda \neq 0$. Then the equation

$$
\begin{equation*}
(x+y \lambda)(a+b \lambda)=c+d \lambda \tag{2.7}
\end{equation*}
$$

has a unique solution for $x+y \lambda$ in Q^{\ddagger}.
Proof. If $b=0$, (2.7) has a unique solution $a^{-1} c+a^{-1} d \lambda$. Assume $b \neq 0$. Then (2.7) is equivalent to linear equations

$$
\begin{align*}
& x a-y b^{-1}\left(a^{2}-r(b) a-s(b)\right)=c, \\
& x b+y(r(b)-a)=d \tag{2.8}
\end{align*}
$$

Since $a(r(b)-a)-b\left(-b^{-1}\left(a^{2}-r(b) a-s(b)\right)\right)=-s(b) \neq 0$ by the assumption (i) of Theorem 1, (2.8) has a unique solution $(x, y) \neq(0,0)$. Thus (2.7) has a unique solution in Q^{\ddagger}.

Proof of Theorem 1.
It follows immediately from the definition that $Q(+, \circ)$ satisfies the following.

$$
\begin{gather*}
\xi 1=1 \xi=\xi \text { for all } \xi \in Q \tag{2.9}\\
(\xi+\eta) \mu=\xi \mu+\eta \mu \text { for all } \xi, \eta, \mu \in Q . \tag{2.10}\\
\xi 0=0 \quad \text { for all } \xi \in Q \tag{2.11}
\end{gather*}
$$

By Lemmas 2.1-2.3 and (2.9)-(2.11), Q is a weak quasifield. Since Q is a finite dimensional vector space over K, it is a quasifield by Theorem 7.3 of [1]. Thus we have the theorem.

Suppose $|K|<\infty$. The spread set $\Sigma_{r, s}=\{M(x, y) \mid x, y \in K\}$ which
corresponds to the above quasifield is defined as follows: Let $K=G F(q)$ and let $M(x, y)=\left(\begin{array}{ll}x & y \\ f(x, y) & g(x, y)\end{array}\right)$ be a 2×2 matrix over K. Define $M(x, y) \in \Sigma_{r, s}$ if and only if $\lambda \circ(x+y \lambda)=f(x, y)+g(x, y) \lambda$. Then we have $M(x, 0)=\left(\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right)^{\prime}$ for $x \in K$ and $M(x, y)=\left(\begin{array}{ll}x & y \\ f(x, y) & g(x, y)\end{array}\right)$, where $f(x, y)=-y^{-1}\left(x^{2}-r(y) x-s(y)\right)$ and $g(x, y)=-x+r(y)$ for $x \in K$ and $y \in K^{*}$.

3. The proof of Theorem 2

Throughout this section let p be a prime and $K=G F(q), q=p^{m}$. We use the following notations.

$$
K^{2}=\left\{k^{2} \mid k \in K\right\}
$$

Φ_{K} the set of ordered pairs (r, s) of r and s which satisfy the conditions (i) and (ii) of Theorem 1
$M_{2}(K)$ the set of 2×2 matrices over K
$\operatorname{tr}(M)$ the trace of a matrix M of $M_{2}(K)$
$\operatorname{det}(M)$ the determinant of a matrix M of $M_{2}(K)$
Let $(r, s) \in \Phi_{K}$ and $\Sigma_{r, s}$ the corresponding spread set defined in the last paragraph of $\S 2$. Let $\pi_{r, s}$ be the translation plane of order q^{2} constructed from $\Sigma_{r, s}$

Lemma 3.1. (i) Let $M(x, y) \in \Sigma_{r, s .}$. If $y \neq 0$, then $r(y)=\operatorname{tr}(M(x, y))$ and $s(y)=-\operatorname{det}(M(x, y))$.
(ii) Let $P, M \in M_{2}(K)$ with $\operatorname{det}(P) \neq 0$ and set $P^{-1} M P=\binom{* y}{* *}$. Assume $y \neq$ 0. Then $P^{-1} M P \in \Sigma_{r, s}$ if and only if $r(y)=\operatorname{tr}\left(P^{-1} M P\right)$ and $s(y)=-\operatorname{det}\left(P^{-1} M P\right)$.

