A GENERALIZATION OF HALL QUASIFIELDS

YUTAKA HIRAMINE

(Received March 26, 1984)

1. Introduction

Let $Q=Q(+, \circ)$ be a right quasifield which satisfies the following conditions:

(1.1) Q is a two dimensional left vector space over its kernel K with a basis $\{1, \lambda\}$.

(1.2) There exist two mappings r and s from $K^{\ddagger}=K-\{0\}$ into K such that every element $\xi=a+b\lambda$ of Q not in K satisfies the equation $\xi^2-r(b)\xi-s(b)=0$.

(1.3) Each element of K commutes with all the elements of Q.

Several examples of such Q are known. For example, the Hall quasifields satisfy the conditions above, where r and s are constant functions and the quadratic polynomial x^2-rx-s is irreducible over K. Moreover, the quasifields which correspond to the spread sets constructed by Narayana Rao and Satyanarayana [3] also satisfy the conditions above, where $r(x)=3x^{-1}$, $s(x)=2x^{-2}$ and $K=GF(5^{2n-1})$.

The purpose of this paper is to study the quasifields satisfying the conditions (1.1)-(1.3). In §2 we prove the following theorem which gives a condition for $Q(+, \circ)$ to be a quasifield.

Theorem 1. Let K be a field and let r and s be mappings from K^{\ddagger} into K such that (i) $x^2-r(u)x-s(u)$ is irreducible over K for each $u \in K^{\ddagger}$ and (ii) $v^2 - r(x)v - s(x) = wx$ has a unique solution in K^{\ddagger} for each $v \in K$, $w \in K^{\ddagger}$. Let $Q = \{x+y\lambda \mid x, y \in K\}$ be a left vector space over K. If a multiplication \circ on Q is defined by

$$(z+t\lambda)\circ(x+y\lambda) = \begin{cases} zx-ty^{-1}F(x, y)+(zy-tx+t r(y))\lambda & \text{if } y \neq 0, \\ zx+tx\lambda & \text{if } y=0, \end{cases}$$

where $F(x, y) = x^2 - r(y)x - s(y)$, then $Q(+, \circ)$ is a quasifield which satisfies (1.1)-(1.3).

Let K=GF(q) and let Φ_{κ} be the set of the ordered pairs (r, s) such that r and s satisfy (i) and (ii) of Theorem 1. The spread set $\Sigma_{r,s}$ which corre-

Y. HIRAMINE

sponds to $(r, s) \in \Phi_K$ is defined as follows: $\sum_{r,s} = \{M(x, y) | x, y \in K\}$, where $M(x, 0) = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$ for $x \in K$ and $M(x, y) = \begin{pmatrix} x & y \\ f(x, y) & g(x, y) \end{pmatrix}$ for $x \in K$ and $y \in K^{\ddagger}$. Here $f(x, y) = -y^{-1}(x^2 - r(y)x - s(y))$ and g(x, y) = -x + r(y).

Let $\pi_{r,s}$ be the translation plane constructed by $\Sigma_{r,s}$ and set $L(x, y) = \{(v, vM(x, y)) | v \in K \times K\}$ for $x, y \in K, L(\infty) = \{(0, 0, v) | v \in K \times K\}$. Let G be the linear translation complement of $\pi_{r,s}$ and set $\Delta = \{L(x, 0) | x \in K\} \cup \{L(\infty)\}$ and $\Omega = \{L(x, y) | x \in K, y \in K^{\sharp}\}$. In §3 we prove the following theorem.

Theorem 2. If $G_{L(\infty),L(0,0)}$ is transitive on Ω , then $r(x)=ax^n$ and $s(x)=bx^{2^n}$ for some $a, b \in K$ and n with $0 \le n \le q-2$.

The Hall planes and the planes of Narayana Rao and Satyanarayana satisfy the condition of this theorem. But an element of Φ_K is not always represented in this form (Remark 3.6.).

Throughout the paper notations are standard and taken from [1] and [2]. All sets and groups are finite except in §2.

