Asashiba, H. Osaka J. Math. 20 (1983), 701-711

ON THE INDECOMPOSABILITY OF AMALGAMATED SUMS

HIDETO ASASHIBA

(Received December 20, 1981)

Let R be a semiprimary ring with identity element. In this paper, we study when a factor module of a direct sum of local or colocal R-modules of finite length is indecomposable.

Let (E): $0 \to K \xrightarrow{f} \bigoplus_{i=1}^{n} L_i \xrightarrow{g} M \to 0$ be a nonsplit exact sequence of right Rmodules of finite length and $f_i: K \to L_i$ be the *i*th coordinate map of f for each $i=1, \dots, n$. As we will see in the paper, if M is indecomposable, then the following condition holds:

(*) For each $j=1, \dots, n$ and each $h=(h_i)_{i=1}^{n}: \bigoplus_{i=1}^{n} L_i \to L_j$, $hf=\sum_{i=1}^{n} h_i f_i=0$ implies that h_i is not an isomorphism for each $i=1, \dots, n$.

The converse is not true in general, but in Tachikawa [3] we see the converse holds under rather strong conditions. Moreover in [1, section 2], we showed that this converse assertion is still true in the case of each of three groups of weaker conditions than those required in [3]. But in [1, Proposition 2.7], the third group of conditions, we assumed a condition on composition lengths of the L_i 's which was not assumed in the other two cases. In this paper, we remove this condition on composition lengths and show that the condition (*) implies the indecomposability of M if each L_i is local and colocal, and each f_i is a monomorphism (see (3.3)).

In section 1, we consider the fundamental properties of the map $f=(f_i)_{i=1}^n$ in the sequence (E) satisfying the condition (*). Section 2 is a generalization of tools used in [1, section 2] (this generalization is not essential to understanding the main results) and in section 3 we give the main results.

Throughout the paper R is a ring with identity element, J the Jacobson radical of R, every module is a unitary right R-module. We denote by Mod R and by mod R the category of all R-modules and R-modules of finite length, respectively. We call an R-module M completely indecomposable in case the endomorphism ring $\operatorname{End}_R(M)$ is a local ring. For maps $f: K \to L$ and $g: L \to M$, and for a decomposition $D: L = \bigoplus_I L_i$ of L, the notations $(f, D) = (f_i)_I^T$ and

 $(D,g)=(g_i)_I$ are matrix expressions of f and g relative to D, respectively. The notation $I_1 \sqcup \cdots \sqcup I_n = I$ means that the union $I_1 \cup \cdots \cup I_n = I$ is disjoint. Finally, the socle of M is denoted by soc M, the m^{th} socle of M is denoted by soc m for each R-module M. (It is well known that if R is a semiprimary ring, soc mM is equal to the left annihilator of J^m in M.)

The author would like to thank Professor T. Sumioka for his encouragement and helpful advice.

1. Infusible maps

DEFINITION. Let $f: K \to L$ be a homomorphism of *R*-modules, $D: L = \bigoplus_{i=1}^{n} L_i$ be a decomposition of *L* and let $(f, D) = (f_i)_{i=1}^{T}$. Then the pair (f, D) is said to be *infusible* in case for each $j=1, \dots, n$ and each $h=(h_i)_{i=1}^{n}: \bigoplus_{i=1}^{n} L_i \to L_j$; $hf = \sum_{n=1}^{n} h_i f_i = 0$ implies that h_i is not an isomorphism for each $i=1, \dots, n$. Further the pair (f, D) is called *fusible* in case it is not infusible.

Dually, for a homomorphism $g: L \to M$ of *R*-modules and for a decomposition $D: L = \bigoplus_{i=1}^{n} L_i$ of *L*, the pair (D, g) is said to be *coinfusible* in case for each $j=1, \dots, n$ and each $h=(h_i)_{i=1}^{T}: L_j \to \bigoplus_{i=1}^{n} L_i$; gh=0 implies that each h_i is not an isomorphism for each $i=1, \dots, n$. Further the pair (D, g) is called *cofusible* if it is not coinfusible.

Finally, assume that the *R*-module *L* above can be written as a finite direct sum of completely indecomposable *R*-modules. Then we simply say that the map f(resp. g) is infusible (resp. coinfusible) in case the pair (f, D) (resp. (D, g)) is infusible (resp. coinfusible) for every decomposition *D* of *L*, and the map f (resp. g) is said to be fusible (resp. cofusible) if it is not infusible (resp. coinfusible).