Proof. By an easy computation we have (i).
The "only if" part of (ii) is an immediate consequence of (i). Assume $r(y)=\operatorname{tr}\left(P^{-1} M P\right)$ and $s(y)=-\operatorname{det}\left(P^{-1} M P\right)$ and set $P^{-1} M P=\left(\begin{array}{ll}x & y \\ z & u\end{array}\right)$. Since tr $\left(P^{-1} M P\right)=\operatorname{tr}(M)$ and $\operatorname{det}\left(P^{-1} M P\right)=\operatorname{det}(M)$, we have

$$
\begin{equation*}
r(y)=\operatorname{tr}(M)=x+u \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
s(y)=-\operatorname{det}(M)=-x u+y z \tag{3.2}
\end{equation*}
$$

By (3.1), $u=-x+r(y)$. Substituting this into (3.2) gives $s(y)=x^{2}-r(y) x+y z$. As $y \neq 0, z=-y^{-1}\left(x^{2}-r(y) x-s(y)\right)$. Hence $\left(\begin{array}{l}x \\ z \\ z\end{array}\right)=\left(\begin{array}{ll}x & y \\ f(x, y) & g(x, y)\end{array}\right) \in \Sigma_{r, s}$ by what we have mentioned in the last paragraph of $\S 2$.

Lemma 3.2. (i) The equation $v^{2}-r(x) v-s(x)=w x$ has a unique solution
in K^{*} for any $v \in K, w \in K^{*}$ if and only if $(x-y) v^{2}-(x r(y)-y r(x)) v-(x s(y)-$ $y s(x)) \neq 0$ for any $v \in K$ and $x, y \in K^{z}, x \neq y$.
(ii) Assume $p>2$. Then $(r, s) \in \Phi_{K}$ if and only if the following two conditions are satisfied.
(a) $(r(y))^{2}+4 s(y) \notin K^{2}$ for any $y \in K^{\sharp}$.
(b) $\quad(x r(y)-y r(x))^{2}+4(x-y)(x s(y)-y s(x)) \notin K^{2}$ for any $x, y \in K^{\ddagger}, x \neq y$.

Proof. Assume $(x-y) v^{2}-(x r(y)-y r(x)) v-(x s(y)-y s(x))=0$ for some $V \in$ K and $x, y \in K^{\ddagger}, x \neq y$. Thdn $x\left(v^{2}-r(y) v-s(y)\right)=y\left(v^{2}-r(x) v-s(x)\right)$. Hence $\left(v^{2}-r(y) v-s(y)\right) / y=\left(v^{2}-r(x) v-s(x)\right) / x$. Put $w=\left(v^{2}-r(x) v-s(x)\right) / x$. Then w $\neq 0$ as $v^{2}-r(x) v-s(x) \neq 0$ by the assumption (i) of Theorem 1 and the equation $v^{2}-r(\xi) v-s(\xi)=w \xi$ has at least two solutions for ξ.

Conversely, assume $v^{2}-r(x) v-s(x)=w x$ and $v^{2}-r(y) v-s(y)=w y$ for some $x, \quad y \in K^{*}, \quad x \neq y$. Then $\quad w x y=y\left(v^{2}-r(x) v-s(x)\right)=x\left(v^{2}-r(y) v-s(y)\right)$. This gives $(x-y) v^{2}-(x r(y)-y r(x)) v-(x s(y)-y s(x))=0$. Therefore (i) holds.

Assume $p>2$. Then it is well known that a quadratic equation $a x^{2}+b x+$ $c=0$ over K has no solution in K if and only if $b^{2}-4 a c \notin K^{2}$. Hence (ii) follows immediately from (i).