2. Proof of Theorem 1

Let Q be a set with two binary operations +, \circ satisfying the assumption of Theorem 1. Since Q is a left vector space, the following holds.

Lemma 2.1. (Q, +) is an abelian group.

Lemma 2.2. Let a, b, c, $d \in K$ and assume $a+b\lambda \neq 0$ and $c+d\lambda \neq 0$. Then the equation $(a+b\lambda)(x+y\lambda)=c+d\lambda$ (2.1) has a unique solution for $x+y\lambda$ in $Q^{\ddagger}=Q-\{0\}$.

Proof. (2.1) is equivalent to

$$ax-by^{-1}(x^2-r(y)x-s(y)) = c$$
, (2.2)

$$b r(y) + ay - bx = d$$
 if $y \neq 0$

$$ax = c, bx = d$$
 if $y = 0$. (2.3)

or

By the second equation of (2.2),

$$b r(y) = bx - ay + d \tag{2.4}$$

Substituting this into the first equation of (2.2), we have

$$y^{-1}(dx+b s(y)) = c$$
. (2.5)

Hence b s(y) + dx = cy. By this and the second equation of (2.2),

$$d^{2}-bd r(y)-b^{2} s(y) = (ad-bc) y.$$
(2.6)

62

Therefore (2.2) is equivalent to (2.4) and (2.6) when $b \neq 0$.

Assume b=0 and d=0. Then $a \neq 0$ and $c \neq 0$. Hence (2.1) has no solution in Q-K and has a unique solution $a^{-1}c+0\lambda$ in K^*

Assume b=0 and d=0. Then a=0. By (2.3), (2.1) has no solution in K and by (2.2) it has a unique solution $a^{-1}c+a^{-1}d\lambda$ in Q-K.

Assume $b \neq 0$ and ad-bc=0. Then (2.6) is equivalent to $(b^{-1}d)^2 - r(y)$ $(b^{-1}d) - s(y) = 0$. By the assumption (i) of Theorem 1, (2.1) has no solution in Q-K. Therefore it has a unique solution $b^{-1}d+0\lambda$ in K^{\ddagger} .

Assume $b \neq 0$ and $ad-bc \neq 0$. Then (2.1) has no solution in K by (2.3). Since $b \neq 0$, (2.6) is equivalent to $(b^{-1}d)^2 - r(y)$ $(b^{-1}d) - s(y) = b^{-2}(ad-bc)y$ and hence (2.6) has a unique solution y' in K^{\sharp} by the assumption (ii) of Theorem 1. Let x' be the unique solution of br(y') = bx - ay' + d. Then $x' + y' \lambda$ is a unique solution of (2.1).

Lemma 2.3. Let a, b, c, $d \in K$ and assume $a+b\lambda \neq 0$, $c+d\lambda \neq 0$. Then the equation

$$(x+y\lambda)(a+b\lambda) = c+d\lambda \tag{2.7}$$

has a unique solution for $x+y\lambda$ in Q^* .

Proof. If b=0, (2.7) has a unique solution $a^{-1}c+a^{-1}d\lambda$. Assume $b \neq 0$. Then (2.7) is equivalent to linear equations

$$xa - yb^{-1}(a^2 - r(b)a - s(b)) = c$$
,
 $xb + y(r(b) - a) = d$. (2.8)

Since $a(r(b)-a)-b(-b^{-1}(a^2-r(b)a-s(b))) = -s(b) \neq 0$ by the assumption (i) of Theorem 1, (2.8) has a unique solution $(x, y) \neq (0, 0)$. Thus (2.7) has a unique solution in Q^{\sharp} .

Proof of Theorem 1.

It follows immediately from the definition that $Q(+, \circ)$ satisfies the following.

$$\xi 1 = 1\xi = \xi \text{ for all } \xi \in Q. \tag{2.9}$$

$$(\xi + \eta)\mu = \xi\mu + \eta\mu$$
 for all $\xi, \eta, \mu \in Q$. (2.10)

$$\xi 0 = 0 \quad \text{for all } \xi \in Q \,. \tag{2.11}$$

By Lemmas 2.1-2.3 and (2.9)-(2.11), Q is a weak quasifield. Since Q is a finite dimensional vector space over K, it is a quasifield by Theorem 7.3 of [1]. Thus we have the theorem.