Proposition 1.1. (a) For a homomorphism $f: K \to L$ of R-modules and for a decomposition $D: L = \bigoplus_{i=1}^{n} L_i$ of L, putting $g: L \to \text{Coker } f(=M)$ the canonical epimorphism and $(D, g) = (g_i)_{i=1}^{n}$, the following statements are equivalent:

(1) (f, D) is fusible.

(2) There is a homomorphism $h: \bigoplus_{i \neq j} L_i \rightarrow L_j$ for some $j=1, \dots, n$ such that $f_j = h(f_i)_{i\neq j}^T$.

(3) g_j is a split monomorphism for some $j=1, \dots, n$.

(4) There is a split epimorphism $p: M \to M' (\pm 0)$ and a nonempty subset $I \subseteq \{1, \dots, n\}$ such that $p(g_i)_I: \bigoplus_I L_i \to M'$ is an isomorphism.

Further if each L_i is completely indecomposable, then the above conditions are equivalent to

(5) $\{h \in \operatorname{End}_R(L) | hf = 0\} \not\subseteq J(\operatorname{End}_R(L)) \text{ where } J(-) \text{ denotes the Jacobson}$

radical of (-).

(a)' For a homomorphism $g: L \to M$ of R-modules and for a decomposition $D: L = \bigoplus_{i=1}^{n} L_i$ of L, putting $f: (K=) \operatorname{Ker} g \to L$ the inclusion map and $(f, D) = (f_i)_{i=1}^{T_n}$, the following statements are equivalent:

(1)' (D, g) is cofusible.

(2)' There is a homomorphism $h: L_j \rightarrow \bigoplus_{i \neq j} L_i$ for some $j=1, \dots, n$ such that $g_j = (g_i)_{i \neq j}h$.

(3)' f_j is a split epimorphism for some $j=1, \dots, n$.

(4)' There is a split monomorphism $q: (0 \neq) K' \rightarrow K$ and a nonempty subset $I \subseteq \{1, \dots, n\}$ such that $(f_i)_I^T q: K' \rightarrow \bigoplus_I L_i$ is an isomorphism.

Further if each L_i is completely indecomposable, then the above conditions are equivalent to

(5)' $\{h \in \operatorname{End}_R(L) | gh = 0\} \not\subseteq J(\operatorname{End}_R(L)).$

Proof. We prove only (a). $(1) \Rightarrow (2)$. If the pair (f, D) is fusible, then there exist $i_0=1, \dots, n$ and $h: L \rightarrow L_{i_0}, h=(h_i)_{i=1}^n$ such that hf=0 and h_j is an isomorphism for some $j=1, \dots, n$. Since h_j is an isomorphism, we may assume $i_0=j$ and $h_j=1_{L_i}$. Then hf=0 implies that $f_j=(-h_i)_{i\neq j}(f_i)_{i\neq j}^T$.

(2) \Rightarrow (3). Suppose that $f_j = h(f_i)_{i\neq j}^T$ and $h = (h_i)_{i\neq j}$. Taking $h' = (-h_1, \dots, -h_{j-1}, 1_{L_j}, -h_{j+1}, \dots, -h_n)$, we have h'f=0. Therefore there is a homomorphism $p: M \rightarrow L_j$ such that h' = pg. Let $k_j: L_j \rightarrow L$ be the inclusion map. Then $pg_j = pgk_j = h'k_j = 1_{L_j}$. Thus g_i is a split monomorphism.

 $(3) \Rightarrow (4)$. Trivial.

(4) \Rightarrow (1). Suppose (4) holds. Taking $h=p_i(p(g_i)_I)^{-1}pg$ where $p_i: \bigoplus_I L_i \rightarrow L_i$ $(i \in I)$ is the canonical projection, we have hf=0 and $h_i=1_{L_i}$ thus (f, D) is fusible.

If each L_i is completely indecomposable, then $J(\operatorname{End}_R(L)) = \{(f_{ij}) \in \operatorname{End}_R(\bigoplus_{i=1}^n L_i) | f_{ij} \text{ is not an isomorphism for each } i, j=1, \dots, n\}$. From this fact, equivalence of (1) and (5) is immediate.

REMARK 1. (a) There is a homomorphism $f: K \to L$ and decompositions D, D' of L such that (f, D) is fusible but (f, D') is infusible.

