A NOTE ON CARTAN INTEGERS FOR p-SOLVABLE GROUPS

Yukio TSUSHIMA

(Received September 10, 1981)

1. Introduction

Let B be a p-block of a finite group G. As is well-known, if the Cartan integer $c_{\varphi \varphi}=1$ for some $\varphi \in \operatorname{IBr}(B)$, then B must be a block of defect zero. On the other hand there are various blocks in which the second smallest case, namely $c_{\varphi \varphi}=2$ for some φ occurs, though they do not seem generally to have specific natures in common. However in such blocks of p-solvable groups we can show the following, which is the purpose of this paper.

Theorem. Let G be a p-solvable group and B a p-block (ideal) of $R[G]$ with defect group D. If the Cartan integer $c_{\varphi \varphi}=2$ for some $\varphi \in \operatorname{IBr}(B)$, there exists a group T which is involved in G and satisfies:
T has a normal Sylow p-subgroup Q isomorphic to D and if H is a p-complement of T, then H acts faithfully and transitively on $Q^{\ddagger} . B$ is isomorphic to the full matrix ring $M(n, R[T])$ over $R[T]$ of degree $n=\operatorname{deg} \varphi$ as R-algebras. In particular D is elementary and $|H|=(|D|-1)\left(k_{B}-l_{B}\right)$, where $k_{B}=|\operatorname{Irr}(B)|$ and $l_{B}=|\operatorname{IBr}(B)|$.

Here " T is involved in G " means that T is isomorphic to a homomorphic image of a subgroup of G and Q^{\ddagger} is the set of non-identy elements of Q. Note that the above T has a double coset decomposition $T=H \cup H g H(g \in Q)$, so it can be represented as a (p-solvable) doubly transitive permutation group and it holds that $c_{\varphi \varphi}=2$ for every linear character φ of T. Such permutation groups were classified by Huppert [3] and Passman [5] and as a matter of fact the result will take an essential role in the proof of the above Theorem.

Notation. G will denote a finite group and p a fixed prime integer. We fix a p-modular system (L, R, F), namely R is a valuation ring of rank one with quotient field L of characteristic zero and residue field F of characteristic p. We assume that L contains a primitive $|G|$-th root of unity. All modular representations will be considered over F and by a p-block of G we mean a block ideal of the group ring $R[G]$. As usual $\operatorname{Irr}(B)$ and $\operatorname{IBr}(B)$ denote the sets of irreducible L-characters and irreducible Brauer characters of B
respectively. Finally for a positive integer n, n_{p} and n^{\prime} denote the p-part and the p^{\prime}-part of n respectively.

The author would like to thank Professor G. Michler for his preprint [4] which motivated this work and also Professors K. Iizuka, T. Okuyama and A. Watanabe for their valuable advice.

2. Preliminary lemmas

First of all we mention the following which is a direct consequence of the classifying theorems of p-solvable doubly transitive permutation groups due to Huppert [3] and Passman [5].

Lemma 1. Let (G, Ω) be a p-solvable doubly transitive permutation group with non-trivial normal p-subgroup. Then the stabilizer $G_{a, b}$ of $a, b \in \Omega(a \neq b)$ has a normal Sylow p-subgroup and its complement is cyclic.

Proof. We may assume that G is the semidirect product $G=N Q, N \cap Q$ $=1$, in which Q is a minimal normal p-subgroup of G of order $|\Omega|=p^{n}$ and N acts transitively on Q^{\sharp}. So $G_{a, b}=N_{x}=C_{N}(x)$ for some $x \in Q^{\sharp}$. In case of "semilinear transformations", Q is identified with the Galois field $G F\left(p^{n}\right)$ and then $N_{x} \subset$ the Galois group of $G F\left(p^{n}\right)$, which is cyclic (Take x from the prime field). In exceptional cases, we have $|Q|=p^{2}$ or 3^{4}. If $|Q|=p^{2}$, then $N \subset$ $G L(2, p)$ and our assertion is obvious (consider the stabilizer in $G L(2, p)$ of the vector $\left.(1,0) \in(\boldsymbol{Z} /(p))^{2}\right)$. If $|Q|=3^{4}$, then "case by case" arguments prove easily our assertion. For example, the cyclic group of order eight generated by $\left(\begin{array}{rrrr}1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0\end{array}\right)$ is the stabilizer of the vector $\left(\begin{array}{lll}0 & 1 & 0-1) \in(\boldsymbol{Z} /(p))^{4} \text { in the }\end{array}\right.$ first one of the three groups listed on pp. 127 of Huppert [3].