Suppose $|K| < \infty$. The spread set $\Sigma_{r,s} = \{M(x, y) | x, y \in K\}$ which

Y. HIRAMINE

corresponds to the above quasifield is defined as follows: Let K=GF(q) and let $M(x, y) = \begin{pmatrix} x & y \\ f(x, y) & g(x, y) \end{pmatrix}$ be a 2×2 matrix over K. Define $M(x, y) \in \Sigma_{r,s}$ if and only if $\lambda \circ (x+y\lambda) = f(x, y) + g(x, y)\lambda$. Then we have $M(x, 0) = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$ for $x \in K$ and $M(x, y) = \begin{pmatrix} x & y \\ f(x, y) & g(x, y) \end{pmatrix}$, where $f(x, y) = -y^{-1}(x^2 - r(y)x - s(y))$ and g(x, y) = -x + r(y) for $x \in K$ and $y \in K^{\ddagger}$.

3. The proof of Theorem 2

Throughout this section let p be a prime and K=GF(q), $q=p^m$. We use the following notations.

$$K^2 = \{k^2 | k \in K\}$$

- Φ_{κ} the set of ordered pairs (r, s) of r and s which satisfy the conditions (i) and (ii) of Theorem 1
- $M_2(K)$ the set of 2×2 matrices over K
- tr(M) the trace of a matrix M of $M_2(K)$
- det(M) the determinant of a matrix M of $M_2(K)$

Let $(r, s) \in \Phi_K$ and $\Sigma_{r,s}$ the corresponding spread set defined in the last paragraph of §2. Let $\pi_{r,s}$ be the translation plane of order q^2 constructed from $\Sigma_{r,s}$.

Lemma 3.1. (i) Let $M(x, y) \in \Sigma_{r,s}$. If $y \neq 0$, then r(y) = tr(M(x, y)) and $s(y) = -\det(M(x, y))$.

(ii) Let P, $M \in M_2(K)$ with $\det(P) \neq 0$ and set $P^{-1}MP = \begin{pmatrix} * & y \\ * & * \end{pmatrix}$. Assume $y \neq 0$. Then $P^{-1}MP \in \Sigma_{r,s}$ if and only if $r(y) = tr(P^{-1}MP)$ and $s(y) = -\det(P^{-1}MP)$.

Proof. By an easy computation we have (i).

S

The "only if" part of (ii) is an immediate consequence of (i). Assume $r(y) = tr(P^{-1}MP)$ and $s(y) = -det(P^{-1}MP)$ and set $P^{-1}MP = \begin{pmatrix} x & y \\ z & u \end{pmatrix}$. Since $tr(P^{-1}MP) = tr(M)$ and $det(P^{-1}MP) = det(M)$, we have

$$r(y) = tr(M) = x + u \tag{3.1}$$

and

$$(y) = -\det(M) = -xu + yz . \qquad (3.2)$$

By (3.1), u = -x + r(y). Substituting this into (3.2) gives $s(y) = x^2 - r(y)x + yz$. As $y \neq 0$, $z = -y^{-1}(x^2 - r(y)x - s(y))$. Hence $\begin{pmatrix} x & y \\ z & u \end{pmatrix} = \begin{pmatrix} x & y \\ f(x, y) & g(x, y) \end{pmatrix} \in \Sigma_{r,s}$ by what we have mentioned in the last paragraph of §2.

Lemma 3.2. (i) The equation $v^2 - r(x)v - s(x) = wx$ has a unique solution

in K^{\ddagger} for any $v \in K$, $w \in K^{\ddagger}$ if and only if $(x-y)v^2 - (xr(y)-yr(x))v - (xs(y)-ys(x)) \neq 0$ for any $v \in K$ and $x, y \in K^{\ddagger}, x \neq y$.