(a)' There is a homomorphism $g: L \to M$ and decompositions D, D' of L such that (D, g) is cofusible but (D, g) is coinfusible.

For example: (a). Let L_1 , L_2 , L_3 be nonzero *R*-modules of finite length, $L=L_1\oplus L_2\oplus L_3$ and $M=L_1$ and let $g_i: L_i \to M$ be a homomorphism for each i=1, 2, 3 such that g_1 is the identity, g_3 is not a split monomorphism; and put $g=(g_1, g_2, g_3): L \to M$. Consider the following exact sequence: $0 \to \operatorname{Ker} g \xrightarrow{f} L \xrightarrow{g} M \to 0$. Let $D: L=L_1\oplus (L_2\oplus L_3), D': L=(L_1\oplus L_2)\oplus L_3$ be two decompositions of L.

Let $D: L = L_1 \oplus (L_2 \oplus L_3)$, $D': L = (L_1 \oplus L_2) \oplus L_3$ be two decompositions of L. Then (f, D) is fusible since g_1 is a split monomorphism but (f, D') is infusible since (g_1, g_2) and g_3 are not split monomorphisms (1, 1; 3).

(a)': Dual.

REMARK 2. Let $D: L = \bigoplus_{i=1}^{n} L_i$ and $D': L = \bigoplus_{j=1}^{m} N_j$ be two decompositions of an *R*-module *L* where $N_j = \bigoplus_{I_j} L_i$ for each $j=1, \dots, m$ and $\{1, \dots, n\} = I_1 \perp \dots \perp I_m$. Then from (1.1; 3 and 3') it holds that

(a) For a map $f: K \rightarrow L$ in Mod R, if (f, D') is fusible, then (f, D) is fusible; and

(a)' For a map $g: L \rightarrow M$ in Mod R, if (D', g) is cofusible, then (D, g) is cofusible.

From the above remark and (1.1; 5 and 5'), we obtain the following

Corollary 1.2. Suppose that an R-module L has a finite decomposition $D: L = \bigoplus_{i=1}^{n} L_i$ with each L_i completely indecomposable. Then

(a) A homomorphism $f: K \rightarrow L$ in Mod R is infusible if and only if the pair (f, D) is infusible; and

(a)' A homomorphism $g: L \to M$ in Mod R is coinfusible if and only if the pair (D, g) is coinfusible.

REMARK. Let $(E): 0 \to K \xrightarrow{f} L \xrightarrow{g} M \to 0$ be a nonsplit exact sequence in mod R. In [1] we called (E) a (*)-sequence iff the map f is infusible.

Corollary 1.3. Let $(E): 0 \to K \xrightarrow{f} L \xrightarrow{g} M \to 0$ be a nonsplit exact sequence in mod R. Then

(a) If M is indecomposable, f is infusible; and

(a)' If K is indecomposable, g is coinfusible.

Proof. We only show that (a) holds. If f is fusible, thus (f, D) is fusible for some decomposition $D: L = \bigoplus_{i=1}^{n} L_i$, then from (1.1; 3) and the fact that the sequence (E) does not split, L_i is a proper nonzero direct summand of M for some $i=1, \dots, n$.

REMARK. (a) There is a nonsplit monomorphism f in mod R such that f is infusible but Coker f is decomposable.

(a)' There is a nonsplit epimorphism g in mod R such that g is coinfusible but Ker g is decomposable.

For example: (a) Let the exact sequence $0 \to K \xrightarrow{f} L \xrightarrow{g} M \to 0$ be the projective cover of $M = M_1 \oplus M_2$ where M_1 and M_2 are nonprojective indecomposables in mod R. Then f does not split and by (1.1; 3), f is infusible but Coker f = M is decomposable.

(a)': Dual.

From (1.2; 2 and 2') we have

11

Corollary 1.4. (a) Let $K_i \leq L_i$ for each i = 1, 2 and $h: K_1 \rightarrow K_2$ be an isomorphism. Define $f_1 = k_1$, $f_2 = k_2h$ where $k_i: K_i \rightarrow L_i$ is the inclusion map for each i=1, 2. Then h or h^{-1} is extendable to a homomorphism $L_1 \rightarrow L_2$ or $L_2 \rightarrow L_1$, respectively iff $(f, D) = (f_i)_{i=1,2}^T: K_1 \rightarrow L_1 \oplus L_2$ is fusible.