Lemma 3.3. Assume $|K|>3$ and let $P, Q \in M_{2}(K)$. If $P+x Q \in \Sigma_{r, s}$ for any $x \in K$, then either (i) $Q=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and $P \in \Sigma_{r, s}$ or (ii) P and Q are scalar matrices.

Proof. Set $\Sigma=\Sigma_{r, s}, P=\left(\begin{array}{ll}i & j \\ k & l\end{array}\right), i, j, k, l \in K$ and $Q=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), a, b, c, d \in K$. Then $P+x Q=\left(\begin{array}{ll}i+a x & j+b x \\ k+c x & l+d x\end{array}\right)$.

Assume $j=b=0$. Then $P+x Q \in \Sigma$ if and only if $P+x Q$ is a scalar matrix. Hence $i+a x=l+d x$ and $k+c x=0$. Since x is arbitrary, it follows that $i=l$, $a=d$ and $k=c=0$. Thus (ii) holds when $j=b=0$.

Assume $j \neq 0$ and $b=0$. By Lemma 3.1, $P+x Q \in \Sigma$ if and only if $r(j)=$ $\operatorname{tr}(P+x Q)$ and $s(j)=-\operatorname{det}(P+x Q)$. Hence
and

$$
\begin{gather*}
r(j)=i+l+(a+d) x \tag{3.3}\\
s(j)=-a d x^{2}+(j c-a l-i d) x+j k-i l \tag{3.4}
\end{gather*}
$$

Since (3.3) and (3.4) hold for all $x \in K$, we have

$$
\begin{equation*}
r(j)=i+l, \quad a+d=0 \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
s(j)=j k-i l, \quad j c-a l-i d=0, a d=0 \tag{3.6}
\end{equation*}
$$

Hence $a=d=0$ so $j c=0$. As $j \neq 0, c=0$. Therefore $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. Thus (i) holds when $j \neq 0$ and $b=0$.

Assume $b \neq 0$. Set $x=-b^{-1} j$. Then $j+b x=0$ and so $P+x Q$ is a scalar
matrix. Hence $k-c b^{-1} j=0$ and $i-a b^{-1} j=l-d b^{-1} j$. Setting $w=-b^{-1} j$, we have $j=-b w, k=-c w$ and $l=i+a w-d w$. Putting $y=j+b x$ gives $P+x Q=$ $\left(\begin{array}{cc}a b^{-1} y+a w+i & y \\ b^{-1} c y & b^{-1} d y+a w+i\end{array}\right)$. By Lemma 3.1, we have $r(y)=b^{-1}(a+d) y+2$ $(a w+i)$ and $s(y)=-b^{-2}(a d-b c) y^{2}-b^{-1}(a+d)(a w+i) y-(a w+i)^{2}$. In particular

$$
x r(y)-y r(x)=2(i+a w)(x-y)
$$

and

$$
\begin{equation*}
x s(y)-y s(x)=(x-y)\left(b^{-2}(a d-b c) x y-(a w+i)^{2}\right) . \tag{3.7}
\end{equation*}
$$

If $p=2$, then $x r(y)-y r(x)=0$ by (3.7). Hence we have a contradiction by Lemma 3.2 (i).

If $p>2$, then $(x r(y)-y r(x))^{2}+4(x-y)(x s(y)-y s(x))=4(x-y)^{2} b^{-2}(a d-b c)$ $x y \notin K^{2}$ by Lemma 3.2 (ii). Let x be any element of $K^{2}-\{0\}$ and let y be any element of $K-K^{2}$. Then clearly $4(x-y)^{2} b^{-2} x y \notin K^{2}$. Hence $a d-b c$ must be an element of K^{2}. From this $x^{\prime} y^{\prime} \notin K^{2}$ for any $x^{\prime}, y^{\prime} \in K^{\sharp}, x^{\prime} \neq y^{\prime}$. In particular $K^{2}=\{0,1\}$, which implies $K=G F(3)$. This contradicts the assumption.