(ii) Assume p>2. Then $(r, s) \in \Phi_{\kappa}$ if and only if the following two conditions are satisfied.

- (a) $(r(y))^2 + 4s(y) \notin K^2$ for any $y \in K^*$.
- (b) $(xr(y)-yr(x))^2+4(x-y)(xs(y)-ys(x)) \in K^2$ for any $x, y \in K^*, x \neq y$.

Proof. Assume $(x-y)v^2 - (xr(y)-yr(x))v - (xs(y)-ys(x)) = 0$ for some $V \in K$ and $x, y \in K^{\ddagger}, x \neq y$. Then $x(v^2 - r(y)v - s(y)) = y(v^2 - r(x)v - s(x))$. Hence $(v^2 - r(y)v - s(y))/y = (v^2 - r(x)v - s(x))/x$. Put $w = (v^2 - r(x)v - s(x))/x$. Then $w \neq 0$ as $v^2 - r(x)v - s(x) \neq 0$ by the assumption (i) of Theorem 1 and the equation $v^2 - r(\xi)v - s(\xi) = w\xi$ has at least two solutions for ξ .

Conversely, assume $v^2 - r(x)v - s(x) = wx$ and $v^2 - r(y)v - s(y) = wy$ for some $x, y \in K^{\ddagger}, x \neq y$. Then $wxy = y(v^2 - r(x)v - s(x)) = x(v^2 - r(y)v - s(y))$. This gives $(x-y)v^2 - (xr(y) - yr(x))v - (xs(y) - ys(x)) = 0$. Therefore (i) holds.

Assume p>2. Then it is well known that a quadratic equation $ax^2+bx+c=0$ over K has no solution in K if and only if $b^2-4ac \notin K^2$. Hence (ii) follows immediately from (i).

Lemma 3.3. Assume |K| > 3 and let $P, Q \in M_2(K)$. If $P+xQ \in \Sigma_{r,s}$ for any $x \in K$, then either (i) $Q = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $P \in \Sigma_{r,s}$ or (ii) P and Q are scalar matrices. Proof. Set $\Sigma = \Sigma_{r,s}, P = \begin{pmatrix} i & j \\ k & l \end{pmatrix}$, $i, j, k, l \in K$ and $Q = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $a, b, c, d \in K$. Then $P+xQ = \begin{pmatrix} i+ax & j+bx \\ k+cx & l+dx \end{pmatrix}$.

Assume j=b=0. Then $P+xQ\in\Sigma$ if and only if P+xQ is a scalar matrix. Hence i+ax=l+dx and k+cx=0. Since x is arbitrary, it follows that i=l, a=d and k=c=0. Thus (ii) holds when j=b=0.

Assume $j \neq 0$ and b=0. By Lemma 3.1, $P+xQ \in \Sigma$ if and only if r(j) = tr(P+xQ) and $s(j) = -\det(P+xQ)$. Hence

$$r(j) = i + l + (a + d)x \tag{3.3}$$

and

and

$$s(j) = -adx^2 + (jc - al - id)x + jk - il. \qquad (3.4)$$

Since (3.3) and (3.4) hold for all $x \in K$, we have

$$r(j) = i + l, \quad a + d = 0$$
 (3.5)

$$s(j) = jk - il$$
, $jc - al - id = 0$, $ad = 0$ (3.6)

Hence a=d=0 so jc=0. As j=0, c=0. Therefore $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Thus (i) holds when j=0 and b=0.

