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Introduction

In the classical theory of linear Fredholm operators a fundamental role
is played by compact operators. In fact, a condition for an operator to be
Fredholm is given in terms of compact operators, and it is known that the class
of Fredholm operators is invariant under compact perturbations. The object
of this paper is to generalize these results introducing a new class of operators
containing the class of compact operators.

The organization of the paper is as follows: in the section 1 we introduce
some basic definitions, propositions and examples in the section 2 we establish
the aimed results and in the section 3 we present an application of Theorem 2.2.

1. Let X and Y be Banach spaces.

DEFINITION 1.1. An operator T: D(T)dX-+X is said to be demicompact
if for every bounded sequence {xn} in D(T) such that xn— Txn-*xQ, for some
x0 in X, as n-*> oo, then there is a convergent subsequence of {#„}.

Here D(T) denotes the domain of T.

Examples of demicompact operators.
a) Compact operators T: D(T)dX->X are demicompact.

If X is a Hubert space,
b) Operators T: D(T)dX-*X which satisfy either the condition

Re(Γ*-2>, x-y}<a\\x-y\\\ a<\ (1)

or the condition

x-Ty, x-y)<a\\Tx-Ty\\\ a<\ (2)

are demicompact.
c) Operators T:D(T)dX->X for which (/— T)'1 exists and is continuous
on its range R(I—T) (and, in particular, demicontinuous operators T for which
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(1) is valid with a<l or for which the inequality

\(Tx-Ty, x-y)\<b\\x-y\\\

is valid for all x and y in X) are demicompact.

DEFINITION 1.2 ([!]). Let D be a bounded subset of X. We define Ύ(D),

the Kuratowski measure of noncompactness of D, to be inf {d>Q\D can be
covered by a finite number of sets of diameter minor than or equal to d} .

Properties of y(D). If D, O and D, are bounded sets in X we have:

a) 7(Z))=0 iff D is compact, where D is the closure of D.

b) 7(5)= ΎCD); 7(λZ>)= |λ|7(Z>); D(Σ.Q^7(D)<7(Q)y where λ is a real or
complex value.

c) If Di=Di9 A+iCA and lim 7(A)=0, then £>~=ΠAΦ0 and 7(Λo)=0.
l >~ ί>l

d) 7(#U0Hmax{7(Z)),7(0}.
e) 7(#+0<7(£>)+7(0), where, D+Q={x+y;

Let &>0 be a given real number, T\ D(T)dX^> Y a continuous operator

and 7ι and 72 respectively Kuratowski measures of noncompactness in X and Y.

DEFINITION 1.3. ([2]). T is said to be ^-set-contractive if, for any bounded

subset B of D(T), T(B) is a bounded subset of Y and 72(Ϊ
Ί(5))<£71(JB).

Examples of ^-set-contractive operators
a) T is continuous and compact iff T is 0-set-contractive.

b) If T1 is L-lipschitzian, then T is L-set-contractive.
c) If T1 is semicontractive type operator with constant &<1, then T is A-set-

contractive.

We recall that T is of semicontractive type with constant k<\ if there exists

a continuous operator V: D(T)xD(T)-*X such that Tx=V(x, x) for all x in

Z)(Γ) and

and the operator #->F( , Λ;) is compact from 0(7") into the space of operators

from D(T) into X with uniform metric.

DEFINITION 1.4 ([4]). T1 is said to be condensing if for any bounded subset
B of D(T), T(B) is a bounded subset in Y and Ύ^T(B))<7ι(B)9 whenever

REMARK. Clearly, every Λ-set-contractive operator with k<\ is a condens-

ing one. The converse is not true; however, every condensing operator is

1 -set-contractive. If X= Y then T condensing implies T demicompact.
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DEFINITION 1.5 ([11]). Let W be a linear subspace of X. We say that
a linear operator T: W-+Y is invertible modulo compact operator if there is
a linear operator L: Y->X such that I—TL and I—LT are compact, where /
is the identity operator. We call L an inverse of T modulo compact operator.