The next Lemma was essentially noted by Brauer and Nesbitt [1].
Lemma 2. The Cartan integers $c_{\varphi \varphi}$ are same for all the linear characters φ of G. If G has a p-complement, say H, then this common integer is equal to the number of (H, H)-cosets of G.

Proof. Let η be the principal indecomposable Brauer character corresponding to the trivial character 1_{G} of G. If φ is linear, then φ_{η} is the principal indecomposable Brauer character corresponding to φ and hence we have $c_{\varphi \varphi}=$ $\left(\varphi_{\eta}, \varphi_{\eta}\right)=(\eta, \eta)=c_{11}$. In case G has a p-complement H, we have $\eta=G \bigotimes_{H} 1_{H}$ and so c_{11} is equal to the number of (H, H)-cosets of G by Mackey decomposition.

Lemma 3. Suppose that there exists $\varphi \in \operatorname{IBr}(G)$ such that $c_{\varphi \varphi}=2$. If $O_{p}(G)$ is not trivial, then it is a unique normal p-subgroup and φ belongs to a block of $G / O_{p}(G)$ of defect zero.

Proof. Let Q be any non-trivial normal p-subgroup of G and let I denote the (nilpotent) ideal of $A=F[G]$ generated by $\{x-1 ; x \in Q\}$. Let e be a primitive idempotent of A such that φ is afforded by the socle of $A e$. Suppose that $A e / I e$ is reducible. Since it is a principal indecomposable $F[G / Q]$-module, we have $c_{\varphi \varphi} \geq 2$ (as $F[G / Q]$ is a symmetric algebra). On the other hand we see that $I e$ is not zero and contains the socle of $A e$. In fact it is easy to see that the right annihilator ideal of I in A is the principal ideal σA with $\sigma=\sum x$ $(x \in Q)$, which is square zero and contains no idempotent. Combining with the above, we get $c_{\varphi \varphi} \geq 3$, contradicting the assumption. Therefore $A e / I e$ is irreducible and φ belongs to a block of G / Q of defect zero. In particular it follows that $\varphi(1)_{p}=[G: Q]_{p}$. Since Q is arbitary, we have $\left|O_{p}(G)\right|=|Q|$, or $O_{p}(G)=Q$, completing the proof of Lemma 3.

Lemma 4. Let G be a p-solvable group and assume that $O_{p^{\prime}}(G)$ is central. If there exists $\varphi \in \operatorname{IBr}(G)$ such that $c_{\varphi \varphi}=2$, then φ must be linear. In particular, G has a normal Sylow p-subgroup S and if H is a p-complement, it acts on $S^{\#}$ transitively.

Proof. By the assumption and Lemma 3, $Q=O_{p}(G)$ is a (non-trivial) minimal normal subgroup. Hence it has a complement in G, that is, if we let N be the normalizer in G of a p-complement of $O_{p p^{\prime}}(G)$, we get $G=N Q$ by Frattini argument and $N \cap Q=1$ by the minimality of Q. By Lemma 3, φ belongs to a block of N of defect zero, so it can be regarded as a principal indecomposable Brauer character of N and then has the form $\varphi=N \otimes_{H} \lambda$ for some $\lambda \in \operatorname{Irr}(H)$ by Fong[2], where H is a p-complement of N (and necessarily of G). Put $\eta=G \otimes_{N} \varphi=G \otimes_{H} \lambda$. We claim that η is the principal indecomposable Brauer character of G corresponding to φ. In fact if f is a primitive idempotent of $F[H]$ such that $F[H] f$ affords the Brauer character λ, then using the same notation as in the proof of Lemma 3 we see that $F[G] f / I f \cong F[G] / I \otimes_{H}$ $F[H] f \cong F[N] \otimes_{H} F[H] f$ affords the Brauer character φ. Therefore $c_{\varphi \varphi}=(\eta, \eta)=$ $\sum_{g}\left(\varphi, g \otimes_{N} \varphi\right)$ by Mackey decomposition, where g runs through a set of representatives of (N, N)-cosets of G and the inner product ($\varphi, g \otimes_{N} \varphi$) is taken over $g N g^{-1} \cap N$. Since $G=N Q=N Q N$, any (N, N)-coset is represented by an element of Q. Moreover if $g \in Q$, then $g N g^{-1} \cap N=C_{N}(g)$ and $\varphi=g \otimes_{N} \varphi$ on it. So $c_{\varphi \varphi}=2$ forces that $G=N \cup N g N$ and $1+(\varphi, \varphi)_{c_{N}(g)}=2$ for (all) $g \in Q^{\ddagger}$. This means of course that N acts transitively on Q^{*}, having $O_{p^{\prime}}(G)$ as its kernel and $\varphi_{C_{N}(g)}$ is irreducible. On the other hand noting that $O_{p^{\prime}}(G)$ is central, we see from Lemma 1 that $C_{N}(g)$ has a normal Sylow p-subgroup and its com-
plement is abelian. Combining the aboves, we conclude that $\left(p,\left|C_{N}(g)\right|\right)=1$ and φ is linear. In particular we have $G=H \cup H g H, g \in Q$ by Lamme 2 and it follows from this that Q is a Sylow p-subgroup of G. This completes the proof of Lemma 4.