(a)' Let $K_i \cong L_i$ for each i=1, 2 and $h: L_1/K_1 \to L_2/K_2$ be an isomorphism. Define $g_1 = hp_1, g_2 = p_2$ where $p_i: L_i \to L_i/K_i$ is the projection for each i=1, 2. Then h or h^{-1} is liftable to a homomorphism $L_1 \to L_2$ or $L_2 \to L_1$, respectively iff $(D, g) = (g_i)_{i=1,2}: L_1 \oplus L_2 \to L_2/K_2$ is cofusible. //

The forms of (1.1; 4 and 4') are mainly used to show that (f, D) is fusible and (D, g) is cofusible below.

2. Covering property

Recall that a functor r of Mod R to itself is called a preradical in case it is a subfunctor of the identity functor of Mod R, that is, for any $M \in \text{Mod } R$; $rM \leq M$ and for any map $f: M \to N$ in Mod R, $rf: rM \to rN$ is the restriction map of f. A preradical r is called a radical (resp. an idempotent preradical) in case for any $M \in \text{Mod } R$, r(M/rM)=0 (resp. r(rM)=rM). For any $N \leq M$ in Mod R the notations $N \ll M$ and $N \leq_e M$ mean "N is small in M" and "N is essential in M", respectively. An R-module M is called local (resp. colocal) in case M has the unique maximal (resp. minimal) submodule. We denote the composition length of M by |M|.

Lemma 2.1. Let $L = \bigoplus_{i=1}^{n} L_i$ and $M = M_1 \oplus M_2$ be decompositions of Rmodules such that each L_i is completely indecomposable and let $p_j: M \to M_j$ denote
the projections. If $f: L \to M$ is an isomorphism, then there exists a partition $\{1, \dots, n\} = I_1 \perp L_2$ such that the restriction map $p_j f: \bigoplus_{i,j} L_i \to M_j$ is an isomorphism
for each j = 1, 2.

Proof. See [1, Lemma 1.4].

REMARK. By induction, this Lemma holds more generally. Let $M = \bigoplus_{i=1}^{n} L_i = \bigoplus_{j=1}^{r} M_j$ be direct decompositions of an *R*-module *M* with completely indecomposable modules L_i . Then there exists a partition $\{1, \dots, n\} = I_1 \perp \dots \perp I_r$ such that the induced map $p_j: N_j \rightarrow M_j$ is an isomorphism for each $j = 1, \dots, r$ where $N_j = \bigoplus_{I_j} L_i$ and $p_j: M \rightarrow M_j$ is the projection.

DEFINITION. Let $D: L = \bigoplus_{i=1}^{m} L_i$ be a decomposition of an *R*-module *L* and $g: L \rightarrow M, f: M \rightarrow L$ be homomorphisms. Then *g* is said to have the *cover*ing (resp. cocovered) property and *f* is said to have the *covered* (resp. cocovering) property in case for any decomposition $M = M_1 \oplus M_2$ there is a decomposition

 $L=N_1\oplus N_2$ such that the restriction maps $p_jg: N_j \rightarrow M_j$ and g itself are epimorphisms (resp. monomorphisms) and the restriction maps $q_jf: M_j \rightarrow N_j$ and f itself are epimorphisms (resp. monomorphisms), respectively where $p_j: M \rightarrow M_j$ and $q_j: L \rightarrow N_j$ are the projections. In addition, if in the definitions above, N_j is always given by the form $N_j = \bigoplus_{I_j} L_i$ for each j=1, 2 where $I_1 \perp I_2 = \{1, \dots, n\}$, then we say that g has the *D*-compatible covering (resp. cocovered) property and so on.

Proposition 2.2. Let $0 \to K \xrightarrow{f} L \xrightarrow{g} M \to 0$ be a nonsplit exact sequence in mod R, $D: L = \bigoplus_{i=1}^{n} L_i$ a decomposition of L and $(f, D) = (f_i)_{i=1}^{T}$, $(D, g) = (g_i)_{i=1}^{n}$. Then

(a) If K is simple, then M is indecomposable iff (f, D) is infusible and g has the D-compatible covering property; and

(b) If f_1 is monic and Coker f_1 is simple, then M is indecomposable iff (f, D) is infusible and $(g_i)_{i+1}$ has the $\bigoplus_{i\neq 1} L_i$ -compatible cocovered property.

The dual statements also hold.

