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1. Introduction. We remove m balls of radius a/m with centeres
{w¢}"., from a bounded domain Q in R® If m balls are dispersed in a
specific configuration as m— oo, we give a precise asymptotic behaviour of the
k-th eigenvalue of the Laplacian in Q\m balls under the Dirichlet condition on
its boundary. We use perturbational calculation concerning the Green function
of the Laplacian to obtain our theorem. The present work is closely related
with Kac [2], Rauch-Taylor [6], Huruslov-Marchenko [3], Papanicolaou-
Varadhan [5] and Ozawa [4].

Let Q be a bounded domain in R® with smooth boundary 7. Let w(m)
be a set of m points w{™, ---, wy in Q. Let B(E; w) be the ball defined by
B(&; w)= {xER®; |[x—w| <€}. Let 0<pu,(&; w(m)) < py(E; w(m))< -+ be the

eigenvalues of — A(= —div grad) in Qq um=0\UB(€; »{™) under the Dirichlet
=1
condition on its boundary 8Q, ,». We arrange them repeatedly according to

their multiplicities.

To state our Theorem we need some assumptions on a distribution of
w(m) as m—oco. A sequence satisfying the following conditions (C—1), (C—2)
is said to be of class @ and is written as {w(m)}n-.€0.

(C-1) There exists a constant C>0 independent of m such that

| —w(™|>Cm™ ()

dist (™, ¥)>Cm™*  (1<r<m)
(C-2) Fix p€(0,1]. Then, there exists a constant C, independent of f, m
such that

(1) LS wim)— [ sy

<Cym 7| fllepa

holds for any f €C?(Q}) as m—>co. Moreover
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1 & m m m »
max |- 31G(wl®, wi)f(@)— [ G(y, w)V(»)f(5)dy
iFi
<Com™ | fllcs@ »

where G(x,y) denotes the Green function of the Laplacian in Q under the
Dirichlet condition on 7, that is, it satisfies

A,G(x,y) = —08(x—y) %, yEQ
G(x,y)=0 xey, yEQ.

ExampLE. If V(x)=(volume of Q)™ and
{wi}r, = (Q\Wéwa})) N (the cubic lattice points
in R}(wm™Z)%),  (for suitable w)
then it is easily seen that {w(m)}m.,€0.
We are now in a position to state the following:
Theorem. Suppose that {w(m)}n.. €O and ¢>0. Then
(12) ua(aefm; w(m)) = ul-+0(m* ~5)

holds as m—> oo, where &' is an arbitrary fixed positive number. Here pi denotes
the k-th eigenvalue of —A-+4raV(x) in Q under the Dirichlet condition on .

We here explain the main idea of our proof of Theorem. Let G, (x, y; w(m))
be the Green function of the Laplacian in Q,,,, , under the Dirichlet condition
on its boundary. It should be noticed that Q,,, may not be connected,
however we only treat the case where it is connected owing to the conditions

(C-1), (C-2). G,,(x,y; w(m)) satisfies

AzGrn(x’ Y5 w(m)) = _“S(x_y) X, yen‘a/m,w
G,(x, y; w(m)) =0 XE0Qy/m, 0 -

Hereafter we abbreviate @™ as w; for the sake of simplicity. We put
(1.3) (%, 5 w(m)) =
G(x, )+ 3 (—4mafm)’ S G, w,)Glw;, w,
= G(wi,_,, ,)G(wi, ) -

Here the indicies (7, -+, ;) in 3, run over all 1<iy, -+, i,<m satisfying 7, %1,
1,715 =, 1,_,31,. This is a good approximation of G,, when « is small enough.
For general @, we modify (1.3) to get a nice approximation. It should be
remarked that 4,,(x, y; w(m)) tends to
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(1.4) G(x, y)—4mar SO G(x, 2)V(2)G(z, y)dz
+(ma) | G, 5)V(E)G(E, 2)V(2)Gley y)dz—--

as m—>oo, if o is small enough. We see that (1.4) is equal to the Green func-
tion of A—4nal(x), if a is small. Along this line, we can prove that
wi(a/m; wim))—pf. Of course, we need rigorous step to prove the remainder
estimate in (1.2).