Assume $b \neq 0$. Set $x = -b^{-1} j$. Then j + bx = 0 and so P + xQ is a scalar

Y. HIRAMINE

matrix. Hence $k-cb^{-1}j=0$ and $i-ab^{-1}j=l-db^{-1}j$. Setting $w=-b^{-1}j$, we have j=-bw, k=-cw and l=i+aw-dw. Putting y=j+bx gives $P+xQ=\begin{pmatrix}ab^{-1}y+aw+i & y\\b^{-1}cy & b^{-1}dy+aw+i\end{pmatrix}$. By Lemma 3.1, we have $r(y)=b^{-1}(a+d)y+2$ (aw+i) and $s(y)=-b^{-2}(ad-bc)y^2-b^{-1}(a+d)$ $(aw+i)y-(aw+i)^2$. In particular

$$xr(y) - yr(x) = 2(i + aw) (x - y)$$

s(y) - ys(x) = (x - y) (b⁻²(ad - bc)xy - (aw + i)²). (3.7)

and

х

If p=2, then xr(y)-yr(x)=0 by (3.7). Hence we have a contradiction by Lemma 3.2 (i).

If p>2, then $(xr(y)-yr(x))^2+4(x-y)(xs(y)-ys(x))=4(x-y)^2b^{-2}(ad-bc)$ $xy \notin K^2$ by Lemma 3.2 (ii). Let x be any element of $K^2 - \{0\}$ and let y be any element of $K-K^2$. Then clearly $4(x-y)^2b^{-2}xy \notin K^2$. Hence ad-bc must be an element of K^2 . From this $x'y' \notin K^2$ for any $x', y' \in K^{\ddagger}, x' \neq y'$. In particular $K^2 = \{0, 1\}$, which implies K=GF(3). This contradicts the assumption.

Set $L(x, y) = \{(v, vM(x, y)) | v \in K \times K\}$ for $x, y \in K, L(\infty) = \{(0, 0, v) | v \in K \times K\}$ and $\Delta = \{L(x, 0) | x \in K\} \cup \{L(\infty)\}, \Omega = \{L(x, y) | x \in K, y \in K^{\dagger}\}$. Then $\Delta \cup \Omega$ is the set of lines of $\pi_{r,s}$ through (0, 0, 0, 0). Let G be the linear translation complement of $\pi_{r,s}$ and set $H = G_{L(\infty),L(0,0)}$, the stabilizer of the lines $L(\infty)$ and L(0, 0) in G. Let $\sigma = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ be a nonsingular 4×4 matrix, where $A, B, C, D \in M_2(K)$. Then the following criterion is well known: σ is an element of G if and only if the following conditions are satisfied.

(1) If C is nonsingular, then $C^{-1}D \in \Sigma_{r,s}$. (In this case $L(\infty)\sigma = L(u, v)$, where $C^{-1}D = M(u, v) \in \Sigma_{r,s}$.)

(2) If C is singular, then $C = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and D is nonsingular. (In this case $L(\infty)\sigma = L(\infty)$.)

(3) If A+M(x, y)C is nonsingular, then $(A+M(x, y)C)^{-1}(B+M(x, y)D) \in \Sigma_{r,s}$. (In this case $L(x, y)\sigma = L(u, v)$, where $(A+M(x, y)C)^{-1}(B+M(x, y)D) = M(u, v) \in \Sigma_{r,s}$.)

(4) If A+M(x, y)C is singular, then $A+M(x, y)C=\begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}$. (In this case $L(x, y)\sigma=L(\infty)$.)

Lemma 3.4. Assume either r or s is not a constant function. Let A, B, C and D be elements of $M_2(K)$ and set $\sigma = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$. If $\sigma \in H$, then the following hold. (i) $B = C = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $A = \begin{pmatrix} a & 0 \\ c & d \end{pmatrix}$, D = kA for some a, d, $k \in K^{\ddagger}$ and $c \in K$.

(ii) $r(a^{-1}dky) = kr(y)$, $s(a^{-1}dky) = k^2 s(y)$. Moreover $L(x, y) = L(k(x+a^{-1}cy), ka^{-1}dy)$ for all $x, y \in K, y \neq 0$.