REMARK. Clearly, if Tλ and T2 are the inverses of T modulo compact
operator, then there exists a compact operator K such that T1=T2-\-K. (See

DEFINITION 1.6 ([10]). Let Wbe a linear subspace of X. A linear operator
T: W-+Y is said to be Fredholm if:_
a) T is densely defined in X, i.e., W=X.
b) T is a closed operator.
c) a(T)<°°, where a(T) is the dimension of kernel of T.
d) R(T) is closed in Y.
e) β(T)<oo, where β(T) is the codimension of R(T).

The index of a Fredholm operator T is defined by

We denote by Q(X, Y) the set of all Fredholm operators T from D(T)CLX into
Y.

If Γe0(^Γ, Γ), we have J£=kerT®Ji0, where -X,, is a closed subspace
of X Since KerTc^T), this gives D(Γ)=kerΓe[^0nί)(71)]. Also we
have kerT'=R(T)°, where T' is the adjoint of Γ; hence Y=R(T)φY0, where
YO is a subspace of F of dimension β(T). The restriction of T to -XoΠ-DίT1)
has a closed inverse defined everywhere on R(T) (which is a Banach space)
and hence, the inverse is bounded. This gives |J*||^C||!Γ*||, x<=X0Γ\D(T).
Here kerΓ denotes the kernel of T; R(T)° denotes the set of all annihilators
oϊR(T).

Thus, we have

Proposition 1.1 ([10]). // Teψ(X, Y), then there exist an operator Γ0e
B(Y, X) such that

a) kerΓ0=yo,
b) R(T0)=Y0nD(T),

c) T0T=IonX0nD(T),
d) TT0=IonR(T)

and operators F1^B(X), F2^B(Y) such that
e) T0T=I-Fl0nD(T),
f ) ΓΓ0=/-F2 on Y,
g) R(F1)=keΐT, kerF^o,

h) R(F2)=Y0,kerF2=R(T).
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Here B(Y, X) denotes the set of all bounded linear operators T from D(T)dY
to X\ if Y=X we simply write B(X).

REMARK. Since a(T)<°° and β(T)<°°, F1 and F2 are operators of finite
rank; therefore, F± and F2 are compact operators and T0 is an inverse of T
modulo compact operator.

Proposition 1.2 ([10]). Suppose that X=N®XQί where XQ is a closed linear
subspace and N is a finite dimensional subspace. If Xλ is a linear subspace of X
containing X0, then Xλ is closed.

DEFINITION 1.7. Let W7 be a normed space. W is said to be continu-
ously embedded in X if there is a one-to-one bounded linear operator P: W-*X.

Proposition 1.3 ([10]). Let W be a normed space continuously embedded
in X. If T(Ξ0(X, Y) and D(T)=W, then Γe0(PF, Y) with kerΓ and R(T)
remaining the same, where D(T) means the closure of D(T) in W.

Proposition 1.4 ([10]). IfA^0(X, Y) and Be0(F, Z), then BA^0(X, Z)
and i(BA)=i(B)-{-i(A), where Z is another Banach space.

2. Let X and Y be Banach spaces. Using the results of Petryshyn [8]
(Theorem 10') and Proposition 1.2 we first generalize in Theorem 2.1 the clas-
sical result on a sufficient condition for an operator to be Fredholm with demi-
compact 1-set-contractive, hence in particular condensing, operators in place
of compact operators, and then apply this result to obtain a new result con-
cerning perturbation theory for Fredholm operators in Theorem 2.2.

Theorem 2.1. Let T: D(T)(^X-*Y be a densely defined closed linear
operator. Suppose that there are linear bounded operators Tλ: Y-*X\ T2: Y->X\
Aλ: X-+X and A2: Y->Y with A1 demicompact and A2 demicompact 1-set-con-
tractive such that

a) T^T^I-A^nD^),

b) TT2 = I-A2 on Y.

Then, T is a Fredholm operator.

Proof. By hypothesis T is a densely defined and closed linear operator in
X. So we have only to prove conditions (c), (d) and (e) of Definition 1.6.

Proof of (c): Since kerΓckerΓiΓ, we have a^^a^T^a^-A,).