We make historical remarks. There are some related papers. Under
slightly different situation from above Kac [2], Rauch-Taylor [6] treated a
probabilistic problem concerning uy(et/m; w(m)) when m—co. In their notes
the convergence

plafm; +) = pi

in probability when we consider w(m) as a random variable in a probability
space which is the countable product of a probability space Q with the prob-
ability measure V(x)dx, was given. Their studies depend on a probabilistic
argument using the theoiy and a notion of Wiener sausage. Our Theorem is
different from theirs in the point that the statement of Theorem is concerning
a deterministic result. In [3], various boundary value problem in a region
with many small obstacles is treated by potential theoretic approach using the
notion of capacity of sets. In a suggestive paper Papanicolaou-Varadhan [5]
studied the diffusion problem in a region with small holes by using probabil-
istic method and got both deterministic and probabilistic results. Here the
author emphasize that our method is based on a perturbational calculus using
the Green function under singular variation of domains (removing holes) and
that this method is new as far as the author concerns. Our method enables us
to get an error estimate O(m®~%) in (1.2) which also seems to be new.

We make another remark. When m=1, k,, reduces to the integral kernel
function Ay(x,y) on p. 771 of Ozawa [4]. By using this integral kernel func-
tion, we gave an asymptotic formula for the eigenvalues of the Laplacian under
singular variation of domains. See [4]. For any 1<m< oo, we can also prove
an asymptotic formula for eigenvalues by using #4,. Thus we can say that
h,, is a nice asymptotic Green function for all m=1, 2, -+, oo,

2. Decomposition of the integral kernel function A,

From now on we abbreviate Q,/,, as Q,. Also B(a/m,w,) is written as
B,, if there is no fear of confusion. We have the following:

Lemma 1. Suppose that us C=(Q,,) satisfies
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Au(x) =0 x€Q,
u(x) =0 xey
max {|u(x)|; x€8B,} = M/ (m) r=1,-, m.

Then, there exists a constant C independent of {w(m)} €O such that

|u(x) | < Clerjm) 3 x—w,| 1M, (m)
holds for any x€Q,.
Proof. See Lemma 6 in [4]. q.e.d.

Now we introduce some integral operators G,,, H,, G. We put

(Guf) (5) = | Gulw 33 wim)f)y v,

(Haf)) = [ e,y wlm)f )y v,
and

(©9) () = [_Gs, e)ay  wea.

We put «== sup 1 rnax >3 G(w;, w,). Then k<<oo, by (C-2). The aim of this
m i 1sT<m
ri
section is to prove the following:

Proposition 1. Assume that {w(m)}m-.€0O. Fix an arbitrary & >0.
Then there exists a constant C,, independent of m such that

(2'1) IlGm'—HmIILZ(QW)SCt’m—1+!/Qm,u ’
whete quo=1+( 2 (47a)(4z-+1)aw'™)+-m(4zan)" holds. Here ||Tllixe,)
s<m-1
denotes the operator norm of a bounded operator T on L*(Q,).
Firstly we state the following obvious lemma.

Lemma 2. Put Q,=G,—H,. Then

AQ,f(x) =0 xEQ,
Q.. f(x) =0 xey

holds for any f €C5(Q,).
The following Lemma 3 is a crucial step to prove Proposition 1.

Lemma 3. Assume that {w(m)} €0O. Fix an arbitrary p>3. Then
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23 max | Quf(x)| < Cgu.all fllita,

7=1 r€08,
holds for a constant C, independent of m and for any f €C¢(Q,,).

Before we begin our proof of Lemma 3, we give a proof of Proposition 1
assuming Lemma 3. Using Lemmas 1, 2, 3 we get

(22) 1Qull2@y <Cym=¢0g,, o (p>3)
for a constant C, independent of m. Since

| @uweix = | uw@uax,

w

for any u, vEC(£,), we have
”Qm”L"(nw)Scpm_(alp)q:n,u (P>3)

where p'=(1—(1/p))". We see that p>>3 and p'<<(3/2). Thus, by the inter-
polation theorem we get the same bound for ||@,l|;%q, as in (2.2). We can
take p>3 sufficiently close enough to 3 and we get Proposition 1.