Proof. We prove only (a) and (b). (a). (\Rightarrow). By (1.3), (f, D) is infusible and it is trivial that g has the D-compatible covering property. (\Leftarrow). Suppose $M = M_1 \oplus M_2$; $M_1, M_2 \neq 0$. Then there is a decomposition $L = N_1 \oplus N_2$ such that the induced maps $N_j \rightarrow M_j$ are epimorphisms where N_j 's are direct sums of some L_i 's. But since K is simple, $|N_j| = |M_j|$ for some j=1, 2 which means that the map $N_j \rightarrow M_j$ is an isomorphism. Hence (f, D) is fusible by (1.1).

(b). (\Rightarrow) . Trivial. (\Leftarrow) . Note that $(g_i)_{i \neq 1}$ is monic, since f_1 is monic and Ker $g \leq \text{Im } f$. We put $g_0 = (g_i)_{i \neq 1}$ and $L_0 = \bigoplus_{i \neq 1} L_i$. Suppose $M = M_1 \bigoplus M_2$; $M_1, M_2 \neq 0$. Then there is a decomposition $L_0 = N_1 \bigoplus N_2$ such that the maps $N_j \rightarrow M_j$ induced by g_0 are monomorphisms where N_j 's are direct sums of some L_i 's. But since Coker f_1 is simple and Coker $g_0 = (g_1L_1 + g_0L_0)/g_0L_0 \cong$ $g_1L_1/(g_1L_1 \cap g_0L_0) = g_1L_1/g_1f_1K$; we have $|\text{Coker } g_0| = 1$ or 0. Hence $|N_j| = |M_j|$ for some j = 1, 2 thus (f, D) is fusible.

The following proposition is a generalization of [1, Lemma 2.4].

Proposition 2.3. Let $D: L = \bigoplus_{i=1}^{n} L_i$ be a decomposition of L in Mod R. Then we have

(a) For an epimorphism $g: L \rightarrow M$ in Mod R, if there is a radical r such that L_i/rL_i is completely indecomposable for each $i=1, \dots, n$ and $\text{Ker } g \leq rL \ll L$, then g has the D-compatible covering property;

(a)' For a monomorphism $f: M \to L$ in Mod R, if there is an idempotent preradical r such that rL_i is completely indecomposable for each $i=1, \dots, n$ and $rL \leq \operatorname{Im} f, rL \leq_e L$, then f has the D-compatible cocovering property;

(b) For a monomorphism $g: L \rightarrow M$ in Mod R, if there is an idempotent

preradical r such that rL_i is completely indecomposable for each $i=1, \dots, n$ and $rM \leq \text{Im } g, rM \leq_e M$, then g has the D-compatible cocovered property; and

(b)' For an epimorphism $f: M \to L$ in Mod R, if there is a radical r such that L_i/rL_i is completely indecomposable for each $i=1, \dots, n$ and Ker $f \leq rM \ll M$, then f has the D-compatible covered property.

Proof. (a). Since Ker $g \leq rL$ and r is a radical, r(L/Ker g) = rL/Ker g. Accordingly, we get the commutative diagram

$$0 \to r(L/\operatorname{Ker} g) \to L/\operatorname{Ker} g \to L/rL \to 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow rM \longrightarrow M \longrightarrow M/rM \to 0$$

with exact rows where all vertical maps are isomorphisms, in particular the induced map $\bar{g}: L/rL \to M/rM$ is an isomorphism. Now let $M = M_1 \oplus M_2$, $p_j: M \to M_j$ be the canonical projections and $s: L \to L/rL$, $t: M \to M/rM$ the canonical epimorphisms. Then we have $L/rL = \bigoplus_{i=1}^n s(L_i)$ and $M/rM = t(M_1) \oplus t(M_2)$ where $s(L_i) \cong L_i/rL_i$ is completely indecomposable for each $i=1, \dots, n$. From (2.1), we obtain that there is a partition $\{1, \dots, n\} = I_1 \perp I_2$ such that the restriction maps $\bar{p}_j \bar{g}: \bigoplus_{I_j} s(L_i) \to t(M_j)$ are isomorphisms. But since Ker $g \leq rL \ll L$, we have $rM \ll M$ thus t is a small epimorphism. Hence the restriction maps $p_j g: \bigoplus_{I_j} L_i \to M_j$ are epimorphisms. The rest of the proof is similar to (a). //

The following corollary is just [1, Lemma 2.4] and its dual. But for completeness, we shall rewrite it below.