66

Proof. Since σ fixes $L(\infty)$ and L(0, 0), $B=D=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Hence $\sigma=\begin{pmatrix} A & O \\ O & D \end{pmatrix}$ and $A^{-1}MD \in \Sigma$ for any $M \in \Sigma$. In particular $A^{-1}M(x, 0)D=xA^{-1}D \in \Sigma$ for each $x \in K$. If $K=GF(3), s(1)=s(-1)\pm 0$ and $(r(1)+r(-1))^2=(r(1))^2=(r(-1))^2$ $=-(s(\pm 1))-1$ by Lemma 3.2 (ii). Hence r and s are constant functions. Applying Lemma 3.3 we have $A^{-1}D=k$ for some $k \in K^{\ddagger}$. Hence $A^{-1}MD=kA^{-1}MA \in \Sigma$ for any $M \in \Sigma$. Put $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and let $x \in K, y \in K^{\ddagger}$. Then $kA^{-1}M(x, y)A=M(u, v)$ for some $u \in K$ and $v \in K^{\ddagger}$. Set $M(x, y)=\begin{pmatrix} x & y \\ f & g \end{pmatrix}$ and $M(u, v)=\begin{pmatrix} u & v \\ f' & g' \end{pmatrix}$. Since $\begin{pmatrix} kx & ky \\ kf & kg \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} u & v \\ f' & g' \end{pmatrix}$, we have

$$bkx + dky = av + bg', \qquad (3.8)$$

$$bkf + dkg = cv + dg' \tag{3.9}$$

and

and

$$akx + cky = au + bf'. \tag{3.10}$$

Hence d(av)-b(cv)=d(bkx+dky)-b(bkf+dkg) by (3.8) and (3.9). From this we have

$$(ad-bc)v = k((b^{2}y^{-1})x^{2} + (2bd-b^{2}y^{-1}r(y))x + (d^{2}y - b^{2}y^{-1}s(y) - bdr(y)).$$
(3.11)

On the other hand, by Lemma 3.1 (i), we have

$$kr(y) = r(v)$$

$$k^2s(y) = s(v)$$
(3.12)

We argue b=0. Suppose $b \neq 0$ and set $\Psi_y = \{v \mid r(v) = kr(y)\}$ for $y \in K^{\ddagger}$. By (3.11), $|\Psi_y| \ge (q+1)/2$ if p > 2 and $|\Psi_y| \ge q/2$ if p=2 for any $y \in K^{\ddagger}$. Thus $|\Psi_y| > |K^{\ddagger}|/2$ for any $y \in K^{\ddagger}$ so we have $\Psi_y \cap \Psi_z \ne \phi$ for all $y, z \in K^{\ddagger}$. This implies that r is a constant function. Similarly s is also a constant function. This contradicts the assumption. Therefore b=0.

From (3.8) and (3.10), $v = a^{-1}dky$ and $u = kx + a^{-1}cky$. Hence $r(a^{-1}dky) = kr(y)$, $s(a^{-1}dky) = k^2s(y)$ by (3.12) and $L(x, y)\sigma = L(u, v) = L(kx + a^{-1}cky, a^{-1}dky)$. Thus lemma holds.

Lemma 3.5. Set $\Omega_y = \{L(x, y) | x \in K\}$ for $y \in K^{\ddagger}$ and $H_1 = \{\begin{pmatrix} A & O \\ O & A \end{pmatrix}$ $|A = \begin{pmatrix} a & 0 \\ c & a \end{pmatrix}, a \in K^{\ddagger}, c \in K\}$. Then $H_1 \subset H$. Moreover H_1 acts on Ω_y and is transitive on Ω_y for each $y \in K^{\ddagger}$.

Proof. Let $\sigma = \begin{pmatrix} A & O \\ O & A \end{pmatrix} \in H_1$. Since $A^{-1}M(x, y)A = \begin{pmatrix} x + a^{-1}cy & y \\ * & * \end{pmatrix}$, $A^{-1}M(x, y)A \in \Sigma$ by Lemma 3.1 (ii) so $\sigma \in H$. Moreover $L(x, y) \sigma = L(x + a^{-1}cy, y)$. Since $a \in K^*$ and $c \in K$ are arbitrary, we have the lemma.

Proof of Theorem 2.