To show Lemma 3 we use the fcllowing decomposition (2.3) of H,,f. We
put
(I7f) (%)
= 23 Gx w)G(w;, wy)Glw;,_,, w;,) (Gf) (i)

i1¢r, t‘z=¥=l‘1,
AT e o

—(@rzajm) 32 G(x, w,)G(w,, w;,)G(w;, w;,, ) (Gf) (w,,,) -
.IZ#!:]SI}Z’
e ls+1 s

Then, it is easy to see that

(2.3) (H,f) (%)
= (Gf) (x)—(4ma/m)G(x, w,) (Gf) (w,)+ .,.2_1 (—4mam)(I;f) (%)
F(—dmalm)” 3 G(x, w;))G(wi, wi,) - Glwi,_, ;) (Gf) (w;,)

i‘=¢=r, i2=‘=1:1,
s ImFlm-1

Since G(x, y)—(4z|x—y|)'=S(x, y) € C=(22 X ), we have

G(x) wr) [ x€9B, — (4'”(a/m))_l+S(x) 20,) I XE08, *
Therefore,

(24) (L7f) (%) | a5, = (L3f) (%) | seap, (N7 f) (%) | s, »

where
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(2.5) (L:f) (%) | zeas,
= 23 (G w;)—G(w,, w))G(w;, w;,) - G(wi,_,, w;,) (GF) (w;,)

11:?7,124:11,
RIPE S S P

(N’f) (x)‘xEBB,-
= (—4mafm) 21 S(x w)G(w, w;)Gw,_, w;,) (Gf) (ws,) -

114:7‘,124:11,
e ;1;:':13 1

and

We have the following:

Lemma 4. Assume that {w(m)} € O. Then, there exists a constant C
independent of m such that

M=

3

r=17

D, ,<Cam,

=

i
i

H#3

where
D, ;= max | G(x, w;)—G(w,, w;)].

Proof. We fix 7, and we assume that w,, is contained in v,= {*€Q;
dist (x, ¥)<&}. Let 2, be the unique point on v such that dist (w,, ¥)=
dist (w,,, ).

Firstly, we examine D, ; in the following case:

(2.6) max (dist (w,,, ,) , dist (w;, w,))<2¢€.

By (2.6) we see x, w,, w,, w;EB(5, 3,). We assume that v N B(5¢, 2) is flat,
that is,

(2.7) YN B(58, 20) C {(x1, %, x3)E R®; x, = 0} .

Also we assume that QN B(5€, 2,) C {(x,, x,, x;) € R%; x,>0}. It is easily seen
that the assumption (2.7) is by no means restrictive to estimate D, ; in the case
(2.6), since we can use local diffeomorphism, local parametrix, ..., etc. Let
x=(xy, %y, %3), ¥=(¥1, Y2 ¥3) be points in B(5¢, z;,). Now we put

Gy(x, y) = (4= |x—y|)™
Gy(x, ¥) = (47) " {(x14+-91) 4 (%,—y,)* + (23— y3)7} ~*
Then

L(x, y) = G(x, )= Go(%, y)+Gy(x, y) € C~((Q N B(5¢, 2,)) X (2N B(5¢, 2))) -
It is easy to see that
?;%f’ |Go(x’ w:’)—’Go(wn wi)l

<(47)™! max |, —x| <C'am\w,—w;|™%.

= e |,
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Here we used (C-1). Let £=(—ux,, ,, x5) be the point of reflection of x with
respect to the boundary. Then,

:’né).;( IGb(x, w")_Gb(wn wz)‘
= max |Gy(%, w;)—Gy(w,, w;) |
<Cam™|W,—w;| *<C’'am™|w,—w,| 2.

It is easy to see that |L(x, w;)—L(w,, w;)| <C’'am™'. In summing up these
facts, we get

(2.8) D, ,<C"am™(|w,—w,| “*+1),

if (2.6) holds. We also have (2.8) when dist (w,,, w,) <2¢ and dist (w;, w,)>2¢.
Thus,

M

< -

D, <Ca

H 1

holds for a constant C independent of m, w, satisfying dist (w,, w, ) <2€. Natice
that v, is covered by a finite number of open balls which are wiitten as B(2¢, w,,)
for some w, . €7,. Therefore we get

> 21D, <Coam.

w EYg i=1

iger

By a similar argument as above we see that

m
E Dr,i
w EYg i=1
ikr

does not exceed Cyam. We complete our proof of Lemma 4. q.e.d.

As a consequence of Lemma 4 we get the following;

Lemma 5. Assume that {w(m)} €0O. Then
29  F@ramy 3 max | Lifx)| <C(E (na)ea)lfllixay

(feCi())
holds for any fixed p=>3/2. Here C, is a constant independent of m.