Corollary 2.4. Let R be a semiprimary ring, $D: L = \bigoplus_{i=1}^{n} L_i$ a decomposition of L in Mod R. Then it holds that

(a) For an epimorphism $g: L \rightarrow M$ in Mod R, if all L_i 's are local then g has the D-compatible covering property;

(a)' For a monomorphism $f: M \to L$ in Mod R, if all L_i 's are colocal then f has the D-compatible cocovering property;

(b) For a monomorphism $g: L \to M$ in Mod R, if all L_i 's are colocal then g has the D-compatible cocovered property; and

(b)' For an epimorphism $f: M \rightarrow L$ in Mod R, if all L_i 's are local then f has the D-compatible covered property.

Proof. (a). In the proof of (2.3), put r=J (Jacobson radical) and note that $MJ \ll M$ and there is a subset $I \subseteq \{1, \dots, n\}$ such that the induced map $\bigoplus_I s(L_i) \rightarrow M/MJ$ is an isomorphism since L/LJ is semisimple. The rest of the proof is similar.

The following proposition is a generalization of [1, Theorem 2.5 and Proposition 2.6].

Proposition 2.5. Let $0 \to K \xrightarrow{f} L \xrightarrow{g} M \to 0$ be a nonsplit exact sequence in mod R and D: $L = \bigoplus_{i=1}^{n} L_i$ a decomposition of L. Then it holds that

(a) If K is simple and there is a radical r such that L_i/rL_i is indecomposable for each $i = 1, \dots, n$ and Ker $g \leq rL \ll L$, then M is indecomposable iff (f, D) is infusible;

(a)' If M is simple and there is an idempotent preradical r such that rL_i is indecomposable for each $i=1, \dots, n$ and $rL \leq \text{Im } f$, $rL \leq L$, then K is indecomposable iff (D, g) is coinfusible;

(b) If f_1 is monic, Coker f_1 is simple and there is an idempotent preradical r such that rL_i is indecomposable for each $i=2, \dots, n$ and $rM \leq \text{Im}(g_i)_{i\neq 1}, rM \leq_e M$, then M is indecomposable iff (f, D) is infusible; and

(b)' If g_1 is epic, Ker g_1 is simple and there is a radical r such that L_i/rL_i is indecomposable for each $i=2, \dots, n$ and Ker $(f_i)_{i=1}^T \leq rM \ll M$, then K is indecomposable iff (D, g) is coinfusible, where $(f,D)=(f_i)_{i=1}^T$ and $(D,g)=(g_i)_{i=1}^n$.

Proof. Clear from (2.2), (2.3) and the fact that every indecomposable module of finite length is completely indecomposable. //

The following corollary is just [1, Theorem 2.5 and Proposition 2.6] and their duals.

Corollary 2.6. Let R be a semiprimary ring and $0 \to K \xrightarrow{f} L \xrightarrow{g} M \to 0$ be a nonsplit exact sequence in mod R, and let $D: L = \bigoplus_{i=1}^{n} L_i$ be a decomposition of L. Then it holds that

(a) If K is simple and all L_i 's are local, then M is indecomposable iff (f, D) is infusible;

(a)' If M is simple and all L_i 's are colocal, then K is indecomposable iff (D, g) is coinfusible;

(b) If f_1 is monic, Coker f_1 is simple and L_i is colocal for each i=2, ..., n, then M is indecomposable iff (f, D) is infusible; and

(b)' If g_1 is epic, Ker g_1 is simple and L_i is local for each $i=2, \dots, n$, then K is indecomposable iff (D,g) is coinfusible, where $(f,D)=(f_i)_{i=1}^{T_n}$ and $(D,g)=(g_i)_{i=1}^{n}$.

REMARK. (2.6.a) is also a generalization of [2, Theorem 3.7] in the semiprimary case.

3. Main results

Throughout this section, we assume that R is a semiprimary ring and every

module is of finite length. For a map $u: M \to N$ in mod R, the notation $u: M \to N$ (resp. $u: M \to N$) means that u is a monomorphism (resp. an epimorphism). We denote by h(M) the height (= Loewy length) of M for each M in mod R, namely $h(M) = \min \{n \in \mathbb{N} \cup \{0\} | MJ^n = 0\} = \min \{m \in \mathbb{N} \cup \{0\} | \operatorname{soc}_m M = M\}$ where we put $MJ^0 = M$, $\operatorname{soc}_0 M = 0$.