Set $L(x, y)=\{(v, v M(x, y)) \mid v \in K \times K\}$ for $x, y \in K, L(\infty)=\{(0,0, v) \mid$ $v \in K \times K\}$ and $\Delta=\{L(x, 0) \mid x \in K\} \cup\{L(\infty)\}, \Omega=\left\{L(x, y) \mid x \in K, y \in K^{*}\right\}$. Then $\Delta \cup \Omega$ is the set of lines of $\pi_{r, s}$ through $(0,0,0,0)$. Let G be the linear translation complement of $\pi_{r, s}$ and set $H=G_{L(\infty), L(0,0)}$, the stabilizer of the lines $L(\infty)$ and $L(0,0)$ in G. Let $\sigma=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ be a nonsingular 4×4 matrix, where $A, B, C, D \in M_{2}(K)$. Then the following criterion is well known: σ is an element of G if and only if the following conditions are satisfied.
(1) If C is nonsingular, then $C^{-1} D \in \Sigma_{r, s}$. (In this case $L(\infty) \sigma=L(u, v)$, where $C^{-1} D=M(u, v) \in \Sigma_{r, s}$)
(2) If C is singular, then $C=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and D is nonsingular. (In this case $L(\infty) \sigma=L(\infty)$.)
(3) If $A+M(x, y) C$ is nonsingular, then $(A+M(x, y) C)^{-1}(B+M(x, y) D)$ $\in \Sigma_{r, s}$. (In this case $L(x, y) \sigma=L(u, v)$, where $(A+M(x, y) C)^{-1}(B+M(x, y)$ $D)=M(u, v) \in \Sigma_{r, s}$)
(4) If $A+M(x, y) C$ is singular, then $A+M(x, y) C=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. (In this case $L(x, y) \sigma=L(\infty)$.)

Lemma 3.4. Assume either r or s is noi a constant function. Let A, B, C and D be elements of $M_{2}(K)$ and set $\sigma=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$. If $\sigma \in H$, then the following hold.
(i) $B=C=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and $A=\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right), D=k A$ for some $a, d, k \in K^{*}$ and $c \in K$.
(ii) $\quad r\left(a^{-1} d k y\right)=k r(y), s\left(a^{-1} d k y\right)=k^{2} s(y)$. Moreover $L(x, y)=L\left(k\left(x+a^{-1} c y\right)\right.$, $k a^{-1} d y$) for all $x, y \in K, y \neq 0$.

Proof. Since σ fixes $L(\infty)$ and $L(0,0), B=D=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. Hence $\sigma=\left(\begin{array}{ll}A & O \\ O & D\end{array}\right)$ and $A^{-1} M D \in \Sigma$ for any $M \in \Sigma$. In particular $A^{-1} M(x, 0) D=x A^{-1} D \in \Sigma$ for each $x \in K$. If $K=G F(3), s(1)=s(-1) \neq 0$ and $(r(1)+r(-1))^{2}=(r(1))^{2}=(r(-1))^{2}$ $=-(s(\pm 1))-1$ by Lemma 3.2 (ii). Hence r and s are constant functions. Applying Lemma 3.3 we have $A^{-1} D=k$ for some $k \in K^{\ddagger}$. Hence $A^{-1} M D=$ $k A^{-1} M A \in \Sigma$ for any $M \in \Sigma$. Put $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and let $x \in K, y \in K^{*}$. Then $k A^{-1} M(x, y) A=M(u, v)$ for some $u \in K$ and $v \in K^{\ddagger}$. Set $M(x, y)=\binom{x y}{f}$ and $M(u, v)=\left(\begin{array}{cc}u & v \\ f^{\prime} & g^{\prime}\end{array}\right) . \quad$ Since $\left(\begin{array}{cc}k x & k y \\ k f & k g\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}u & v \\ f^{\prime} & g^{\prime}\end{array}\right)$, we have
$b k x+d k y=a v+b g^{\prime}$,

$$
\begin{equation*}
b k f+d k g=c v+d g^{\prime} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
a k x+c k y=a u+b f^{\prime} \tag{3.9}
\end{equation*}
$$