Proof. By the Sobolev embedding theorem we see that

sup [(Gf) ()| <Collflliran  (FECFQ,))-
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Therefore, we have (2.9) using Lemma 4. g.e.d.
We put

P, = EM}Z"" max | S(x, w,) | G(w,, w;) .
r=14i=1 ‘EaBr

Then we have the following:
Lemma 6. Assume that {w(m)} 0. Then P,<Cm® holds for a con-

stant C tndependent of m.

Proof. From (C-2) we get

max i 2 G(wn w,l)_(GV) (wr) S_Cm-l/a .
4 m isi =™
i &

Therefore
(210) P,<m3 max | S(x, w,)| (GV) (w,)+Cm?* S max | S(x, w,)] .
r=1 re B’ r=1re lfr

We again use v, to estimate (2.10). It is easy to see that

23 max |S(x, w,)| <C,

wrQ.Y! €8 r

holds for some constant C, independent of {w(m)} €0. Let w,, 2, Gy, y), *
be as before. We also assume, and it suffices to assume that N B(5€, 2,) is

flat. For the case B,N Y.+ ¢, we see that
(2.11) m;x;c | S(x, w,)| < m:aa;c | Gy(x, w,)| + mgg{ | L(x, w,) |
< Cy(d(w,, 7))+ C(afm) .

Here we used (C-1) to estimate max |G;]. By (2.11) and (C-1) we get
re Br

) max | S(x, w,)| <Cm*?.

w &Y, *E08,

Therefore the second term in the right hand side of (2.10) does not exceed Cm?.
We here want to estimate the first term of (2.10). We see that

(2.12) | Gf(w,)| = | Gf(w,)— Gf(20)| <Cl|Gf||cxq dist (w, ¥)
<Cllflloay dist (w, ) (fECH()).

for a fixed p>3. Combining with (2.11) and (2.12) we see that the first term
in the right hand side of (2.10) does not exceed Cm?. We have the desired

estimate. q.e.d.
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As an easy consequence of Lemma 6 we get the following:

Lemma 7. Assume that {w(m)} €O. Then

(213)  (4majm)’ 33 max | Nif(x)| <C(E (4ra) eI fllnay
(fECs()

holds for any fixed p>>3. Here C, is a constant independent of m.

Proof of Lemma 3. Since we have Lemmas 5, 7, we have only to estimate

2.14) 3 max |(Gf) (¥)—(4za/m)G(x, w,) (Gf) ()]
and
(2.15) > (the forth term in (2.3)) .

It is easy to see that (2.14) does not exceed
(216)  max | Gfx)— Gf(w,) | +C'(e/m) 3 max | (s, )| Gfw)!.
By (2.11), (2.12) we see that the second in (2.16) does not exceed
(2.16) Callfllie, (>3, fECT()) .
The first term in (2.16) also does not exceed (2.17). We see that
1(2.15)| <Cm(4mar)"||fllre,  (P>3/2, fECT(Q)) .
In summing up these facts we get Lemma 3. q.e.d.

3. Proof of Theorem

Let {@i(x)}7-1 be an orthonomal basis of L*) consisting of eigenfunc-

tions of —A-4zaV(x) under the Dirichlet condition on . Let H, be the
integral operator given by

@)@ = | ba (3, )My xeQ.

Then it is easy to see that g,(x)= ng(fl,,m,,) (%) — H\(Xo,24) (%) =
XQw(fi,,,(ngw%,))(_x) satisfies Ag,(x)=0 for x€Q, and g,(x)=0 for x&7, where
Xg, (resp. Xg,) denotes the characteristic function on 0, (resp. Q\Q,. By a

simple consideration we see that '8'”-“’("‘)2,21 {max |g,(x)|; x€0B,} does not
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exceed the term which is given by replacing f in Lemma 3 by Xg @,. We put
p=4. By Lemma 1 we get the following:

Lemma 8. Assume that {w(m)} €O. Fix k. Then

(3' 1) “xQ,,qu’k—'Hm(xdw¢k)lle(Qw) < C(a/m)”‘ m,e
holds for a constant C independent of m.
We have the following:

Lemma 9. Assume that {w(m)} 0. Fix k. Then, there exist constants
C and C, independent of m such that

(3.2) I(H (1) il 1200, < C'otm™ ",y 44 C'(dmat)’m™ P4 Com® =015
holds, where

pm,u — %amzlsqm’a+(4_”ax)mx—1m5/3+a—1(4”a)1n+lxnn—1 .