Lemma 3.1. Consider the maps

$$D \xrightarrow{u} C_1 \stackrel{v}{\longleftrightarrow} E \oplus F$$
$$E \xrightarrow{u'} C_2 \stackrel{v'}{\longleftarrow} D$$

in mod R and put h=h(F). Then it holds that

(a) If F is colocal, $DJ^{h-1} \leq_{e} D$ and $EJ^{h-1} \leq_{e} E$, then v or v' is an isomorphism; and

(b) If $DJ^h \leq_e D$, then v' is an isomorphism.

Proof. (a). From the maps above we get

$$DJ^{h-1} \xrightarrow{\mathcal{U}} C_1 J^{h-1} \overset{\overline{\mathcal{U}}}{\longleftrightarrow} EJ^{h-1} \oplus FJ^{h-1}$$
$$EJ^{h-1} \xrightarrow{\mathcal{U}'} C_2 J^{h-1} \overset{\overline{\mathcal{U}}'}{\longleftarrow} DJ^{h-1}.$$

Since F is colocal, $FJ^{h-1} = \operatorname{soc} F$ is simple and hence $|EJ^{h-1}| \leq |DJ^{h-1}| \leq |EJ^{h-1}| + 1$. Therefore $|DJ^{h-1}| = |EJ^{h-1}|$ or $|DJ^{h-1}| = |EJ^{h-1}| + 1$. Thus $v'|DJ^{h-1}$ or $v|(EJ^{h-1} \oplus FJ^{h-1})$ is a monomorphism. But since $DJ^{h-1} \leq_e D$ and $EJ^{h-1} \oplus FJ^{h-1} \leq_e E \oplus F$, we see *that* v' or v is a monomorphism hence an isomorphism. (b) Similar to (a).

Dually we have

Lemma 3.1'. Consider the maps

$$D \stackrel{u}{\longleftrightarrow} C_1 \xrightarrow{v} E \oplus F$$
$$E \stackrel{u'}{\longleftrightarrow} C_2 \xrightarrow{v'} D$$

in mod R and put h=h(F). Then it holds that

(a) If F is local, $\operatorname{soc}_{h-1} D \ll D$ and $\operatorname{soc}_{h-1} E \ll E$, then v or v' is an isomorphism; and

(b) If $\operatorname{soc}_h D \ll D$, then v' is an isomorphism. ||

Now we state our main results.

Theorem 3.2. Let $0 \to K \xrightarrow{f} L \xrightarrow{g} M \to 0$ be a nonsplit exact sequence in

mod R where $L = \bigoplus_{i=1}^{n} L_i$ $(n \ge 2)$, f_1 , the first coordinate map of f, is a monomorphism and L_1, \dots, L_n are local and colocal. If it holds either

- (a) $h(L_1) = \min_{i=1}^{n} h(L_i), L_1$ is local and colocal; or
- (b) $h(L_1) < \min_{i \neq 1} h(L_i), L_1 \text{ is local},$

then M is indecomposable iff f is infusible.

Proof. (\Rightarrow) . By (1.3). (\Leftarrow) . Let *D* be the decomposition: $L = \bigoplus_{i=1}^{n} L_i$ and $M = M_1 \bigoplus M_2$; $M_1, M_2 \neq 0$, $p_i: M \rightarrow M_i$ be the canonical projections. Put $(D,g)=(g_i)_{i=1}^{n}$. Since all L_i 's are local, *g* has the *D*-compatible covering property. On the other hand noting that $(g_i)_{i \neq 1}$ is monic since f_1 is, we see that $(g_i)_{i \neq 1}$ has the $\bigoplus_{i \neq 1} L_i$ -compatible cocovered property since all L_i 's $(i \neq 1)$ are colocal. Hence there are partitions $\{1, \dots, n\} = I_1 \perp I_2$ and $\{2, \dots, n\} = J_1 \perp J_2$ such that