But, a(I— A)<°° In fact, we shall consider S={^eker(/— A^\ ||#|| = 1}
and prove that S is a compact set in ker(7— Aλ). Let {xn} be any sequence in
Sy then, {#n}cker(7— Aλ) and xn—A1xn=0 for each n. Since Aλ is demi-
compact, there is a subsequence {xnj} of {%„} such that xn/
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Clearly, ||Λ?O|| = 1, i.e., xQ^S. This proves that S is a compact set in ker(/— AI)
and, consequently a(I— A λ) < oo . Thus a( T) < °o .

Proof of (d) and (e): First note that R(T)^R(TT2)=R(I-A2). Now,
(I-A2) is Fredholm (see [8]-theorem 10'). Hence by Proposition 1.2, R(T)
is closed and of finite codimension. Q.E.D.

Theorem 2.2. Let T: D(T)dX-+Y be a Fredholm operator. Suppose
that F: X-*Y is any bounded linear operator such that

— GF and —FG are demicompact l-set-contractιve for some operator G ..
which is an inverse of T modulo compact operator. ^ '

Then T+F is a Fredholm operator with i(T+F)=i(T).

Proof. First note that, by remark of Definition 1.5, assumption (A) im-
plies that —T0F and —FT0 are demicompact 1 -set-contractive for all T0 which
is an inverse of T modulo compact operator.

Since T is a Fredholm operator, by Proposition 1.1, there is a bounded
linear operator T0: Y->X such that

and

TT0 = I-F2on Y,

where Fl and F2 are compact operators. This implies that jΓ0 is an inverse of
T modulo compact operator.

Now,

T0(T+F) = I-F.+ ^F = I-L, on D(T+F)

and

(T+F)T0 = I-F2+FT0 = I-L2 on Y

where

A = Fi— TJF and L2 = F2-FT0 .

Since —T0F and —FT0 are demicompact 1 -set-contractive and F1 and F2

are compact, we have that Lλ and L2 are demicompact 1 -set-contractive opera-
tors. Clearly, D(T+F) is dense in X. Therefore, by Theorem 2.1, T+F is
a Fredholm operator.

It remains to prove that i(T-\-F)=i(T). Since T is closed, one can make
D(T) into a Banach space W^by equipping it with the graph norm

Moreover, W is continuously embedded in X and Z)(T)— W. Hence,
, Y) by Proposition 1.3. So, there is a bounded linear operator U:
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Y->W such that

UT=I-K1onD(T)

and

TU=I-K2on Y

where Kλ and K2 are compact with R(K1)=kerT (see Proposition 1.1).

In addition, C/e0(y, W). Thus, applying Proposition 1.4 we have that

Let Tλ be the operator K1— UF. If we consider ϊ\ as an operator from X
into X, T! is demicompact and 1 -set-contractive. Then, by [8]-Theorem 10'
we conclude that /— 7\<Ξ0(X X) with ί(I— TJ= 0.

Now,

i(I-T1). (1)

Assuming this for the moment, we see that

Proposition 1.4 still yields

Since

we have

Then

Therefore, it remains only to prove (1).

Since Λ(/C1)=ker ΓcD(Γ) and UF is an operator from X into D(T), we
have that

^(ΓOc^Γ). (2)

It is clear that kerfί/ίT+F^ckerί/-^). Conversely, if ^eker^-ΓO, then
x=T1x^D(T) by (2), and hence,

ker[C7(Γ+F)] == ker(7- TJ . (3)

Since /— T^^(X, X) and W is dense in X, there is a finite dimensional sub-
space Xl of X such that
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X = R(I- ΓOΘ-Yi, ^cD(Γ) . (4)

Hence

W=[R(I-Tl)KW]®Xl. (5)

It is clear that R[U(T+F)]c.B(I-Tl) Π W.
Conversely, if z<=R(I— Tλ)f} W, then z=x—Tlx^W9 for some

In view of (2) , x <Ξ D( T) . Hence z=U(T+ F)x.
Thus,

= RΪU(T+F)] .

Combining this with (5),

W=R[U(T+F)]®Xl. (6)

It follows from (4) and (6) that

β[U(T+F)] = dim X, = β(I- TO . (7)

(3) and (7) imply (1). Q.E.D.