Proof.
L ¥) = o 3 Gl w3, (s, ) —(6VH) ()
p+1S5m
ip+1¥F1y

By (1.3) we get

(3.3) 1k (Houpy) (%) = H,(4naVpy) (x)— H(Apy) (%)
= Pu®)— 2} RA@).

where

RA(x) = m(4mam)* (- 3 G(x, w)pulw) — (GVey) ()

R(x) = m(— 4zajm) 33 G(x, w,)Lo(wi; 24) , -
R (x)

= m2(_47ta/m)m 2(»1—1) G(x) wil)G(wily wiz) e G(w"m—z’ w,-"_l)L(w,.m_l; ¢,,)
R2(x)

= m(—4za/m)"* 2, G(x, w; )G(w;, w;,) - G(w; _, w; ) (@Vey) (;,)

for x€8B,. We rearrange them as follows: We put

Th (%) = Rh(x)+ mi(—4mat/m)G(x, w,)Ln(ew,; 1)
Th (x) = mi(—dmalmy 3 (G(x, w,)—(bra/m)G(x, u,)GCw, w,))

11F 7,71,
s Fls g

X G(w;,, w;,) -+ G(wi, _y i) Ln(Wi,, P4)
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for 2<s<m—2,

T57 (%) = m(—4malm)” 33 G(x, w;,)G(wi, wy,) - Gw;,,_p» Wi, ) L(Wi,_,, Pi)
z;#r,z-f::z,,
s tm-1Flm-2

T, (x) = Ry(x) .
Then é an(x) = 2,3 Tf”‘,(x) for any r=1,,m.

By (C-2) we see that |L(w;,, @4)| <Cm™'7||@,||ci@. Then, by the same argu-
ment as before we have

-2

(3.4) 2133 max| T, (#) | < Chmaml'q, ,

1=7 5=z s€08,

»

£ max | T25/(3)| < Clbmane)" m
It is easy to see that

3.5) max | Tw. (x)| <Ca '(dma)™txm! .

*€08,
Here we used the following fact to get (3.5).

max |G(x, w;) | <C(ma) .

ir

We see that Z} R;,(x) is harmonic in Q,, and is zero on ¥. Thus, by Lem-
ma 1 we get

(36) I3 Rallixa, -
< Clajm) 3 max| 21 Ri(x)|
<Clafm) 33 max| 23 T (x)) —Ru(@)|
< Clajm) 2 max (13, Ta.r(¥) |+ (mam)’] |G, w) | | Luwr, 20)])
<C(ajm)( 2 Xm max | T4, () )+Cldmaym™
By (3.4), (3.5) and (3.6), we have

(3.7) 1123 Rl 200 < C'am™py, o+ C'(4matfm™ .

We now want to estimate ||Ry||,%q,). We have
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R 2 < (4ra)(Xy(m)+ Xy(m)) ,

where

Xim) = |- 2@ Vo) (mipim)— [ (@) ()
Xm) = 1L 33 Gow, w)pu(@)piw)— 3 (6V o) @)pu(®)) .

Here G®)(x, y) is given by
GO(x, y) = Sa G(x, 2)G(z, y)d=z .
It is well known that G®(x, y) has the diagonal singularity of the type [x—y]|,

thus,
max [|GP(+, x)|lcoa <C”< o0
rEQ

for any fixed 0<p<<1. Therefore, by (C-2) we have
X,(m)<C max | L 3V GO(w,, x)pu(w:)—(GVeps) (6)| <Cym?*  (0<p<1).
ze@ | m i=1
By (C-2) we have X)(m)<Cm 3. In summing up these facts we see that
there exists a constant C,,>>0 independent of m such that
3.8) IR 220 < Corm® =10

holds for any fixed £'>0. We sum up (3.3), (3.7), (3.8) we get the desired

result. q.e.d.

By Proposition 1, Lemmas 8, 9 we have the following:

Lemma 10. Assume that {w(m)} €O and a satisfies 4warx<<1/2. Fix k.
Then

(3.9) 1(Gn—(¥) ) @all 20 < Com® -0 (£7>0)
holds for a constant C, independent of m.
We have the following:
Lemma 11. Assume that {w(m)} €0 and a satisfies 4wox<<1/2. Then
Xa,Hpll 20> — 0
as m— oo

Proof. Notice that
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<Sﬂ\nw dx SnIE(‘)G(x’ w;) = G(w,, ) lzdy>1/2
SC(xm)s—l(Sg G, wi)zdxy/zé C"(km)? (s=1).