Hence $d(a v)-b(c v)=d(b k x+d k y)-b(b k f+d k g)$ by (3.8) and (3.9). From this we have

$$
\begin{equation*}
(a d-b c) v=k\left(\left(b^{2} y^{-1}\right) x^{2}+\left(2 b d-b^{2} y^{-1} r(y)\right) x+\left(d^{2} y-b^{2} y^{-1} s(y)-b d r(y)\right) .\right. \tag{3.11}
\end{equation*}
$$

On the other hand, by Lemma 3.1 (i), we have

$$
\begin{align*}
& k r(y)=r(v) \\
& k^{2} s(y)=s(v) \tag{3.12}
\end{align*}
$$

and
We argue $b=0$. Suppose $b \neq 0$ and set $\Psi_{y}=\{v \mid r(v)=k r(y)\}$ for $y \in K^{\ddagger}$. By (3.11), $\left|\Psi_{y}\right| \geq(q+1) / 2$ if $p>2$ and $\left|\Psi_{y}\right| \geq q / 2$ if $p=2$ for any $y \in K^{*}$. Thus $\left|\Psi_{y}\right|>\left|K^{\ddagger}\right| / 2$ for any $y \in K^{\sharp}$ so we have $\Psi_{y} \cap \Psi_{z} \neq \phi$ for all $y, z \in K^{\sharp}$. This implies that r is a constant function. Similarly s is also a constant function. This contradicts the assumption. Therefore $b=0$.

From (3.8) and (3.10), $v=a^{-1} d k y$ and $u=k x+a^{-1} c k y$. Hence $r\left(a^{-1} d k y\right)=$ $k r(y), s\left(a^{-1} d k y\right)=k^{2} s(y)$ by (3.12) and $L(x, y) \sigma=L(u, v)=L\left(k x+a^{-1} c k y, a^{-1} d k y\right)$. Thus lemma holds.

Lemma 3.5. Set $\Omega_{y}=\{L(x, y) \mid x \in K\}$ for $y \in K^{*}$ and $H_{1}=\left\{\left(\begin{array}{ll}A & O \\ O & A\end{array}\right)\right.$ $\left.\left\lvert\, A=\left(\begin{array}{ll}a & 0 \\ c & a\end{array}\right)\right., a \in K^{\ddagger}, c \in K\right\}$. Then $H_{1} \subset H . \quad$ Moreover H_{1} acts on Ω_{y} and is transitive on Ω_{y} for each $y \in K^{*}$.

Proof. Let $\sigma=\left(\begin{array}{ll}A & O \\ O & A\end{array}\right) \in H_{1}$. Since $A^{-1} M(x, y) A=\left(\begin{array}{cc}x+a^{-1} c y & y \\ * & *\end{array}\right), A^{-1} M$ $(x, y) A \in \Sigma$ by Lemma 3.1 (ii) so $\sigma \in H$. Moreover $L(x, y) \sigma=L\left(x+a^{-1} c y, y\right)$. Since $a \in K^{*}$ and $c \in K$ are arbitrary, we have the lemma.

Proof of Theorem 2.
Any mapping from K^{\ddagger} into K can be uniquely written in the form $\sum_{i=0}^{q-2} c_{i} x^{i}$, $c_{i} \in K, 0 \leq i \leq q-2$. Set $r(y)=\sum_{i=0}^{q-2} c_{i} y^{i}$ and $s(y)=\sum_{i=0}^{q-2} d_{i} y^{i}$. We may assume that r or s is not a constant function. By Lemma 3.4 (ii), $L(0,1) \sigma=L\left(a^{-1} c k\right.$, $a^{-1} d k$), where $\sigma=\left(\begin{array}{cc}A & O \\ O & k A\end{array}\right), A=\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right)$. By Lemma 3.5, H is transitive on Ω if and only if $K^{*}=\left\{a^{-1} d k \left\lvert\,\left(\begin{array}{cc}A & O \\ O & k A\end{array}\right) \in H\right., A=\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right)\right\}$. Set $h=a^{-1} d k$. Then, by Lemma 3.4,