REMARK. It is important to observe that, Theorem 2.2 is valid when
GF and FG are condensing operators because condensing operators are demi-
compact and 1 -set-contractive (see remark of Definition 1.4).

When F is compact, Theorem 2.2 is also valid (this is the classic result of
perturbation theory of Fredholm operators).

When T is the identity operator, we need — F to be demicompact 1 -set-
contractive in order to guarantee the validity of Theorem 2.2.

As a consequence of Theorem 2.2 we deduce the following classic result
whose perturbator operator is not necessarily compact.

Corollary 2.2.1. For T^ψ(X, Y) there is an η>0 such that for every
linear operator A: X-*Y satisfying \\A\\< η one has (T+A)<=ψ(X, Y) and

Proof. Since T<=$(X, Y) there is a bounded linear operator T0: Y-*X
that Γ0 is an inverse of T modulo compact operator. We take ι?=|
then

and similarly,

Since a bounded linear operator L is ||L|| -set-contractive, T^A and AT0

are A-set-contractive with k<l and, consequentely, T0A and ATQ are condens-
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ing. Then, by the above remark, A satisfies the hypothesis of Theorem 2.2.
Q.E.D.

3. An application of Theorem 2.2

Let Cω and €'„ be, respectively, the space of continuous ω-periodic func-
tions x: R-*Rn and the space of continuously differentiable ω-periodic func-
tions x: R-+R". Cω equipped with the maximum norm IHU and C£ with

the norm || ||L given by || ||i,=max{||w||oo, IKIU} for u^C'ω are Banach spaces.
Let us consider the following differential equation:

Here, a and b are continuous ω-periodic (n X /ί)-matrix function such that \\a(t)\\

<k, (— oo<ί< + oo), where k<— if ω>2 or k<— if ω<2;/eCω is a given
ω 2

function and Λ?eC£ is an unknown function.
This equation can be rewritten in the operator from

Dx—Ax=f,

where D: C£->Cω is given by the formula

(Z)*)(ί) = *'(/),

and the operator A : €„-+ Cω by the formula

(Ax) (t) = aVWt-

Clearly, D and A are bounded linear operators with ||Z)|| — 1 and therefore,
D is 1 -set-contractive.

The kernel of the operator D is w-dimensional and it consists of constant
functions. The range of D is readily seen to be the set of x^Cω that satisfy
the condition

(ωχ(t)dt = 0 .
Jo

This set is obviously closed and its codimension is n. Thus, D is a Fredholm
operator with ι(Z))=0.

Let T and Ti be respectively the Kuratowski measure of noncompacteness
in Cω and C£.

We represent A as the sum A=Al+A2, where

(AlX) (t) = a(ty(t-h^ (A2x) (t) = b(t)x(t-h2) .

The operator A2, which acts from C£ to Cω, is obviously compact.
Let D0: Cω-^>Cή be an inverse of D modulo compact operator, that is?
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!=! — DD0 and K2=I — D0D are compact operators respectively in Cω and
ή, where / is the identity operator. Then we have

AD. =
and

with A2DOJ D0A2 compact. Therefore, for any bounded subset X of Cω,

Note that A^—AsS^D, where the operators Shι and A3 acting in Cω, are given
by the formula

(Sklx) (t) - *(*-*!), (A3x) (t) = a(t)x(t) .

Obviously Shι is 1 -set-contractive and A3 is ^-set-contractive. Therefore,

= 7[A3ShDD0(X)] = ^A.S^I-K,) (X)}

Since A<1, we have that AD0 is condensing.

We can take DQ as the function defined by

(D0y) (t) =

and it is obvious that HAJI^ω ίf ω>2 or ||Z)0||<2 if ω<2. Hence, D0 is
ω-set-contractive if ω>2 or 2-set-contractive if ω<2. With the same argu-
ment used in the case AD0 also we prove that D0A is condensing. Then, by

Theorem 2.2. D-A is a Fredholm operator with ί(D— A)=Q.

The author is grateful to Professor Hiroki Tanabe (Osaka University)
for his useful remarks and suggestions for this work.
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