Since 4rar<1/2, we get

I dx\ (s, y; 2dy)” -0 d
im <Sn\nw xsal (%, ¥ w(m))| y) . q.e.d.

m->o00

Lemma 12. Suppose that o satisfies 4za max (||GV||2q), £)<1/2. As-
sume that {w(m)}€0O. Then

|| H,,— H..|| 2y — 0

as m— oo, where H.. denotes the operator given by
G+ i (—4na)' GV G’ .
Proof. We fix u, veL*Q). We estimate

L S0 (60) (,) Glavg, 1) Gl 1) (G0) (wi)— | u(5)(G(V GF'0) (x)d

= Tum)+Tam)+Im)
where
Jm =1 5 @@L 5 G, w,)
m 1<i <" m;sq::;é"‘
L 3 Gl ) (69) () —(6V6v) (s |
igip

Jmy = L 51 @) @)L 3 G, ) (6V60) (@) — (6(V6)o) (w,)]
m1<nx mx;f
Jim) = L 31 (Gu) (w,) (GVE) ()~ | () (G(V o) (x)d
m 1< Q
We have
Ji(m) < Cllull 3cayem™1| G| caseay < Corem™ |l |zl e
Tom) < Cllull 2aym™| GV Goll sy < Com™5(8rzat) ull zcaol o
]3(”’)302”‘_1/6(87’0‘)_2]]“]le(n)“”HLz(n) .
Thus
(17 S -+ — GV Gl 2cer < Com¥o(se-+(8t) '+ (8ct) ™)
Similarly,
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[(m™* 239y =) — G(V G)'|| 2y < C?rm~ Y “((S:zfaf)""‘-|~{_V‘;2 e h8ra)")  (s=>4)
and
[I(m™2 2 -+ )—G(V GY|| 2y < C°rn~o(1+(8mex) ") .

In summing up these facts, we get
I, —(C+ B (— ) 6V GY)l e < Com™5{(1+ (8a) )
+(4ma) 3 ((s—1)+(8za) )27+ .

We complete the proof of Lemma 12. q-e.d.

Now we are in a final step to prove our Theorem. We use the following:

Lemma 13 (Lemma 2 in [4]). Let X be a Hilbert space over C with the
inner product (,) and the norm ||||. Let E be a compact self-adjoint operator in
X. We fix re R\{0}. Assume that there are y;€X, j=1, -+, N satisfying
HE—71)r | <&, lIWr;ll=1, and |(yrj Yi)| <(2N)72 for j==k. Then there are at
least N eigenvalues ¥, j=1, «, N of E, counted by multiplicity, satisfying

|7¥—7| <2N§¢, =1, ., N.

Proof of Theorem. Fiistly we treat the case where « satisfies 4za max
(1GV | 2y, £)<1/2. Let Z= mult(uf) denote the multiplicity of uy. Let
@r, ***, Pr+z_1 be an orthonomal basis of the eigenspace of —A-4zaV associ-
ated with @f. We know that

(3.10) lim (@, i), = 8 -

Using Lemma 10 we see that there exists at least mult (uy) eigenvalues
u¥m) 1< < pik z-1(m)"! of G, counted by multiplicities, satisfying

(3.10) | s (m)—pf | SCom® =08 (j=0, o0, Z—1).

Here Z>Z.

It should be remarked that we restrict ourselves to the case where ), is
connected, since we suppose that {w(m)} 0. Let @}, (x) be the normalized
eigenfunction of G, satisfying

(Gm—‘llzeq."(m)—l)@z’.;] = 0 .

And let &7, ;(x) be an extension of Pj(x) putting zero on Q\Q,. By Pro-
position 1, Lemmas 11, 12 we have
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lim [|(H— ks (m) ) BE 2 = 0.

Since we have (3.10) and (®%.;, ®14s)2=08% (j, h=0, -+, Z—1), we see that
there exists at least Z-dimensional eigenspace of H.. whose eigenvalues is u}.
Thus, Z<Z. As a consequence of these facts we get Theorem under the assump-
tion on a.

We now give a proof of Theorem for general a.Fix . Let A>0 be a
sufficiently large number such that the Green function G,(x, y) and the Green
operator G,=(—A-2)"! of A—x under the Dirichlet condition satisfies

(47wa) max 1525»1 G\(w;, wj)<m(2
T
and

(4za)llGV ]| 2 <1/2,

respectively. It is well known that such « exists. Using such A we discuss
everything by changing A to A—2, and we get Theoiem q.e.d.
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