Here we may assume $1 \in I_1$. Put $G_j = I_j \cap J_j$ and $H_j = J_j - G_j$ for each j = 1, 2. Then noting that $I_1 - G_1 = H_2 \perp \{1\}$ and $I_2 - G_2 = H_1$, the following diagram is induced:

$$\bigoplus_{H_1} L_i \longrightarrow M'_1 \longleftrightarrow (\bigoplus_{H_2} L_i) \bigoplus L_1 \bigoplus_{H_2} L_i \longrightarrow M'_2 \longleftrightarrow \bigoplus_{H_1} L_i$$

where $M'_{j}=M_{j}/p_{j}g(\bigoplus_{G_{j}}L_{i})$, since for any $G\subseteq I\subseteq \{1, \dots, n\}$ and any $u: \bigoplus_{I}L_{i}\rightarrow C$, we have a commutative diagram

$$0 \longrightarrow \bigoplus_{G} L_{i} \longrightarrow \bigoplus_{I} L_{i} \longrightarrow \bigoplus_{I-G} L_{i} \longrightarrow 0$$

$$\| \qquad \| \qquad \downarrow^{\simeq}$$

$$0 \longrightarrow \bigoplus_{G} L_{i} \longrightarrow \bigoplus_{I} L_{i} \longrightarrow \bigoplus_{I} L_{i} / \bigoplus_{G} L_{i} \longrightarrow 0$$

$$\downarrow \qquad u \downarrow \qquad \downarrow$$

$$0 \longrightarrow u(\bigoplus_{G} L_{i}) \longrightarrow C \longrightarrow C/u(\bigoplus_{G} L_{i}) \longrightarrow 0$$

with exact rows from which we see that the induced map $v: \bigoplus_{I-G} L_i \rightarrow C/u(\bigoplus_G L_i)$ is monic (resp. epic) if u is monic (resp. epic).

(i) In case (a) is satisfied. Put $h = h(L_1)$. Then for any subset $I \subseteq \{1, \dots, n\}$, we have that $\operatorname{soc}(\bigoplus_I L_i) \leq (\bigoplus_I L_i) J^{h-1}$ since $\operatorname{soc} L_i = L_i J^{h(L_i)-1} \leq L_i J^{h-1}$ for all $i \in I$. Hence from (3.1.a), we obtain that $|M'_1| = |(\bigoplus_{H_2} L_i) \bigoplus_{L_1}|$ or $|M'_2| = |\bigoplus_{H_1} L_i|$. Therefore $|M_1| = |\bigoplus_{I_1} L_i|$ or $|M_2| = |\bigoplus_{I_2} L_i|$ since $p_j(g_i)_{G_j}$ are monomorphisms. Thus f is fusible.

(ii) In case (b) holds. Similarly we can use (3.1.b) to get $|M'_2| = |\bigoplus_{H_1} L_i|$ thus $|M_2| = |\bigoplus_{I_2} L_i|$ and f is fusible.

Corollary 3.3. Let $0 \to K \xrightarrow{f} L \xrightarrow{g} M \to 0$ be a nonsplit exact sequence in mod R, $D: L = \bigoplus_{i=1}^{n} L_i$ $(n \ge 2)$ a decomposition of L and $(f, D) = (f_i)_{i=1}^{T}$. Suppose that each L_i is local and colocal, and each f_i is a monomorphism. Then M is indecomposable iff f is infusible ||

Dually we obtain

Theorem 3.2'. Let $0 \to K \xrightarrow{f} L \xrightarrow{g} M \to 0$ be a nonsplit exact sequence in mod $R, D: L = \bigoplus_{i=1}^{n} L_i \ (n \ge 2)$ a decomposition of L and $(D, g) = (g_i)_{i=1}^{T}$. Suppose that g_1 is an epimorphism and L_2, \dots, L_n are local and colocal. If it holds either

(a) $h(L_1) = \min_{i=1}^{n} h(L_i), L_1 \text{ is local and colocal; or }$

(b) $h(L_1) < \min_{i \neq 1} h(L_i), L_1 \text{ is colocal,}$

then K is indecomposable iff g is coinfusible.

Corollary 3.3'. In the same situation as above. Suppose that all L_i 's are local and colocal, and all g_i 's are epimorphisms. Then K is indecomposable iff g is coinfusible. ||

REMARK. (3.2) is also a generalization of [2, Theorem 4.2 and Proposition 4.3] in the semiprimary case.

References

- H. Asashiba and T. Sumioka: On Krull-Schmidt's theorem and the indecomposability of amalgamated sums, Osaka J. Math. 20 (1983), 321-329.
- [2] E. Green: On the decomposability of amalgamated sums, J. Pure Appl. Algebra 14 (1979), 259-272.
- H. Tachikawa: On rings for which every indecomposable right module has a unique maximal submodule, Math. Z. 71 (1959), 200-222.

Department of Mathematics Osaka City University Osaka 558, Japan.

||