3. Proof of the Theorem

Let $K=O_{p^{\prime}}(G)$. If B is a principal block, we may assume that $K=1$. Then $T=G$ satisfies the conclusion of the Theorem by Lemma 4. In general there exists $\xi \in \operatorname{Irr}(K)$ such that $\operatorname{Irr}(B) \subset \operatorname{Irr}(G \mid \xi)$. If I is the inertia group of ξ in G, there exists a p-block B_{I} of I which has the same Cartan matrix as that of B and $B \cong M\left(m, B_{I}\right)$ for some $m \geq 1$ (Fong [2], Tsushima [7], more notably B is isomorphic to the corestriction algebra $\operatorname{Cores}_{I}^{G} B_{I}$ or the induced algebra $\operatorname{Ind} d_{I}^{G} B_{I}$ in the languages introduced by M . Broué and L. Puig). So if $G>I$, we get our assertion by the induction on the order of G. Therefore we may assume that $G=I$. Following Fong, we consider a central extension

$$
1 \rightarrow Z \rightarrow G^{*} \rightarrow G / K \rightarrow 1
$$

, where Z is a cyclic group of order prime to p. Moreover from the construction we see that $Z \subset\left[G^{*} G^{*}\right]$ (Reynolds [6]). There exists a p-block B^{*} of G^{*} which has the same Cartan matrix as that of B and $B \cong M\left(m, B^{*}\right)$ for some $m \geq 1$ (Fong [2], Tsushima [7]). If $c_{\varphi \varphi}=2$ for some $\varphi \in \operatorname{IBr}\left(B^{*}\right)$, then φ must be linear by Lemma 4 and hence ker $\varphi \subset Z=O_{p^{\prime}}\left(G^{*}\right)$. Therefore B^{*} must be the principal block of G^{*}, which coincides with that of $G^{*} / Z \cong G \mid K$. So it remains only to show that $|H|=(|D|-1)\left(k_{B}-l_{B}\right)$. By Brauer's Permutation Lemma, H acts transitively on $\operatorname{Irr}(Q)^{\#}$. In particular for any $\psi \in \operatorname{Irr}(Q)^{*}$, its intertia group H_{ψ} in H is cyclic by Lemma 1 and hence $|\operatorname{Irr}(T \mid \psi)| \mid \operatorname{Irr}\left(T_{\psi} \mid\right.$ $\psi)\left|=\left|H_{\psi}\right|\right.$ by Clifford's Theorem. Using this, we have $k_{B}=|\operatorname{Irr}(T)|=|\operatorname{Irr}(H)|$ $+|\operatorname{Irr}(T \mid \psi)|=l_{B}+\left|H_{\psi}\right|$. Therefore $\quad|H|=(|Q|-1)\left|H_{\psi}\right|=(|D|-1)\left(k_{B}-\right.$ l_{B}). This completes the proof of the Theorem.

References

[1] R. Brauer and C. Nesbitt: On the modular characters of groups, Ann. of Math. 42 (1941), 556-590.
[2] P. Fong: Solvable groups and modular representation theory, Trans. Amer. Math. Soc. 102 (1962), 484-494.
[3] B. Huppert: Zweifach transitive, auflösbare permutationsgruppen, Math. Z. 68 (1957), 126-150.
[4] G. Michler: On blocks with multiplicity one, preprint.
[5] D.S. Passman: p-Solvable doubly transitive permutation groups, Pacific J. Math. 26 (1968), 555-577.
[6] W.F. Reynolds: Projective representations of finite groups in cyclotomic fields, Illinois J. Math. 9 (1965), 191-198.
[7] Y. Tsushima: On the second reduction theorem of P. Fong, Kumamoto J. Sci. Math. 13 (1978), 1-5.

Department of Mathematics
Osaka City University
Sumiyoshi-ku, Osaka 558
Japan