Any mapping from K^{\ddagger} into K can be uniquely written in the form $\sum_{i=0}^{q-2} c_i x^i$, $c_i \in K$, $0 \le i \le q-2$. Set $r(y) = \sum_{i=0}^{q-2} c_i y^i$ and $s(y) = \sum_{i=0}^{q-2} d_i y^i$. We may assume that r or s is not a constant function. By Lemma 3.4 (ii), $L(0, 1)\sigma = L(a^{-1}ck, a^{-1}dk)$, where $\sigma = \begin{pmatrix} A & O \\ O & kA \end{pmatrix}$, $A = \begin{pmatrix} a & 0 \\ c & d \end{pmatrix}$. By Lemma 3.5, H is transitive on Ω if and only if $K^{\ddagger} = \{a^{-1}dk \mid \begin{pmatrix} A & O \\ O & kA \end{pmatrix} \in H$, $A = \begin{pmatrix} a & 0 \\ c & d \end{pmatrix}$. Set $h = a^{-1}dk$. Then, by Lemma 3.4,

$$r(hy) = ad^{-1}hr(y) \tag{3.13}$$

$$s(hy) = (ad^{-1})^2 h^2 s(y)$$
 (3.14)

Suppose *H* is transitive on Ω . Then, for any $h \in K^{\ddagger}$, there exist *a* and *d* in K^{\ddagger} which satisfy (3.13) and (3.14) simultaneously. Hence $\sum_{i=0}^{q-1} c_i h^i y^i = \sum_{i=0}^{q-2} c_i a d^{-1} h y^i$ and $\sum_{i=0}^{q-2} d_i h^i y^i = \sum_{i=0}^{q-2} d_i (a d^{-1})^2 h^2 y^i$. Therefore $c_i h^i = c_i a d^{-1} h$ and $d_i h^i = d_i (a d^{-1})^2 h^2$ for all *i* with $0 \le i \le q-2$. If $c_m \ne 0$ and $c_n \ne 0$ for some *m*, *n* with $0 \le m, n \le q-2$, then $h^{m-1} = h^{n-1} = a d^{-1}$ and so $h^{m-n} = 1$ for any $h \in K^{\ddagger}$. Thus m = n, so that we have $r(y) = c_n y^n$. By a similar argument above, we have $s(y) = d_i y^i$ for some *t* with $0 \le t \le q-2$.

Since $(r(hy))^2/(r(y))^2 = s(hy)/s(y)$ by (3.13) and (3.14), $c_n^2 h^{2n} y^{2n} / c_n^2 y^{2n} = d_t h^t y^t / d_t y^t$. From this $h^{2n-t} = 1$ for any $h \in K^{\frac{1}{2}}$. Thus $t \equiv 2n \pmod{q-1}$.

REMARK 3.6. An element of Φ_K is not always represented in the form $(r(x), s(x)), r(x) = ax^n, s(x) = bx^{2n}$. We list some of such examples below, which were obtained by a computer search using Lemma 3.2.

(i) $K=GF(7), r(x)=4x^5+6x^4, s(x)=6x^5+3x^4+6x^3+4x^2+3.$

(ii) $K = GF(11), r(x) = 5x^9 + 6x^7 + 9x^6 + 2, s(x) = 3x^9 + 5x^8 + 6x^7 + 9x^6 + 4x^5 + 10x^4 + 9x^3 + 2x^2 + 9.$

(iii) $K = GF(11), r(x) = 2x^9 + 6x^8 + 4x^7 + 3x^6 + 8, s(x) = 5x^9 + x^8 + 8x^6 + 10x^5 + x^4 + 2x^3 + 10x^2 + 10.$

References

- D.R. Hugese and F.C. Piper: Projective planes, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [2] H. Lüneburg: Translation planes, Springer-Verlag, Berlin-Heidelberg-New York, 1980.
- [3] M.L. Narayana Rao and K. Satyanarayana: A new class of square order planes, J. Combin. Theory Ser. A 35 (1983), 33-42.

and

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka 560 Japan