$$
\begin{equation*}
r(h y)=a d^{-1} h r(y) \tag{3.13}
\end{equation*}
$$

$$
\begin{equation*}
s(h y)=\left(a d^{-1}\right)^{2} h^{2} s(y) \tag{3.14}
\end{equation*}
$$

and
Suppose H is transitive on Ω. Then, for any $h \in K^{*}$, there exist a and d in K^{*} which satisfy (3.13) and (3.14) simultaneously. Hence $\sum_{i=0}^{q-1} c_{i} h^{i} y^{i-2}=\sum_{i=0}^{q-2}$ $c_{i} a d^{-1} h y^{i}$ and $\sum_{i=0}^{q-2} d_{i} h^{i} y^{i}=\sum_{i=0}^{q-2} d_{i}\left(a d^{-1}\right)^{2} h^{2} y^{i}$. Therefore $c_{i} h^{i}=c_{i} a d^{-1} h$ and $d_{i} h^{i=0}=$ $d_{i}\left(a d^{-1}\right)^{2} h^{2}$ for all i with $0 \leq i \leq q-2$. If $c_{m} \neq 0$ and $c_{n} \neq 0$ for some m, n with $0 \leq m, n \leq q-2$, then $h^{m-1}=h^{n-1}=a d^{-1}$ and so $h^{m-n}=1$ for any $h \in K^{\ddagger}$. Thus $m=n$, so that we have $r(y)=c_{n} y^{n}$. By a similar argument above, we have $s(y)=$ $d_{t} y^{t}$ for some t with $0 \leq t \leq q-2$.

Since $(r(h y))^{2} /(r(y))^{2}=s(h y) / s(y)$ by (3.13) and (3.14), $c_{n}^{2} h^{2 n} y^{2 n} / c_{n}^{2} y^{2 n}=d_{t} h^{t} y^{t} /$ $d_{t} y^{t}$. From this $h^{2 n-t}=1$ for any $h \in K^{*}$. Thus $t \equiv 2 n(\bmod q-1)$.

Remark 3.6. An element of Φ_{K} is not always represented in the form $(r(x), s(x)), r(x)=a x^{n}, s(x)=b x^{2 n}$. We list some of such examples below, which were obtained by a computer search using Lemma 3.2.
(i) $K=G F(7), r(x)=4 x^{5}+6 x^{4}, s(x)=6 x^{5}+3 x^{4}+6 x^{3}+4 x^{2}+3$.
(ii) $K=G F(11), r(x)=5 x^{9}+6 x^{7}+9 x^{6}+2, s(x)=3 x^{9}+5 x^{8}+6 x^{7}+9 x^{6}+4 x^{5}+$ $10 x^{4}+9 x^{3}+2 x^{2}+9$.
(iii) $K=G F(11), r(x)=2 x^{9}+6 x^{8}+4 x^{7}+3 x^{6}+8, s(x)=5 x^{9}+x^{8}+8 x^{6}+10 x^{5}+$ $x^{4}+2 x^{3}+10 x^{2}+10$.

References

[1] D.R. Hugese and F.C. Piper: Projedtive planes, Springer-Verlag, Berlin-Hei-delberg-New York, 1973.
[2] H. Lüneburg: Translation planes, Springer-Verlag, Berlin-Heidelberg-New York, 1980.
[3] M.L. Narayana Rao and K. Satyanarayana: A new class of square order planes, J. Combin. Theory Ser. A 35 (1983), 33-42.

Department of Mathematics
College of General Education
Osaka University
Toyonaka, Osaka 560
Japan

